UNIVERSITY

of
GLASGOW

Automatic Techniques for Detecting and Exploiting
Symmetry in Model Checking

Alastair F. Donaldson

5th June, 2007

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy at the University of Glasgow

Department of Computing Science
University of Glasgow

© 2007 Alastair F. Donaldson



Abstract

Model checking is an increasingly popular technique for the formal verification of
concurrent systems. The application of model checking is limited due to the state-
space explosion problem — as the number of components represented by a model in-
creases, the worst case size of the associated state-space grows exponentially. As
such, models of realistic systems are often too large to feasibly check. Over the last
15 years, symmetry reduction techniques for model checking have been developed
and, in a restricted setting, have been shown to be effective in reducing the state-
space explosion problem. Current techniques can handle limited kinds of symme-
try, e.g. full symmetry between identical components in a concurrent system. They
avoid the problem of automatic symmetry detection by requiring the user to spec-
ify the presence of symmetry in a model (explicitly, or by annotating the associated
specification using additional language keywords), or by restricting the input lan-
guage of a model checker so that only symmetric systems can be specified. Addi-
tionally, computing unique representatives for each symmetric equivalence class is
easy for these limited kinds of symmetry.

We present a theoretical framework for symmetry reduction which can be
applied to explicit state model checking. The framework includes techniques for
automatic symmetry detection using computational group theory, which can be ap-
plied with no additional user input. These techniques detect structural symmetries
induced by the topology of a concurrent system, so our framework includes exact
and approximate techniques to efficiently exploit arbitrary symmetry groups which
may arise in this way. These techniques are also based on computational group
theoretic methods.

We prove that our framework is logically sound, and demonstrate its gen-
eral applicability to explicit state model checking. By providing a new symmetry
reduction package for the SPIN model checker, we show that our framework can be
feasibly implemented as part of a system which is widely used in both industry and

academia. Through a study of SPIN users, we assess the usability of our automatic

symmetry detection techniques in practice.
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Chapter 1

Introduction

Over the last 25 years, temporal logic model checking [32, 26, 130, 134, 145] has
become one of the most popular techniques for formal verification of concurrent
hardware and software systems. Given a finite-state model which captures the es-
sential behaviour of a concurrent system, and a temporal logic property which de-
scribes some requirement of the system, a model checking algorithm determines
whether or not the property holds in the initial state (or states) of the model. Fur-
thermore, if the property does not hold, the model checker outputs a counter-example
— a behaviour of the model which violates the given property. Model checkers can
therefore be used to automatically find subtle defects in complex concurrent sys-
tem designs, or to prove the absence of certain defects, increasing confidence in the
system. The fact that model checking is, in principle, a fully automated technique
makes it more appealing to designers than other formal methods such as develop-
ment by specification and refinement, or mechanical theorem proving.

Although model checking has proved successful in both industry and
academia, the technique is hindered by the state-space explosion problem. This is
where, in the worst case, the number of reachable states of a model grows expo-
nentially with the number of components of the system being modelled. Consider
a system comprised of n identical components, each of which occupies one of k
local states, for some 11,k > 0. A state of a model of this system can be viewed as
a tuple (Iy,l,...,1n), where l; € {1,2,...,k},(1 £ i < n). Thus there are k" po-
tential states in the model. Although in practice it is unusual for every state to be
reachable, it is typical for the number of reachable states to approach this upper

limit. This means that memory and time constraints often prohibit model checking
properties of systems with many components.

A lot of model checking research concentrates on approaches to reduce the
state-space explosion problem. Techniques such as symbolic model checking [18,
128], partial-order reduction [67, 137], abstraction [30] and symmetry reduction [14,
27,31, 55, 103] have been successfully used in the verification of large systems.

Symmetry reduction is applicable when a system contains replicated com-
ponents. Such replication, or symmetry, can result in portions of the state-space of
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a model of the system being equivalent up to rearrangement of component identi-
fiers. If symmetry is known to be present in a specification then model checking
of certain properties can be performed over a quotient model, which is generally
smaller than the unreduced model. The quotient model is usually constructed by
converting each state encountered during search to a unique representative of its
symmetric equivalence class. There are two main problems which must be over-
come for a symmetry reduction technique to be useful: it must be possible to derive
symmetries of a model from its associated high-level specification, and an efficient
method of computing equivalence class representatives must be available.
Existing techniques for exploiting symmetry in model checking assume that
symmetries of a model are either known a priori [31], coded into the model through
the use of special keywords [14, 103], or guaranteed to exist by restricting the in-
put language so that there is full symmetry between multiple instances of a pa-
rameterised component [166]. The first two approaches are potentially prone to
error, and compromise the automation of model checking, which is one of its main
strengths as a verification technique. With the third approach, the specification lan-
guage is designed to suit one particular state-space reduction technique, which may
restrict the style of specifications, and typically only full symmetry between identi-
cal components can be captured in this way. Ideally, a model checking tool should
be able to detect symmetry automatically from a high level system description.
The problem of computing equivalence class representatives is usually
avoided by only providing support for full symmetry, since in this special case rep-
resentatives can be efficiently computed using techniques based on sorting. How-
ever, many other kinds of symmetry commonly occur in models of concurrent sys-
tems with a regular structure. For example, cyclic/dihedral groups are typically
associated with systems which have uni/bi-directional ring structures, and wreath
product groups occur when dealing with tree topologies. Efficient strategies for
representative computation have been proposed for symmetry groups which are
known to have certain structural properties [27]. However, an automated solution to

the problem of classifying the structure of any group so that an appropriate strategy
can be chosen is required.

1.1 Contribution and Structure of the Thesis

We provide a review of model checking and symmetry reduction literature in
Chapters 2 and 3 respectively. In Chapter 4 we present a selection of examples
for which symmetry detection and/or reduction using existing techniques is ei-
ther difficult, or impossible. The rest of the thesis is divided into two parts, which

respectively addresses research problems in automatic symmetry detection, and
efficient exploitation of symmetry.
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Chapters 5-8 are concerned with techniques for automatic symmetry detec-
tion. Examples from Chapter 4 are used in Chapter 5 to highlight a correspondence
between symmetries of the communication structure and symmetries of the model
associated with a specification. We develop automated symmetry detection tech-
niques for message passing specification languages in Chapter 7, using a small lan-
guage which captures the essential features of the widely used Promela language.
The approach involves computing the symmetry group of the static channel dingram
of a specification (a graphical representation of potential communication in the un-
derlying model), and using a computational group theoretic algorithm to compute
a subgroup of these symmetries which induces automorphisms of the underlying
model. In Chapter 8 we describe SymmExtractor, an implementation of these tech-
niques for Promela, using the computational group theoretic package GAp. We eval-
uate the usability of SymmExtractor using a set of Promela specifications written
as solutions to two student assessed exercises.

The problem of efficiently exploiting symmetries during model checking is
addressed in Chapters 9 — 11. In Chapter 9 we extend existing results on efficiently
computing equivalence class representatives for certain kinds of symmetry group
under a simple model of computation, and present a computational group theoretic
approach to classifying an arbitrary symmetry group so that an appropriate sym-
metry reduction strategy can be chosen. Given a set of group generators, the classi-
fication algorithm analyses the structure of the group, identifying it as a wreath or
disjoint product of subgroups (which are in turn analysed), or as a basic symmetry
group. For certain kinds of basic symmetry groups, exact, efficient symmetry reduc-
tion strategies are available. Otherwise we propose an approximate strategy based
on local search. This strategy does not provide optimal reduction, but is sound, as
well as being fast in practice. For symmetry groups which decompose as a product
of basic groups, a composite symmetry reduction strategy is selected. In Chapter 10
we then consider a more realistic model of computation, and show that exact sym-
metry reduction strategies under the simple model of computation are no longer
guaranteed to provide optimal reduction. We show how to extend these strategies
to achieve optimality, at the expense of polynomial time. In Chapter 11 we describe
TopSPIN, a symmetry reduction package for the SPIN model checker, which incor-
porates our (detection and reduction) techniques. We show significant reductions

in verification time and space requirements for model checking safety properties
for a variety of examples.

1.2 Thesis Website and Source Forge

The results in this thesis are illustrated using a variety of specifications of various

concurrent systems. Some of these are given in Appendix A, but all are available
online at the following URL:
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http://www.dcs.gla.ac.uk/people/personal/ally/thesis/

Release distributions of the three software tools presented in the thesis, SPIN-to-
GRAPE, SymmExtractor and TopSPIN, can also be downloaded from the above URL.
The tools are open source and their source code can be downloaded from Source
Forge:

https://sourceforge.net/projects/symmetryglasgow/

1.3 Notation for Equality and Assignment

Throughout the thesis we make extensive use of the Promela specification lan-
guage. Promela follows the C convention of using == to denote the boolean equal-
ity operator and = assignment. For example, x==5 is a boolean expression which
evaluates to true iff x has the value 5. On the other hand, x=5 is a statement which
assigns x to the value 5.

When writing mathematical equations and presenting algorithms, we prefer
to use = to denote the equality operator, and : = to denote assignment (the approach
used by languages such as Ada and Pascal). Therefore the meaning of == and : =is
unambiguous, but the meaning of = depends on whether it occurs in a Promela (or
Promela-Lite) code fragment. The SMC language, discussed in Section 3.3.3, uses =
and == in the same way as Promela.

1.4 Acknowledgment of Published Work

Much of the original material in this thesis has been published by the author in a
selection of co-authored papers.

The survey of symmetry reduction techniques presented in Chapter 3 ap-
pears in [132]; the SPIN-to-GRAPE tool of Chapter 4 was first presented in [49]. The
automatic symmetry detection techniques of Chapter 7 are published (in a prelimi-
nary form) in [48] and [42], in which the SymmExtractor tool is also introduced. The
type reconstruction algorithm used by SymmExtractor (see Section 8.2) was devel-
oped as part of the ETCH type checker [41]. Chapters 9 and 10 introduce strategies
for symmetry reduction which have been published in [44] and [46] respectively,
while the TopSPIN symmetry reduction package is described in [43].

However, the content of this thesis is the work of the author, incorporating
supervisory suggestions.

Published work not included in the thesis

We have published three papers related to symmetry reduction in model checking,
the content of which are not included here. The topics covered by these papers are:
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a symmetry reduction technique specific to featured networks [131], an approach
to symmetry reduction for probabilistic, symbolic model checking [45], and a com-
parison of techniques for exploiting symmetry in model checking and constraint
programming [47].

While these papers address interesting problems related to the role of sym-
metry reduction in formal verification, they do not fit into the suite of automatic,
general techniques for exploiting symmetry which we present here.



Chapter 2

Model Checking and the State Space Explosion Problem

In this chapter we formally present temporal logic model checking, introducing the
Kripke structure formalism used to model a concurrent system, together with the
logic CTL* and its commonly used sub-logics, CTL and LTL. We give an overview
of some standard model checking algorithms and tools. In particular, we describe
the Promela specification language and its bespoke model checker, SriN, which are
referred to frequently in Chapters 4-11. The chapter concludes with a discussion of
techniques which have been developed to combat the state-space explosion prob-
lem.

We begin by describing the use of model checking in the development of
reliable concurrent systems.

2.1 The Model Checking Process

Verification of a concurrent system design by temporal logic model checking tradi-
tionally involves first specifying the behaviour of the system at an appropriate level
of abstraction. The specification P is described using a high level formalism (often
similar to a programming language), the semantics of which are an associated finite
state model, M(P). A requirement of the system is specified as a temporal logic
property, ¢.

A software tool called a model checker then exhaustively searches the finite
state model M(P), checking whether ¢ holds at each initial state. If ¢ does not
hold at some initial state, an error trace or counter-example is reported. Manual ex-
amination of this counter-example by the system designer can reveal that P does
not adequately specify the behaviour of the system, that ¢ does not accurately de-
scribe the given requirement, or that there is an error (bug) in the design. In this
case, either P, ¢, or the system design (and thus also P and possibly ¢) must be
moditied, and re-checked. This process is repeated until the model checker reports
that ¢ holds in every initial state of M(P), in which case we say M(P) satisfies ¢,
written M(P) = ¢. The model checking process is illustrated by Figure 2.1.



2.1: THE MODEL CHECKING PROCESS 19

Improve design
and/or P and ¢

—

<

Counter-example

¢

State-space A

-

YES

Property is satisfied

Figure 2.1: The model checking process.
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Figure 2.2: Traditional and modern approaches to model checking in the development
of systems (adapted from [156]).

Assuming that the specification and temporal properties have been con-
structed with care, successful verification by model checking increases confidence
in the system design, which can then be refined towards an implementation. This
traditional approach is illustrated in the left hand side of Figure 2.2.

In practice, software is often developed rapidly, without much initial testing
or verification. In this case there is a need to apply model checking techniques to
the source code of an existing system, in an attempt to correct logical design flaws.
Semi-automatic abstraction techniques are used to extract a specification and logi-
cal properties from source code so that the model checking process can be applied.
This modern approach is illustrated on the right hand side of Figure 2.2.
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2.2 Kripke Structures and Temporal Logic

As discussed above, the model checking problem involves determining whether or
not a finite state model describing the behaviour of a concurrent system satisfies
a temporal logic formula specifying a desired safety or liveness property of the
system. A Kripke structure is the common formalism for representing a finite state
model, and temporal logic formulas are usually expressed in (a sub-logic of) CTL”,
or the u-calculus.

Let V = {v1,v2,...,0} be a finite set of system variables, where each v;
ranges over a finite non-empty set D; of possible values. Then D = D; X Dz X

... x Dy is the set of all possible system states. A Kripke structure is defined in
terms of D as follows:

Definition 1 A Kripke structure M over D is a tuple M = (5, So, R) where:
1. S = D is a non-empty, finite set of states
2. So C S is a set of initial states

3. R C S x S is a transition relation

A path in M from a state s € S is an infinite sequence of states 7T = sp,51,52,+.+
where sg = s, such that for all i > 0, (si—1,si) € R. For states s and ¢, it is common
to denote the transition (s,t) by s — t. A state s € S is reachable if there is a path
50,51, +++,5,.+. in M where sp € Sp. A transition (s,t) € R is reachable if s is a
reachable state.

We usually deal with Kripke structures which have a single initial state so €
S, in which case we write M = (S, s, R).}

Figure 2.3 shows the reachable part of a Kripke structure for a model of two
process mutual exclusion. The model consists of two processes, each with three
local states N, T and C. Each process has a single state variable, st; say (i € {1,2}).
Here V = {st;,st;} and D; = D, = {N,T,C}. The values N, Tand C denote that
a process is in the neutral, trying or critical state respectively. For A € {N,T,C} we
abbreviate the proposition st; = A by A;. Only if process i is in the trying state (i.e.
T; holds) and process j # i is not in the critical state (i.e. =C;j holds) can process f can
move into the critical state. Thus in the model it is not possible for both processes to
be in the critical state. That is, the mutual exclusion property holds. Note that there
is a single initial state (indicated by an incoming edge with no predecessor state in
Figure 2.3). In the initial state both processes are in the neutral state.

1. Following the convention of e.g. [30, 55, 57, 59], Definition 1 does not include a labelling function.
Such a structure is sometimes referred to simply as a transition system [30]. We could equivalently de-
fine states as being labelled with atomic propositions of the form (v; = d;) (where d; € D;) [32].
However, the above notation in which states are valuations of variables {(and thus are implicitly la-

belled) is convenient for presentation of our results, and is close to the representation of states used
by explicit-state model checkers.
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Figure 2.3: Kripke structure for two-process mutual exclusion.

2.2.1 CTL”

To express properties of Kripke structures we introduce the branching time tem-
poral logic CTL*. The set of CTL" state and path formulas are defined inductively
over a finite set of propositions over system variables. The quantifiers A and E are
used to denote for all paths, and for some path respectively (where F¢ = —A—¢).
In addition, X, U, F and G represent the standard next-time, strong until (see e.g.
[92]), eventually and always operators (where E¢ = trueU¢, and G¢p = —F—¢ re-
spectively). Note that we use p = g to denote —p V ¢ in the standard way. Let V

and D;, (1 < i < k) be as above. Then:
o true, false, (v; = d;) and (v; # d;) (for all v; € V, d; € D;) are state formulas
o if ¢ and y are state formulas, thensoare ~¢, pApandp V¢
e if ¢ is a path formula, then A¢ and E¢ are state formulas

e any state formula ¢ is also a path formula

o if ¢ and ¢ are path formulas, thenso are ~¢, p AP and ¢V ¢, X¢, pUy, F¢
and Go.
Given (path or state) formulas ¢ and ¢, ¢ is a sub-formula of ¢, written p C ¢,
if either ¢ = ¢, ¥ is an operand to one of the operators appearing in ¢, or ¢ is
bound to a quantifier appearing in 1. The sub-formula ¢ is propositional if it is a
state formula which does not include A or E. A maximal propositional sub-formula
of ¢ is a propositional sub-formula ¥ such thatif  C ¢’ C ¢, where ¢’ is also a
propositional sub-formula, then ¢ = ¢/’
The logic CTL" is the set of all state formulas. For a Kripke structure M, if
the CTL" formula ¢ holds at a state s € S then we write M,s = ¢ (or simply
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s = ¢ when the identity of the model is clear from the context). Otherwise we
write M, s & s. The relation = is defined inductively below. Note that for a path

T = Sg,51,... we define first(7t) = sp and, for all i > 0, 7; is the suffix of 7 starting
from state s;.

¢ s |=true,and s [~ false
e s=(v;=d;)ifandonlyifs = (e,€2,...,6) and e; = d; (1 <i < k)
o sk (v; #d;)ifand only ifs = (e,e2,...,6r) ande; #d; (1 <i < k)
e s = —¢ifand only if s = ¢
e s=E¢Apifandonlyifs =¢ands =y
e s=EoVyifandonlyifs =¢ors =9y
e s = A¢if and only if 7t |= ¢ for every path 7 starting at s
e s = E¢if and only if 71 |= ¢ for some path 7t starting at s
o 7t = ¢, for any state formula ¢, if and only if first(7) |= ¢
e |= ¢ if and onlyif 7 |~ ¢
e t=¢Apifandonlyif t =¢and 7 |= ¢
e tE¢Vyifandonlyif t =¢orm =9
o 7 |= ¢Uyp if and only if, forsomei >0, 7; = pand 7t = ¢ forall 0 < j < i
e 1k X¢ifand onlyif m; = ¢
e 7 = F¢ if and only if 7; |= ¢, for some i > 0
e 7= G¢ifand onlyif ; |= ¢, foralli > 0.
Model checking involves determining the satisfaction of a temporal logic for-

mula by a Kripke structure. The model checking problem can be specitied globally or
locally as follows [134}:

Global model checking problem - Given a Kripke structure M and a CTL* for-
mula ¢, determine the set of states in M that satisfy ¢ (i.e. determine {s € S :

M,s = ¢}).

Local model checking problem - Given a Kripke structure M, a CTL* formula ¢
and a state s in M, determine whether s satisfies ¢ (i.e. M, s = ¢).

Recall the set Sp of initial states of a Kripke structure M. In practice we are
typically interested in whether the initial states of a model satisfy a given property,
so we say that the model M satisfies the CTL* property ¢, denoted M = ¢, if
M,s = ¢ forall s € So.

Returning to the mutual exclusion example of Figure 2.3, we can express the
mutual exclusion property formally in CTL* as follows:

Property 1 AG(—(C; A Gy)).
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The Kripke structure clearly satisfies this property as (C, C) is not a reachable state.
Property 1 is a safety property — it asserts that something (bad) never happens. A
liveness property on the other hand expresses that eventually something (good)
must happen during an execution. For example, Property 2 below states that hav-

ing reached its trying region a process will eventually progress to its critical section
(the progress property):

Property 2 AG(T; = (FCy)).

To see that the Kripke structure does not satisfy this property, consider the infinite
path starting at (N, N), followed repeatedly by the cycle (T, N), (T, T), (T, C), (T, N).
Process 1 waits in the trying region forever along this infinite path, violating
Property 2. Thus this path is a counter-example which proves that M, (N1Ny) -
Property 2.

We now define two sub-logics of CTL" which are commonly used in appli-
cations of model checking.

CTL

The logic CTL (Computation Tree Logic) is the sub-logic of CTL* in which the tem-
poral operators X, U, F and G must be immediately preceded by a path quantifier.
For example the so-called reset property, AG(EF Restart), which asserts that from
any state it is possible to get to the Restart state, is a CTL property. Efficient model
checking algorithms exist for this sub-logic (see Section 2.3.1), which is expressive

enough for the needs of most hardware verification problems, and thus is used
almost exclusively in this area.

LTL

The logic LTL (Linear Temporal Logic) is obtained by restricting the set of CTL* for-
mulas to those of the form A¢, where ¢ does not contain A or E. It cannot express
e.g. the reset property (see above). On the other hand, the property A(FG Leader),
which states that eventually the proposition Leader will hold forever, can be ex-
pressed in LTL but not CTL. Although the model checking problem for LTL is
NP-hard [32], LTL model checking can be performed on-the-fly using an automata-
theoretic approach (see Section 2.3.2) which can be very efficient in practice. LTL is
applied almost exclusively in software verification.

Figure 2.4 illustrates the relationship between CTL, LTL and CTL*. Ex-
ample properties (adapted from [32]) in CTLN LTL, CTL \ LTL, LTL \ CTL and

CTL" \ (CTLU LTL) are shown. For a debate on the relative benefits of CTL vs. LTL
see [92].
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Figure 2.4: Relationship between the temporal logic CTL* and its sub-logics CTL and
LTL, with example properties.

2.2.2 u-calculus

It is worth noting that properties of transition systems can also be expressed in the
propositional p-calculus [111]. This powerful language is obtained by extending
Hennessy-Milner logic (a simple modal logic) [79] with fixpoint operators. The u-
calculus is of interest to researchers in formal verification as many temporal logics
(e.g. CTL*) can be encoded into it.

Although symmetry reduction techniques have been shown to be compati-
ble with u-calculus model checking [55], we restrict our attention to CTL" and its
sub-logics, which are expressive enough to describe most properties of interest, and
are supported by widely used model checkers such as SPIN and SMV.

2.3 Model Checking Algorithms

We now describe standard explicit-state model checking algorithms for CTL and
LTL, and indicate how they can be combined for CTL* model checking.

2.3.1 CTL model checking

The model checking algorithm for CTL [28, 145] works by successively marking
states which satisfy sub-formulas of the formula to be checked, starting with propo-
sitional sub-formulas which are trivial to check. The particular form of the algo-
rithm used depends on the formula. For illustration, we give here an example of
how the algorithm proceeds to check formula ¢, where ¢ is A(¢p;Ug).

For a state s, s |= ¢ if and only if either s satisfies ¢, or s has at least one suc-
cessor, s satisfies ¢ and all successors of s satisfy ¢. Initially all states are marked to
indicate whether they satisfy ¢y and/or ¢2. States which satisfy ¢, can immediately
be marked as satisfying ¢. Each state is also marked with a number (nb say), denot-
ing how many successors have yet to be marked as satisfying ¢. Initially for each
state s, nb is set to 0 if s = ¢, or to the number of successors of s otherwise. In the
latter case, each time a successor of s is marked as satisfying ¢, nb is decremented
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by one. When nb = 0 for s, clearly s = ¢. When no states can be remarked, the
algorithm terminates. If, at this point, all initial states are marked as satisfying ¢,
then M = ¢.

The algorithm for determining whether a CTL formula ¢ holds in a state s of
M is linear in the size of the formula and the Kripke structure — the complexity is

O(|¢] - (S| + |R])), where |¢] is the length of ¢ [28]. An extension of the algorithm
which only considers fair computations (see Section 3.6.2) is presented in [28].

2.3.2 Automata-theoretic LTL model checking

The model checking problem for LTL can be restated as: “given M and ¢, does there
exist a path of M that does not satisfy $?” One approach to LTL model checking is

the tableau approach described in {134]. However, we concentrate here on the more
efficient automata-theoretic approach [119, 176].

Definition 2 A finite state automaton (FSA) A is a tuple A = (S, so, L, T, F) where:
1. S is a non-empty, finite set of states
2. sp € S Is an initial state
3. L is a finite set of labels
4. T C S x L xS is a set of transitions
5. F C § is a set of final states.

A run of A is an ordered, possibly infinite, sequence of transitions

(50; Lo, 51), (SLIIr Ilr 52): voo

where, foralli > 0,s; € S,I; € Land, (s;,1;,si+1) € T. An accepting run of A is a
finite run in which the final transition (s,—1, l,—1,5,) has the property that s,, € F.

In order to reason about infinite runs of an automaton, alternative notions
of acceptance, e.g. Biichi acceptance, are required. We say that an infinite run (of
an FSA) is an accepting w-run (i.e. it satisfies Biichi acceptance) if and only if some
state in F is visited infinitely often in the run. A Biichi automaton is an FSA defined
over infinite runs (together with the associated notion of Biichi acceptance).

Every LTL formula can be represented as a Biichi automaton (see for exam-
ple [177], and references therein). In order to verify an LTL property A¢, a model
checker must show that all paths of a model M satisfy ¢ (alternatively, find a
counter-example, namely a path which does not satisfy ¢). To do this, an automaton
A representing the reachable states of M is constructed, together with an automa-
ton B~y which accepts all paths for which —¢ holds. The asynchronous product of
the two automata, A’ is constructed. (In practice A’ is usually constructed implic-
itly, by letting A and B- take alternate steps). Any accepting run of A’ signifies
an error. If there are no accepting runs, M |= ¢. Generally to prove LTL properties,
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a depth-first search is used. As the search progresses, all states visited are stored
(in a reduced form) in a hash array (or heap), and states along the current path are
pushed on to the stack.

If the property ¢ to be verified is a safety property, say ¢ = AG 1, where
i does not contain the until operator U, then a depth-first search of A’ is used. If

a state is encountered at which ¢ is false, then ¢ is false and the current path (the
current contents of the stack) provides a counter-example. If, on the other hand,
¢ is a liveness property, then determining the truth, or otherwise, of ¢ relies on
the ability to detect the presence of infinite accepting runs in .4’. This is achieved
either by using the classic approach of Tarjan [172] in which the strongly connected
components are constructed and analysed separately for acceptance runs, or via a
nested depth-first search [35]. A nested depth-first search is more efficient than the
classic approach in that it is not necessary to produce all acceptance runs, just a
single acceptance cycle (if one exists). Suppose, for example ¢ is A(GF p), for some
proposition p. From any state s reached during an initial search at which -p holds,
a second search is initiated to check for paths leading back to s, during which p
remains false. If no such path exists, the original search resumes from s.

The complexity of LTL model checking is exponential in the length of the for-
mula to be checked: O((|S| + |R|) - 20U¢1)). This is because the worst case automa-
ton generated from an LTL formula ¢ may have 2!#! states. Although in the worst
case this means that LTL model checking is much harder than CTL model checking,
in most practical cases there is little performance difference [92, Appendix B}.

2.3.3 Model checking for CTL"

Model checking for CTL* was first introduced in [28]. A method for checking CTL*
properties [54] involves the use of an LTL model checker on the sub-formulas of
the property to be checked. The complexity of CTL* model checking is the same
as for LTL model checking. However, due to the automata-theoretic approach for
LTL model checking and the efficient CTL model checking algorithm, most model
checkers are used to verify either CTL or LTL properties, but not both.

24 Promela and SriN

Clearly it would be impractical to model complex concurrent systems directly as
Kripke structures. In practice, a system is described using a high-level specifica-
tion formalism which has Kripke structure semantics. A model checking tool takes
as input a specification of a concurrent system, together with a property in some
temporal logic. Using algorithms such as those outlined in Section 2.3, together
with appropriate state-space reduction techniques (see Section 2.6), the tool checks
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whether or not the associated model satisties the property, providing a counter-
example if the result is negative. Certain properties (such as absence of deadlock,
or basic safety properties which can be expressed using specification-level asser-
tions) can be checked without a temporal property.

The model checker SrIN (simple Promela interpreter) allows LTL reasoning
about specifications written in Promela (process meta language). SPIN has been
widely used in industry and academia for reasoning about communications pro-
tocols. In this section we give an overview of Promela and SPIN, which are used for
implementation and examples throughout Chapters 4-11. For an excellent Promela
language reference, see [65]. Full details of SPIN and Promela can be found in the

SPIN reference manual [92]. In Section 2.5 we briefly describe a selection of other
model checking tools.

2.4.1 Promela

Promela is an imperative style specification language geared towards the descrip-
tion of network protocols. In general, a Promela specification consists of a series
of global variables, channel declarations and process type (proctype) declarations,
together with an initialisation process. Desired logical properties of a specification
are either presented using assertions embedded in the body of a proctype, or via a
never claim — a special additional process which can be used for the verification of
LTL properties.>

Each proctype in a Promela specification can be viewed as a finite automa-
ton (see Section 2.3.2), and the model associated with this specification is the asyn-
chronous product of the automata for all proctype instantiations. This global au-
tomaton can be viewed as a Kripke structure, so we talk about the Kripke structure,
rather than the automaton, associated with a Promela specification.

Variables and channels

Promela includes the following primitive data types: bit, byte, short and int (numeric

types); pid (a type for storing process identifier values), and bool (for boolean val-
ues). Names for messages in a protocol can be defined using a single enumeration,
called mtype. For example, the declaration:

mtype = {request,ack,grant,deny}
defines four distinct message names for use in a protocol. User-defined record types
can be constructed using the typedef keyword. The declaration

typedef message { pid sender; pid receiver; mtype body;

bit encrypted }
defines a record type, message, with four fields: sender and receiver (which have type

pid), body (an enumeration), and encrypted (a bit). Single-dimensional arrays can be

2. Temporal properties can also be expressed using progress and accept labels in the body of a proc-
type. We do not discuss these here.
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declared using C-like syntax. For example:

message A[5]
defines an array of length five, with element type message. Two-dimensional ar-
rays can be declared indirectly using an array whose elements are instances of a
record type which includes an array type as one of its fields.

To facilitate the specification of protocols, Promela includes a chan data
type to describe both synchronous and buffered channels. A channel declaration
can have one of three forms. A declaration chan (name) = [x] of {(tyre).

{type)a, . . ., {type)x} (x = 0, k > 0) defines a new channel (referred to by (name)).
Each message to be sent on this channel must be a tuple of values, where the
value at position i has type (type); (1 < i < k). We refer to the elements of
this tuple as message fields. If x > 0 then the declaration defines a buftered, first-
in first-out channel of length x. If x = 0 then communication on the channel
is synchronous. The component of the channel declaration of the form [x] of
{{type)1, (type)a, . .., (type)x} is called a channel initialiser. A channel declara-
tion chan (name); = (name),, on the other hand, does not define a new channel.
Rather it defines a new channel reference, (name);, which refers to the channel re-
ferred to by (name), (the name associated with a previous channel declaration).
Finally, a declaration chan (name) defines a channel reference which is initially
null. A useful feature of Promela is that, like the mr-calculus [159], it supports the
declaration of first-class channels: the type chan may be given as a message field
typein a channel initialiser, so that channel references can be passed on the channel.
This allows for specifications with dynamic communication structures.

We say that a channel variable is globally instantiated if it is declared in global
scope (outwith any proctype definition), and has a channel initialiser.

A (non-channel) global variable declaration may be prefixed by the hidden
keyword. This indicates to SPIN that the variable is a “scratch” variable, used only
for intermediate computation within atomic or d_step blocks (see below). Ac-
cordingly, to save memory, SPIN does not include the values of hidden variables in
the data structure used to represent a state of the model associated with a specifi-
cation. It is the responsibility of the user to ensure that hidden variables are used
correctly; SPIN cannot check this automatically. It is particularly convenient to de-

clare global constant data structures (e.g. fixed lookup tables) as hidden, so that
they are not duplicated in every state of the global state-space.

Processes and statements

A Promela proctype is a parameterised process definition. A proctype consists of a
name, an optional list of parameters and local variable declarations, and an ordered

list of statements. Each proctype includes a built-in, read-only variable called _pid,
which records the identifier of a process (a non-negative integer). In addition, each

proctype includes an implicit program counter variable, which stores the current
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position of execution within the proctype body. This variable cannot be explicitly
referred to. However, particular positions in the proctype body can be marked us-
ing labels, which can then be used for control flow via goto statements (as in the
C language).

A specification usually includes a designated init process which is auto-
matically instantiated at the start of verification, and which may instantiate further
processes via run statements.®> A run statement consists of a proctype name, and
a list of actual parameters for the proctype. Execution of a run statement causes
an instance of the given proctype to be added to the pool of running processes.
The init process is assigned _pid value 0 by SPIN, and processes identifiers are
thercafter assigned in order of instantiation.

The simple statements in a proctype fall into three categories: expressions,
updates, and communication statements. An expression is a boolean expression over
local and global variables, using the standard equality operators == and ! =, re-
lational operators <, <=, > and >=, and logical operators &&, | | and !. Boolean
expressions may also test the state of a buffered channel ¢ using the 1en opera-
tor (which returns the length of ¢); the operators full, empty,nfull and nempty
which determine whether ¢ is full, empty, not full or not empty respectively,?, or via
a channel poll expression (see [92] for details). Upon reaching an expression state-
ment, a process may not continue execution until the expression evaluates to true.
When this is the case, execution of the statement has no side-effects. The Promela
keywork skip can be used in place of the expression statement true. An update
is a statement of the form (variable) = (expr). Such a statement is always executable
(as long as the expression does not involve division by zero or an out-of-bounds
array access), and updates the value of the given variable with the result of the
expression.

A communication statement involves sending on or receiving from a channel.
A send statement has the form (chan) | (expressions), where {chan) is a channel vari-
able and (expressions) is a comma-separated list of expressions. The type of each
expression must match the type of the corresponding message field of the chan-
nel to which the variable refers. A statement of this form is executable either if the
channel is buffered and not full, or if the channel is synchronous and there is an-
other process ready to receive on the channel. Sending on a buffered channel has
the effect of adding a message to the buffer, and sending on a synchronous channel
causes the list of expression values to be written to a corresponding list of variables
offcred by the receiving process. A receive statement has the form (chan) ? (variables),
where (chan) is as before, and (variables) is a comma-separated list of distinct vari-
ables. A receive statement is executable either if the channel is buffered and not

3. Processes may also be instantiated using the act ive keyword - see [92] for details.

4. The provision of both full and nfull (similarly empty and nempty) is necessary since, for
reasons described in [92], it is illegal to write | £ull (c).



2.4: PROMELA AND SpriN 30

empty, or if the channel is synchronous and there is another process ready to send
a message on the channel. Receiving on a buffered channel causes the given list of
variables to be assigned to the associated field values of the next message on the
buffer, which is also removed from the buffer. Receiving on a synchronous channel
causes the list of variables to be overwritten by the (evaluated) list of expressions
offered by the associated sender process.

Our description of communication statements has not covered various fea-
tures, including: non-destructive channel reading; sorted-send and random-receive

operations; the eval operator, and the built-in, write-only ’_’ variable. These fea-
tures are fully documented in the reference manual [92].

Control flow

The most basic control flow operator in Promela is *;’, which denotes sequence (as
in most imperative languages). Following languages such as Pascal, *;’ is intended
as a statement separator rather than a statement terminator, so strictly should not ap-
pear at the end of a list of statements. However, the SPIN implementation relaxes
this condition, and a terminating semi-colon is optional. Any occurrence of “;’ can
be equivalently replaced with the alternative separator ‘- >’. However, ‘- >’ is usu-
ally used to express a compound statement of the form guard - > update.

To describe a system at an appropriate level of abstraction it is often conve-
nient to specify that a particular sequence of statements should be executed as a
single update. This can achieved using a d_step (deterministic step) or atomic
block. A d_step block consists of one or more non-blocking, deterministic state-
ments to be executed as a single transition. Examples of blocking statements in-
clude channel operations, expression statements, and run statements (which may
block due to an upper limit of 256 running processes imposed by SPIN). In addition,
it is not legal for a goto or break statement (described below) to potentially cause
a jump out of a d_step block. An atomic block is similar, but it is permissible
for statements within an atomic block to involve non-deterministic choice, poten-
tially block execution of the process, or cause a jump out of the block. The use of
d_step over atomic, when applicable, results in more efficient use of memory
during verification.

Repetitive choice can be specified using a compound statement of the form
do (options) od. The (options) part of this construct is a list of Promela fragments,
scparated by the : : token. A process executes a do. . od statement by repeatedly
executing one of the options, if any are executable. A break or goto statement
may be used to jump out of a do. . od loop. Non-repetitive choice can be specified
similarly using an if..fi construct. Examples of do..od and if..£fi are pro-
vided in Figure 2.5. The if. . £i example shows that the guards which determine
executability of each option nced not be mutually exclusive: if the guard (x==4)
evaluates to true then either of the statement sequences which start with this guard
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if
:: link!5 -> ... do
:: (x==4) -> goto finish :: {counter<N) =-> ...
1 (x==4) -> ... :: (counter==N)} ->» break
:: else -> skip od
£1i;
finish:

Figure 2.5: Condition, repetition and goto statements in Promela.

mtype = {N,T,C)
mtype st [6] =N

proctype user{) |
do

:: d step { st pid}==N -> st[ pid]=T }
:: d_step { st[_pid]==T &&
(st [1] !=C && st [2]}!=C && 8t [3]!=C && st [4] !=C && st [5] !=C)
-> st [_pid]=C
)

:: d step { st[ pid]l==C -> st[ pid]l=N }
od
)

init {

atomic |
yun user();
run user();
run user();
run user() ;
run user():;

Figure 2.6: Promela specification of mutual exclusion with 5 processes.

can be executed. The else keyword can be used to assert that a particular option
should only be chosen if no other options are executable. The if..£fi example

also illustrates the way flow of control can be organised using traditional goto
statements and labels.

Example

We illustrate some of the features of Promela using the simple specification shown
in Figure 2.6, which is a five-process version of the mutual exclusion protocol de-
scribed in Section 2.2. The specification consists of: an enumerated type definition
for the symbolic constants N, T and C; a global array st which is used to hold the
state of each process; a user proctype, and an init process which instantiates a
number of user processes.

The body of the user proctype is a single do. .od statement. Each op-
tion in this loop is a d__step block which is in turn comprised of a guard (e.g.
st [_pid] ==N) followed by an update (e.g. st [_pid] =T). Each block is exe-
cutable at a given state if its associated guard evaluates to true. A user process

proceeds by repeatedly executing one of the d__step blocks, if any are executable.
In this example, the options within the do. . od statement are mutually exclusive.
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never {

TO inijt:
if
:: (1(st[1]==C) && st [1]==T) =-» goto accept_S4
:: (1) -> goto TO_init
fi;
accept_5S4:
if
:: (1(st[1]==C)} -> goto accept_S4
£i;

Figure 2.7: Example never claim for the LTL property AG(Ty = (FCy)).

N

frue —C1q

-Ci1A Ty

Figure 2.8: Blichi automaton representing the formula “AG(T; = (FC,)).

The init process instantiates five user processes via a sequence of run state-
ments. The run statements are contained within an atomic block, to indicate that
they should be executed as an indivisible block.

Note that a Promela array with length I > 0 is indexed using integers in
the range 0... (I — 1). However, in the mutual exclusion example, the five user pro-
cesses have _pid variables with values in the range 1-5. Therefore the array st is
declared with length 6, and position 0 of the array is unused.

Figure 2.6 does not illustrate the declaration and use of channels. Appen-

dices A.2 and A.3 contain Promela specifications which include buffered and syn-
chronous channel declarations respectively.

24.2 Reasoning about Promela specifications

As mentioned above, simple logical properties of a Promela specification can be
expressed using assert statements embedded in the body of proctypes, and more
complex LTL properties can be expressed using a never claim process. The never

claim corresponding to an LTL property ¢ is a fragment of Promela code equiv-
alent to a Biichi automaton representing the formula —¢ (see Section 2.3.2). Fig-

ure 2.7 shows the never claim used to verify the progress property (Property 2,
Section 2.2.1), for the simple mutual exclusion example. The propositions T3 and
C, in the property are represented by propositions st [1] ==T and st [1] ==C re-
spectively in the never claim. Figure 2.8 shows the associated Biichi automaton
for “AG(T1 = (FC;)). States sp and s; of the automaton correspond to the labels
TO_init and accept_S4 of Figure 2.7 respectively. A never claim can include an
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Figure 2.9: The SPIN verification process.

expression of the form name [i] @label to refer that the program counter of process i,
an instantiation of proctype name, is at the position of the specitied label.

Given a Promela specification (optionally including an associated never
claim), SPIN generates a C program, pan. c. This program is called the verifier gen-
erated by SpiN. It includes data structures to represent states of the model asso-
ciated with the input specification, and search algorithms for exploration of the
state-space. The LTL model checking algorithm is based on the approach described
in Section 2.3.2. Routines to implement various state-space reduction techniques
(some of which are discussed in Section 2.6) are also incorporated in pan. c. As well
as checking properties of a specification expressed using assertions and a never
claim, SPIN can be used to search for deadlock states (from which no transitions orig-
inate).

In order to obtain a verification result, pan.c must be compiled and ex-
ecuted. Figure 2.9 illustrates the process of LTL property verification using SPIN.
Note that a conclusive verification result will only be obtained if memory permits.
When checking a large state-space, the verifier may terminate having exhausted
available memory without finding an error.

2.4.3 Features of SPIN

A variety of built-in state-space reduction techniques are provided by SrIN. The
model checker also supports simulation of Promela specifications though a user
interface.

SPIN uses on-the-fly verification and partial-order reduction techniques (dis-
cussed in Section 2.6.3) to reduce the number of states which need to be explored
during model checking. Additionally, the tool provides data-flow optimisation to
identify points in the specification where variables become dead, and techniques for
statement merging, both of which help reduce verification complexity.

To reduce the per-state storage requirement, SPIN provides three state com-
pression options (see Section 2.6.2), and automatically eliminates write-only vari-
ables from the state-vector.

Support for sophisticated simulation of Promela specifications is provided
via the XsSPIN user interface. Execution of a specification may be simulated ran-
domly or interactively, or may be guided by a counter-example generated by a veri-
fication attempt. The interface allows a user to step through a simulation run, track-
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proctype database(chan link) (
chan current server=null server;
do
| /* Receive a query from a server and send back a result =/
. Lank? ﬁai, current server,
current_server=null_ server

od

!

init
atomic |

/* Run. the database, server and client processes */
run database (db_lank);

run server(sel,cl se 1),

run server (sel, cl_se 2);

cun server(sel.cl se_3):

run client(cll,cl se 1).

run client(clZ.cl _se 1).

run client(cl3, cl se 1);
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Figure 2.10: Simulation of a Promela specification using message sequence charts.

ing the values of global and local variables and channels. In interactive mode, non-
deterministic choices are resolved by the user. Channel-based communication be-
tween processes may also be graphically illustrated using message sequence charts
(MSCs). An MSC represents each process by a vertical time-line with a top box in-
dicating the name of the process. Messages between processes are represented by
diagonal arrows between time-lines, and indicate a partially ordered set of com-
munication events. MSCs support visualisation of complex communications proto-
cols, and can be a useful aid when understanding counter-examples produced by a
model checker [138].

Figure 2.10 shows a screen-shot of the XsrIN interface. A Promela specifica-
tion is loaded into the top-left pane. The bottom-left pane shows the status of the
current simulation run, and the right-hand pane shows an MSC for the simulation.

A user can also choose to display the current values of global and local variables in
a separate window.

2.5 Other model checkers

We broadly classity model checkers into three categories: standard checkers, which
check logical properties of high level specifications; real time/probabilistic checkers,

which allow performance evaluation, and direct model checkers, which aim to ver-
ify source code.
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2.5.1 Standard model checkers

The explicit-state model checker Mur¢ [40] uses a language based on a collection
of guarded commands (condition/action rules), which are executed repeatedly in
an infinite loop. The imperative-style language incorporates new data types, in-
cluding multiset (for describing a bounded set of values whose order is irrelevant
to the behaviour of the description) and scalarset (for describing a subrange whose
elements can be freely permuted; see Section 3.3.2). The verifier performs a depth-
or breadth-first search over the state-space to check for absence of deadlock, or sat-
isfaction of safety properties expressed using assert statements, or invariants. More
complex temporal properties cannot be verified.

The tool COSPAN [113] uses an automata-theoretic approach to model
checking. The system to be verified is modelled as a collection of coordinating pro-
cesses described in the S/R (selection/resolution) modelling language. The verifier
supports both on-the-fly explicit-state search and symbolic search using binary de-
cision diagrams (BDDs - see Section 2.6.2).

The most successful BDD-based symbolic model checker (see Section 2.6.2)
is the CTL model checker SMV [128]. Systems are described using the SMV lan-
guage, which has a precise semantics relating input specifications to their expres-
sions as boolean formulas. SMV supports synchronous and asynchronous commu-
nication, and provides for modular descriptions of re-usable components. NuSMV
[25] is a re-implemented and extended version of SMV which includes a textual
interaction shell and graphical user interface, as well as techniques for model par-
titioning and LTL model checking.

An enhanced version of SMV, RuleBase [8] is an industry-oriented tool for
the verification of hardware designs. In an effort to make the specification of CTL
properties easier for the non-expert, RuleBase supports its own language, Sugar, as
well as standard hardware description languages such as VHDL and Verilog.

In Sections 3.9.1 and 3.9.2 we discuss the implementation of symmetry re-
duction techniques in standard model checking tools.

2.5.2 Real time and probabilistic model checkers

When modelling certain critical systems, it is essential to include some notion of
time. If time is considered to increase in discrete steps (discrete-time), then exist-
ing model checkers can be readily extended [3]. The most widely used dense real-
time model checker (in which time is viewed as increasing continuously) is UPPAAL
[116]. Models are expressed as timed automata and properties defined in UrPPAAL
logic, a subset of timed computation tree logic (TCTL). UPPAAL uses a combination
of on-the-fly and symbolic techniques so as to reduce the verification problem to
that of manipulating and solving constraints. Another real-time model checker is
KRrRONOSs [186] which is used to analyse real-time systems modelled in several timed
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process description formalisms. A real-time extension to COSPAN [4] allows real-
time constraints to be expressed by associating lower and upper bounds on the
time spent by a process in a local state.

The probabilistic symbolic model checker PrisM [83, 114, 153] allows rea-
soning about models of probabilistic systems. The tool supports discrete- and
continuous-time Markov chains, as well as Markov decision processes, which al-
low both probabilistic and non-deterministic behaviour. Properties are written in
terms of probabilistic computation tree logic (PCTL), or continuou<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>