691 research outputs found

    A Multi-Core Solver for Parity Games

    Get PDF
    We describe a parallel algorithm for solving parity games,\ud with applications in, e.g., modal mu-calculus model\ud checking with arbitrary alternations, and (branching) bisimulation\ud checking. The algorithm is based on Jurdzinski's Small Progress\ud Measures. Actually, this is a class of algorithms, depending on\ud a selection heuristics.\ud \ud Our algorithm operates lock-free, and mostly wait-free (except for\ud infrequent termination detection), and thus allows maximum\ud parallelism. Additionally, we conserve memory by avoiding storage\ud of predecessor edges for the parity graph through strictly\ud forward-looking heuristics.\ud \ud We evaluate our multi-core implementation's behaviour on parity games\ud obtained from mu-calculus model checking problems for a set of\ud communication protocols, randomly generated problem instances, and\ud parametric problem instances from the literature.\ud \u

    Formal methods applied to the analysis of phylogenies: Phylogenetic model checking

    Get PDF
    Los árboles filogenéticos son abstracciones útiles para modelar y caracterizar la evolución de un conjunto de especies o poblaciones respecto del tiempo. La proposición, verificación y generalización de hipótesis sobre un árbol filogenético inferido juegan un papel importante en el estudio y comprensión de las relaciones evolutivas. Actualmente, uno de los principales objetivos científicos es extraer o descubrir los mensajes biológicos implícitos y las propiedades estructurales subyacentes en la filogenia. Por ejemplo, la integración de información genética en una filogenia ayuda al descubrimiento de genes conservados en todo o parte del árbol, la identificación de posiciones covariantes en el ADN o la estimación de las fechas de divergencia entre especies. Consecuentemente, los árboles ayudan a comprender el mecanismo que gobierna la deriva evolutiva. Hoy en día, el amplio espectro de métodos y herramientas heterogéneas para el análisis de filogenias enturbia y dificulta su utilización, además del fuerte acoplamiento entre la especificación de propiedades y los algoritmos utilizados para su evaluación (principalmente scripts ad hoc). Este problema es el punto de arranque de esta tesis, donde se analiza como solución la posibilidad de introducir un entorno formal de verificación de hipótesis que, de manera automática y modular, estudie la veracidad de dichas propiedades definidas en un lenguaje genérico e independiente (en una lógica formal asociada) sobre uno de los múltiples softwares preparados para ello. La contribución principal de la tesis es la propuesta de un marco formal para la descripción, verificación y manipulación de relaciones causales entre especies de forma independiente del código utilizado para su valoración. Para ello, exploramos las características de las técnicas de model checking, un paradigma en el que una especificación expresada en lógica temporal se verifica con respecto a un modelo del sistema que representa una implementación a un cierto nivel de detalle. Se ha aplicado satisfactoriamente en la industria para el modelado de sistemas y su verificación, emergiendo del ámbito de las ciencias de la computación. Las contribuciones concretas de la tesis han sido: A) La identificación e interpretación de los árboles filogeneticos como modelos de la evolución, adaptados al entorno de las técnicas de model checking. B) La definición de una lógica temporal que captura las propiedades filogenéticas habituales junto con un método de construcción de propiedades. C) La clasificación de propiedades filogenéticas, identificando categorías de propiedades según estén centradas en la estructura del árbol, en las secuencias o sean híbridas. D) La extensión de las lógicas y modelos para contemplar propiedades cuantitativas de tiempo, probabilidad y de distancias. E) El desarrollo de un entorno para la verificación de propiedades booleanas, cuantitativas y paramétricas. F) El establecimiento de los principios para la manipulación simbolica de objetos filogenéticos, p. ej., clados. G) La explotación de las herramientas de model checking existentes, detectando sus problemas y carencias en el campo de filogenia y proponiendo mejoras. H) El desarrollo de técnicas "ad hoc" para obtener ganancia de complejidad alrededor de dos frentes: distribución de los cálculos y datos, y el uso de sistemas de información. Los puntos A-F se centran en las aportaciones conceptuales de nuestra aproximación, mientras que los puntos G-H enfatizan la parte de herramientas e implementación. Los contenidos de la tesis están contrastados por la comunidad científica mediante las siguientes publicaciones en conferencias y revistas internacionales. La introducción de model checking como entorno formal para analizar propiedades biológicas (puntos A-C) ha llevado a la publicación de nuestro primer artículo de congreso [1]. En [2], desarrollamos la verificación de hipótesis filogenéticas sobre un árbol de ejemplo construido a partir de las relaciones impuestas por un conjunto de proteínas codificadas por el ADN mitocondrial humano (ADNmt). En ese ejemplo, usamos una herramienta automática y genérica de model checking (punto G). El artículo de revista [7] resume lo básico de los artículos de congreso previos y extiende la aplicación de lógicas temporales a propiedades filogenéticas no consideradas hasta ahora. Los artículos citados aquí engloban los contenidos presentados en las Parte I--II de la tesis. El enorme tamaño de los árboles y la considerable cantidad de información asociada a los estados (p.ej., la cadena de ADN) obligan a la introducción de adaptaciones especiales en las herramientas de model checking para mantener un rendimiento razonable en la verificación de propiedades y aliviar también el problema de la explosión de estados (puntos G-H). El artículo de congreso [3] presenta las ventajas de rebanar el ADN asociado a los estados, la partición de la filogenia en pequeños subárboles y su distribución entre varias máquinas. Además, la idea original del model checking rebanado se complementa con la inclusión de una base de datos externa para el almacenamiento de secuencias. El artículo de revista [4] reúne las nociones introducidas en [3] junto con la implementación y resultados preliminares presentados [5]. Este tema se corresponde con lo presentado en la Parte III de la tesis. Para terminar, la tesis reaprovecha las extensiones de las lógicas temporales con tiempo explícito y probabilidades a fin de manipular e interrogar al árbol sobre información cuantitativa. El artículo de congreso [6] ejemplifica la necesidad de introducir probabilidades y tiempo discreto para el análisis filogenético de un fenotipo real, en este caso, el ratio de distribución de la intolerancia a la lactosa entre diversas poblaciones arraigadas en las hojas de la filogenia. Esto se corresponde con el Capítulo 13, que queda englobado dentro de las Partes IV--V. Las Partes IV--V completan los conceptos presentados en ese artículo de conferencia hacia otros dominios de aplicación, como la puntuación de árboles, y tiempo continuo (puntos E-F). La introducción de parámetros en las hipótesis filogenéticas se plantea como trabajo futuro. Referencias [1] Roberto Blanco, Gregorio de Miguel Casado, José Ignacio Requeno, and José Manuel Colom. Temporal logics for phylogenetic analysis via model checking. In Proceedings IEEE International Workshop on Mining and Management of Biological and Health Data, pages 152-157. IEEE, 2010. [2] José Ignacio Requeno, Roberto Blanco, Gregorio de Miguel Casado, and José Manuel Colom. Phylogenetic analysis using an SMV tool. In Miguel P. Rocha, Juan M. Corchado Rodríguez, Florentino Fdez-Riverola, and Alfonso Valencia, editors, Proceedings 5th International Conference on Practical Applications of Computational Biology and Bioinformatics, volume 93 of Advances in Intelligent and Soft Computing, pages 167-174. Springer, Berlin, 2011. [3] José Ignacio Requeno, Roberto Blanco, Gregorio de Miguel Casado, and José Manuel Colom. Sliced model checking for phylogenetic analysis. In Miguel P. Rocha, Nicholas Luscombe, Florentino Fdez-Riverola, and Juan M. Corchado Rodríguez, editors, Proocedings 6th International Conference on Practical Applications of Computational Biology and Bioinformatics, volume 154 of Advances in Intelligent and Soft Computing, pages 95-103. Springer, Berlin, 2012. [4] José Ignacio Requeno and José Manuel Colom. Model checking software for phylogenetic trees using distribution and database methods. Journal of Integrative Bioinformatics, 10(3):229-233, 2013. [5] José Ignacio Requeno and José Manuel Colom. Speeding up phylogenetic model checking. In Mohd Saberi Mohamad, Loris Nanni, Miguel P. Rocha, and Florentino Fdez-Riverola, editors, Proceedings 7th International Conference on Practical Applications of Computational Biology and Bioinformatics, volume 222 of Advances in Intelligent Systems and Computing, pages 119-126. Springer, Berlin, 2013. [6] José Ignacio Requeno and José Manuel Colom. Timed and probabilistic model checking over phylogenetic trees. In Miguel P. Rocha et al., editors, Proceedings 8th International Conference on Practical Applications of Computational Biology and Bioinformatics, Advances in Intelligent and Soft Computing. Springer, Berlin, 2014. [7] José Ignacio Requeno, Gregorio de Miguel Casado, Roberto Blanco, and José Manuel Colom. Temporal logics for phylogenetic analysis via model checking. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(4):1058-1070, 2013

    08332 Abstracts Collection -- Distributed Verification and Grid Computing

    Get PDF
    From 08/10/2008 to 08/14/2008 the Dagstuhl Seminar 08332 ``Distributed Verification and Grid Computing\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Model Checking at Scale: Automated Air Traffic Control Design Space Exploration

    Get PDF
    Many possible solutions, differing in the assumptions and implementations of the components in use, are usually in competition during early design stages. Deciding which solution to adopt requires considering several trade-offs. Model checking represents a possible way of comparing such designs, however, when the number of designs is large, building and validating so many models may be intractable. During our collaboration with NASA, we faced the challenge of considering a design space with more than 20,000 designs for the NextGen air traffic control system. To deal with this problem, we introduce a compositional, modular, parameterized approach combining model checking with contract-based design to automatically generate large numbers of models from a possible set of components and their implementations. Our approach is fully automated, enabling the generation and validation of all target designs. The 1,620 designs that were most relevant to NASA were analyzed exhaustively. To deal with the massive amount of data generated, we apply novel data-analysis techniques that enable a rich comparison of the designs, including safety aspects. Our results were validated by NASA system designers, and helped to identify novel as well as known problematic configurations

    Abstract Dependency Graphs for Model Verification

    Get PDF

    Exploring parallel formal verification of BIG-DATA systems

    Get PDF
    Software Engineering is trying to adapt its tools, mechanisms and techniques to cope with the challenges involved when developing BIG DATA software systems. In particular, formal verification in one of the areas that more urgently is required to step in. In this work we introduce two crucial aspects to consolidate the FVS tool to tackle this issue. For one side, FVS’s parallel algorithm is proved to be sound and correct. For the other side, we developed a compelling empirical validation of our approach, employing a communication protocol relevant in the industrial world within a context of parallel systems, introducing a load-balancer process and comparing several implementations.La Ingeniería de Software viene adaptando sus herramientas, métodos y técnicas para enfrentar los desafíos de los denominados sistemas de BIG-DATA. En particular, el área de verificación formal ha sido señalada como unas de las áreas de las que se requiere inmediatas contribuciones. En este trabajo se presentan aspectos claves para consolidar al lenguaje FVS como un lenguaje de verificación formal para BIG DATA. Por un lado se presenta una demostración formal de la correctitud del esquema paralelo de FVS. Por otro, se presenta una desafiante validación empírica del enfoque propuesto utilizando un protocolo relevante a nivel industrial con un balanceador de carga y comparando varias implementaciones

    Automatic techniques for detecting and exploiting symmetry in model checking

    Get PDF
    The application of model checking is limited due to the state-space explosion problem – as the number of components represented by a model increase, the worst case size of the associated state-space grows exponentially. Current techniques can handle limited kinds of symmetry, e.g. full symmetry between identical components in a concurrent system. They avoid the problem of automatic symmetry detection by requiring the user to specify the presence of symmetry in a model (explicitly, or by annotating the associated specification using additional language keywords), or by restricting the input language of a model checker so that only symmetric systems can be specified. Additionally, computing unique representatives for each symmetric equivalence class is easy for these limited kinds of symmetry. We present a theoretical framework for symmetry reduction which can be applied to explicit state model checking. The framework includes techniques for automatic symmetry detection using computational group theory, which can be applied with no additional user input. These techniques detect structural symmetries induced by the topology of a concurrent system, so our framework includes exact and approximate techniques to efficiently exploit arbitrary symmetry groups which may arise in this way. These techniques are also based on computational group theoretic methods. We prove that our framework is logically sound, and demonstrate its general applicability to explicit state model checking. By providing a new symmetry reduction package for the SPIN model checker, we show that our framework can be feasibly implemented as part of a system which is widely used in both industry and academia. Through a study of SPIN users, we assess the usability of our automatic symmetry detection techniques in practice

    A compositional analysis of broadcasting embedded systems

    Get PDF
    This work takes as its starting point D Kendall's CANdle/bCANdle algebraic framework for formal modelling and specification of broadcasting embedded systems based on CAN networks. Checking real-time properties of such systems is beset by problems of state-space explosion and so a scheme is given for recasting systems specified in Kendall's framework as parallel compositions of timed automata; a CAN network channel is modelled as an automaton. This recasting is shown to be bi-similar to the original bCANdle model. In the recast framework,"compositionality" theorems allow one to infer that a model of a system is simulated by some abstraction of the model, and hence that properties of the model expressible in ACTL can be inferred from analogous properties of the abstraction. These theorems are reminiscent of "assume-guarantee" reasoning allowing one to build simulations component-wise although, unfortunately, components participating in a "broadcast" are required to be abstracted "atomically". Case studies are presented to show how this can be used in practice, and how systems which take impossibly long to model-check can tackled by compositional methods. The work is of broader interest also, as the models are built as UPPAAL systems and the compositionality theorems apply to any UPPAAL system in which the components do not share local variables. The method could for instance extend to systems using some network other than CAN, provided it can be modelled by timed automata. Possibilities also exist for building it into an automated tool, complementing other methods such as counterexample- guided abstraction refinement

    A Parallel Tableau Algorithm for BIG DATA Verification

    Get PDF
    Big data systems are becoming more and more present in our everyday life generating data and information that needs to be explored and analyzed. In this sense, formal verification tools and techniques must provide solutions to face with these new challenges since they been pointed out as one of the most needed software engineering activities to consolidate big data modern systems. In this work we present a parallel implementation of a tableau algorithm aiming to improve the performance of our formal verification scheme. The pursued objective behind this transformation is to adapt our framework to deal with big data systems.Workshop: WIS – Ingeniería de SoftwareRed de Universidades con Carreras en Informátic
    corecore