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Abstract

This work takes as its starting point D Kendall’s CANdle/bCANdle algebraic

framework for formal modelling and specification of broadcasting embedded

systems based on CAN networks. Checking real-time properties of such sys-

tems is beset by problems of state-space explosion and so a scheme is given for

recasting systems specified in Kendall’s framework as parallel compositions

of timed automata; a CAN network channel is modelled as an automaton.

This recasting is shown to be bi-similar to the original bCANdle model.

In the recast framework,“compositionality” theorems allow one to infer

that a model of a system is simulated by some abstraction of the model, and

hence that properties of the model expressible in ACTL can be inferred from

analogous properties of the abstraction.

These theorems are reminiscent of “assume-guarantee” reasoning allow-

ing one to build simulations component-wise although, unfortunately, com-

ponents participating in a “broadcast” are required to be abstracted “atom-

ically”. Case studies are presented to show how this can be used in practice,

and how systems which take impossibly long to model-check can tackled by

compositional methods.

The work is of broader interest also, as the models are built as UPPAAL

systems and the compositionality theorems apply to any UPPAAL system

in which the components do not share local variables. The method could for

instance extend to systems using some network other than CAN, provided

it can be modelled by timed automata. Possibilities also exist for building

it into an automated tool, complementing other methods such as counter-

example-guided abstraction refinement.
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Chapter 1

Introduction and Overview

1.1 Embedded Systems

Embedded Systems are electronically controlled appliances which include a

computer – usually termed a microcontroller in the electronic engineering

community – or several such computing nodes in communication over one

or more networks. In the latter case one may speak of a distributed embed-

ded system or, when (as is often the case) the communication is broadcast

rather than point-to-point, a broadcasting embedded system. Such appli-

ances abound: examples include toys, electronic games, home appliances,

Hi-Fi, TV and DVD equipment, computer peripherals and mobile phones.

Cars employ a network of microcontrollers for engine management, anti-lock

breaking and the like, and distributed embedded systems are common in

industry (controlling production lines for instance) and in medicine, science

and high technology. Statistically almost all (97-99%) manufacture of com-

puter CPUs is for embedded systems rather than for “traditional” computing

systems.

These systems do not look like computing equipment to the casual ob-

server. The computers are in the background. They boot when the appliance

is switched on and their software is expected to run reliably, “seamlessly” un-

til it is switched off. Their software generally includes a number of concurrent

duty cycles, each a repeating loop in which inputs are obtained from elec-

1



2 CHAPTER 1. INTRODUCTION AND OVERVIEW

tronic sensors, computation is performed, and outputs delivered to electronic

actuators.

The outputs are generally required to meet real-time deadlines and often,

also to perform at high speed. A multimedia system, for example, must

process megabytes of data every second. Failure of the multimedia system to

meet a real-time deadline may not be a disaster, however: it may just mean a

degradation in output quality. This is an example of a soft real-time system.

A hard real-time system is one in which failure to meet a deadline implies

a total failure of the system. This may be a mission-critical failure in the

case of an industrial robot, a communications satellite or a rover deployed

on Mars; or worse, a safety-critical failure, as in the case of nuclear reactor

control system, a medial radio-therapy machine, or and anti-lock breaking

system of a car.

Such a failure may not be a simple consequence of too-slow sensing, com-

munication or computing other such inadequate provision of hardware re-

sources, and also may not be a straightforward consequence of algorithmic

complexity. If we assume the hardware is adequate to the task, concurrent

software might fail because of unforseen interference between the concurrent

tasks. A flaw in the logical design could in certain circumstances lead to

unsafe behaviour or to deadlock or some other failure of liveness. How can

one be sure of having thoroughly tested for such flaws? Techniques exists

for investigating the stochastic behaviour of these systems, for measuring the

probability of such failure; but in a safety critical system, we would like to

know whether a failure is possible at all, and if so, what combinations of

circumstances lead to failure.

1.2 Model Checking

Formal methods have a role to play in this. Constructs of a mathematical

character may be employed to aid the construction of precise requirements

statements while analysis proceeds informally. Greater rigour than this is

possible if a formal language or process algebra is employed to model the

system or some part of it, and to express specifications, desired properties.
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Software tools may then be employed to check syntax, data types and to

simulate or animate the system. Greater rigour still is possible if the formal

language has rigorously defined semantics which can be checked with software

tools. Wolper [114] has argued for this level of rigour even at the cost of

limited applicability.

A well established method is to model a software system as a “state ma-

chine” or automaton and employ model-checking software to explore the state

space of the automaton, checking for deadlock or unsafe states or behaviours.

Desirable or undesirable behaviours can be expressed as automata and their

composition with the system model checked for their necessity, contingency,

possibility or impossibility. Behaviours can be expressed as formulae in a

variety of modal temporal logics from which the checking software tools can

generate the composite model and check it. An introduction to temporal

logics and model checking tools and techniques is given by [26], and a more

advanced account in [45].

The work outlined in this thesis aims to show how such model-checking

can be aided by compositional techniques. Models of real systems are gen-

erally compositions of several parallel, concurrent component processes and

while the system model as a whole may be too complex to check, it is possible

to infer properties of the whole from verifiable properties of its components.

Concurrent system models which do not contain explicit reference to time

are straightforward to check: there are established methods for keeping the

computational complexity of the state space search within reasonable bounds.

More problematic are models where time plays an explicit role. These can be

modelled with timed automata (§2.2) which feature not only control locations

and transitions between locations, but also one or more clock variables and,

at each location, an invariant, a predicate on the clock variables which must

be true there, and, for each transition, a guard: a predicate that must be

satisfied for the transition to be enabled.

A simple example is depicted in figure 1.1, in which there are two locations

A,B, a clock variable h and another discrete variable x. The process begins

at location A having initialised h, x both to 0. The predicates in braces are

invariants: the process may reside at location A where clock h <= 10 time
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A{h <= 10} B {h <= 5}
h = 0; x = 0

(h >= 5) h = 0; x = 0

(h >= 10) h = 0; x = 1

Figure 1.1: A simple timed automaton

units. The transition A → B may be taken as soon as clock h reaches a

value of 10, and when it is taken, the effect is to reset h to 0 and update x to

1. Thus, the running process alternates between A,B; variable x alternates

between values 0, 1 for 10, 5 time units respectively. Non-determinacy results

if, for instance, the invariant at A is relaxed to h <= 15 and the A→ B guard

to h >= 5.

Many properties of timed automata are decidable, although the compu-

tational complexity of the decision may grow unacceptably fast. However,

decision problems become harder with stopwatch automata [43] where clocks

may start and stop running – these are needed, for instance, to model pre-

emptive scheduling – and with hybrid automata [42, 67] which carry data

variables in addition to clocks. Data variables suffer updates on discrete ac-

tion transitions and vary according to some rate of change as time passes at

some location. See, for instance, [67].

Software tools exist, even so, for verifying properties of such structures.

We use UPPAAL [50, 89]; other tools in which I have been/am interested

include CMC [87], Thao Dang’s [49] tool “d/dt”, CADP [58, 59] (supporting

timed extensions to LOTOS [92]), and process-algebra-based tools such as

the Edinburgh Concurrency Work-bench.

David Kendall [79] developed a modelling method and language, bCAN-

dle, particularly suited to modelling broadcasting embedded control systems

communicating via controller area networks (CAN). The particular interest

in CAN derives from the development of this network technology for the

automotive industry and its subsequent spread to other industrial control
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applications. The method derives a timed transition system from a model

defined in the bCANdle language and an associated tool is able to check

safety and liveness properties against it. He shows that a model in bCANdle

is semantically equivalent to a timed automaton.

The challenge is to scale up to “industrial”-sized models. All these tools

work for small problems and models, but the computational complexity ex-

plodes as we scale up.

One way to combat the “state space explosion” problem is to model larger

systems as composites of smaller systems in parallel and to examine how

properties of a composite might be inferred from properties of its components

– see §3.4. The work of the present thesis is to investigate such compositional

approaches and to apply them to bCANdle.

The bCANdle framework is recast so that a model is, semantically, not a

single monolithic timed automaton as originally proposed, but rather, a par-

allel composite of processes. The CAN network channels appear as processes

running in parallel with the processes defined by the system.

This recasting is shown to be semantically equivalent to the original

bCANdle, and the parallel components are devised in such a way that com-

positional methods, such as assume-guarantee reasoning may be employed to

infer properties of modelled system from properties of the components, or of

systems in which components of the original system are replaced by simpler

abstractions.

We thus show how, in general, the behaviour of broadcasting embedded

systems modelled in bCANdle may be reasoned about by inferring from be-

haviour of components. We show, indeed, that by using such compositional

reasoning, checks can be performed using less processing time than was possi-

ble in the non-compositional approach, in some cases even succeeding where

a non-compositional check fails to terminate. Broadcasting embedded sys-

tems communicating by CAN is a special case deemed by Kendall sufficiently

important to merit the development of his CANdle modelling framework; but

the work presented here in fact applies not just to CAN-communicating sys-

tems but, more generally, to any systems that can be modelled as parallel

composites of timed automata, whether or not a network is involved (and



6 CHAPTER 1. INTRODUCTION AND OVERVIEW

whether or not is is a CAN network).

As far as we are aware, this is the first time such compositional ap-

proaches have been applied to broadcasting embedded systems. At any rate,

a compositional methodology which allows us to reason about broadcasting

embedded systems seems a worthwhile addition to bCANdle.

A parallel-composite model derived in this way from a bCANdle descrip-

tion is readily checked by the UPPAAL model-checking tool and indeed the

compositional rendering of bCANdle developed in this thesis makes sense as

a composite of UPPAAL-style timed automata.

In the course of deriving this compositional recasting of bCANdle, it

became apparent that one could develop UPPAAL (or timed automaton)

based models of broadcasting embedded systems by developing the automata

directly rather than going via bCANdle, and making use of an automaton

representing a CAN channel. The examples discussed in chapter 8 were

developed in this way, and indeed this turned out to be the most natural way

to make the abstractions employed in so-called assume-guarantee reasoning.

See sections 3.4.1, 3.4.2, 3.4.3 for a brief introduction to this component-wise

method of reasoning about composite systems.

The compositionality theorems employed here apply to any parallel com-

posite of timed automata. This work therefore has potentially broader ap-

plication than just to CAN-based broadcasting embedded systems: to any

systems modellable in UPPAAL, in fact, or in analogous formalisms to which

assume-guarantee theorems apply. A suitable model of a CAN channel is pro-

vided and could, if desired, be extended or modified (or replaced altogether)

to model other network or interprocess communication protocols.

Of course, for CAN-based systems, starting with bCANdle is still an op-

tion. An interesting future project is to develop a software tool, perhaps to

use counterexample-guided abstraction refinement (CEGAR, §3.5, §9.3.1) to

generate abstractions. bCANdle is then a good candidate for an input lan-

guage if we are concentrating on CAN-based systems, although other ways

of specifying timed automata are also possible. In the present work, a sim-

ple language was developed, based on the UPPAAL .xta format, in which

automaton-based models of CAN-based systems can easily be specified. A
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simple tool expands these specifications to full .xta format which can be

input to the UPPAAL verifier. Future work is to devise software to integrate

this approach and incorporate CEGAR.

We do not yet have such an “automatic” tool; the present work is done

by hand. However, the compositional approach has been proved in principle

and can evidently be applied to any concurrent real-time system modellable

by timed automata.

1.3 Scope of the Thesis

The focus of the thesis is on the real-time behaviour of broadcasting em-

bedded systems which communicate via controller area networks (CAN) –

the subject matter of bCANdle – although the work could be extended to

systems using other communications technologies.

Timed automata provide a model of concurrency in terms of the arbi-

trary interleaving of actions: concurrent actions a, b are modelled as a non-

deterministic choice of a followed by b and b followed by a. Arguments are

made for alternative methods, such as Petri nets or the event structures de-

scribed by Bowman and Gomez [29] which model “true” concurrency. It is

sometimes argued (see, e.g. Bowman and Gomez [29] chap 4) that modelling

true concurrency gets one closer to the physical implementation of an embed-

ded system and to the fine structure of its decomposition into components,

possibly allowing the modelling of questions of the causal independence or

autonomy of the concurrent actions a, b, for instance. In general, an “inter-

leaving” view of concurrency abstracts away from the “physical” distribution

or disposition of the embedded system and provides an emphasis on observ-

able behaviour and a “global” view while a true-concurrent model makes

possible a more “local” view of the system. One can view a model based

on interleaving concurrency semantics as a “black box” view, while a model

based on true concurrency affords a “white box” view. Both types of model

have their strengths and are appropriate at different levels of abstraction.

Thus, interleaving concurrency is most appropriate at early stages of sys-

tem design where global system requirements are being identified, while true
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concurrency is more applicable where when system components are being

identified and implemented.

The work of this thesis adopts the former, an abstract view of the systems.

We are looking at observable behaviour; we are not looking at user interfaces;

nor are we necessarily concerned with every computational detail. We are

interested in timed behaviour of models of systems in which detail has been

abstracted away. We are interested in, for instance, questions such as whether

a value of a variable is guaranteed to be communicated within a real-time

deadline; whether a feedback or closed-loop control system is effective in

keeping some quantity within safe bound; whether a specified timed property

of a composite, concurrent, distributed system is guaranteed.

We take an abstract view of such properties also. These will be formally

expressible in temporal logic – in particular, in CTL (see §2.1.3). Safety

properties can considered by expressing them contrapositively in the form

“for all system executions, at all times, ϕ”, where ϕ expresses safety in terms

of system variables. Liveness (livelock freedom) similarly can be expressed

in the form “for all system executions, at some time, ϕ”.

It is key to the work that such properties, and more general ones such

as starvation freedom or fairness, can be expressed in ACTL, the universally

quantified fragment of CTL.

We are not directly concerned with system performance in general (other

than safety, liveness and the like), nor with stochastic behaviours.

The major task of the thesis is to extend Kendall’s bCANdle formalism

and model-checking techniques by recasting bCANdle in a compositional

style and showing how compositional techniques might then be employed in

reasoning about bCANdle models of CAN-broadcasting embedded systems.

Although other formalisms and techniques are available (surveyed in chap-

ter 3), we concentrate pretty much on the timed automata and timed tran-

sition systems that underpin bCANdle. As chapter 8 shows, compositional

techniques such as assume-guarantee reasoning do afford means of checking

of models for properties by software tools more quickly than would the case

with a “direct” check and perhaps, feasible where a direct attack would run

out of memory.
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1.4 Contribution of the Thesis

Kendall’s bCANdle (§3.2.2) is a very useful framework for modelling, spec-

ifying and checking CAN-based embedded real-time systems. The present

work extends it by recasting it in a semantically equivalent form as a parallel

product of timed automata.

This allows us to apply compositional reasoning techniques, such as assume-

guarantee reasoning (§3.4).

The timed-automata modelling approach has been extended to work with

UPPAAL “systems” of “processes” – essentially parallel products of timed

automata.

Theorems have been developed allowing one to infer a simulation (§2.4)

relationship between such a parallel product and some abstraction of it from

simulations that exist between the components of the product and abstrac-

tions of them. The benefit of this is that a property of the product may then

be inferred from the same property of the abstraction, provided the property

is expressible in terms of universal quantification over execution traces – for

instance, properties expressible in ACTL and their timed analogues. This is

useful if the abstraction has a smaller state space than the original model:

the check of the property on the abstraction will then be faster than the

same check on the full model, and perhaps feasible on the abstraction whilst

infeasible (due, say to memory demands) on the full model.

Small case studies of this are presented, showing the kinds of abstraction

and simulation that are useful.

In a timed setting, many properties – safety, liveness, livelock freedom,

freedom from starvation – may be cast as reachability properties in a form

amenable to this method.

Thus, compositional methods are applied to Kendall’s bCANdle frame-

work.

One feature of the present work is that a CAN channel is modelled as an

automaton, a “process” in UPPAAL terms. The method is general: it may

be applied to systems that do not use CAN at all, subject to the restrictions

imposed by compositionality theorems (essentially, the components do not
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share variables, and communicate by discrete synchronisations). The method

could be adapted to some other network technology via a time-automaton

model of the process of transmitting a message.

Although the compositionality theorems have been developed specifically

for time automata and for UPPAAL systems, the possibility exists of adapt-

ing the method to use other model checking tools and variations on timed-

automata semantics.

1.5 Organisation of the Thesis

After an account of controller area networks and of some relevant basic mod-

elling and model-checking concepts (chapter 2), chapter 3 surveys work in

this area in more detail, particularly work which informs the present project

to develop a compositional bCANdle.

The two chapters following this describe in some detail work on develop-

ing bCANdle models into an equivalent form which lends itself to a compo-

sitional approach. Chapter 4 recapitulates bCANdle and chapter 5 develops

an equivalent formalism in terms of parallel composites of timed automata

which can be modelled in UPPAAL, and shows it is semantically equivalent

(bisimilar) to the “original” bCANdle modelling.

This formalism exhibits a CAN channel in a natural way as a process

which shares variables with processes wishing to communicate via the chan-

nel. As will be seen in the sequel, “compositionality” theorems (i.e. which

allow the component-wise inference of properties) are easiest to derive when

we can presume the components do not share variables. It is therefore ex-

pedient to recast the rather natural modelling developed in chapter 5 into

a form with no variables shared between the component automata. This is

done in chapter 6 where the no-shared-variables model is shown to be equiv-

alent to the original, and the implications of programming the models as

UPPAAL systems and processes are explored.

In chapter 7 are developed compositionality theorems for timed automata

which form the basis for compositional reasoning about the behaviour of

broadcasting embedded systems modelled in bCANdle. Chapter 8 develops
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the methodology for this via a number of examples in which we also show

the benefits in terms of processor time and space requirements of composi-

tional reasoning. This practical work involves software tools for generating

UPPAAL source code from higher-level model definitions.

Chapter 9 summarises the main conclusions of this work (§9.1) and then

discusses some possible future directions for research, both theoretical and

practical. Possibilities exist to refine the present work by making use of some

of the theoretical work surveyed in chapter 3. While the work outlined in

this thesis proves the concept of a compositional model-checking method for

broadcasting embedded systems, it also motivates the practical development

of one or more software tools to assist it.

Appendices contain the details of proof of the compositional reformulation

of bCANdle, details of CANGen, a tool written to assist with of the formulation

of no-shared-variables models, and source code of the examples discussed in

chapter 8.
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Chapter 2

A Survey of Basic Concepts

This chapter outlines a number of model-checking concepts and definitions

which will inform or be used in later work in the thesis.

2.1 Temporal Logics

The texts by Bérard, Bidoit, Finkel, Laroussinie, Petit, Petrucci, Schnoebelen

and McKenzie [26] and by Clarke, Grumberg and Peled [45] develop the

theory of timed automata in ways similar to this, although definitions vary

in detail and we shall meet some other interestingly variant definitions in the

sequel. They also describe a number of formal logics which can be used to

express properties of automata and, through them, properties of systems.

[45], §3.1 (summarised in Clarke and Schlingloff [46]) and [26], §2.1 de-

scribe the Computation Tree Logic CTL*. This is a formal logic whose se-

mantics are based on Kripke structures : very loosely, these are trees (acyclic

directed graphs) similar to the labelled transition systems which model au-

tomata, and carrying a set of atomic propositions at each node. The nodes

represent instants of (discrete) time or stages of a computation or run.

2.1.1 Syntax of CTL*

The language is based on an initial set of atomic formulae and features modal

temporal operators such as ©ϕ (meaning, informally, ϕ will be true at the

13
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“next” instant), ♦ϕ (ϕ true “now” or at some later time), �ϕ (ϕ true now and

at all later times), ϕUψ (ψ true now or later; meanwhile ϕ is true), its weak

version ϕWψ (ϕ is true now and until ψ becomes true) and its dual ϕRψ (ψ

holds until ϕ first becomes true). Most of these are derivable from others –

e.g. ♦ϕ , trueUϕ, �ϕ , ¬♦¬ϕ, ϕWψ , ϕUψ ∨ ♦ϕ, ϕRψ , ¬(¬ϕU¬ψ).

Computation Tree Logic envisages a tree-like structure for time. From

any instant, multiple alternative futures may branch out. Accordingly the

syntax features path quantifiers ∀ (for all paths ...) and ∃ (for some path ...).

Two classes of formulae are defined thus -

• An atomic formula is a state formula;

• A boolean combination of state formulae, ϕ ∧ ψ or ϕ ∨ ψ or ¬ϕ, is a

state formula;

• A state formula is also a path formula;

• Boolean combinations of path formulae are again path formulae;

• If ρ is a path formula, ∀ρ and ∃ρ are state formulae.

• If ρ, χ are path formulae, ©ρ, ♦ρ, �ρ, ρUχ, ρWχ, ρRχ are path

formulae.

2.1.2 Semantics

Branching time can be represented formally by Kripke structures – see, e.g.,

[45]. A Kripke structure for a CTL* logic is a triple 〈S,R, L〉 where S is a

set of time “nodes” or “instants”, and R ⊆ S × S is a total binary relation

on S defining the “connectivity” of time instants: (s, s′) ∈ R means s′ is “in

the future of” s. A path in 〈S,R, L〉 is an infinite sequence 〈s0, s1, s2, ...〉 of

states such that ∀n(sn, sn+1) ∈ R. In the sequel this sequence is denoted
−→s for short. L is a function mapping each state to the set L(s) of atomic

propositions true there.

One can interpret a CTL* over a Kripke structure 〈S,R, L〉. If s ∈ S

and −→s = 〈s0, s1, s2, ...〉 is a path in the structure, the following clauses define
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recursively what it means for a state formula to be true at s and a path

formula to be true on−→s . −→s k denotes the tail of−→s , the sequence 〈sk, sk+1, ...〉.
−→s is a path from s′ iff s0 = s′. α denotes an atomic formula, ϕ, ψ state

formulae, ρ, χ path formulae.

• s |= α iff α ∈ L(s);

• s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ; s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ;

s |= ¬ϕ iff s 2 ϕ.

• −→s |= ϕ iff s0 |= ϕ;

• −→s |= ρ ∧ χ iff −→s |= ρ and −→s |= χ; −→s |= ρ ∨ χ iff −→s |= ρ or −→s |= χ;
−→s |= ¬ρ iff −→s 2 ρ;

• s |= ∃ρ iff for some path −→s from s, −→s |= ρ;

s |= ∀ρ iff for every path −→s from s, −→s |= ρ;

• −→s |=©ρ iff −→s 1 |= ρ;
−→s |= ♦ρ iff (∃k)−→s k |= ρ; −→s |= �ρ iff (∀k)−→s k |= ρ;
−→s |= ρUχ iff (∃k)(−→s k |= χ and (∀j < k)−→s j |= ρ); and analogously for

ρWχ, ρRχ.

One can add to a Kripke structure 〈S,R, L〉 a distinguished initial state,

s0, and say the resulting Kripke model satisfies ϕ, 〈S, s0, R, L〉 |= ϕ, iff s0 |= ϕ

as defined above.

Labelled Transition Systems A labelled transition system (LTS) is a

structure that is slightly richer than the Kripke structure: 〈Σ, σ0, A,→〉. Σ

is a set of states and σ0 an initial state, A a set of action labels (the action

alphabet) and →⊆ Σ× A× Σ the transition relation. Notice the suggestive

terminology: the states may represent states of some system, and the labelled

transitions changes of state the system might undergo. One writes

σ1
λ→ σ2
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to mean (σ1, λ, σ2) ∈→: state σ1 evolves into state σ2 on undergoing an

action (transition) labelled λ.

A path or run of the system is a sequence

σ0
λ0→ σ1

λ1→ σ2
λ2→ ...

which may be infinite or may terminate at a state σn. The length of the

run/path is this n. A state σ is reachable from σ0 iff for some run from σ0,

for some n, σ = σn.

Usually we are interested in runs from σ0 = σ0.

If the system has properties expressible in a suitable formal language, one

can add a semantic function L as above and evaluate a CTL* formula over

the LTS.

Thus if σ is a state of a labelled transition system or node of a Kripke

structure, σ |= ∀�ϕ iff ϕ is true at all nodes of the subtree rooted at σ;

σ |= ∃ © ϕ iff ϕ is true at some child node of σ, and σ |= ∃(ϕUψ) iff some

path σ = σ0, σ1, ..., σk, σk |= ψ and σi |= ϕ for i < k.

2.1.3 CTL, LTL and µ-Calculus

Actually all these examples are drawn from the sub-logic CTL in which

temporal operators must be preceded immediately by ∀ or ∃. This logic is

sufficiently expressive of “branching time” properties for most purposes and

is (more or less) the logic used by the tool UPPAAL ([50][89]; see also the

“help” bundled with the tool) for expressing properties of models built of

timed automata enriched with data variables.

Essentially, CTL deals only with state formulae, which are atomic formu-

lae; boolean combinations of state formulae; and, for state formulae ϕ, ψ, the

formulae ∀ © ϕ, ∃ © ϕ, ∀♦ϕ, ∃♦ϕ, ∀�ϕ, ∃�ϕ, ∀(ϕUψ), ∃(ϕUψ), ∀(ϕRψ),

∃(ϕRψ). Combinations of ¬, ∨, ∃©, ∃� and ∃( U ) suffice, for in addition

to de Morgan’s laws, the following equivalences can easily be checked using

the semantics outlined above: ∀ © ϕ ⇐⇒ ¬∃© ¬ϕ, ∀♦ϕ ⇐⇒ ¬∃�¬ϕ,

∃♦ϕ ⇐⇒ ∃(trueUϕ), ∀�ϕ ⇐⇒ ¬∃♦¬ϕ, ∀(ϕUψ) ⇐⇒ ¬∃(¬ψU(¬ϕ ∧
¬ψ))∧¬∃�¬ψ, ∀(ϕRψ) ⇐⇒ ¬∃(¬ϕU¬ψ) and ∃(ϕRψ) ⇐⇒ ¬∀(¬ϕU¬ψ).
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Defining ∀( W ), ∃( W ) is left as an exercise.

Another interesting sublogic of CTL* is linear time logic, LTL: essentially

the fragment of formulae of the form ∀ϕ where ϕ is a boolean and/or tem-

poral combination of atomic formulae. The semantics of LTL is captured

by computation paths with no branching. LTL is the logic underlying the

model-checking tool SPIN and associated modelling language PROMELA

developed by Gerhard Holzmann: see Holzmann [71, 72]. Alas this lan-

guage and tool do not support models with explicit time in the way that

timed-automata-based models do. [26] and §2.4 briefly discusses differences

in expressiveness of CTL, LTL, CTL*.

As [45], §6.1 explains, each CTL operator can be defined in terms of

the least or greatest fixed point of some monotonic predicate transformer.

We are interested here in predicates on the states/nodes of some Kripke

structure – subsets of the set S of all such. A mapping f : ℘(S) → ℘(S) is

monotonic iff X ⊆ Y ⇒ f(X) ⊆ f(Y ). An X such that f(X) = X is a fixed

point of f . Because ℘(S) is a complete lattice it turns out that that every

monotonic mapping f has a least fixed point (⊆ every other fixed point)

denoted µX.f(X) and a greatest (⊇ every other fixed point) one, denoted

νX.f(X)1.

If we identify a formula ϕ with its “truth set”, the predicate {σ ∈ S|σ |=
ϕ} then

• ∀♦ϕ “is” µX.(ϕ ∨ ∀©X), and ∃♦ϕ “is” µX.(ϕ ∨ ∃©X),

• ∀�ϕ “is” νX.(ϕ ∧ ∀©X), and ∃�ϕ “is” νX.(ϕ ∧ ∃©X),

• ∀(ϕUψ) “is” µX.(ψ∨(ϕ∧∀©X)) and ∃(ϕUψ) “is” µX.(ψ∨(ϕ∧∃©X))

• ∀(ϕRψ) “is” νX.(ψ∧(ϕ∨∀©X)) and ∃(ϕRψ) “is” νX.(ψ∧(ϕ∨∃©X))

and so on.

1If M = {X|f(X) ⊆ X} and m = ∩M and N = {X|X ⊆ f(X)} and n = ∪N then it
is easy lattice algebra to infer that M ∩N is precisely the set of fixed points of f ; m, n
are fixed points, and any fixed point z satisfies m ⊆ z ⊆ n. Thus m = µX.f(X) and
n = νX.f(X). By more easy lattice algebra fk(∅), k = 1, 2, ... is monotonic increasing
and converges to µX.f(X), and fk(S), k = 1, 2, ... is monotonic decreasing and converges
to νX.f(X); if S is finite, the sequences converge after finitely many steps.
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Thus, these temporal logics are relatives of the modal µ-calculus of which

a good general account is given by J Bradfield and C Stirling in [30]. More

general µ-calculi include modalities of the form [a]ϕ, 〈a〉ϕ, where a is an

action label (say, from the alphabet of some automaton). These are true at

state σ iff every (some) transition labelled a leading from σ leads to a state

where ϕ is true.

A brief account of µ-calculus is also given by F Laroussinie and K G

Larsen [87], who use it with their model checking tool CMC, and by R

Mateescu and M Sighireanu[95], also in a symbolic model-checking setting.

2.2 Timed Automata

The automaton is a computing abstraction that has been around for a long

time (see, e.g., [73]) and comes in a number of variations which have in com-

mon the idea of a set L of locations or states, a set A of labelled transitions

between states, and rules determining what transitions are possible, formu-

lated perhaps as a relation E ⊆ L× A× L. The labelled transition systems

described above provide a semantic framework for these automata, in which

possible runs of an automaton (sequences of states interspersed with labels

of a possible transition from each state) are exhibited.

When used to study real-time systems, runs (in a labelled transition sys-

tem) describe possible behaviours of the system modelled by the automaton.

Hypotheses about the system are formulated in a formal language such as

CTL*, and their validity or satisfiability checked within the semantic frame-

work described above.

A finite state automaton can be pictured as a directed graph with vertices

L and edges E labelled by A. (l, a, l′) ∈ E is denoted graphically -

l
a−→ l′

.

The automaton can be declared to have a distinguished initial loca-

tion/state l0 ∈ L and perhaps also a subset F ⊆ L of “desirable” final states.
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One can enquire whether states in F are reachable; whether all possible runs

end on a state in F (if finite) or visit F “infinitely often” (if infinite). The

latter case refers to a run in whose sequence of visited states, every state lk

is followed eventually by a state ln ∈ F , n > k. One speaks in this of Büchi

acceptance of the run and from this notions of fairness of system behaviour

have been developed – see, e.g. Clarke et al. [45], §3.3.

The timed automaton is a variation much used in the study of real-time

systems where it is desired to model time more explicitly than seen so far.

2.2.1 Definition

The timed automaton can be defined in a number of ways; see, for instance,

Alur and Dill [7]. To establish specifics and notation it is defined here to be a

structure (L, l0, A,H, E, I) where as before, L is a set of locations, E a set of

transition edges and A a set of labels for discrete actions. A timed automaton

has in addition a set H of clock variables. An atomic clock constraint is an

inequality between a clock variable or a difference of two clock variables and

a real time; let Z(H) denote the set of clock zones – conjunctions of atomic

clock constraints. The transition relation E of a timed automaton has the

form E ⊆ L × Z(H) × A × ℘(H) × L: a transition from l ∈ L to l′ ∈ L

is labelled by an action a ∈ A and also by a guard ζ ∈ Z(H) which must

be satisfied for the transition to be taken, and subset of clocks which will

be reset to 0 when the transition is taken. I is a function which associates

to each l ∈ L an invariant I(l) ∈ Z(H) which must be satisfied for the

automaton to “be” at location l.

An transition edge (l, ζ, a,H, l′) ∈ E (where l, l′ ∈ L, ζ ∈ Z(H), H ⊆ H)

is denoted graphically -

l
ζ,a,H−→ l′

2.2.2 Semantics

The semantics of such a timed automaton is given by a timed transition sys-

tem (cf. Alur, Dill [7], §3.4). This is a development of the labelled transition

system 〈Σ, σ0, A,→〉 described above. The elements of Σ are states (and σ0
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an initial state) and the elements of A are transition labels as before: these

are discrete action transitions. There are also time passage transitions t ∈ R
(R unless otherwise stated denotes the non-negative reals) and the set of

action labels is A ∪ R. We assume A ∩ R = ∅ and require that time passage

be

• deterministic – if t ∈ R and σ1
t→ σ2 and σ1

t→ σ′2 then σ2 = σ′2;

• additive – if σ1
t1+t2−→ σ2 then for some state σ′, σ1

t1→ σ′
t2→ σ2.

Given a timed automaton (L, l0, A,H, E, I), a timed transition system

(TTS) (Σ, σ0, A ∪ R,→) is defined as follows. Σ = L × RH: the states are

pairs (l, v) consisting of a location l and a clock valuation v : H → R, an

assignment of values to the clocks. The initial state σ0 = (l0, 0) (all clocks are

initially set to 0); transitions are labelled by A action labels or real numbers.

The transition relation →⊆ Σ × (A ∪ R) × Σ is written (l, v)
a→ (l′, v′) for

((l, v), a, (l′.v′)) ∈→, and contains all

• discrete action transitions (l, v)
a→ (l′, v[H := 0]) where (l, ζ, a,H, l′) ∈

E and v |= ζ and v[H := 0] |= I(l′). Here, v[H := 0] denotes the clock

valuation which assigns value 0 to all clocks in subset H and otherwise

agrees with v; v |= ζ means ζ is true for the clock values assigned by v.

• time-elapse transitions (l, v)
t→ (l, v + t) where t ∈ R and for all t′ ∈

[0, t] : v + t′ |= I(l). Here, v + t denotes the valuation h 7→ v(h) + t.

2.2.3 Parallel Composition

To model concurrent real-time systems naturally entails the composition of

timed automata. There are a number of ways of doing this; Bérard et al. [26]

§1.5 give a rather general construction. A particular case used in bCANdle

work [79] is as follows. Given two timed automata Ai = (Li, l
0
i , Ai,Hi, Ei, Ii), i =

1, 2, define

A1 ‖ A2 = (L1 × L2, (l
0
1, l

0
2), A1 ∪ A2,H1 ∪H2, E, I)
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where

I(l1, l2) = I1(l1) ∧ I2(l2) and

(l1, l2), ζ, a,H, (l
′
1, l
′
2) ∈ E iff one of the following obtains for some

(l1, ζ1, a,H1, l
′
1) ∈ E1 and/or some (l2, ζ2, a,H2, l

′
2) ∈ E2:

• a ∈ A1 ∩A2, ζ = ζ1 ∧ ζ2, H = H1 ∪H2. In this case a is a synchronised

action of the two automata acting in step.

• a ∈ A1 − A2, ζ = ζ1, H = H1, l2 = l′2; or

• a ∈ A2−A1, ζ = ζ2, H = H2, l1 = l′1. In these cases, a is an interleaving

transition: one automaton acts while the other waits.

A

l
{h <= 5}

B

m2m1

a

a {h’ <= 5}

b (h’ >=3)

h’=0

h’=0

(h >=5)
a

h=0

Figure 2.1: Example: two parallel Timed Automata

Example Figure 2.1 shows a simple example of a system comprising two

parallel processes represented by timed automata A, B. LA = {l}, l0A = l,

AA = {a}, HA = {h}, EA = {(l, “h >= 5”, a, {h}, l)}, IA(l) = “h <= 5”.

LB = {m1,m2}, l0B = m1, etc. IB(m1) = true, IB(m2) = “h′ <= 5”.

In the product system, the two components perform an a-action every 5

time units, in step: the logic of A forces this. B may (non-deterministically)

move by a b-action from location m2 to m1 3 to 5 time units after arriving at

m2: so the a-action in B is non-deterministically one of the edges depicted.
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Parallel Product of Several Timed Automata This construction gen-

eralises to any number of component automata. Given a set of timed au-

tomata Ai = (Li, l
0
i , Ai,Hi, Ei, Ii), i = 1...n, where the components in the

parentheses are respectively the location set, the initial location, the action

alphabet, the set of clocks, the edge (transition) relation and the invariant

function, the product is ‖ni=1 Ai = A1 ‖ ... ‖ An = (L, l0, A,H, E, I) where

L = L1 × ...× Ln
l0 = (l01, ..., l

0
n)

A = A1 ∪ ... ∪ An
H = H1 ∪ ... ∪Hn

I(l1, ..., ln) = I1(l1) ∧ ... ∧ In(ln)

... and E has, for ζ ∈ Z(H), a ∈ A,H ⊆ H,

(l1, ..., ln)
ζ,a,H−→ (l′1, ..., l

′
n)

iff either (∃k)(∀i 6= k)li = l′i and lk
ζ,a,H−→ l′k

or (∀i)li 6= l′i ⇒ li
ζi,a,Hi−→ l′i where ζ = ∧ni=1ζi and H = ∪ni=1Hi.

The first of these disjuncts is an action on a single component while

nothing happens on the other components, while the second is a synchronised

action on several components.

2.2.4 An Extended Timed Automaton

It will be useful in the sequel to have a slightly extended timed automaton

construction.

• In addition to clocks, the automaton may have variables of various data

types – boolean, integer, real, including arrays and structures.

• Guards on transitions may include in their conjunctions equality and

inequality tests on variables as well as clocks;

• The clock reset set associated with a transition becomes a set of updates
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which includes clock resets as well as updates of other variables, such as

setting a variable to a value, incrementing or decrementing a variable.

• The semantics extend in a natural way: a state of the timed transi-

tion system includes a valuation of all the variables, not just the clocks

(although only the clocks adjust their values in a “time passage” tran-

sition).

• The parallel product likewise extends naturally: an action transition

in the product involves a conjunction of the guards on the component

transitions when two or more synchronise, and an update set which is

the union of the component update sets.

It is possible for the product to have variables shared between the compo-

nents. The model-checking tool UPPAAL [50][89] supports extended timed

automata like this, offering a C++-like syntax for updates, subrange types

as well as a full integer type, arrays and (most recently) structured data

types. Some restrictions are placed on the ways clock variables may figure in

updates, but simple resets are always permitted.

UPPAAL offers particular kinds of synchronised action which will turn

out to be useful to us. Binary synchronisation involves just two components

(UPPAAL defines one of these as “offering” the synchronisation, the other as

“receiving” it). This synchronisation may be defined as “urgent”, meaning

that the action occurs as soon as the semantics permit: no time delay is

allowed even if state invariants permit.

UPPAAL broadcast synchronisation involves two or more components:

again one is deemed to be offering” the synchronisation; the other com-

ponents receiving it. The sender may act as soon as it is able; receiving

components synchronise as defined formally above §2.2.3 if they are ready.

The synchronised action occurs as soon as the sender is ready.

These synchronisation types are discussed further in the sequel (§5.3).
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2.3 Model Checking

The basic endeavour is, having formulated a model of some system as some

sort of automaton, to check by a search of its state space whether some

property expressed in a temporal logic or µ-calculus is satisfied by some run,

or by all runs. Interesting special cases are: whether or not a state or set of

states is reachable (a safety property) or whether, say, all runs are bound to

visit a state in the set (a “liveness” property). One might check a “fairness”

property – whether all runs visit a state (or perform an action), infinitely

often in the sense that, where σ0, σ1, σ2, ..., σn, ... is the sequence of the states

in a run, ∀n∃k > n : σk is in the set.

The state space will in general be very large and so will be searched by a

software tool. UPPAAL [50][89] and CMC [87] work in this way and texts by

Clarke et al. [45], Clarke and Schlingloff [46] and Bérard et al. [26] describe

ways of doing this. The remainder of this section will briefly review the main

algorithms and data structures employed.

2.3.1 Algorithms for Model-checking CTL*, CTL, LTL

Clark et al. [45] describe an algorithm for checking a CTL state formula over

a Kripke structure 〈S,R, L〉. In brief, suppose the formula ϕ to be checked is

expressed entirely in terms of ¬,∨, ∃©,∃( U ),∃♦ (since every CTL formula

is equivalent to one built of these connectives). For each s ∈ S one builds a

set lbl(s) of sub-formulae of ϕ as follows.

Initially, lbl(s) = L(s).

Then, the algorithm adds sub-formulae of ϕ to the sets lbl(s), s ∈ S,

by proceeding recursively on the complexity of the sub-formulae using the

following cases:

• For each s ∈ S, if ¬ψ is a sub-formula and ψ /∈ lbl(s), add ¬ψ to lbl(s);

• If ψ∨θ is a sub-formula and ψ ∈ lbl(s) or θ ∈ lbl(s), add ψ∨θ to lbl(s);

• If ∃© ψ is a sub-formula and ψ ∈ lbl(s′) and (s.s′) ∈ R, add ∃© ψ to

lbl(s);



2.3. MODEL CHECKING 25

• To decide whether to add a sub-formula ∃(ψUθ) to each lbl(s): first

determine the set T = {s ∈ S|θ ∈ lbl(s)}; then add ∃(ψUθ) to lbl(s′)

for all s′ such that s′ = s0Rs1R...Rsn ∈ T and ψ ∈ lbl(s0)∩ ...∩ lbl(sn).

Very neat pseudo-code for this is given in [45] §4.1.

• To decide whether to add a sub-formula ∃�ψ to each lbl(s), first, com-

pute S ′ = {s ∈ S|ψ ∈ lbl(s)} and let R′, L′ be the restrictions to

S ′ of R, L, and let T be the set of nodes which lie in a non-trivial

strongly connected component of the graph (S ′, R′)2. The construction

of T has algorithmic time complexity of order |S ′|+ |R′|. Add ∃�ψ to

lbl(s′) for all s′ such that s′ = s0R
′s1R

′...R′sn ∈ T . Again this is neatly

pseudocoded in [45] §4.1.

At the end of the algorithm, ϕ holds at those s ∈ S for which ϕ ∈ lbl(s).

The subalgorithms of the last two bullet points each have time complexity

O(|S| + |R|), so the complexity of checking algorithm is of the order of the

size of ϕ × this.

It is CTL that will be of most interest to us in the sequel; however both

[45] and [26] discuss model-checking LTL and CTL* briefly. The former

describes an algorithm for constructing, given an LTL (path) formula ρ and

a Kripke structure 〈S,R, L〉, a tableau against which (for s ∈ S) s |= ∃ρ can

be checked. This is a directed graph each node of which is an atom, (s,K),

s ∈ S and K a maximal consistent set of formulae whose truth values can

influence that of ρ and which are also consistent with L(s). s |= ∃ρ iff there

exists a node (s,K) with ρ ∈ K and a path into a certain strongly connected

component of the graph. The computational complexity of checking this is

linear in the size of the Kripke model but exponential in the size of ρ. The

tableau idea and the use of maximal consistent set s of formulae is reminiscent

of the methods in mathematical logic of canonical model construction.

[45] goes on to outline briefly an extension of this tableau method to

a method for checking CTL* formulae: ρ is permitted to have arbitrary

state sub-formulae, not just atomic ones, and a multi-stage check working

2a ⊆-maximal R′-path-connected subgraph, excluding trivial ones with just one node
without a self-loop
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recursively over the complexity of state sub-formulae (cf. the CTL algorithm

described above) is done. This combination of the two approaches has the

same complexity as the LTL checking algorithm.

2.3.2 Symbolic Model Checking

The CTL checking algorithm seen above has complexity linear in the size of

the transition graph and in the size of the formula. A problem is that the

graph (the transition system) may “explode” in size.

In symbolic model checking approaches, a large number of states that

need not be distinguished for the purpose of the property being checked are

represented by a single symbol. [45], chapter 6 and [26], chapter 4 describe

a method of symbolic model checking in which the symbols are the boolean

formulae at the nodes of a Kripke structure.

Ordered binary decision diagrams are used to represent boolean func-

tions and by extension other set-theoretic entities, including Kripke struc-

tures and formulae, very compactly, and operate on them and check them

for equivalence very efficiently.

By boolean function we mean a function 2n → 2 (2 , {0, 1}) for some

n ∈ N. A binary decision diagram (BDD) for a boolean function is an acyclic

directed graph, a tree, which has vertices of two types:

- a terminal vertex is labelled with a value 0 or 1 and has no edges pointing

to any “child” vertices;

- a non-terminal is labelled with an “independent variable” to the function,

and has two edges to child vertices, labelled 0, 1.

Suppose the independent variables are {x1, ..., xn}. The (sub)tree rooted

at vertex v generates a function fv(x1, ..., xn) defined recursively as follows.

- If v is terminal, return its value;

- Otherwise let xi denote the variable labelling v, and say v
0→ v0, v

1→ v1

[v0, v1 are the roots of the two sub-trees pointed to by v] and suppose the re-

turn values of fv0 and fv1 are determined already; return (¬xi∧fv0(x1, ..., xn))∨
(xi ∧ fv1(x1, ..., xn)).
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In this way a BDD determines a boolean function. A boolean function

corresponds to several BDDs in general, but it turns out (Clarke et al.[45],

Bryant [39] [40]) that that a boolean function corresponds to just one BDD in

canonical form in which the variables labelling non-terminal nodes appear in

the same order along each path from the root, and there are no isomorphic or

redundant sub-trees. An ordered binary decision diagram, OBBD, is made,

given a strict total ordering of the variables, by first building a BDD with

nodes in depth-order, than transforming it by (1) eliminating all but one

terminal node labelled 0 and all but one labelled 1, and redirecting edges to

these; (2) whenever two non-terminal nodes have the same variable label and

the same children, eliminate the duplicate(s) and redirect incoming edges to

the remaining one; (3) whenever a node has child 0 = child 1, eliminate the

node and redirect its incoming edges to the child node. The emphReduce

algorithm of Bryant applies (1-3) repeatedly until no further reduction in the

size of the graph results.

The OBDD provides, in general, a compact representation of boolean

functions, although the size of the graph can vary greatly with the ordering

of variables [45] and finding the optimal ordering is an NP-complete problem

(Bryant [41]).

Boolean operations between boolean functions are efficiently implemented

using OBDD too. If • denotes one of the 16 possible two-argument opera-

tions, f • f ′ is computed as follows (Bryant [39]). Let v, v′ denote the root

nodes of OBBDs for f.f ′, and x, x′ the variables labeling v, v′. If x ≡ x′ the

equation

f • f ′ = (¬x ∧ (f |x←0 • f ′|x←0)) ∨ (x ∧ (f |x←1 • f ′|x←1))

where f |x←b is the function resulting from substitution of the constant bit b

for variable x in f , breaks the calculation recursively into two sub-problems

computable by smaller OBDD. If x < x′ in the canonical ordering of variables,

f ′|x←b = f ′, so the equation f•f ′ = (¬x∧(f |x←0•f ′))∨(x∧(f |x←1•f ′)) serves,

and the case x > x′ is symmetrical to this. At the base of the recursion are

OBDD consisting of just a terminal root node, in which case the associated
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value is returned.

A naive implementation of this recursion would have exponential com-

plexity, but by caching results of sub-computations (subgraphs of OBDD)

the complexity can be kept to a linear function of the sizes of the OBDD for

f, f ′. Of course, some boolean operations are simple as OBDD operations:

for instance negation is just a matter of interchanging the 0- and 1-terminal

nodes.

Representing Kripke Structures by OBBD. Clarke et al. [45] suggest

doing this as follows. Let 〈S,R, L〉 be a Kripke structure and assume without

loss of generality that S has 2m states. Encode these as boolean vectors
−→
b = (b1...bm). Then S may be represented by the OBBD of its characteristic

function χS : 2m → 2, and similarly R by the OBBD of its characteristic

function χR : 2m × 2m = 22m → 2. L, the mapping of states to the sets of

atomic propositions which hold there, may equivalently be as a mapping of

each atomic proposition to the set of states where it holds. We can represent

this by, for each atomic proposition, an OBBD for the (characteristic function

of) the set of states.

Symbolic Model Checking with OBDD. Suppose a Kripke structure

represented by OBDD as explained above. Sets of states are represented by

OBBD of boolean functions 2m → 2, and each such boolean function may

also be thought of as a formula. The fundamental idea of symbolic model

checking is to reason about or compute with symbols (formulae) or sets of

states rather than individual states. To this end, a suitable calculus of these

formulae/boolean functions/sets of states is useful. [45] suggests a calculus

of quantified boolean formulae (QBF) for this purpose.

One starts with a set of m propositional variables V = {v1, ..., vm} cor-

responding to the independent variables of the boolean functions. A QBF

formula is a propositional variable; or ¬f or f ∨ g or f ∧ g where f, g are

QBF formulae; or ∃vf or ∀vf where v is a propositional variable and f a

QBF formula.

Truth assignments are elements σ ∈ 2V . If b ∈ 2 is a bit, σ[v ← b] is the
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truth assignment like σ except v 7→ b. For truth assignments σ and QBF

formulae f a relation σ |= f is defined recursively by:

– σ |= v iff σ(v) = 1;

– σ |= ¬f iff σ 2 f ;

– σ |= f ∨ g iff σ |= f or σ |= g; σ |= f ∧ g iff σ |= f and σ |= g;

– σ |= ∃vf iff σ[v ← 0] |= f or σ[v ← 1] |= f ;

– σ |= ∀vf iff σ[v ← 0] |= f and σ[v ← 1] |= f .

With the aid of this calculus, an algorithm for computing the (OBDD of

the characteristic boolean function of the) set of states of the Kripke structure

where a CTL formula is valid can be defined recursively, remembering that

a CTL formula can be considered atomic or ¬ϕ or ϕ∧ψ or ∃©ϕ or ∃(ϕUψ)

or ∃�ϕ, where ϕ, ψ are CTL formulae.

• If a is an atomic formula, the set of states satisfying a is given directly

by the specification of the Kripke structure.

• The (OBDD of) the set of states satisfying ¬ϕ, or ϕ ∧ ψ, is computed

from the (OBDDs of) the sets of states satisfying ϕ, ψ using the OBDD

algorithms for computing meets and complements of boolean functions.

• To compute the set of states satisfying ∃©ϕ given f(−→v ), the character-

istic function of the truth set of ϕ, compute the OBBD of ∃
−→
v′ (f(

−→
v′ )∧

R(−→v ,
−→
v′ )).

• To compute the set of states satisfying ∃(ϕUψ) (given the truth sets of

ϕ, ψ), use the fixed-point representation introduced in §2.1.3 of the set

of states satisfying the formula. This is µX.(ψ ∨ (ϕ ∧ ∃ ©X)) where

we read ϕ, ψ as the (OBDD for the) boolean characteristic functions of

the truth sets of the respective CTL formulae. Since the set of states is

finite, the minimum fixed point of any monotonic function f on subsets

of states (and, in particular, that implied by X 7→ ψ ∨ (ϕ ∧ ∃ © X))

is the limit of the monotonic increasing sequence of iterates of f on ∅:⋃∞
k=1 f

k(∅), and this is computable in a finite number of iterations as

the fk(∅) agree from some k0 on. Clark et al. [45] give an algorithm
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for this (§6.1), and of course f is computed via the OBDD boolean

function algorithms of Bryant.

• To compute the set of states satisfying ∃�ϕ (given the truth set of ϕ),

proceed as in the previous case, starting from the fixed-point represen-

tation introduced in §2.1.3 for the truth set of the formula: νX.(ϕ ∧
∃©X) where ϕ is understood as the (OBDD for the) boolean charac-

teristic functions of the truth set of the CTL formula ϕ. Again, since S

is finite, the maximum fixed point of this monotonic function f is the

limit of the decreasing sequence fk(S):
⋂∞
k=1 f

k(S) which is similarly

to the previous case computable in finitely many steps – again, see [45]

§6.1.

In view of the representation of temporal operators as fixed points of

monotonic predicate transformers used in the last two items, this approach

to model-checking extends in a natural way to µ-calculus formulae, and [45],

chapter 7 develops this.

2.3.3 Automata and Model Checking

The constructs described so far for Kripke structures apply, of course, equally

well to automata, and Clark et al. show how an automaton can be made cor-

responding to a Kripke structure by labelling edges with the propositions true

at their target locations. Alternatively, and this is the way UPPAAL [50][89]

works, for example, one can continue simply to attach atomic propositions

to automaton locations.

Bérard et al. ([26] chapter 4) develop symbolic model checking in a way

similar to the ideas above, but in terms of automata. In the sequel, our

system models will be essentially automata, in particular timed automata.

In these terms, the basic model checking problem takes one of the forms:

• Reachability properties: ∃♦ϕ – can the system reach a state where ϕ

is the case?

• Safety properties: The dual of the above: ∀�¬ϕ – The (generally

undesirable) situation described by ϕ can never occur. A variant is
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something like ∀�¬ϕWψ; the situation ϕ cannot occur until ψ has

occurred.

• Liveness properties: some desirable situation ϕ will eventually occur:

∀♦ϕ or ∀(ψUϕ).

• Freedom from deadlock - a special property meaning that the system

will never be in a state from which no progress is possible: ∀�¬deadlock.

Think of this as a kind of safety property.

Related to liveness is bounded liveness where one asks whether the desir-

able situation will occur within a given time bound, and fairness. One can,

for a Kripke structure or transition system, define a collection F of sets of

states and call an (infinite) run s0 → s1 → s2 → ... fair iff for every P ∈ F
there is a state s ∈ P which occurs infinitely often in the run: ∀m∃n.sn = s.

Intuitively each P in F is a set of states which we would hope to be realised

infinitely often in any run. This generalises the idea of the Büchi automaton

which has designated a “final” location (or set of final locations) which we

expect to be visited infinitely often in any run.

These may be tricky to express in CTL, but we shall look at case studies

in the sequel where models are constructed in order to examine fairness.

We are often interested in the question of whether a system model meets a

specification. A common approach is to express the model as an automaton,

the specification as another automaton, or rather its complement, modelling

failure to meet the specification, and model-check the composition of this

with the system model in order to see what pathological behaviours are

possible. In this way meeting of specification becomes a kind of reachability

problem.

2.3.4 Partial-order Reduction

This is family of techniques which aim to reduce the size of the state space

search tree by exploiting the fact that two or more paths of execution may

be indistinguishable as far as the property being checked is concerned: there

is an equivalence relation among behaviours which is a congruence as far as
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exhibiting the property is concerned – see, e.g., [45], chapter 10. The search

tree need contain only one member each equivalence class.

For the sake of definiteness, [45] works with execution paths in a labelled

transition system 〈S, T, S0, L〉 where S is a set of states, S0 ⊆ S a subset of

initial states, L a function assigning each state a set L(s) of atomic propo-

sitions true there. Thus far, we have a Kripke structure, except that T is

not a single relation ⊆ S × S, but rather a set of relations: T ⊆ ℘(S × S).

This yields in effect a labelled transition system in which the elements α ∈ T
function as labels: s

α→ s′ iff (s, s′) ∈ α.

An execution path is a finite or infinite sequence s0
α0→ s1

α1→ s2
α2→ ....

Model-checking some property ϕ consists of constructing the transition

system as a tree which will be depth-first searched for a state where ϕ is

satisfied. A standard recursive algorithm will do this, using, for each state s,

the set {α ∈ T |∃s′.(s, s′) ∈ α} of (labelled) transitions enabled at s; except

that in partial-order reduction, we construct the tree using a (hopefully)

small subset (which [45] denotes ample(s)) of the enabled set at s, leaving

out the transitions not distinguished by ϕ.

One way of doing this is explored by [45], assuming the transitions are

deterministic: s
α→ s′ for at most one s′, denoted α(s). This is to construct,

given ϕ, a relation I ⊆ T × T which is symmetric, irreflexive and has the

properties that whenever (α, β) ∈ I and α, β are enabled at s, α is enabled at

β(s) (and by symmetry, vice versa), and α(β(s)) = β(α(s)). This expresses

the notion that α and β are “independent” actions which commute with one

another. The idea is that clearly if (α, β) /∈ I, they are “dependent” and one

could not be in ample(s) without the other; but hopefully, if α ∈ ample(s)
and (α, β) ∈ I, β can be omitted from ample(s).

There are problems with this: for instance, one may have s
α→ s1

β→ s′

and s
β→ s2

α→ s′ with (α, β) ∈ I, but ϕ might be sensitive to the choice of

s1 or s2; or s1, s2 may have other successors besides s′ which matter to ϕ.

One can define a transition α to be invisible with respect to a set A of

atomic propositions iff ∀s.L(s) ∩ A = L(α(s)) ∩ A, and two infinite paths

s0
α0→ s1

α1→ s2
α2→ ..., t0

β0→ t1
β1→ t2

β2→ ... to be stuttering equivalent if they can

each be divided into blocks of finite length such that for all k, all the states
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in the kth blocks of both paths have the same proposition labels L(s). The

blocks need not be of equal length.

One can define two transition systems on a state set S to be stuttering

equivalent iff they have the same initial states, and for any path in one

system from an initial state, there is a stuttering equivalent path from the

same initial state in the other system. One is then led to properties that are

invariant under stuttering ; [45] explores ways of tightening the procedure for

discarding transitions from ample(s) making sure that only “invisible” states

and stuttering equivalent paths are “lost”. This is explored in particular for

LTL properties which are invariant under stuttering.

2.3.5 Modelling and Model Checking with Timed Au-

tomata

For systems with continuous real time, timed automata (§2.2.1) provide useful

models: their semantics (§2.2.2) give rise to timed transition systems, exten-

sions of the transition systems considered in the foregoing sections. There is

a problem, however: there are infinitely many clock valuations if clock values

are unbounded or if time is continuous. One solution is clock regions. An

equivalence relation is defined between clock valuations: v ' v′ iff

1. for every clock h, if ch is the largest value h is compared with in a guard

or invariant, either v(h), v′(h) both ≥ ch; or bv(h)c = bv′(h)c′;

2. for every two clocks h, k such that v(h) ≤ ch, v(k) ≤ ck, v, v
′ agree on

ordering of fractional parts: {v(h)} ≤ {v(k)} ⇔ {v′(h)} ≤ {v′(k)};

3. for every clock h such that v(h) ≤ ch, v(h) is integral iff v′(h) is.

This relation is stable with respect to

– adding a constant: if v ' v′ then v + t ' v′ + t,

– clock reset: if v ' v′ then v[h := 0] ' v′[h := 0], and

– satisfaction of clock constraints: if v ' v′ and v |= ζ then v′ |= ζ.

Further, if, in the timed transition system, state (s1, v1) evolves to state

(s2, v2) by a time delay followed by an action of the underlying automaton,
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and v1 ' v′1 then there exists v′2 ' v2 such that also state (s1, v
′
1) evolves to

state (s2, v
′
2) by a time delay followed by an action.

Now the the state space divides into finitely many clock regions, '-

equivalence classes; a state is a location v together with a clock region. [26],

§5.5 and [45], §17.4 describe this approach and the latter shows that,

• The graph of clock regions, considered as a transition system, is bisim-

ilar or strongly equivalent (see §2.4 below) to the original semantic

transition system;

• Where H is the set of clock variables, the number of regions is ≤
|H|!.2|H|.

∏
h∈H(2ch + 2).

This approach was formalised by R Alur, C Courcoubetis and D Dill

[16][17].

Another approach employs clock zones – recall the set Z(H) from subsec-

tion 2.2.1. These we think of as sets of clock valuations which have a symbolic

representation as conjunctions of atomic clock constraints: identify such a

conjunction ζ with a set of valuations {v|v |= ζ}. Clarke et al. [45], §17.5,6

shows how these provide a useful symbolic state space, with operations on

clock valuations “lifting” to clock zones ζ ∈ Z(H):

• ζ + t , {v + t|v |= ζ} where t ∈ R,

• ζ[H := 0] , {v[H := 0]|v |= ζ} where H ⊆ H.

The right hand sides of these definitions need to be shown to be ac-

tual clock zones: symbolically representable by conjunctions of atomic con-

straints. [45] does this by first showing any zone ζ (formula) on clocks x1, ...xn

has the form

(x0 = 0) ∧
∧

0≤i 6=j≤n

(xi − xj ≺ij cij) (2.1)

where each ≺ij is ≤ or <, and x0 is a special extra clock “always zero”, giving

a tidy uniform notation for the two types of clock constraint.

Then the formula ∃xnζ is equivalent to

(x0 = 0) ∧
∧

0≤i 6=j<n

(xi − xj ≺ij cij) ∧
∧

0≤i 6=j<n

(xi − xj ≺ij cin + cnj)
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From this it follows that for any clock zone ζ on clock variable x (among

others), ∃xζ is a well–defined clock zone. The definition of ζ[x := 0] is

equivalent to ∃xζ ∧ x = 0 and ζ[H := 0] is a conjunction of such.

Similarly, the set of valuations v + t for some t ≥ 0, v |= ζ can be shown

to be symbolically representable, and hence the definition of ζ + t is sound.

From this, we get a finite zone graph equivalent to the original transition

system. This finite state space is explored by means of an algorithm of the

form (see, e.g., Larsen et al [88]) -

PASSED:=∅
WAITING:=(l0, ζ0)

repeat

begin

get (l, ζ) from WAITING

if (l, ζ) |= ϕ then return “yes”

else if ζ * ζ ′ for all (l, ζ ′) ∈ PASSED then

begin

add (l, ζ) to PASSED

for all (l′, ζ ′) which are successors to (l, ζ), ζ ′ 6= ∅,
put (l′, ζ ′) to WAITING

end

end

until WAITING=∅
return “no”

The algorithm explores the space of clock zones by representing them as

data structures called difference bound matrices, devised by D Dill [51]. If

there are k clocks, a difference-bound matrix is a (k + 1) × (k + 1) matrix

D in which D0i(Di0) gives the lower (upper) bound on clock hi, and Dij the

upper bound on hi−hj. Each entry is the symbol∞, meaning no bound, or

a pair of data – a number and an indication of whether the bound is strict or

non-strict. The syntactic counterpart of this is, of course, the formula (2.1)

above, in which the (cij) correspond to the entries Dij of the difference-bound
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matrix.

Larsen et al. [88] develop a way of doing this efficiently by representing

a difference-bound matrix as a directed graph. The clocks are vertices and

the weight of an edge from xi to xj is the (ij)-entry of the matrix (these au-

thors consider comparison only of type ≤ or ≥). They then develop efficient

algorithms for minimizing the size of a graph required to represent a DBM

and hence a clock zone, and also minimizing the number of symbolic states

(l, ζ) needing to be stored in the set PASSED. This in turn leads to efficient

(in time and in memory requirement, at worst O(n3) for n clocks) ways of

determining when ζ * ζ ′ and when ζ ′ 6= ∅ in the algorithm above. These

predicates, of course, are essential for ensuring the algorithm terminates, and

that the PASSED set is correctly maintained so as ensure successor states are

not unnecessarily explored multiple times. Larsen et al. have implemented

their efficient zone-based symbolic model checking over their extended timed

automata – cf. §2.2.4 above.

2.4 Simulation and Bisimulation

This section develops the definitions needed for determining when two tran-

sition systems are in some sense equivalent, or when one system’s behaviour

is subsumed or simulated by another.

2.4.1 Strong Bisimulation and Strong Equivalence

These apply to labelled transition systems (S,A,→) consisting of a set S

of states, a set A of transition or action labels, and a transition relation

→⊆ S × A× S.

Milner [98] defines a strong bisimulation on the system to be a relation

R ⊆ S × S such that whenever (s1, s2) ∈ R, for all a ∈ A,

• s1
a→ s′1 implies (∃s′2)(s′1, s′2) ∈ R and s2

a→ s′2; and

• s2
a→ s′2 implies (∃s′1)(s′1, s′2) ∈ R and s1

a→ s′1
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It is routine to check that the diagonal (identity) relation on S is a strong

bisimulation, and that the converse, the composite and any union of strong

bisimulations is a strong bisimulation. In particular, the union of all strong

bisimulations is a strong bisimulation, the maximal or “largest” strong bisim-

ulation on S, and this is an equivalence relation on S, termed strong equiva-

lence: s1 ' s2 iff for some strong bisimulation R, (s1, s2) ∈ R.

A strong bisimulation up to ' is defined as above, but with the com-

posite ' R ' in lieu of R in the two bulleted conditions. Milner shows

straightforwardly that s1 ' s2 iff for some strong bisimulation up to ', R,

(s1, s2) ∈ R.

Intuitively, s1 ' s2 means that there is a one to one correspondence

between runs a0, a1, a2, ... from s1 and runs (with the same sequence of action

labels) from s2.

The definitions make sense when s1 and s2 are from two transition systems

(S1, A,→1), (S2, A,→2) with a common action label alphabet. One then

defines the transition systems to be strongly equivalent,

(S1, S
0
1 , A,→1) ' (S2, S

0
2 , A,→2)

iff their initial states are strongly equivalent – to be precise, there is a strong

bisimulation R ⊆ S1 × S2 such that ∀s0
1 ∈ S0

1 .∃s0
2 ∈ S0

2 .(s
0
1, s

0
2) ∈ R and

∀s0
2 ∈ S0

2 .∃s0
1 ∈ S0

1 .(s
0
1, s

0
2) ∈ R, where S0

1 , S
0
2 denote the respective initial

state subsets.

The labelled transition systems considered here include the Kripke struc-

tures, generalised Kripke structures of §2.3.4, and timed transition systems

(§2.2.2).

In structures in which states s are labelled by sets L(s) of atomic propo-

sitions, we require additionally of a strong bisimulation R that R(s1, s2) ⇒
L(s1) = L(s2).

Clarke et al. [45] show that, given two strongly equivalent structures,

corresponding states satisfy the same CTL* state formulae, and correspond-

ing paths (i.e. whose states correspond term-wise under the bisimulation)

satisfy the same CTL* path formulae.
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2.4.2 Simulation

A simulation is a “one-sided” version of a bisimulation: a binary relation

R between states such that whenever (s1, s2) ∈ R, for all a ∈ A, s1
a→ s′1

implies (∃s′2)(s′1, s′2) ∈ R and s2
a→ s′2.

This is most useful as a relation between structures or transition systems

(S1, S
0
1 , A,→1), (S2, S

0
2 , A,→2) with initial state sets S0

i and a common action

label alphabet. One defines that system 2 simulates system 1,

(S1, S
0
1 , A,→1) � (S2, S

0
2 , A,→2)

iff there is a simulation R ⊆ S1×S2 such that ∀s0
1 ∈ S0

1 .∃s0
2 ∈ S0

2 .(s
0
1, s

0
2) ∈ R.

In systems which label states with sets of atomic propositions, for a sim-

ulation R ⊆ S1×S2 from (S1, S
0
1 , A,→1, L1) to (S2, S

0
2 , A,→2, L2) we require

that the atomic propositions of system 1 include the atomic propositions of

system 2, and that whenever (s1, s2) ∈ R,

• The restriction of L1(s1) to the atomic propositions of system 2 is

precisely L2(s2);

• s1
a→ s′1 implies (∃s′2)(s′1, s′2) ∈ R and s2

a→ s′2.

Then, again, system 2 simulates system 1,

(S1, S
0
1 , A,→1) � (S2, S

0
2 , A,→2) iff there is a simulation R (in the stronger

sense) such that ∀s0
1 ∈ S0

1 .∃s0
2 ∈ S0

2 .(s
0
1, s

0
2) ∈ R.

Note that as a relation between transition systems, � is reflexive and

transitive, a preorder.

Clarke et al. [45] show that when system 1 is simulated by system 2

in this sense, an ACTL* formula satisfied by system 2 is also satisfied by

system 1. ACTL* is the fragment of CTL* which uses only universal (∀)
path quantifiers.



Chapter 3

Modelling Embedded Systems

As was discussed in chapter 1, hard real-time systems often include a com-

munications network linking computing nodes, require a software design that

guarantees message transmission and response times, and the Controller Area

Network is a popular choice in view of its deterministic collision avoidance

strategy. This chapter therefore begins with a description of the Controller

Area Network before moving on to a survey of embedded system modelling

and model-checking techniques.

3.1 The Controller Area Network

Henceforth abbreviated CAN, this was originally devised by Bosch GmbH

for use in automotive control applications [60, 74] where there was identi-

fied a need for high reliability in a noisy electromagnetic environment with

data speeds of up to 1 Mbit/s and distances of up to a few tens of metres.

Since then, CAN has become widely used in many hard-real-time systems,

in medical and industrial applications including robotics.

Briefly, a CAN is a broadcast carrier-sense, multiple-access (CSMA-CA)

network with a deterministic collision-avoidance strategy for medium access

arbitration. It is a multi-master network: any node on the network may send

a message. The message does not carry a destination address but is broadcast

and may be received by any node interested in receiving it, in a sense which

39
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will be explained further below.
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Figure 3.1: A CAN data frame

Messages passing over the network take the form of CAN data frames with

the structure depicted in figure 3.1. From the point of view of communicating

applications, the important elements are the 11-bit or 29-bit message iden-

tifier and the data pay-load of up to 8 bytes. We shall confine our attention

to 11-bit identifiers in the rest of this section. The remaining elements are

control bits and a cyclic redundancy check field used by lower level software

to ensure a frame is correctly read from the network. The bits are physically

encoded in NRZ.

The message identifier is not a unique sequence number but in fact plays

two roles.

First, it expresses a message priority. Thought of as an integer, the lower

its value, the higher the message priority. From this follows the deterministic

procedure for arbitrating access to the network medium. A node may start

to transmit a frame onto the network at any time. Nodes that wish to

transmit monitor the medium while sending successive bits of their message

identifier. As long as the competing nodes all send the same bit they remain

in contention but as soon as a node sends a 1 bit while another node sends

a 0 bit, the sender(s) of the 0 outbids the sender(s) of the 1 and the latter

drops out of contention. One may speak of the 0 bit as “dominant” and of

the 1 bit as “recessive”. This bidding process repeats for all 11 bits of the

identifier and provided two two nodes attempt to send a message with the

same identifier at the same time there is a unique winner of the arbitration

process – the message with the identifier with the smallest integer value1.

1This implies that the message identifier is a big-endian integer, as the most significant
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This scenario depends on clocks at the different nodes remaining in syn-

chronisation with one another and also on the ability of a node writing an

arbitration bit to sense when a “dominant” (0) bit is already on the bus and

for the dominant bit to “win”. These are provided in a straightforward way

by the electronics on the CAN bus although this will not be described in

detail here.

The second role performed by the message identifier is to announce a par-

ticular “type” of message. CAN messages are not addressed to a particular

recipient – they are all broadcast ; but a potential receiving node may choose

to receive a frame of a particular type. A receiving node acts to receive a

messages with a particular identifier value.

In a node a CAN controller senses the bus at all times and (typically)

interrupts the host processor when a frame is sensed with an identifier iden-

tifying it as a frame which the node “wishes” to receive. Interrupt serving

then consists of buffering the data of the frame.

In chapter 4, especially §4.2 and its sequel we shall adopt a rather ab-

stract view of CAN frames/messages and their sending and receipt. The

network will be viewed as divided in separate CAN channels. A message in a

channel will be viewed as a pair consisting of an identifier and a data value,

corresponding to the 11-bit identifier and 0-8 byte data value of figure 3.1.

In §4.2 it is explained how a message-in-transit has an early pre-acceptance

phase corresponding to medium access arbitration, a post-acceptance phase

during which the message is “in” the medium and available to receivers,

and an acceptance point which is the boundary between these. The network

channel will also have a status recording whether it is free or, if it is handling

a message, the progress of the message through its phases.

3.2 Broadcasting Embedded Systems

Steven Bradley, David Kendall, William Henderson and Adrian Robson have

been particularly interested in modelling software systems distributed across

bit is presented first.
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embedded hardware and communicating by broadcast – specifically, across

controller area networks (CAN), initially developing a timed process algebra

AORTA [36, 33, 32, 31, 37, 35, 34] and a response-time analysis tool XRTA

[66, 38, 65].

More recent work has led to the modelling language CANdle and its

underpinning process algebra bCANdle [79, 80, 82, 81, 83, 84, 85]. This will

be reviewed in some detail as it provides the point of departure for some of

my work. [79] contains the most detail; the other works cited are papers

summarising various aspects of this work.

3.2.1 CANdle

This is a high-level language for programming or modelling distributed real-

time systems whose components communicate with CAN. A CANdle pro-

gram consists of a number of modules : for instance ([79], p158):

module FlowRegulator is

behaviour

Flow[Msecs(10)/PERIOD] | Valve[y/x]

end module

This defines a module in terms of instances of two other modules running in
parallel ([79], p147, p155).

module Flow is module Valve is

const type

PERIOD : duration flow_rdng

type procedure

flow_rdng AdjustValve(flow_rdng)

procedure channel

ReadSensor(out flow_rdng) k : (flow.flow_rdng)

channel var

k : (flow.flow_rdng) x : flow_rdng

var behaviour

x : flow_rdng loop do

behaviour rcv(k, flow.x);

every PERIOD do AdjustValve(x)
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ReadSensor(x); end loop

snd(k,flow.x) end module

end every

end module

These module definitions show the the standard headings required by the

language. The data types declared under heading type are defined separately

– [79] provides a separate Simple Data Modelling Language (SDML) for this.

The heading channel in each case declares a CAN channel with a message

template consisting of identifier flow and data payload of type flow rdng.

The behaviour sections exemplify two iteration constructs and the com-

bination of actions (primitives, snd, rcv or procedure calls) in sequence (;).

Actions can also be combined in parallel (|), as in the previous example and

there are also constructs for conditional action, non-deterministic choice and

trapping and handling of run-time exceptions.

The details of the procedures declared under procedure are abstracted

out, although bounds on their execution time are needed for model-checking.

3.2.2 bCANdle

Chapter 6 of [79] goes on to describe how from a CANdle program is algo-

rithmically generated a bCANdle system. bCANdle is a low-level process

algebra used to provide a formal representation of these systems for model

checking purposes.

A bCANdle system ([79], chapter 3; [81]) is made of three components:

a process term, a network model, and a data model.

A data model over a given set of variables, a set of operation symbols and

a set of predicate symbols consists of:

• a typing function assigning a set of values to each variable;

• a valuation - a mapping of variables to values;

• an assignment to each operation symbol of an operation on valuations

of appropriate “arity”; and
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• an assignment to each predicate symbol of a set of valuations.

If D is a data model and γ a predicate symbol, D |= γ means that the

valuation of D lies in the set which interprets γ. D[x := v] is a data model

like D except for assigning value v to variable x. If ω is an operation symbol,

the relation D →ω
d D

′ means D′ is the model like D except its valuation is

the result of applying (the interpretation of) ω of D’s valuation. One can

thus see a data model changing state.

A network model consists of a set of broadcast channels. A channel

consists of:

• a set of possible messages, each an identifier together with a data value

• a strict total ordering between messages (denoting priority);

• an assignment of upper and lower time bounds on the pre-acceptance

phase and the post-acceptance phase of transmission of each message;

• a queue of waiting messages;

• a state: one of four: (1) free; or (2) in pre-acceptance phase of transmis-

sion of message m, with bounds l, u on time to completion; or (3) at ac-

ceptance point of transmission of message m; or (4) in post-acceptance

phase of transmission of m, with bounds l, u on time to completion;

Rules are given for changes of state of the network, generating a timed tran-

sition system with network models at the nodes. The static parts of these

network models are all the same; the dynamic parts - the queue and the state

of the channel(s) - change as time passes or discrete actions occur. See [81],

figure 3, or [79] §3.4.2.

The process terms are defined as follows. The style is that of Robin

Milner’s process algebra [98].

• k!i.x and k?i.x are process terms (transmission/reception of message

i.x through channel k);

• Where ω is an operation symbol and t1, t2 ∈ R ∪ {∞}, [ω : t1, t2] is a

process term (performance of an operation within given time bounds);



3.2. BROADCASTING EMBEDDED SYSTEMS 45

• Where γ is a predicate symbol and P a process term, γ → P is a

process term (evaluate the guard and do P if satisfied);

• Where P,Q are process terms, P ;Q, P + Q, P [> Q, P |Q are pro-

cess terms (do in sequence, non-deterministic choice, interrupt, do in

parallel);

• A process variable X is a process term;

• recX.P is a process term (recursion).

Milner[98] develops a theory of equivalence (bisimilarity) of process terms

and shows how how the recursion construct represents iterative (looping)

processes, and how any process term may generate an automaton. The lo-

cations are process terms, the generating term is the initial location, and a

transition a : P → Q, say, whenever P is able, in some sense, to perform ac-

tion a and then must behave like Q, formalising the idea of a process algebra

as a “list of things to do”.

An analogous notion of bisimilarity equivalence is developed for bCANdle,

based on rules for transition of a bCANdle system (P,N,D) into another,

(P ′, N ′, D′) whenever passage of time or some action has caused P to evolve

in a fashion analogous to that described in the previous paragraph, or the

network or data to change state. For instance, the process term P = k!i.x;P ′

might evolve into P ′ and N to an N ′ that is like N but with message i.x

added to the queue, while D = D′. Another example: N = N ′, the state of

N is at acceptance point of i.x, P = k?i.x;P ′, and D′ is like D except the

valuation has the value of variable x updated with the data just read.

The rules are stated in full in [79], §3.6, [81] figures 5 - 9 and explained

in more detail in chapter 4.

A clock is added to each network channel ([79], chapter 4) to make a

clocked network, N̂ , and to define from a process term P a clocked process

term P̂ by adding clocks to operations and building up using the same gram-

mar as before. A clocked bCANdle system ([79]§4.2.4) is then a clocked

process term, a clocked network and a data model. The automaton con-

struction can then be strengthened to a timed automaton G(P̂ , N̂ ,D) which
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represents the possible behaviours of of the clocked bCANdle system starting

from initial state (P̂ , N̂ ,D). Guards on transitions, for instance, ensure that

time bounds on operations and on network behaviour are respected. The

formal rules for generating the transitions of this timed automaton are given

in [79], §4.3 and it is proved that the timed transition system which gives

the operational semantics for it is strongly equivalent to that given by the

bCANdle semantics previously defined.

We now have a formal translation of bCANdle systems into timed au-

tomata and the tools for analysing, checking timed automata can in theory

be applied.

This work goes on to develop more algorithmically efficient ways to trans-

late a bCANdle system, and indeed, to develop software to verify properties

of a bCANdle system on the fly – without generating the equivalent timed

automaton in its entirety. In my own studies, however, I have particularly

been interested in the passage from bCANdle system to timed automaton

and, using the detail just described, will describe my work with this in chap-

ter 5.

3.3 Other Work on Model Checking Timed

Automata

In this section a selection of papers are mentioned briefly. Much of this work

is effectively summarised in the texts of Bérard et al. [26], Clarke et al. [45],

Clark and Schlingloff [46].

3.3.1 Timed Automata and State Spaces

R Alur’s and D L Dill’s A Theory of Timed Automata [7] and Automata-

Theoretic Verification of Real-Time Systems [8] describe some early work on

getting time into finite automata. By comparison with §2.2, their automata

include in the definition a subset F ⊆ L of acceptance states, as in the

“traditional” theory [73] where the actions form an alphabet, a word over the

alphabet is accepted by an automaton if a run finishes at a location ∈ F
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after the sequence of actions in the word. A classic theorem is that words

accepted by finite automata over an alphabet A are precisely the regular

expressions over A. Alur and Dill build time into this theory. They define

a timed word as a sequence of letters (actions) with a matching sequence

of time stamps and develop a notion of timed automaton similar to ours -

a transition corresponding to a timed word can he taken if its time stamp

satisfies a guard. Büchi acceptance is defined for timed runs: an ω-word (an

infinite sequence of letters) is accepted if a location in F is visited infinitely

often along the run. They also consider more general Muller acceptance,

where a family of sets of locations is given and an ω-word is accepted if the

set of locations visited infinitely often is in the family. Büchi acceptance is a

special case of this.

This leads to a theory of timed regular languages, a natural generalisa-

tion of the regular languages of classical automata theory. They develop a

PSPACE algorithm for checking the emptiness of the language accepted by a

timed automaton and discuss other decision problems associated with their

constructions. They show that timed Muller Automata and timed Büchi au-

tomata are equally expressive and properly include the language accepted by

deterministic timed Muller Automata, which properly includes the language

accepted by deterministic timed Büchi Automata.

Finally they apply their timed automaton construction of verifying safety

and liveness properties of a real-time systems.

[8] discusses briefly the use of clock zones for efficient representation of

the state space.

Alur, Courcoubetis, Halbwachs, Dill and Wong-Toi in [2] expound region

equivalence as a way obtaining a finite state space, and develop an algorithm

for constructing a minimal region graph for a timed automaton, and an

algorithm for model-checking formulae of TCTL (see next section). Alur,

Courcoubetis and Henzinger [4] develop the region graph construction further

in order to obtain a solution to the duration-bounded reachability problem:

where the timed automaton has a duration measure to decide whether there

is a run satisfying a given upper bound on it.

Alur’s paper Timed Automata [15] has developed the earlier theory into
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essentially the same timed automaton formalism as that set out above in

§§2.2, 2.2.3. In the course of a discussion of reachability analysis he develops

the notion of region equivalence as described in §2.3 and shows that in a

timed automaton of n locations and k clocks, in which every clock constraint

constant is ≤ c, the reachability problem can be solved in time n.2O(klog(kc)).

In considering implementation, he discusses the symbolic state space repre-

sentation based on clock zones (§2.3) and their efficient representation using

difference-bound matrices. Alur discusses again the timed language theory

outlined in the previous paper and reviews a couple of tools, including UP-

PAAL.

J Bengtsson, B Jonsson, J Lilius and W Yi, [22] explore partial-order

reduction of state-space search in the case of a parallel composite of timed

automata, using a construct they call a network of timed automata instead

of parallel composition as above. This allows them to define a local time

semantics, a variation of the usual semantics of a parallel composition (see

§2.2.3) according to which the components of a composite run independently;

their clocks are not presumed to be synchronised except when a synchronizing

transition is taken, when clocks are resynchronised. They develop from this

a version of clock zone based symbolic states and a reachability algorithm

with partial order reduction based on their local time semantics.

K G Larsen, F Larsson, P Pettersson and W Yi [88], [91] present timed

automata as used in UPPAAL [50][89] (essentially as defined here) but with

networks of timed automata as in the previous paragraph, symbolic semantics

and difference bound matrices. They then obtain a number of results allow-

ing non-minimal-weight edges to be dropped from the region graph without

affecting the semantics. They develop an O(n3) algorithm for implementing

this and also a method for reducing the number of symbolic states in the

global PASSED list (see §2.3), and present a number of experimental results

using UPPAAL.

The UPPAAL specification language is a subset of CTL that permits no

nesting of ∀�, ∃�, ∀♦, ∃♦ modalities apart from that implied by its “leads

to” construct, equivalent to ∀�(ϕ ⇒ ∀♦ψ). This apparent limitation of

UPPAAL is rescued by the use of test automata, which allow specifications
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to be checked which cannot be expressed directly in the property language.

L Aceto, P Bouyer, A Burgueno and K G Larsen [1] describe the method of

test automata. A test automaton is essentially a timed automaton in which

some locations are deemed “reject states”. A test automaton T expressing

(the negation of) some specification is combined in parallel with an UPPAAL

system which “passes the test” T if no timed state of the combined system

which includes a reject location of T . This appears to be a way of using

UPPAAL that goes beyond simple checking of properties expressed in its

property (or specification) language. Aceto et al. go on to develop a powerful

temporal logic L∀S which augments a timed-automaton specification with

extra boolean atomic formulae and clocks and expresses properties which

can be reduced to reachability in this sense.

K G Larsen, C Weise, W Yi and J Pearson [90] develop clock difference

diagrams, data structures inspired by binary decision diagrams ([45], ch 5)

to provide an efficient representation of polyhedra such as clock zones.

G Behrmann, T Hune and F Vaandrager [20] explore running UPPAAL

on parallel processors, distributing model-checking across processing nodes.

This results in a search that is globally neither breadth-first (queue-organised

search list) nor depth-first (stack-organised) but which approximates depth-

first as the number of nodes increases. In fact, breadth-first is more optimal

(and produces the shortest path to the pathological state in the case of a

property failing); a prioritised queue of states to search is used to make

distributed breadth-first search order closer to breadth-first search order.

The speed-up in model-checking found in experiments was generally linear

in the number of processing nodes, sometimes better.

E Fersman, L Mokrushin, P Pettersson and W Yi [54] consider the schedu-

lability problem given a fixed-priority scheduling strategy, modelling a sys-

tem of concurrent real-time processes as as a timed automaton with a set

of tasks running at each location - a method of modelling different from the

approaches considered so far. They show the problem of deciding whether a

given task set encoded as a timed automaton in this way is schedulable can

be solved by reachability analysis if two clocks are added to the automaton.
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3.3.2 Timed Temporal Logics

Subsection 2.1 briefly reviewed some temporal logics used to express formally

properties of real-time systems. There are many more – I feel I have barely

scratched the surface and this is an area I might well return to in future

work.

Rajeev Alur, Costas Courcoubetis and David Dill [17] extend computa-

tion tree logic, CTL, to a timed logic, TCTL. This logic has the ability to

suffix the temporal operators �,♦,U with a time bound ∼ c, where ∼ is one

of <,≤,=,≥, > and c ∈ R. Thus, for instance, ∃♦≤5ϕ says: on some path, ϕ

will be true in (up to) 5 time units; ∀(ϕU<20ψ) says: on all paths, ψ will be

true less than 20 time units from now and in the mean time, ϕ is true. Their

time line is continuous, not discrete, and their semantics replaces the discrete

computation tree (timed transition graph) where each state has a discrete

set of “next” states, with a continuous path through each state parametrised

by time. They develop an algorithm based on clock zones and region graphs

for checking TCTL formulae, and argue that having a dense rather than

discrete time domain does not significantly increase the complexity of the

model-checking problem.

T A Henzinger, Z Manna and A Pnueli [68] construct a similar timed

extension to linear time logic (LTL or PTL) and show that for a large class

of systems, checking a property over the continuous time domain can be

reduced to a check over a discrete domain of a possibly modified property.

R Alur, K Etessami, S La Torre and D Peled [9] develop the logic of

parametrised temporal operators further into a logic they call parametric

temporal logic, PLTL. They note that some parametrised temporal operators

are upward monotone in the intended interpretation, for instance ♦≤mϕ ⇒
♦≤m+1ϕ and �>mϕ ⇒ �>m+1ϕ; while their duals are downward monotone:

e.g. �≤m+1ϕ⇒ �≤mϕ, ♦>m+1ϕ⇒ ♦>mϕ. This motivates them to carry two

disjoint sets of parametric variables, one for upward and one for downward

monotone operators. They develop model-checking for PLTL and sublogics

based on Kripke structures.

Alur and Henzinger [10], [11] further discuss bounded temporal operators
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in Timed PTL – �(ϕ → ♦[0,3]ψ), �(ϕ → ♦≤3ψ) and so forth. They also

introduce freeze quantification in which, for instance in �x(ϕ→ ♦y(ψ ∧ y ≤
x + 3), x, y are time variables bound to the time where the subformula in

the scope of the temporal operator is evaluated. This formula says “in every

state with time x, if ϕ, then there is a later state with time y such that

ψ ∧ y ≤ x + 3). They compare these two logical constructs with a third

syntax, quantification over explicit clock variables: for instance compare the

previous formula with: ∀x�((ϕ∧ T = x)→ ♦(ψ ∧ T ≤ x+ 3). [11] develops

a tableau-based decision procedure for TPTL.

T Henzinger, X Nicollin, J Sifakis and S Yovine [69], develop a semantics

of real-time systems somewhat different from the automaton-based seman-

tics we have been working with, and a version of TCTL using explicit clock

variables rather than parametrised temporal operators, and also a timed ex-

tension of the µ-calculus. They do a lot of work comparing the expressiveness

of the two logics, concluding that they are not comparable in general, but

that TCTL requirements of a sufficiently large class of real-time systems can

be expressed in timed µ-calculus.

Alur and Henzinger have more recently been exploring game theoretic ap-

proaches to real-time system modelling and model-checking. Their approach

(and also that O Kupferman [13]) develops models as games (the formal

structure is a natural extension the automaton) in which the system and the

environment alternate moves. They introduce a variety of temporal logic

more general than LTL or CTL which they call alternating time temporal

logic, ATL, which features a “selective” path quantifier 〈〈A〉〉, where A is a

set of players of the game. A formula 〈〈A〉〉�ϕ, say, is evaluated at a state

q of the game by considering a computation path forward from q in which

repeatedly a protagonist chooses a move for every a ∈ A, then a antagonist

chooses a move for every a ∈ Ac, and the state is updated with these moves.

The authors argue that while LTL and CTL are suitable specification lan-

guages for closed systems, ATL is more natural for specifying open systems.

They develop and examine the complexity of model-checking algorithms for

ATL.

Alur and Peled [14] describe causal or partial order semantics which con-
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trasts with the interleaving or total order models which we have been working

with. The latter presume some kind of order between any two concurrent

events, which the former allows that some pairs of events may in principle be

incomparable as to causal order. They show that satisfiability in a number

of temporal logics based on partial order semantics is undecidable.

3.4 Compositionality

If we aim to translate a bCANdle system into a parallel composite of stop-

watch or hybrid automata, another avenue of enquiry suggests itself: how

might compositional reasoning apply?

3.4.1 Assume-Guarantee Reasoning

Clarke et al. in [45] and [46] provide a brief introduction to this methodology,

introduced more fully in Jones [75], Misra & Chandy [99], and Pnueli [104].

The basic idea is that one is aiming to verify a property of a composite

system by inferring it from properties of components of the system. For

instance, to verify that a communications protocol ensures that a message

always gets from its source to its destination, one might separately verify

(1) that a message always gets from its source onto the network, (2) that

a message propagates through the network, and (3) that a message on the

network is received by a “destination” process.

The assume-guarantee approach focuses on a number of processes, the as-

sumptions made by each process about its environment, and the propositions

guaranteed to be satisfied when the assumptions are met. The processes are

expressed as formal models – process algebras, automata or other transition

systems ([45] uses Kripke structures); the assumptions and guarantees are

also expressed formally in some temporal logic such as CTL or its “univer-

sal” fragment, ACTL.

In the notation of Pnueli, 〈ϕ〉M〈ψ〉 is a formula intended to mean “when-

everM is part of a system which satisfies assumption ϕ, the system guaran-

tees that ψ is also satisfied”.
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A simple correctness proof is, for example,

〈ϕ〉M′〈ψ〉
〈true〉M〈ϕ〉

〈true〉M||M′〈ψ〉

A typical assume-guarantee proof, however, will involve system compo-

nentsM,M′ whose behaviour is mutually interdependent, and aim to specify

assumptions to be satisfied byM′ in order to guarantee the correctness ofM
and at the same time, specify assumptions to be satisfied by M in order to

guarantee the correctness of M′. To show that an appropriate combination

of assumed and guaranteed properties of M, M′ guarantees the correctness

of M||M′ might involve an inference of the form (see e.g. [46] p1767)

〈ϕ1〉M1〈ψ1〉
〈ϕ2〉M2〈ψ2〉
ξ1 ∧ ψ1 ` ϕ2

ξ1 ∧ ψ2 ` ϕ1

ψ1 ∧ ψ2 ` ξ2
〈ξ1〉M1||M2〈ξ2〉

This sort of inference can be seen to be potentially circular if used care-

lessly [46]. Pnueli [104] discusses this and suggests indexing formulae with a

well-founded set and allowing a formula to be deduced only from formulae

with “lower” indices.

[46] mentions further discussion of this approach by Stephan Merz [97],

B Josko [76], Long [93], Grumberg and Long [63].

Clark et al. [45] show how inferences such as these can be justified logi-

cally. They focus on systems with properties expressed in ACTL, the “uni-

versal” fragment of CTL which has a semantics over “fair” Kripke structures.

The latter are Kripke structures with an additional family F of sets of states

to define fairness: a run is fair iff at least one set in F is visited infinitely

often by it. The parallel composition construction extends to fair structures

in a natural way. They define M |=F ϕ to mean ϕ is satisfied by the fair
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Kripke structure M, and extend the preorder � of 2.4.2 to version �F for

fair structures. This preorder has number of convenient properties:

– M�F M′ |= ϕ implies M |= ϕ

– M�F M′ implies M||M′′ �F M′||M′′

– M�F M||M and M||M′ �F M
– Parallel composition is associative and commutative up to isomorphism.

– For each ϕ ∈ ACTL there is a tableau or “canonical” model Tϕ such that

M |= ϕ iff M�F Tϕ.

From these it is straightforward to render the Pnueli-style inferences il-

lustrated above into ordinary logical inferences from these properties.

3.4.2 Assume-Guarantee Reasoning and Reactive Mod-

ules

This technique for deducing properties of a composite system from properties

of its components is described in T A Henzinger, S Qadeer and S K Rajamani

[70] in terms of a relation P � Q meaning trace containment – all traces or

runs of P are (possible) traces of Q. They describe this relation in terms of

reactive modules, described by R Alur and Henzinger in [12], although the

technique can just as easily be thought of in terms of hybrid automata. It is

useful to think of the relation as “P refines Q” or “P implements Q”: Q is

a specification, P a proposed implementation.

A reactive module P carries a set of variables XP , partitioned into three

subsets: private, interface and external variables. Observable variables are

interface or external and are read by the module; controlled variables are

interface or private and are set by the module. The interface variables are

shared by several modules comprising a system.

Execution proceeds in rounds : the modules making up a system execute

in round-robin fashion. Within a round, the latched values of the variables –

values inherited from the previous round – are denoted x, y, ...; the updated

values (set in the present round, usually by another module in the round-

robin) by primes, x′, y′, ....

A module’s procedures consist of atoms : every controlled variable is con-
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trolled by an atom, which sets its values. An atom is defined by a sequence

of guarded variable updates. Two simple examples from [12] should give the

idea:

module Not

external in:B

interface out:B

atom out awaits in

init update

[] in’ = 0 -> out’ := 1

[] in’ = 1 -> out’ := 0

module Latch

external set,reset:B

interface out:B

private state:B

atom out reads state

[] true -> out’ := state

atom state awaits set, reset, out

[] set’ = 0 ^ reset’ = 0 -> state’ := out’

[] set’ = 1 -> state’ := 1

[] reset’ = 1 -> state’ := 0

Notice each atom corresponds to a controlled variable of the same name;

reads means the atom works with a latched value of the variable; awaits

means it works with an updated value. Clearly reactive modules are modellable

at a lower level by hybrid automata. [12] describes an operational seman-

tics in terms of states (valuations of the variables) and a successor relation

between states, leading to a transition graph. A trace is the restriction to

observable variables of a trajectory in the graph.

In terms of reactive modules, Q is refinable by P iff every interface vari-

able of Q is an interface variable of P , and every external variable of Q is

observable in P ; P � Q iff these conditions are satisfied and every trace of P ,

restricted to Q, is a trace of Q. Q is projection refinable by P iff in addition,

Q has no private variables.

These authors’ assume-guarantee technique has the following outline. We

would like, say, to show P1 ‖ P2 � Q, but the state space of P1 ‖ P2 is too
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large. Näıvely, we might show P1 � Q, P2 � Q and draw our conclusion;

but in practice these are strong premisses: normally P1 � Q only in pres-

ence of suitable constraining assumptions about P2. We construct A2, an

abstraction of P2 encapsulating these constraints, and similarly A1, an ab-

stract description of P1, and show P1 ‖ A2 � A1 ‖ Q and A1 ‖ P2 � Q ‖ A2.

An assume-guarantee theorem allows us to infer P1 ‖ P2 � Q from these.

To show P ′ = P1 ‖ A2 � A1 ‖ Q = Q′ is still PSPACE-hard in the size of

the state space of Q′; however if the variables of Q′ are all present in P ′ (Q′

is projection refinable by P ′) then the complexity of the check is linear in

the sizes of the state spaces of P ′, Q′. To contrive this, Henzinger et al [70]

introduce a witness module to make explicit the way the hidden (private)

variables of Q′ depend on the state of P ′. Then ([70] proposition 2), Q′ is

projection-refinable by P ′ ‖ W and P ′ ‖ W � Q′ implies P ′ � Q′.

The human creativity required is to construct suitable abstraction and

witness modules.

The generalised assume-guarantee rule ([70] proposition 3) runs as follows.

Two reactive modules are said to be compatible is (1) their respective sets

of controlled variables are disjoint, and (2) they do not jointly contain any

cyclic await dependencies. An await dependency of a variable on one or more

others is a dependency of an initial (or new) value of it on the initial (or new)

values of other variables in the same round.

Now, say P = P1 ‖ ... ‖ Pn and say Q = Q1 ‖ ... ‖ Qn, refinable by P

and for i = 1...n, Γi is a composition of compatible Pj, Qk(k 6= i). If Γi � Qi

for i = 1...n then P � Q. To use this, one decomposes Q into suitable

components Q1 ‖ ... ‖ Qn and for each Qi, finds a suitable Γi, hopefully

with a smaller state space than P . In general Γi is a composite of essential

modules, Pj whose interface variables include all those of Qi, and constraining

modules, chosen from Pj, Qk(k 6= i) to make sure external variables of Q are

all observable in Γi. The Qks are a better choice than the Pjs – specification

modules usually have smaller state spaces – but they may not provide enough

constraints on the external variables of Γi and abstraction modules need to

be added to provide these. One then appeals to ([70] proposition 4): If Q is

refinable by P and P � Q ‖ A, then P � Q.
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A detailed account of an application of these propositions is given in [70],

sections 4 and 5.

3.4.3 Assume-Guarantee Reasoning and Timed I/O Au-

tomata

D Kaynar, N Lynch, F Vaandrager and R Segala [78, 77] develop an assume-

guarantee reasoning technique rather similar to this, but formulated in terms

of their timed I/O automata. This work has inspired an assume-guarantee

theorem for UPPAAL timed automata described in chapter 7. Chapter 7

describes some of the detail of the constructions of Kaynar, Lynch et al.;

here an overview of their overall approach is given, in some detail as they

define many interesting concepts and constructions which inform the present

work and possible future work following from it.

These authors start with a fairly standard definition of an (untimed)

automaton, different only in that the set A of action labels is partitioned

into external and internal actions: A = E ∪ H. They develop this into a

structure which they call a “timed automaton”, which incorporates timed

behaviour and is in fact an analogue not of our timed automaton, but rather

of the timed transition system derived from it. This is defined below in §7.2.1

(page 131ff) where we have used the term “KLSV structure” to distinguish

it from our timed automaton.

Interestingly, the KLSV structure focuses on states, i.e. valuations of

variables, with no mention of control locations of an underlying automaton.

A set X of variables is given, and the states are a designated subset Q of

the valuations of X. A state q may change by a discrete action a ∈ E ∪H,

q
a→ q′, or by evolution in time, along a trajectory, a function τ : J → Q

where J is an interval of the time line (usually R) of the form [0, b] or [0, b)

or [0,∞). Sets Θ ⊆ Q of initial states, D ⊆ Q × (E ∪ H) × Q of possible

discrete actions, and T of possible trajectories define the possible executions

of the structure.

A trajectory τ is from q if τ(0) = q. A closed trajectory is one with

domain of the form [0, b] and is from τ(0) to τ(b). An execution fragment
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is an alternating sequence τ0a1τ1a2τ2a3... of trajectories and discrete actions,

starting with a trajectory and running to∞ or else finishing with a trajectory;

the trajectories apart from the last one of a finite fragment are closed and τk

is from ak to ak+1. The execution fragment is closed if the sequence is finite

and the final trajectory is closed. The execution fragment is admissible if,

where τk has domain [0, bk],
∑∞

k=1 bk = ∞, and is zeno this sum converges

to a finite value. An execution is a fragment that starts from a state in Θ.

Kaynar, Lynch et al. define operations for obtain a prefix and a suffix of both

a trajectory and an execution fragment, and for concatenating trajectories,

execution fragments. The set T is required to be closed under taking prefixes,

suffixes and concatenation.

Given an execution (fragment) τ0a1τ1a2τ2a3... one can derive the under-

lying trace (fragment) by restricting valuations at each state to the empty

set of variables, so that only the the amount of time elapsing figures, and

restricting to external actions. If, for instance, action ak drops out of the

sequence, τk, τk+1 are concatenated.

[77] explains that the timed transition system of an automaton of our

type (which the authors call an “Alur-Dill automaton”) can be modelled

with these structures if X includes its clocks plus a variable loc to track

the current location of the automaton. Θ consists just of the valuation that

zeros all clocks and sets loc to the initial location of the automaton. A =

E ∪ H is the action alphabet of the automaton; one can make E = the

automaton actions, H = ∅, or vice versa, or put synchronising actions in E

and internal actions in H. The sets D and T are defined so as to respect

the timed-transition semantics, and to ensure valuations of clocks have unit

rate of change on a trajectory, and that valuations of loc are constant on a

trajectory. See §7.2.2 for more detail.

Implementation relation. Kaynar, Lynch et al. call two structures Ai =

(Xi, Qi,Θi, Ei, Hi,Di, Ti), i = 1, 2 comparable if they have the same external

actions, E1 = E2. In this case, it makes sense compare their external real-

time behaviour as exhibited by traces. Accordingly, they say A1 implements

A2, A1 � A2 if the traces (from initial states) of A1 are included among those
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of A2. They show that

• If every closed trace of A1 is in A2 and A2 has finite non-determinism

(Θ2 is finite and for every state x and trace fragment β from x, there

only finitely many states reachable by execution fragments from x

which restrict to β) then A1 � A2.

• If every admissible trace of A1 is in A2 and A1 is feasible (from every

state there is an admissible execution fragment) then every closed trace

of A1 is a trace of A2.

• If every admissible trace of A1 is a trace of A2, A1 is feasible and A2

has finite non-determinism, then A1 � A2.

Two sorts of simulation are defined in [77]. A forward simulation is

analogous to ours of 2.4.2: a relation R ⊆ Q1×Q2 such that ∀x1 ∈ Θ1∃x2 ∈
Θ2 : (x1, x2) ∈ R, and such that whenever (x1, x2) ∈ R and x1

α1→ y1 is

an execution fragment consisting of either a single discrete action (with a

“point” trajectory at each end) or a single closed trajectory, then there is

a closed execution fragment x2
α2→ y2 with (y1, y2) ∈ R and α2 has the

same trace as α1. It follows as a theorem that whenever (x1, x2) ∈ R, any

trace fragment from x1 is a trace fragment from x2; so that the existence

of a forward simulation from A1 to A2 implies A1 � A2. A composition of

forward simulation relations is a forward simulation; a refinement is defined

to be a forward simulation that is functional; a composition of refinements

is a refinement. An isomorphism is a refinement whose inverse is also a

refinement.

A backward simulation from A1 to A2 is defined by [77] to be a total

(∀x1 ∈ Q1∃x2 ∈ Q2 : (x1, x2) ∈ R) relation R ⊆ Q1 × Q2 such that ∀x1 ∈
Θ1∀x2 ∈ Q2 : (x1, x2) ∈ R ⇒ x2 ∈ Θ2, and such that whenever (y1, y2) ∈ R
and x1

α1→ y1 is an execution fragment consisting of either a single discrete

action or a single closed trajectory, then there is a closed execution fragment

x2
α2→ y2 with (x1, x2) ∈ R and α2 has the same trace as α1. Backward

simulations compose as relations, and the existence of a backward simulation

from A1 to A2 implies inclusion of closed traces.
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The authors define a history relation from A1 to A2 as a forward simula-

tion whose inverse is a refinement from A2 to A1 and they explore building

an implementation relationship by adding history variables to A1 to make

A2, so that X1 ⊆ X2, all states in Q2 restrict to states in Q1 and the relation

{(y � X1, y)|y ∈ Q2} is a history relation. Similarly they define a prophecy

relation as a backward simulation whose inverse is a refinement and they ex-

plore building an implementation relationship by adding prophecy variables

in the same way.

Composition. Kaynar, Lynch et al. define a parallel composition of com-

patible structures (disjoint sets of variables, each external action set disjoint

from all other actions) which we describe in detail below in §7.2.3 (page

133ff) where we also show that it respects the parallel composition we have

defined for our timed automata. They show that their construction is sound

with regard to traces: a trace of A1 ‖ A2 projects to a trace of Ai.

They show that

• If A1, A2 have the same external actions and are each compatible with

B, then A1 � A2 implies A1 ‖ B � A2 ‖ B.

• If A1, A2 have the same external actions, B1, B2 have the same external

actions, and each Ai compatible with each Bj, then A1 � A2, B1 � B2

imply A1 ‖ B1 � A2 ‖ B2.

• If A1, A2 have the same external actions, B1, B2 have the same external

actions, and each Ai compatible with each Bj, then A1 ‖ B2 � A2 ‖ B2,

B1 � B2 imply A1 ‖ B1 � A2 ‖ B2.

Unfortunately, a desirable “assume-guarantee” result such as, under the

same hypotheses as above, A1 ‖ B2 � A2 ‖ B2, A2 ‖ B1 � A2 ‖ B2 imply

A1 ‖ B1 � A2 ‖ B2 is not possible ([77] gives a counterexample, their pp

62-63) without further assumptions on the environments of the structures,

which the authors address in constructing their “timed I/O automata”.

Kaynar, Lynch et al. define other operations on their structures, such as
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• Hiding, essentially moving a prescribed subset of E to H (the set of

internal actions), which they show is monotonic with respect to their

implementation relation �.

• Adding lower and upper time bounds for a task, a designated subset

of E ∪ H to an automaton, resulting in a stucture whose traces are

included among those of the original.

• “Untiming” – quotienting states by a congruence relation to make a

“plain old” automaton. This construction is reminiscent of symbolic

state semantics and they employ it to prove a theorem slightly more

general than that asserting the soundness of of symbolic state semantics

for “Alur-Dill” automata.

Properties. In terms of KLSV structures, a property in [77] is set of ex-

ecution fragments. In particular, a safety property is a set closed under

prefixes and limits, corresponding to a requirement that needs to be main-

tained throughout an execution, and a liveness property P is such that every

closed execution fragment can be concatenated with another to make a frag-

ment ∈ P . The authors say A satisfies a safety property S if S contains

every execution of A, and a liveness property L if L contains every maximal

(with respect to prefix) execution of A. They show that any property which

is both a safety and a liveness property contains all the execution fragments

of A and that any property can be expressed as the intersection of a safety

and a liveness property.

The authors develop a notion of fairness within this framework. If C is

some set of actions of A (C ⊆ E ∪H), and x a state, say C is enabled in x

if ∃a ∈ C∃y ∈ Q : x
a→ y, otherwise say C is disabled in x. They define an

execution fragment α to be weakly fair for C if α contains infinitely many

events from C OR α has no suffix in all states of which C is enabled; if α has

the stronger property that C is disabled in all states of some suffix, they say

α is strongly fair for C. The set of strongly fair fragments for C is a liveness

property, as is the set of weakly fair fragments.

They augment their structure: their timed automata with properties are
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pairs (A, P ) consisting of a KLSV structure and a property, the idea being to

focus on executions of A that are in P . They develop a preorder (A1, P1) �
(A2, P2) (the traces of A1 that are in P1 are traces of comparable A2 in P2)

and prove that if P1 is a liveness property, it follows from this that closed

traces of A1 are traces of A2.

Given sets of actions Ci ⊆ Ei ∪ Ai, i = 1, 2, they define a fair forward

simulation from A1 to (comparable) A2 as a relation R ⊆ Q1×Q2 such that

(1): ∀x1 ∈ Θ1∃x2 ∈ Θ2 : (x1, x2) ∈ R and if C1 is disabled in x1, C2 is disabled

in x2; and (2): Whenever (x1, x2) ∈ R and x1
α1→ y1 by either a single action

surrounded by point trajectories or a single closed trajectory, there is a closed

fragment x2
α2→ y2 with the same trace as α1, (y1, y2) ∈ R; and α2 satisfies

certain additional constraints relating enabledness/disabledness of C2 in α2

to enabledness/disabledness of C1 in α1: see [77]. It follows that the sets Li of

strongly fair executions of Ai are liveness properties and (A1, L1) � (A2, L2),

and likewise when Li are the sets of weakly fair executions of Ai.

The authors similarly extend their parallel composition operation. Given

properties Pi of Ai, i = 1, 2, then define P1 ‖ P2 to be the set of fragments of

A1 ‖ A2 which for each i restrict on variables and actions of Ai to fragments

in Pi. Then they define (A1, P1) ‖ (A2, P2) as (A1 ‖ A2, P1 ‖ P2) and extend

previous substitutivity theorems, such as

• When A1, A2 have the same external actions and are each compatible

with B, (A1, P1) � (A2, P2) implies (A1, P1) ‖ (B, Q) � (A2, P2) ‖
(B, Q)

• When A1, A2 have the same external actions and B1, B2 have the same

external actions and each Ai is compatible with each Bj, (A1, P1) �
(A2, P2) and (B1, Q1) � (B2, Q2) imply (A1, P1) ‖ (B1, Q1) � (A2, P2) ‖
(B2, Q2).

Timed I/O Automata Kaynar, Lynch et al. enhance their model by

partitioning the external actions set E into input actions I and output actions

O (H ∪ O comprise the locally controlled actions) and requiring that input

actions are always enabled – ∀x ∈ Q∀a ∈ I∃y : x
a→ y – and time passage
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is always enabled – from every state there is a trajectory which is either

defined on [0.∞) or closed, but some locally controlled action is enabled at

the terminal state.

Executions, traces are defined as usual; a TIOA is feasible if the underly-

ing timed automaton structure is, and I/O-feasible if its executions accom-

modate arbitrary input actions at arbitrary times. A TIOA A is progressive

iff there are no zeno fragments of locally controlled actions, and receptive if

it has a progressive strategy – an A′ like A but with a subset of transitions

(D′ ⊆ D) and trajectories (T ′ ⊆ T ). The authors show that a receptive

TIOA is I/O-feasible.

The authors define two TIOAs to be comparable if the underlying struc-

tures are comparable and the O sets coincide and the I sets coincide. � is

then the usual trace-inclusion, and is implied by the existence of a forward

simulation.

Composition of compatible structures A1,A2 is defined as before, with

O = O1 ∪O2 and I = (I1 ∪ I2)−O in the product. Substitutivity results are

derived for TIOA essentially like the bulleted items on page 60 -

• If A1, A2 are comparable TIOA compatible with B, then A1 � A2

implies A1 ‖ B � A2 ‖ B.

• If A1, A2 are comparable TIOA, B1, B2 are comparable TIOA, and each

Ai compatible with each Bj, then A1 � A2, B1 � B2 imply A1 ‖ B1 �
A2 ‖ B2.

• If A1, A2 are comparable, B1, B2 are comparable, and each Ai com-

patible with each Bj, then A1 ‖ B2 � A2 ‖ B2, B1 � B2 imply

A1 ‖ B1 � A2 ‖ B2.

Most interestingly, there is now the assume-guarantee theorem that was

not possible with the earlier KLSV structures: if A1, A2 are comparable,

B1, B2 are comparable, and each Ai compatible with each Bj, under certain

additional assumptions (about traces in A2 B2), A1 ‖ B2 � A2 ‖ B2, A2 ‖
B1 � A2 ‖ B2 imply A1 ‖ B1 � A2 ‖ B2. A careful statement of this theorem

appears in §7.3.3.
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There are limitations – for instance an example is given of a composition

of I/O-feasible TIOAs which is not I/O-feasible; but a composition of pro-

gressive TIOAs is progressive and a composition of strategies is a strategy

for the composite.

3.5 Abstraction and Abstraction Refinement

The sections above explore ways of reasoning about models of systems by

way of a simulation or trace containment relation A � A′ and rules for

deducing a such a relation between composite models. Given such a relation,

we can infer any universally quantified property (expressible, say, in ACTL

or ACTL*) of A from that same property of A′.
What is needed to complement this is a method for generating abstract

models. Suppose it is wished to check a property ϕ, a formula in ACTL* of

the form ∀�ψ, over a model A. The present section explores an approach to

generating an abstraction of A – a model A′ such that A � A′ – and in the

event that ϕ fails in A′, of determining whether the trace in A′ providing the

counterexample corresponds to a counterexample to ϕ in A, or whether it

is a spurious counterexample, an artefact of the abstraction that produced

A′. In the latter case, the approach derives a refinement of the abstraction

tailored to eliminating the counterexample.

This approach, accordingly called counterexample-guided abstraction re-

finement (CEGAR) is developed by E Clarke, O Grumberg, S Jha, Y Lu and

H Veith in [44].

These authors develop the method with reference to Kripke structures –

see §§ 2.1.2, 2.3.1.

3.5.1 Programs and Existential Abstraction

Clark et al. derive their Kripke structures from “concurrent programs”. A

program consists of a set of variables {v1, ..., vn}, variable vi having a domain

Di. The Cartesian product S = D1 × ... × Dn forms the state space of the

Kripke structure.
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Arithmetic expressions are formed of arithmetic operators, variables and

constants from the Di; atomic formulae from expressions and relation sym-

bols (<,≤,=,≥, > etc) and predicates from boolean combinations of atomic

formulae. If d = (d1, ..., dn) ∈ S and ϕ is a predicate, d |= ϕ means ϕ holds

when (for each i) di is substituted for vi.

A “concurrent program” is formed by, for each i, a transition block de-

scribing the evolution of values of vi:

init(vi) := Ii

next(vi) := case

C1
i : A1

i

· · ·
Cm
i : Ami

esac

where Ii ⊆ Di, declaring the possible initial values of vi, the Ck
i (k =

1...m) are predicates and the Aki expressions. The Aki describe changes of

state guarded by Ck
i .

The derived Kripke structure (S, I, R, L) has initial state set I = I1 ×
... × In and the transition relation R ⊆ S × S derived from the next(vi)

clauses. Recall that L is a function which associates with each state a set

of predicates “true there”. In the present case, assuming in addition to the

program a predicate ϕ to be checked, L(d) (d ∈ S) is the subset of “atoms of

the program” (atomic formulae which occur positively or negatively in the

Ck
i or in ϕ) α such that d |= α.

Clark et al. define an existential abstraction of such a program or Kripke

model in terms of a surjective function on the set of states S. Equivalently,

this can be defined as an equivalence relation ≡ on S. The abstraction of

M = (S, I, R, L) is then defined as a Kripke structure M̂ with state set

Ŝ = S/ ≡ = {ŝ : s ∈ S}2. The initial states of the abstraction are Î = I/ ≡
and the abstract transition relation R̂ = {(ŝ, t̂) ∈ Ŝ × Ŝ : R(s, t)}. The

abstract labelling function is

2ŝ , {s′ ∈ S : s ≡ s′}, the ≡-equivalence class determined by s.



66 CHAPTER 3. MODELLING EMBEDDED SYSTEMS

L̂(ŝ) =
⋃
s′∈ŝ

L(s′)

It is assumed that the abstraction relation ≡ is appropriate for ϕ in

that related states agree as to the truth of all sub-formulae of ϕ. L̂ labels

abstract states consistently. This assumption guarantees that the abstraction

produces no “false positives”; it simulates the base model – M � M′ and

M′ |= ϕ⇒M |= ϕ.

3.5.2 Generating an Abstraction

For any set F of formulae, an equivalence relation between states is defined

by s ≡F t iff for every ψ ∈ F , s |= ψ ⇔ t |= ψ. Given a concurrent program P

and specification to be checked, ϕ, Clarke et al. define an initial abstraction

relation relative to the atoms of P, ϕ: s ≡init t iff for every atom α of P, ϕ,

s |= α⇔ t |= α.

Clarke et al. ([44], §4.2) state that whereas there are many possible

equivalence relations on S = D1× ...×Dn, hence many possible abstractions

of the initial model, the “interesting” ones are generally made component-

wise. The most extreme way of doing this is by constructing the equivalence

from component equivalences ≡i on Di i = 1...n; (d1, ..., dn) ≡ (e1, ...., en) iff∧n
i=1 di ≡i ei.

They explore a generalisation of this based on what they call formula

clusters and variable clusters. They say that two formulae interfere if they

have a variable in common. The formula clusters are the equivalence classes

of the reflexive transitive closure of the interference relation between atoms.

They then define vi ≡ vj iff the variables appear in atomic formulae in the

same formula cluster; the variable clusters are the equivalence classes of this

relation.

Where F1, ..., Fm are the formula clusters and V1, ..., Vm the variable clus-

ters so defined, let Sk ,
∏

i:vi∈Vk
Di. An equivalence is defined on Sk: for

d, e ∈ Sk, d ≡k e iff
∧
α∈Fk

(d |= α ⇔ e |= α). These equivalences, by con-

struction, “glue together” to make an equivalence relation on the full state
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space S.

Clarke et al. show ([44], §4.2.3, their theorem 4.8) that the abstraction

induced by this equivalence relation is isomorphic to the abstraction defined

by the relation ≡init defined above, at the beginning of this subsection.

They also remark that it is in general computationally cheaper for a

model-checking software tool to compute an over-approximation to the ab-

straction: M̃ = (S̃, Ĩ , R̃, L̃) where S̃ = Ŝ, L̃ = L̂, but Ĩ ⊇ Î, R̃ ⊇ R̂. This in

general coarsens the abstraction: M � M̂ � M̃ but this is not a problem and

the next stage of their technique is iterated refinement of the abstraction.

3.5.3 Spurious Counterexamples

When M � M̂ and M̂ |= ϕ one can infer M |= ϕ assuming ϕ is universally

quantified – e.g. an ACTL* formula. However, if M̂ 6|= ϕ, the counterexample

trace in M̂ may be spurious, not corresponding to a counterexample in M.

Clarke et al. show that such spuriousness arises as follows.

The abstract trace will have the form ŝ0, ŝ1, ..., ŝN , a finite sequence of

equivalence classes on concrete states, where (∀i < N)(ŝi, ŝi+1) ∈ R̂. Now, R̂

relates abstract states ŝ, t̂ whenever they, as equivalence classes, have mem-

bers s′ ∈ ŝ, t′ ∈ t̂ related by R.

b

i

t
s

s^ t^d^

d

Figure 3.2: Part of a spurious counterexample

It is possible, therefore that the counterexample contains a sequence ŝ, d̂, t̂

like that depicted in figure 3.2. The ovals represent abstract states (equiva-

lence classes of concrete states) and the arrows denote related concrete states:

for instance, s → d indicates (s, d) ∈ R. State d has transition to it but no

transitions from it: it is a dead-end state. The abstract trace ŝ → d̂ → t̂ is

possible because there exists a state b ∈ d̂ (i.e. b ≡ d) with a transition to a
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state t ∈ t̂.

State b is a bad state. It raises the possibility of a transition sequence

ŝ → d̂ → t̂ corresponding to no transition sequence s′ → d′ → t′ between

concrete states s ∈ ŝ, d ∈ d̂, t ∈ t̂. The trace is spurious because of the

existence of a bad state in the same equivalence class as a dead-end state,

spuriously connecting two execution sequences which would be disconnected

in the concrete model.

State i is an irrelevant state – its existence and relatedness to other states

is neither “good” nor “bad” for the counterexample.

Clark et al. argue ([44], §3) that such a spurious counterexample can be

eliminated by refining the abstraction relation by splitting the equivalence

class that contains the dead-end and the bad state, so that these states end

up in different equivalence classes. In the method they develop this process

is iterated until ϕ is verified, or until a counterexample is found that is not

spurious, and can be pulled back into the concrete model.

The authors develop algorithms for identifying spurious counterexam-

ples, implementable (using data representations such as OBDDs) in model-

checking software. Their lemma 4.10 [44] shows that an abstract counterex-

ample (ŝ1, ..., ŝn) corresponds to a concrete counterexample (s1, ..., sn) 3 iff

the sets Σ1, ...,Σn of concrete states defined recursively by Σ1 = ŝ1 ∩ I,

Σi = ŝi ∩ R(Σi−1) are all non-empty4. Indeed, when (ŝ1, ..., ŝn) does cor-

respond to an concrete path (s1, ..., sn) which is a counterexample, si ∈ Σi

for i = 1, ..., n while conversely if all the Σi are non-empty, a concrete coun-

terexample can be constructed by starting with a state in Σn and working

backwards inductively: from si ∈ Σi = ŝi ∩R(Σi−1) we infer an R-pre image

si−1 ∈ Σi−1 ⊆ ŝi−1 and so build up (s1, ..., sn).

Their algorithm SplitPATH ([44], §4.3.1) is based on this. Given a finite

3s1 ∈ I; for i = 2, ..., n (si−1, si) ∈ R; si ∈ ŝi, i.e. ŝi is the equivalence class determined
by si;

4R(Σ) , {s ∈ S : ∃t ∈ Σ : R(t, s)}, the image under R of Σ.
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abstract path (ŝ1, ..., ŝn) in M̂,

Σ := ŝ1 ∩ I

i = 1

while(Σ 6= ∅ ∧ i < n)

i := i+ 1

Σprev := Σ

Σ := R(Σ) ∩ ŝi
if (Σ 6= ∅) output “counterexample exists”

else output i,Σprev

The algorithm computes whether there is a concrete path (s′1, ..., s
′
n) in

M which maps to the abstract path5: From their lemma 4.10 [44], Clarke

et al. deduce that if the counterexample is spurious, SplitPATH terminates

with the smallest i for which the set Σ is empty, and Σprev contains dead-

end states, for in this case Σ is an empty Σi in the notation of the previous

paragraph, and Σprev is the corresponding Σi−1.

Before seeing how these data are used, they consider the alternative pos-

sibility that the abstract counterexample is a loop: (ŝ1, ..., ŝk)(ŝk+1, ..., ŝn)∗.

Their analysis of this possibility shows ([44], §4.3.2) that the loop portion of

it needs to be “unwound” at most a polynomial number of times and that

the abstract counterexample pulls back to a concrete counterexample or is

spurious according to whether the “unwound” finite trace does/is.

Their algorithm SplitLOOP does this. First the minimum of the sizes

of the equivalence classes ŝk+1, ..., ŝn is computed, then (this minimum + 1)

unwindings of the abstract loop counterexample is computed and SplitPATH

applied to the result. If this yields a concrete counterexample this result

is returned. Otherwise, SplitPATH has returned an index number i and the

dead-end set Σprev. Indices in the original loop counterexample corresponding

to i, i+ 1 are computed and returned along with Σprev.

Iterated abstraction refinement follows these steps.

5(∀i)s′i ∈ ŝi and (∀i < n)(s′i, s
′
i+1) ∈ R
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3.5.4 Refining the Abstraction

Algorithm SplitPATH returns, in the case of a spurious counterexample, a set

Σprev of dead-end (concrete) states reachable (compatibly with the abstract

trace) from I. It also returns the index number i of a state ŝi of the abstract

trace, such that Σprev ⊆ ŝi−1 but R(Σprev) ∩ ŝi = ∅. There is, however, an

abstract transition R̂ : ŝi−1 → ŝi (spurious!), so the set ΣB , {s ∈ ŝi−1 :

∃s′ ∈ ŝi : (s, s′) ∈ R} is non-empty

This subset of ŝi−1 is a set of bad states and is disjoint from ΣD , Σprev,

a set of dead-end states. Defining ΣI , ŝi−1 − ΣD − ΣB yields a partition

ŝi−1 = ΣD t ΣB t ΣI .

The aim of the refinement step is to find the coarsest refinement of the

abstraction relation ≡ which separates ΣD,ΣB.

Recalling that the concrete state space S has the form D1× ...×Dn, the

set of n-tuples of values of the variables, Clark et al. express the relation ≡ as

a “composite” of equivalence relations ≡i on Di (i.e., (d1, ..., dn) ≡ (e1, ..., en)

iff
∧n
i=1 di ≡i ei) and write the equivalence class ŝi−1 to be split as a product

E1 × ... × En of ≡i-equivalence classes. They then give a polynomial-time

algorithm PolyRefine to construct a refinement ≡′i of each ≡i:

for (i := 1 to m)

≡′i := ≡i
for (a, b ∈ Ei)

if (proj(ΣD, i, a) 6= proj(ΣD, i, b))

≡′i := ≡′i −{(a, b)}

Here, proj(ΣD, i, a) denotes the set of (n − 1)-tuples which yield an n-

tuple in ΣD when a is inserted in position i. Clarke et al. show ([44], lemma

4.19 and corollaries) that the relation ≡′ made by composing the ≡′i is an

equivalence relation on states S, is a refinement of ≡, and is the coarsest one

which separates ΣD and ΣB. It does in fact separate ΣD from ΣB ∪ ΣI .

The refinement procedure for a loop counterexample is analogous. The

refinement procedure is performed repeatedly until either a concrete coun-



3.5. ABSTRACTION AND ABSTRACTION REFINEMENT 71

terexample is found or the property ϕ is verified. Partitioning must terminate

because every equivalence class contain at least one element.

The method described here was developed by Clark et al. for implemen-

tation in a software tool using symbolic states and OBDDs; but it will be

interesting to investigate how aspects of the method may be used to refine

our compositional models.
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Chapter 4

bCANdle

This chapter gives, for convenient reference, the key definitions of bCANdle,

[79], a framework for modelling broadcasting embedded systems as timed

transition systems. The following two chapters will develop from this a se-

mantically equivalent compositional modelling framework.

A bCANdle system comprises three components: a data model, a com-

munication model, and a process model.

4.1 The Data Model

Fix V , a set of data values, and Var , a (finite) set of data variables.

• A valuation is a total mapping V ar −→ V .

• An operation is a binary relation between valuations, total but not

necessarily one-to-one. (Operations need not be deterministic.)

• A predicate is a set of valuations.

Given, in addition to V ar, finite sets Ω of operation names and Γ of predi-

cate names, a data environment over V ar,Ω,Γ is a tuple

D = (type, op, pred, val) where

• typemaps each variable name to a subset of V . If x ∈ V ar, type(x) ⊆ V

is the “universe” of values of x.

73
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• op maps each operation name to an operation. If ω ∈ Ω, op(ω) ⊆
V V ar × V V ar.

• pred maps each predicate name to a set of valuations. For γ ∈ Γ,

pred(γ) ⊆ V V ar is the “extension” of γ.

• val : V ar −→ V gives each x ∈ V ar its “current” value: val(x) ∈
type(x).

If the data environment needs to be made explicit, one writes D.type,

D.op, etc. For x ∈ V ar, D.x is an abbreviation for D.val(x).

D[x := v] denotes a data environment D′ like D except D′.x = v; i.e.

D′.y = D.y for all y ∈ V ar − {x}.
For ω ∈ Ω, the notation D

ω−→d D
′ defines a relation describing how a

data environment may evolve: it denotes the condition D.type = D′.type ∧
D.op = D′.op ∧ D.pred = D′.pred ∧ (D.val,D′.val) ∈ D.op(ω). In short,

D
ω−→d D

′ says that D′ is “D after operation ω has run”.

Ω contains a symbol ID which is always interpreted as the identity rela-

tion between valuations.

For γ ∈ Γ, D |= γ abbreviates D.val ∈ D.pred(γ).

Two data environments are compatible if they agree apart possibly from

their val components.

4.2 The Network Model

This section describes an abstract representation of a controller area network

as described in §3.1.

A (CAN) network consists of a number of broadcast channels through

which messages pass.

Assume given a finite set I of message identifiers and a finite set V of data

values. The identifiers correspond to the arbitration bits of a physical CAN

frame – they express message priority as far as medium access is concerned

while, from the point of view of application software, they can be thought off

as identifying message type. The data values correspond to the data payload
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of the CAN frame. In the present abstract formulation, a message is defined

formally as pair (i, v), i ∈ I, v ∈ V ; this is also denoted i.v. I is presumed

to be equipped with a strict total ordering i 4 i′ defining priority ordering

between messages. m = (i, v) 4 (i′, v′) = m′ iff i 4 i′.

A message in transit has an early pre-acceptance phase during which the

sender is negotiating for access to the network medium, followed by a post-

acceptance phase during which the message is “in” the medium and available

to receivers. The acceptance point is the boundary between these phases.

-
time

acceptancestart channel free

pre-acceptance post-acceptance

The transmission latency is the elapsed time from the start of transmis-

sion until the channel is free again. A transmission latency function assigns

to a message m = i.v a vector of four real numbers δ(m) = (l, u, L, U), which

are time bounds on the durations of the phases: l ≤ preacceptance ≤ u,

L ≤ postacceptance ≤ U .

A channel delivers messages. Let M be a set of messages and δ a trans-

mission latency function as above. A channel, at any time, has a status,

denoted by one of the following symbols:

• ↓ - the channel is free;

• t1,t2
; m - the channel is in pre-acceptance phase ofm, with lower bound t1

and upper bound t2 on time to completion (m ∈M, 0 ≤ t1 ≤ l(m), 0 ≤
t2 ≤ u(m), t2 − t1 ≤ u(m)− l(m) with equality when t1 > 0);

• ↑ m - the channel at acceptance point of message m;

• m t1,t2
; - channel is in post-acceptance phase of m, with lower bound t1

and upper bound t2 on time to completion (m ∈M, 0 ≤ t1 ≤ L(m), 0 ≤
t2 ≤ U(m), t2 − t1 ≤ U(m)− L(m) with equality when t1 > 0);

A message queue is a sequence of messages in priority order: j < k

implies mj ≺ mj and (when j 6= k) mj,mk have distinct identifier (type)
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values. There is thus at most one message in a queue with a given identifier

value. Since I is finite, it follows that a queue always has finite length. The

notation m : u denotes a queue which is u with message m at the “head”

and u as the “tail”.

A message may be inserted into a queue: if u is a message queue and i.v

a message, u" i.v is the queue state which is the result of inserting i.v into

u in correct position (overwriting any message with identifier i already in u).

To summarise, a channel is a set of messages with a priority ordering, a

latency function, a status as defined above, and a message queue. While the

other components are fixed, the status s and queue u are dynamic, varying

as the system evolves: so the channel may simply be denoted (s, u).

A network N is an indexed set of channels, Nk : k ∈ K. The notation

N [k := η] denotes an updated network N ′ such that N ′k = η and N ′j for j 6= k.

Network behaviour can now be defined by means of a relation −→n. A

network N (a set of channels each in particular state) may evolve into N ′

on passage of an interval of time t ∈ R: this is denoted N
t−→n N

′. N may

evolve into N ′ on the occurrence of a discrete action a: denoted N
a−→n N

′.

The set An of discrete actions consists of the union of the following, where K

indexes the channels of the network, I is the set of message identifiers, and

V the set of data values.

• { k ; i.v : k ∈ K, i ∈ I, v ∈ V } - enter pre-acceptance phase of

message i.v on channel k;

• { k ↑ i.v : k ∈ K, i ∈ I, v ∈ V } - acceptance of message i.v in channel

k;

• { i.v ; k : k ∈ K, i ∈ I, v ∈ V } - enter post-acceptance phase of

message i.v on channel k;

• { k ↓: k ∈ K } - channel k becomes free;

Changes of network state, N −→n N
′, resulting from these discrete ac-

tions, are now defined precisely by the following rules of inference.
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Nk = (↓,m : u)

N
k;m−→n N [k := (

l(m),u(m)
; m,u)]

(N1)

If Nk is a free channel with a non-empty queue, the network may enter the

pre-acceptance phase on channel k, de-queuing the message.

Nk = (
0,t
; m,u)

N
k↑m−→n N [k := (↑ m,u)]

(N2)

When the lower bound on time to completion of the pre-acceptance phase of

transmission of a message becomes 0, the network may accept it.

Nk = (↑ m,u)

N
m;k−→n N [k := (m

L(m),U(m)
; , u)]

(N3)

From the state of acceptance of message m, channel k may enter the post-

acceptance phase, with bounds L(m), U(m) on time to completion.

Nk = (m
0,t
;, u)

N
k↓−→n N [k := (↓, u)]

(N4)

When the lower bound on time to completion of the post-acceptance phase

of transmission of a message becomes 0, the channel may become free.

These four rules specify the changes of state of a network effected by the

four types of discrete action. It remains to to provide a rule for change of

state due to passage of time.

To assist in formulating his rule, let tcp(s, u) denote the maximum time

progress allowed to a channel in state (s, u). tcp(↓, u) = ∞ if queue u

is empty, otherwise 0. For t0, t ∈ R, tcp(
t0,t
; m,u) = tcp(m

t0,t
;, u) = t.

Lastly, tcp(↑ m,u) = 0. For a complete network state N , define tcp(N) =

minktcp(Nk).

The effect of time progress is to transform a channel state (s, u) to a state

(s, u) + t defined thus:

• (↓, u) + t = (↓, u) if u is empty or if t = 0; otherwise it is undefined ;

• (
t1,t2
; m,u) + t = (

t′1,t
′
2

; m,u) if t ≤ t2; otherwise it is undefined;
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t′1 = max(t1 − t, 0) and t′2 = t2 − t;

• (↑ m,u) + t = (↑ m,u) if t = 0, otherwise it is undefined;

• (m
t1,t2
; , u) + t = (m

t′1,t
′
2

; , u) if t ≤ t2; otherwise it is undefined;

t′1 = max(t1 − t, 0) and t′2 = t2 − t.

Time progress for a network is just time progress for all its channels,

where defined. For those k ∈ K for which the right hand side is defined,

(N + t)k = Nk + t.

We can now formulate the passage-of-time rule:

∀k ∈ K : 0 ≤ t ≤ tcp(Nk)

N
t−→n N + t

(N5)

4.3 The Process Model

A bCANdle process is described by a simple process-algebraic language. As-

sume given a network model supplying a set K of channel identifiers and a

set I of message identifiers; and also a data model which supplies sets V ar of

variables, Ω of operation names, Γ of predicates, as explained in the previous

subsections. Assume also a countable set of process variables.

A process term is one of the following.

• k!i.x

where k ∈ K, i ∈ I, x ∈ V ar. This denotes a process which causes a

message i.val(x) to be queued instantly for sending on channel k, and

then terminates.

• k?i.x

where k ∈ K, i ∈ I, x ∈ V ar. This denotes a process which waits for

a message with identifier i to reach its acceptance point on channel k;

then the data is associated with x and the process terminates.

• [ω : t1, t2]

where ω ∈ Ω, t1, t2 ∈ R∪{∞}. This is a process which performs a data

operation; t1, t2 are lower and upper bounds on its computation time.



4.3. THE PROCESS MODEL 79

• γ → P

where γ ∈ Γ and P is a process term. This is to be interpreted as the

process which evaluates the guard γ then if true, performs P .

• P ;P ′

where P and P ′ are process terms: the process which performs P then

(when P terminated) performs P ′.

• P + P ′

where P and P ′ are process terms: the process which chooses non-

deterministically to behave either as P or as P ′.

• P [> P ′

where P and P ′ are process terms. This process behaves as P to begin

with but P ′ may interrupt it at any time before it terminates, in which

case P is aborted and P ′ runs with the network and data state inherited

from P .

• P |P ′

where P and P ′ are process terms: the process consisting of P and P ′

running in parallel.

• X
a process variable.

• recX.P
where X is a process variable and P a process term. This captures the

idea of a recursive process, as explained below. If X is a free variable in

the term P , then the quantifier recX binds it, and it will be seen that

recX.P is in a sense equivalent to the result of substituting recX.P for

X in P .

The semantics of these process terms is given by a body of formal rules,

to be described shortly. The symbols for combining process terms bind in

order of precedence as follows: →(high), ;, +, [>, rec, |(low). Combinators of

equal precendence associate to the left. Parentheses may be used to override

this precedence.



80 CHAPTER 4. BCANDLE

Operational Semantics of bCANdle A formal model - a bCANdle sys-

tem - is defined to be a triple (P,N,D) consisting of a process term, a network

and a data environment. These are assumed to agree on channel identifiers,

message identifiers, data variables, operation and predicate names. It is also

assumed that if P has a subterm k!i.x, then the network semantic rules will

accommodate this: whenever v ∈ D.type(x), then i.v ∈ the message set of

Nk. Similarly, it is assumed that if P includes the subterm k?i.x, any message

i.v receivable by N (i.e., in the message set of Nk) has v ∈ D.type(x).

The operational semantics of bCANdle is defined in terms of a labelled

transition system whose states are all bCANdle triples (P,N,D) over given

K, I, V ar,Ω,Γ. Transitions between these states, (P,N,D)
λ−→ (P ′, N ′, D′)

are labelled by three kinds of labels λ:

• time passage: t ∈ R = {t ∈ R : t ≥ 0};

• a network action λn ∈ An as defined in the previous subsection;

• a process action label λp ∈ Ap = Ω ∪ Γ ∪ {k!i.v : k ∈ K ∧ i ∈ I ∧ v ∈
V } ∪ {k?i.v : k ∈ K ∧ i ∈ I ∧ v ∈ V }. The process actions are thus:

computations, evaluation of guards, data sends, data receives.

The timed transition system of a bCANdle system (P0, N0, D0) is defined

to be that part of the labelled transition system that is reachable from the

initial state (P0, N0, D0).

The transition relation is the smallest set closed under the rule

(
√
, N,D)

0−→ (
√
, N,D)

(P-)

and also rules set out below.
√

denotes an “ideal” process term - a

process which has nothing to do except terminate1. Variable λn ranges over

network discrete actions An, t ranges over times R≥0; λnt over network actions

An∪R≥0; λp over process actions as just described; and λ over Ap∪An∪R≥0.

1cf [79], pp197-8
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4.3.1 Rules for Atomic Process Terms

Nk = (s, u) ∧ v = D.x

(k!i.x,N,D)
k!i.v−→ (

√
, N [k := (s, u" i.v)], D)

(Snd 1)

N
λn−→n N

′

(k!i.x,N,D)
λn−→ (k!i.x,N ′, D)

(Snd 2)

(k!i.x,N,D)
0−→ (k!i.x,N,D)

(Snd 3)

Nk = (↑ i.v, u)

(k?i.x,N,D)
k?i.v−→ (

√
, N,D[x := v])

(Rcv 1)

N
λn−→n N

′ ∧ (∀v∀u.Nk 6= (↑ i.v, u) ∨Nk = N ′k)

(k?i.x,N,D)
λn−→ (k?i.x,N ′, D)

(Rcv 2)

N
t−→n N

′

(k?i.x,N,D)
t−→ (k?i.x,N ′, D)

(Rcv 3)

D
ω−→d D

′

([ω : 0, t], N,D)
ω−→ (
√
, N,D′)

(Comp 1)

N
λn−→n N

′

([ω : t1, t2], N,D)
λn−→ ([ω : t1, t2], N ′, D)

(Comp 2)

N
t−→n N

′ ∧ t ≤ t2

([ω : t1, t2], N,D)
t−→ ([ω : t′1, t

′
2], N

′, D)
(Comp 3)

where t′1 = max(0, t1 − t) and t′2 = t2 − t

4.3.2 Rules for Guard

D |= γ

(γ → P,N,D)
γ−→ (P,N,D)

(Gu 1)

N
λn−→n N

′

(γ → P,N,D)
λn−→ (γ → P,N ′, D)

(Gu 2)
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N
t−→n N

′ ∧ (D 2 γ ∨ t = 0)

(γ → P,N,D)
t−→ (γ → P,N ′, D)

(Gu 3)

4.3.3 Rules for Sequential Composition

(P,N,D)
λ−→ (P ′, N ′, D′) ∧ ¬(P ′ ≡

√
)

(P ;Q,N,D)
λ−→ (P ′;Q,N ′, D′)

(Seq 1)

(P,N,D)
λp−→ (
√
, N ′, D′)

(P ;Q,N,D)
λp−→ (Q,N ′, D′)

(Seq 2)

4.3.4 Choice

(P,N,D)
λp−→ (P ′, N ′, D′)

(P +Q,N,D)
λp−→ (P ′, N ′, D′)

(Ch 1)

(Q,N,D)
λp−→ (Q′, N ′, D′)

(P +Q,N,D)
λp−→ (Q′, N ′, D′)

(Ch 2)

(P,N,D)
λnt−→ (P ′, N ′, D) ∧ (Q,N,D)

λnt−→ (Q′, N ′, D)

(P +Q,N,D)
λnt−→ (P ′ +Q′, N ′, D)

(Ch 3)

4.3.5 Recursion

Where P [Q/X] means the process term resulting from uniform substitution

of the term Q for the process variable X,

(P [recX.P/X], N,D)
λ−→ (P ′, N ′, D′)

(recX.P,N,D)
λ−→ (P ′, N ′, D′)

(Rec)

4.3.6 Interrupt

(P,N,D)
λp−→ (P ′, N ′, D′) ∧ ¬(P ′ ≡

√
)

(P [> Q,N,D)
λp−→ (P ′[> Q,N ′, D′)

(Int 1)
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(P,N,D)
λp−→ (
√
, N ′, D′)

(P [> Q,N,D)
λp−→ (
√
, N ′, D′)

(Int 2)

(Q,N,D)
λp−→ (Q′, N ′, D′)

(P [> Q,N,D)
λp−→ (Q′, N ′, D′)

(Int 3)

(P,N,D)
λnt−→ (P ′, N ′, D) ∧ (Q,N,D)

λnt−→ (Q′, N ′, D)

(P [> Q,N,D)
λnt−→ (P ′[> Q′, N ′, D)

(Int 4)

4.3.7 Parallel Composition

(P,N,D)
λp−→ (P ′, N ′, D′) ∧ ¬(P ′ ≡

√
)

(P |Q,N,D)
λp−→ (P ′|Q,N ′, D′)

(Par 1)

(P,N,D)
λp−→ (
√
, N ′, D′)

(P |Q,N,D)
λp−→ (Q,N ′, D′)

(Par 2)

(Q,N,D)
λp−→ (Q′, N ′, D′) ∧ ¬(Q′ ≡

√
)

(P |Q,N,D)
λp−→ (P |Q′, N ′, D′)

(Par 3)

(Q,N,D)
λp−→ (
√
, N ′, D′)

(P |Q,N,D)
λp−→ (P,N ′, D′)

(Par 4)

(P,N,D)
λnt−→ (P ′, N ′, D) ∧ (Q,N,D)

λnt−→ (Q′, N ′, D)

(P |Q,N,D)
λnt−→ (P ′|Q′, N ′, D)

(Par 5)

4.3.8 A Note on Recursion

The process term recX.P captures the idea of a recursive process. If X

is a free variable in the term P , then the quantifier recX binds it, and

recX.P represents is a process that is “equivalent” to the result of substi-

tuting recX.P uniformly for X in P . This is effectively the meaning of rule

(Rec) and the “equivalence” can be formally derived from this rule as a strong
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bisimulation.

To see how this captures the the idea of recursion, think of a process which

iterates an action a (a computation [ω : t1, t2] for instance). This could be

defined as “A where A , a;A”: a recursive definition, since A appears in the

right hand side. In terms of the present formalism, this recursively defined

iterating process would be written recA.(a;A). The equivalence then asserts

that this process is equivalent to a;recA.(a;A) which has just the semantics

needed for iterating a.

Similarly, a process A which iterates actions a, b alternately, in an endless

loop would be defined recursively by means of a pair of equations:

A , a;B

B , b;A

A is defined to be a process which consists in doing a then behaving like B,

while B consists in doing b then behaving like A. A is succinctly defined to

be recA.(a; recB.(b;A)).

The rec construct essentially presents recursion as a “fixed point” in the

sense that R Milner explains in [98], p 57.
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4.3.9 Equational Laws

Following Milner [98], bCANDle process terms can be given an “equational”

presentation ([79]):

P +Q = Q+ P (+1)

P + (Q+R) = (P +Q) +R (+2)

P + P = P (+4)

P + idle = P (+5)

P ; (Q;R) = (P ;Q);R (;1)

(P +Q);R = P ;R +Q;R (;2)

idle;P = idle (;3)

idle[> P = P (I1)

P [> idle = P (I2)

P [> (Q[> R) = (P [> Q)[> R (I3)

P |Q = Q|P (P1)

P |(Q|R) = (P |Q)|R (P2)

P |idle = P if P is persistent (P3)

recX.P = P [recX.P/X] (R1)

P [Q/X] = Q, X guarded in P ⇒ recX.P = Q (R2)

Here, idle , [ID : ∞,∞] where ID ∈ Ω is a symbol for an operation

that does nothing; thus idle is a process that does nothing, indefinitely!

X guarded in P means that process variable X occurs in P in subterm(s)

of the form P1;P2 where the occurrence of X is in P2 and P1 is guarding –

that is, P1 is atomic or is a sequence of parallel composite of terms one of

which is guarding, or is a “+” or “[>” combination of terms which are both

guarding.

The point of the set of equational laws is that one can define a relation

` P = Q meaning “equality of P, Q is derivable from the equational laws”.

This gives a notion of “equality” of process terms beyond syntactic identity,
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which is sound : ` P = Q implies that P, Q are semantically equivalent in a

sense which will be made precise in the discussion of strong bisimulation and

strong equivalence below.



Chapter 5

Modelling bCANdle with

Automata

5.1 Introduction

Having defined a timed transition system semantics for bCANdle as outlined

above, Kendall developed a formalism for representing a bCANdle system as

a timed automaton and showed this automaton’s semantics to be strongly

equivalent to it. This construction is monolithic and computationally expen-

sive. The automaton constructed from a bCANdle system does not naturally

resolve into components and is apt to have a very large state spece.

The present chapter develops an adaptation of this formalism in which

the CAN network channels are modelled as timed automata and these com-

posed in parallel with automata representing process terms and associated

data. This will facilitate a compositional view of the CAN-based system, so

mitigating the state space explosion problem.

First, an overview of the model checking tool UPPAAL, and the extended

timed automata modelled by UPPAAL is presented; then an UPPAAL model

of a CAN channel is presented, followed by a simple examples of its use.

After this a mapping of bCANdle systems to parallel products of timed

automata is developed, and shown to induce a strong bisimulation between

the timed transition systems of the two formalisms. Thus, the models de-

87
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veloped in this chapter are semantically equivalent to the bCANdle models

from which they are derived: they exhibit equivalent behaviour.

5.2 UPPAAL and Timed Automata

Once we have developed a model of bCANdle as a parallel product of timed

automata, we wish to be able to check its properties. The UPPAAL tool

has turned out to be useful for this as it supports all the timed-automata

constructs, in the extended sense of §2.2.4. A recent tutorial overview of

UPPAAL is given by G Behrmann, A David and K G Larsen [19] (updating

earlier accounts [50][89]) and a discussion of its theoretical underpinnings

by J Bengtsson and W Yi [23]. Parallel products of timed automata are

programmable as UPPAAL systems in a natural way. In this section we

review UPPAAL syntax and semantics. This mirrors the time-automata

semantics faithfully: we need to see that a UPPAAL system simulates a

parallel product of timed automata in the sense of §2.4.2.

5.2.1 UPPAAL Syntax

This is given in full in the “help” that comes with the UPPAAL tool. The

following summary deals with the small subset of UPPAAL features employed

in the present work.

An UPPAAL system comprises three sections.

• First, a section of global declarations: variables and constants scoped

over the whole system are declared using a C++-like syntax (for in-

stance, const int a = 5;). User-defined types and functions may also

be declared although these will not play a role in the present investi-

gation.

Arrays and structs may also be declared and optionally initialised,

again with C++ style syntax: for example, int b[3] = {3, 5, 7};
for an array of three integers.
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Subranges of integer type may be declared: for example int[0,9] n;

is an integer variable with values in the range 0 to 9.

clock x; simply declares a clock variable. It is initialised to 0 at the

beginning of a run and whenever a transition calls for it to be reset.

chan ch; declares a binary channel. Edges in two automata can be

then given respective synchronisation labels ch!, ch?, forcing them to

synchronise, producing a joint or “rendez-vous” transition just as in

the definition of the parallel product of timed automata. A channel

may be declared urgent, slightly altering the semantics (see below).

A broadcast channel may be used to provide one-to-many synchro-

nisation: one edge is labelled ch! and two or more may be labelled

ch?.

• The second section comprises one or more process templates, each headed

process, followed by a process name and a list of formal parameters

which are declarations as above. A process template defines a timed

automaton type; the automata comprising the system are instances of

process templates.

Within a template are declarations of local variables, followed by dec-

larations of all the locations and edges of the automaton.

First, after the key word state is a list of all the locations. Each

location in the list may have an invariant listed after it in braces {}.

Next, after the key word commit is a list of the locations which are com-

mitted, then, after the key word urgent, a list of the urgent locations,

then after the key word init, the initial location of the automaton.

Committed and urgent locations are explained in the semantics section

below.

After this, and after the key word trans is a comma-separated list of

all the edges of the automaton. Each edge is declared as source location

-> target location followed optionally by, in braces {},
– key word guard followed by a guard for the edge, and a semicolon,

– key word sync followed by a synchronisation label which must be of
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the form c! or c? where c is a channel, a semicolon, and

– key word assign followed by a list of assignment or update state-

ments.

The update statements have a fairly self-evident C++-style syntax.

They may be compound statements with function calls, conditionals

and iterators (including a Java-style for(x:lst)) but for the purposes

of the present work, simple assignment statements suffice: x++, y -=

2, z = x * 2 and so forth. For backwards compatibility, a Pascal-

style assignment operator := is also permitted. Several update state-

ments may appear in a comma-separated list terminated by a semi-

colon.

• The third section defines the processes – instances of the process tem-

plates defined in the second section. Several instances of one template

may be defined. The syntax of a process definition is an instance name,

an assignment operator, a template, a list in parentheses () of param-

eters conforming to the formal parameters of the template definition,

and a semicolon. Finally, there is a system definition – a simple list of

all the processes comprising the system.

Version 4 of UPPAAL also provides syntax to declare priorities between

synchronisation channels and processes, to resolve non–determinism when

more than one action or synchronisation is enabled at once, and meta-

variables which can be used to track verifications without being saved in

the system state. The present work does not employ either of these features.

5.2.2 UPPAAL Semantics

The semantics of UPPAAL are based on timed transition systems just as

previously defined, but there are extra conditions defining urgency, commit-

tedness and the precise nature of the synchronisations. The semantic rules

described in this section are paraphrased from the UPPAAL 4.0 help system;

see also Behrmann et al [19].
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An urgent location is easiest to understand in terms of standard timed

automata: imagine an extra clock x, reset on every edge running into the

location, and the location has invariant x ≤ 0. Thus, no time may elapse at

an urgent location.

A committed location is not only urgent in this sense, but in any run

of the timed transition system, wherever the state (not the last in the run)

includes a committed location, the next action transition must be from a

committed location. Thus, if there is just one committed location in a state,

the actions leading to and from the committed location are, in effect, atomic.

The timed transition system of an UPPAAL system is of the usual kind:

see for instance §§2.2.2-2.2.4. A state (
−→
l , v) is a vector

−→
l = (l1, ..., ln)

of component process (automaton) locations together with a valuation v of

all clocks and variables. Transitions between states are delay transitions or

action transitions.

A delay transition is of the form (
−→
l , v)

d→ (
−→
l , v) where d is a non-

negative real number, a time delay, and v + d is the valuation for which

(v + d)(x) = v(x) + d for any clock x, and which agrees with v on all other

variables. This delay transition is permitted only if

• for every d′ ∈ [0, d], v + d′ satisfies the invariant of
−→
l , the conjunction

of all the component invariants,

• no li is committed or urgent,

• no edge from any li synchronises on an urgent channel, or if it does, its

guard is not satisfied by v + d′ for any d′ ∈ [0, d].

An action transition is one of three kinds – internal transitions, binary

synchronisations and broadcast synchronisations.

• An internal transition has the form (
−→
l , v) → (

−→
l ′, v′) where in some

component process k, there is an edge lk
ζ,λ−→ l′k with no synchronisation

label, v satisfies the guard ζ, l′i = li for i 6= k, and valuation v′ is as v

after the updates (resets, assignments) in set λ have been executed.

It is further required that v′ satisfy the invariants of
−→
l ′, that lk is com-

mitted or no other li is committed, and that no other action transition
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from (
−→
l , v) has higher priority. The last proviso can be ignored as we

do not use priorities in this work.

• A binary synchronisation has the form (
−→
l , v)→ (

−→
l ′, v′) where in some

component process j, there is an edge lj
ζj ,c!,λj−→ l′j with synchronisation

label c! for some channel c, and in another component process k, there

is an edge lk
ζk,c?,λk−→ l′k with synchronisation label c?. The rest of

−→
l ′ is

like
−→
l : l′i = li for i 6= j, k.

It is required that v |= ζj ∧ ζk.

v′ is the valuation obtained from v by first executing updates λj then

executing updates λk. It is required that this v′ satisfy the invariants

of
−→
l ′.

It is further required that if neither of lj, lk is committed, neither is any

other component location li, and that no other action transition from

(
−→
l , v) has higher priority (again, this can be ignored for the present

purpose).

• A broadcast synchronisation has the form (
−→
l , v) → (

−→
l ′, v′) where in

some component process j, there is an edge lj
ζj ,c!,λj−→ l′j with synchro-

nisation label c! for some broadcast channel c, and in m component

processes k1, ..., km edges lkp

ζkp ,c?,λkp−→ l′kp
(p = 1, ...,m), with synchro-

nisation label c?. The m synchronisation-receiving edges belong to

different processes. In what follows, it is assumed the numbering of

processes k1, ..., km is in the order the processes are mentioned in the

system definition.

It is required that v satisfies all the guards: v |= ζj ∧ ζk1 ∧ ... ∧ ζkm .

For all locations li in
−→
l not one of lj, lk1 , ..., lkm , no edge from li has a

synchronisation label c? or if it does, v does not satisfy its guard. For

all of these locations, l′i = li, to complete the definition of
−→
l ′.

v′ is the valuation obtained from v by first executing updates λj then

executing updates λkp in order of p = 1, 2, ...,m.

It is required that this v′ satisfy all the invariants of
−→
l ′.
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If none of lj, lk1 , ... lkm is committed, neither is any other component

location li of
−→
l , and no other action transition from (

−→
l , v) has higher

priority (again, priorities can be ignored for the present purpose).

5.3 A CAN channel

(ip < QCAP &&

Q[ip] == FREE)

Init(c)

Acc(u)

PostAcc{h <= U}

S1(c)

PreAcc{h<=u} nMsg?

h = 0

iDlvr = ip; vDlvr = vp

dMsg!

h = 0

PostChk(c)

(h >= L)

ip = 0

Q[iIn] = vIn

nMsg?

ip++

(ip < QCAP)

Q[iIn] = vIn

h = 0

Q[ip] = FREE; ip++;h=0

(ip == QCAP)
Free

nMsg?

ip = iIn; vp = vIn

M2S (c)
vp = Q[ip]; Q[ip] = FREE

(Q[ip] != FREE)

(ip == QCAP)

(h >= l)

Figure 5.1: Automaton to model a CAN Channel

Figure 5.1 shows the locations and transitions of an UPPAAL timed au-

tomaton representing a CAN channel. Note that the legend (c) denotes

a committed location in the UPPAAL sense (see above). The UPPAAL

source code for this appears below in §5.3.2, in the definition of the process

Channel template. QCAP is a parameter denoting the number of distinct mes-

sage types supported by the channel. In order to function, the automaton

is equipped with some local and some global variables, the latter shareable

with other automata that might be composed with the CAN channel. The

local variables include a clock h to track its behaviour in time, and inte-

ger variables ip and vp to represent the message identifier (“priority”) and
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message pay-load respectively of the message “currently” in process of being

transmitted through the CAN channel.

Global variables are needed to interface this model with sending pro-

cess(es) and receiving process(es). Specifically, there are integers iIn and

vIn shared with a sending process to represent the identifier and data pay-

load of a message to be sent; integers iDlvr and vDlvr shared with a re-

ceiving process to represent the identifier and data pay-load of a message to

be handed on to the receiving process. The local array Q[] of integers, one

entry for each distinct message identifier value, comprises the “buffers” of

the CAN channel. The data type is int in this model but in reality would

be the type of the data pay-load.

Last but not least are two UPPAAL “channels”, urgent chan nMsg and

broadcast chan dMsg, not to be confused with the CAN channel we are

modelling. These are declared as formal parameters to the CAN channel

model automaton because they are shared between this and the sending and

receiving processes. Their function is to provide appropriate synchronisation

of the sending process with the channel model and of the latter with 0 or

more receiving processes. In particular a sending process sends a message

by setting shared variables iIn, vIn and then offering synchronization on

urgent chan nMsg. This is a synchronisation in the usual timed-automaton

sense, with the particular feature that the synchronised action occurs as soon

as guards on the component processes determine that it is able. The channel

automaton hands a message to any receiving process by setting shared vari-

ables iDlvr, vDlvr to ip, vp and then offering synchronization broadcast

chan dMsg. Again, this is a synchronisation in the “usual” sense, but an

UPPAAL broadcast channel will synchronise with as many parallel processes

as are in a position to do so. Thus, the channel hands the CAN message to

as many receiving processes as care to take delivery of it; the message is not

available to processes at any later time.

The automaton starts in location Init where it initialises each entry of

its “buffer” array to the special value FREE, meaning there is no message in

the buffer. Constant QCAP is the number of distinct message identifier values

or priorities: the number of entries in the buffer array.
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Once this has occurred, the automaton is forced to location Free where

it waits an arbitrarily long time for a nMsg synchronization, upon which

the assignments ip := iIn, vp := vIn store the incoming message. It is

necessary for nMsg to be an urgent chan because we do not want the CAN

channel automaton to have the option of sitting at location Free while a

sending process is offering synchronization – waiting to send.

The process of sending the message starts immediately after this. At

location Free, the queue of messages is empty; so a message acquired by the

channel from location Free is presumably the correct one to send. There is an

immediate transition (with a clock reset) to PreAcc, marking the beginning

of the pre-acceptance phase of the message, as defined by [79].

During this phase, at the location PreAcc, the self-loop allows more mes-

sages to enter the channel; these are stored in the priority queue Q[]. It is

permitted for a message with id (priority) i to enter a CAN channel over-

writing a message i already there but we do not expect this to destroy a

message once it is in process of being transmitted; and it does not as the

latter is saved in variables ip, vp.

The pre-acceptance phase of CAN transmission lasts a period of time

bounded by l and u, parameters of the CAN channel. The local clock h

times this.

After the pre-acceptance phase is the acceptance point, represented here

by an urgent location Acc.

This is followed by the post-acceptance phase, also timed by h and lasting a

time bounded by parameters L and U. Post-acceptance is where the message is

handed on to the receiving process(es). Note the use of a committed location

to ensure correct sequencing: first the shared variables iDlvr and vDlvr are

set, then synchronization on the broadcast chan is offered.

While in the post-acceptance phase, one or more additional messages be

enter the channel. This is modelled by the self-loop at location PostAcc.

The transition to PostChk ensures that if there is another message in any

of the buffers, Q[], it is sent right away. The channel only returns to the

“idle” state Free if all the buffers are Free.

The self-loop at committed location PostChk searches all the buffers for a
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message (Q[ip] != FREE). If such exists, the highest priority (lowest index)

one is sent: this is the transition to location M2S. Otherwise, if all the buffers

are FREE (which might happen on transition from PostAcc, after a full

circuit of the duty cycle), the automaton transits back to Free to wait for a

message to send.

It should be noted that a couple of assumptions have been made about

the behaviour of a CAN channel. First, it is possible for an arrival of a

message at priority p to be followed by the arrival of another message at the

same priority, before the first message has been accepted. In this case, the

second message overwrites the first. This appears to be permitted behaviour

of a CAN channel.

Second, and assumption of homogeneity is made: that the parameters u,

l, U, L have the same values at all nodes capable of sending on a particular

channel.

5.3.1 A Simple Example

This model of a CAN channel is simply illustrated by employing it in a simple

example of a flow regulator (cf. [79], p 89) described in bCANdle as a parallel

combination of process terms Flow | Valve where

- Flow is defined by the equation

Flow = [ReadSensor:85,90] ; k!flow.x;

idle [> [PERIOD:10000,10250] ;

Flow

– a process which periodically reads a sensor and transmits the reading onto

a network channel as a message of type flow, and

Valve = k?flow.y ; [AdjustValve:200,300] ;

Valve

– a process which repeatedly waits for a message of this type and on receiving

one, uses it to adjust a valve.
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The network part of this system consists of a single channel with bCAN-

dle description (flow:1, 45, 55, 10, 12) specifying a single message type

and values of l, u, L, U respectively. The data model part a variable x (”be-

longing” to the Flow process) and a variable y (the Valve process).

The two process specifications are equational presentations of the process

terms

rec X.([ReadSensor:85,90] ; k!flow.x;

(idle [> [PERIOD:10000,10250]) ; X)

and

rec Y.(k?flow.y ; [AdjustValve:200,300] ; Y)

An informal interpretation of this system is as a parallel composition of

one instance of the channel automaton, figure 5.1 with the automata shown

in figures 5.2 and 5.3.

StReadSensor {h <= 90 }

(h >= 10000) h = 0

ExpiryOfPeriod {h <= 10250} SensorRead

(h >= 85)

send! h = 0

iIn = 1; vIn = x

Figure 5.2: Automaton to model the Flow process

ExpectData AdjValve {h <= 300}

(h >= 200)

recv? i = iDlvr; y = vDlvr; h = 0

Figure 5.3: Automaton to model the Valve process
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The derivation of these automata from the corresponding bCANdle pro-

cess terms will be examined in more detail in the next section.

5.3.2 Example – UPPAAL Code

The following is the source code for an UPPAAL system modelling the ex-

ample of §5.3.1, including the CAN channel model. After some global dec-

larations, three process templates are defined, an instance of each is defined,

and a system defined comprising these three instances.

clock globalClock;

const QCAP 10, FREE -1;

int vIn := 0, iIn := 0; /* input message payload */

int vDlvr := 0, iDlvr;

broadcast chan dlvrMsg;

urgent chan newMsg;

process Channel(const l; const u; const L; const U;

urgent chan nMsg; broadcast chan dMsg) {

clock h;

int ip, vp;

int Q[QCAP+1];

state Free, PreAcc{h <= u}, Acc, PostAcc{h <= U},

PostChk, M2S, Init, S1;

commit PostChk, M2S, S1;

urgent Acc;

init Init;

trans

Init -> Init {

guard ip <= QCAP;

assign Q[ip] := FREE, ip++;

},

Init -> Free {

guard ip == QCAP+1;

assign h := 0;

},
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Free -> M2S {

sync nMsg?;

assign ip := iIn, vp:= vIn;

},

M2S -> PreAcc {

assign h := 0;

},

PreAcc -> PreAcc {

sync nMsg?;

assign Q[iIn] := vIn;

},

PreAcc -> Acc {

guard h >= l;

assign h := 0;

},

Acc -> S1 {

assign iDlvr := ip, vDlvr := vp;

},

S1 -> PostAcc {

sync dMsg!;

},

PostAcc -> PostAcc {

sync nMsg?;

assign Q[iIn] := vIn;

},

PostAcc -> PostChk {

guard h >= L;

assign ip := 0;

},

PostChk -> Free {

guard ip == QCAP;

},

PostChk -> PostChk {

guard ip < QCAP && Q[ip] == FREE;

assign ip++;

},

PostChk -> M2S {

guard ip < QCAP && Q[ip] != FREE;

assign vp := Q[ip], Q[ip] := FREE;

};

}
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process Flow(urgent chan c) {

clock h, k;

state ReadSensor{h <= 90}, StReadSensor{h <= 10250}, SensorRead;

init StReadSensor;

trans

StReadSensor -> ReadSensor {

guard h >= 10000;

assign h := 0, k := 0, iIn := 1;

},

ReadSensor -> ReadSensor {

guard k >= 5;

assign vIn++, k := 0;

},

ReadSensor -> SensorRead {

guard h >= 85;

},

SensorRead -> StReadSensor {

sync c!;

assign h := 0;

};

}

process Valve(broadcast chan c) {

clock m;

int i, y;

state expectMsg, AdjustValve{m <=300};

init expectMsg;

trans

expectMsg -> AdjustValve {

sync c?; assign m := 0, i := iDlvr, y := vDlvr;

},

AdjustValve -> expectMsg {

guard m >= 200;

};

}

theChannel := Channel(45, 55, 10, 15, newMsg, dlvrMsg);
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flow := Flow(newMsg);

valve := Valve(dlvrMsg);

system flow, theChannel, valve;

5.3.3 A Broadcast Example

dataToSndIdle {h <= p}

(h >= p) vIn++
h = 0; vIn = 0

iIn = (iIn+1)%QCAP; h = 0
c! iIn = 0; h = 0

Figure 5.4: An abstract producer process

gotData {h <= 120}

(h >= 60)

ExpectData

h = 0; vIn = 0
c? i = iDlvr; v = vDlvr; h = 0

Figure 5.5: An abstract consumer process

The CAN channel model presented here exhibits broadcast semantics if

broadcast channels, as devised in the UPPAAL modelling tool (see §5.2.2),

are incorporated in the compositional scheme. To illustrate this, consider

an UPPAAL system comprising the CAN channel model accepting messages

from the abstract producer process illustrated by figure 5.4 and several in-

stances of the abstract consumer process illustrated in figure 5.5. Again,

channel c of the producer is bound to a globally defined urgent channel

newMsg and the channel c of the consumer(s) to a globally defined broadcast

channel dlvrMsg, to which the channel parameters of the CAN model are

also bound.

If one experiments with varying numbers of instances of the consumer,

it is found that indeed the CAN channel model’s behaviour is to broadcast :

dlvrMsg! is capable of synchronizing with 0, 1 or several dlvrMsg? edges.
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5.4 A Compositional Model of bCANdle

The task now is to define a formal translation of bCANdle into a system of

parallel timed automata whose semantics are strongly equivalent to those of

the original bCANdle system. The approach is a modification of Kendall’s

clocked bCANdle system construction ([79], chapter 4).

The basic idea is to build, for each process in a bCANdle system, a

timed automaton whose timed transition system will mirror behaviour of the

process within the bCANdle system. The locations of the automaton are

pairs consisting of a process term and an associated data environment. The

process term is to be thought of intuitively as a “to do” list: a transition of

the automaton from, say (P,D) to (P ′, D′) is possible when P ′ is “what is

to do” after an action has occurred starting from P and the data model has

in consequence evolved from D to D′. This is a common way to interpret

process algebra and is implicit in the operational semantics of section 4.3.

However, here we are defining not a timed transition system but an au-

tomaton whose timed semantics will mirror the bCANdle timed semantics.

To bring this about, in the process terms, atomic operations [ω : t1, t2]

are augmented with a clock h each: [ω : t1, t2]
h and a transition ([ω :

t1, t2]
h;Q,D) −→ (Q,D′) is guarded by the condition h ≥ t1 while loca-

tion ([ω : t1, t2]
h;Q,D) must satisfy the invariant h ≤ t2.

The formal definitions follow. First, fix a set of data values and variables,

a set Γ of predicate symbols over the variables, and a set Ω of operation

symbols over the variables, over which a data environment may be defined

as in section 4.1. Suppose given a bCANdle system (P,N,D) in which the

process term P = P1|...|Pn where the Pi are bCANdle process terms not

containing the parallel composition symbol. It is also assumed that time

constraints on atomic operations (e.g. [ω : t1, t2], ω ∈ Ω) are natural number-

valued, compound terms have static control and clocks are allocated safely

in the sense explained in §5.4.1 below.

By static control, we mean that no process term has a subterm of the form

recX.P ′ in which P ′ has a subterm of the form Q;R or Q[> R and the process

variable X occurs free in Q. This, as [79] explains, ensures that recX.P ′ does
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give rise to unbounded recursion, and that the timed automaton shortly to

be described has a finite number of states.

We further assume that the sets of variables occurring in the Pi are disjoint

and that hence D = D1 ∪ ... ∪ Dn where Di is the restriction of D to the

variables in Pi. Here the restriction of a data model is the data model made

by restricting the four functions making it up, and the union of two data

models with disjoint variables sets is the pairwise set-theoretic union of the

four constituent functions as sets.

5.4.1 Clocked Process Terms

This is defined as in ([79], §4.2), but is restricted to process terms not em-

ploying parallel composition |. A clocked process term is defined recursively

as follows:

• A bCANdle send or receive process term, k!i.x or k?i.x is a clocked

process term;

• Where [ω : t1, t2] is a basic process term representing an operation, and

t1, t2 are natural numbers or∞, and h a new clock variable, [ω : t1, t2]
h

is a clocked process term.

• Where γ is a predicate symbol, X a process variable and Q̂, Q̂′ clocked

process terms, so are X, γ → Q̂, recX.Q̂, Q̂; Q̂′, Q̂+ Q̂′,

Q̂[> Q̂′.

The set HQ̂ of initial clock variables of the clocked process term Q̂ is

defined recursively by:

• If Q̂ is a send or receive term, then HQ̂ = ∅;

• If Q̂ is [ω : t1, t2]
h, then HQ̂ = {h};

• Hγ→Q̂ = ∅;

• HQ̂;Q̂′ = HQ̂;

• HQ̂+Q̂′ = HQ̂[>Q̂′ = HQ̂ ∪HQ̂′ .
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A clocked process term is safely clocked, the allocation of clocks to the

term is safe, if in every subterm of the form Q̂[> R̂, R̂ is guarded (every

process variable is guarded in the sense of §4.3.9) and the initial clock vari-

ables of R̂ do not appear among the clock variables of Q̂. This will ensure

that in the timed automaton construction described below, reset of the clocks

allocated to the different subterms of a process term do not interfere with

one another. Kendall discusses a similar situation in [79], chapter 4, further

requiring that in a subterm of the form Q̂|R̂, the clock variables of Q̂ and R̂

are disjoint; we do not require this as we do not include parallel composition

in our syntax.

5.4.2 An Automaton Construction

Let P̂0 be a clocked process term and D0 a data model supporting all the data

variables and operations of P̂0. The timed automaton A(P̂0, D0) is defined

as follows:

• The locations are pairs consisting of a clocked process term and a data

model supporting all the data variables and operations of the process

term. Corresponding to the ideal process term
√

introduced in § 4.3

there are locations (
√
, D) where D is a data model. The initial loca-

tion is (P̂0, D0). Once the transition relation is defined we restrict to

the locations reachable from (P̂0, D0). Let Π denote the set of these

locations.

• The action alphabet is the set Ap defined in section 4.3. Recall that

this consists of predicate symbols γ ∈ Γ for which the corresponding

action is evaluation of a guard γ; operation symbols ω ∈ Ω; and CAN

send and receive actions k!i.v, k?i.v where i is a message identifier, v a

variable, k a CAN channel.

• The transition relation is the least E ⊆ Π× ZH × Ap × 2H × Π closed

under the rules set out in § 5.4.2.2 below. H is the set of clock variables
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occuring in Π and ZH the set of clock zones, defined in the usual way 1,

and ((Q̂,D), ζ, λ,H, (Q̂′, D′)) ∈ E is as usual written

(Q̂,D)
ζ,λ,H−→ (Q̂′, D′)

• H includes a special clock variable hu reset on every transition edge and

which forces an urgent action by the conjunction of hu ≤ 0 with the

invariant at the target location. The invariant function I : Π→ ZH is

defined in § 5.4.2.1 below.

5.4.2.1 The Invariant Function

On the ideal locations, I(
√
, D) = (hu ≤ 0) (cf. [79] pp. 197-8).

I is defined on atomic clocked process terms thus. (hu is the urgent clock,

1 the “top” element of the boolean algebra 2.)

I(k!i.x,D) = (hu ≤ 0)

I(k?i.x,D) = 1

I([ω : t1, t2]
h, D) = (h ≤ t2)

...and recursively on compound terms thus.

I(γ → Q̂,D) =

{
(hu ≤ 0) if D |= γ

1 otherwise

I(Q̂; Q̂′, D) = I(Q̂,D)

I(Q̂+ Q̂′, D) = I(Q̂,D) ∧ I(Q̂′, D)

I(Q̂[> Q̂′, D) = I(Q̂,D) ∧ I(Q̂′, D)

I(recX.Q̂,D) = I(Q̂[recX.Q̂/X], D)

5.4.2.2 The Transition Relation

E is the smallest relation closed under the following rules.

1as logical conjunctions of inequalities between a clock variable or difference of two
clock variables and a constant
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(k!i.x,D)
1,k!i.v,{hu}−→ (

√
, D)

(C Snd)

(k?i.x,D)
1,k?i.v,{hu}−→ (

√
, D[x := v])

(C Rcv)

D
ω−→d D

′

([ω : t1, t2]h, D)
(h≥t1),ω,{hu}−→ (

√
, D′)

(C Cmp)

D |= γ

(γ → Q,D)
1,γ,{hu}∪HQ−→ (Q,D)

(C Gd)

where HQ̂ denotes the set of initial clock variables as defined in §5.4.1.

(Q̂,D)
ζ,λ,H−→ (Q̂′, D′) ∧ ¬Q̂′ ≡

√

(Q̂; R̂,D)
ζ,λ,H−→ (Q̂′; R̂,D′)

(C Seq 1)

(Q̂,D)
ζ,λ,H−→ (

√
, D′)

(Q̂; R̂,D)
ζ,λ,H∪HR̂−→ (R̂,D′)

(C Seq 2)

where HR̂ denotes the set of initial clock variables as in §5.4.1.

(Q̂,D)
ζ,λ,H−→ (Q̂′, D′)

(Q̂+ R̂,D)
ζ,λ,H−→ (Q̂′, D′)

(C Ch 1)

(R̂,D)
ζ,λ,H−→ (R̂′, D′)

(Q̂+ R̂,D)
ζ,λ,H−→ (R̂′, D′)

(C Ch 2)

(Q̂[recX.Q̂/X], D)
ζ,λ,H−→ (Q̂′, D′)

(recX.Q̂,D)
ζ,λ,H−→ (Q̂′, D′)

(C Rec)

(Q̂,D)
ζ,λ,H−→ (Q̂′, D′) ∧ ¬Q̂′ ≡

√

(Q̂[> R̂,D)
ζ,λ,H−→ (Q̂′[> R̂,D′)

(C Int 1)

(Q̂,D)
ζ,λ,H−→ (

√
, D′)

(Q̂[> R̂,D)
ζ,λ,H−→ (

√
, D′)

(C Int 2)
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(R̂,D)
ζ,λ,H−→ (R̂′, D′)

(Q̂[> R̂,D)
ζ,λ,H−→ (R̂′, D′)

(C Int 3)

As an example of the application of these rules, here is a sketch of a deriva-

tion of the timed automata (figures 5.2, 5.3) of the flow regulator system of

§ 5.3.1.

Consider the Flow process term: rec X.([ReadSensor:85,90];

k!flow.x; (idle [> [PERIOD:10000,10250]); X).

Corresponding to the subterm [ReadSensor:85,90] is an automaton lo-

cation ([ReadSensor:85,90]h, D) where h is an additional clock and D a

data environment which supports the numerical variable x. According to

§ 5.4.2.1, this location has invariant (h ≤ 90) and by § 5.4.2.2 rule (C Cmp)

there is a transition ([ReadSensor:85,90]h, D)→ (
√
, Dω) where Dω is the

state of D after performance of the data operation ω. This transition has

guard (h ≥ 85) and action label ω.

It follows by rule (C Seq 2) that there is a transition

([ReadSensor:85,90];k!flow.x;(idle [> [PERIOD:10000,10250]);X, D)
h>=85,ω,{h}−→ (k!flow.x;(idle [> [PERIOD:10000,10250]);X, Dω)

(5.1)

Similarly, a transition by rule (C Snd), (k!flow.x, Dω)
k!flow.v−→ (

√
, Dω)

(where v is the value of x in Dω) gives, via rule (C Seq 2) transition

(k!flow.x;(idle [> [PERIOD:10000,10250]);X, Dω)
k!flow.v−→ ((idle [> [PERIOD:10000,10250]);X, Dω) (5.2)

The last location has invariant (h <= 10250).

From ([PERIOD:10000,10250], Dω)
(h>=10000−→ (

√
, Dω) one obtains, using

rules (C Int 3) and (C Seq 2) a transition

((idle [> [PERIOD:10000,10250]);X, Dω) h>=10000−→ (X, Dω) (5.3)

Now, let Q̂ denote the clocked process term at the source of transition 5.1.
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Substituting recX.Q̂ for the free process variable X in 5.1-5.3,

([ReadSensor:85,90];k!flow.x;(idle [> [PERIOD:10000,10250]); recX.Q̂,D)
h>=85,ω,{h}−→ (k!flow.x;(idle [> [PERIOD:10000,10250]); recX.Q̂,Dω)

k!flow.v−→ ((idle [> [PERIOD:10000,10250]); recX.Q̂,Dω)
h>=10000−→ (recX.Q̂,Dω)

(5.4)

The first clocked process term in this sequence is simply Q̂[recX.Q̂/X]; so,

by rules (C Rec) and (C Seq 1) we can infer,

(recX.Q̂,D)
h>=85,ω,{h}−→ (k!flow.x;(idle [> [PERIOD:10000,10250]); recX.Q̂,Dω)

k!flow.v−→ ((idle [> [PERIOD:10000,10250]); recX.Q̂,Dω) h>=10000−→ (recX.Q̂,Dω)

This is the loop comprising figure 5.2 (note that with UPPAAL automata,

the data environment D is subsumed into the locations). The locations are

given less unwieldy names in the figure, and the action k!flow.v updates

variables shared with the channel automaton before synchronising with it.

We shall see in the next chapter a refined channel model in which this is

accomplished by a single synchronised action.

The automaton of figure 5.3 is derived in a similar way, starting from pro-

cess term recY.(k?flow.y; [AdjustValve:200,300]; Y)≡ recY.R̂. Rules

(C Rcv) and (C Cmp) can be used in conjunction with (C Seq 2) to obtain

transitions of the form

(k?flow.y;[AdjustValve:200,300]);Y, D)

k?flow.v,{h,hu}−→ ([AdjustValve:200,300]);Y, D[y := v])

h>=200,Adj−→ (Y, D[y := v])

Recognising that the first clocked process term in the sequence is R̂, one
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substitutes recY.R̂ for Y and obtains, using rule (C Rec),

(recY.R̂,D)

k?flow.v,{h,hu}−→ ([AdjustValve:200,300]); recY.R̂,D[y := v])

h>=200,Adj−→ (recY.R̂,D[y := v])

It will be shown that, under a few simple assumptions, a general bCANdle

system (P,N,D) in which P = P1|...|Pn and the process terms Pi are con-

structed without |, is strongly equivalent to the timed transition system of a

parallel product (see §2.2.3) of automata including the A(P̂i, Di) constructed

as in subsection 5.4.2.

5.4.3 Strong Bisimulation and Strong Equivalence in

bCANdle

Given an equivalence relation ≈ between states, a strong ≈-bisimulation (up

to ') is a relation R between states which is a bisimulation (up to ') as

above, and also R ⊆≈ – i.e. (σ1, σ2) ∈ R ⇒ σ1 ≈ σ2. This notion of strong

equivalence may be applied to the timed transition systems of bCANdle

and of timed automata. In this case, ≈ is what in [79] is termed context

equivalence: between two bCANdle systems, the network and data model

states equate: (P,N,D) ≈ (P ′, N ′, D′) iff N = N ′, D = D′.

Two bCANdle systems are strongly equivalent,

(P1, N1, D1) ' (P2, N2, D2)

iff there is a ≈-bisimulation between them. From this Kendall develops a

notion of strong equivalence of closed, guarded process terms. Closed terms

are those in which every process variable is bound by the rec “quantifier” and

guarded process terms are those in which every process variable is guarded

in the sense of §4.3.9. Kendall’s process term equivalence P1 ' P2 holds

iff (P1, N,D) ' (P2, N,D) for all admissible (in a sense he makes precise)

network and data models. This is a notion of semantic equivalence of process
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terms: it is a congruence with respect to all the process term operators, and

` P1 = P2 implies P1 ' P2. This is the soundness of the equational laws

referred to at the end of §4.3.9.

As Kendall remarks, semantic equivalence extends in a natural way to

clocked process terms: P̂1 ' P̂2 iff timed systems initiating from P̂1, P̂2 are

strongly ≈-bisimilar. In the timed-automaton formalism presented in this

chapter, this means that whenever an automaton A(P̂1, D) is composed with

a suitable (set of) network channel automata, the timed transition system of

the product is ≈-bisimilar to the timed transition system of the product of

A(P̂2, D) with the same network. The equational laws are sound in the sense

that any equation P̂1 = P̂2 derived from them implies P̂1 ' P̂2.

5.5 bCANdle as a Parallel Product

5.5.1 Theorem

Suppose a bCANdle system (P,N,D) in which P = P1|...|Pn and the pro-

cess terms Pi are constructed without |. Suppose further that the variables

occurring in Pi are disjoint from the variables occurring in Pj when i 6= j.

Let Di denote the data environment which results from restricting D to the

variables occurring in Pi, and P̂i the clocked process term resulting from Pi

according to § 5.4.1. Suppose the time constraints on atomic operations are

natural-number-valued and that clocks are allocated safely and with static

control as explained at the beginning of § 5.4.

Let Nk, k ∈ K denote the timed automata representing the CAN channels

as described in § 5.3.

Then the timed transition system of the product ‖ni=1 A(P̂i, Di) ‖ (‖k∈K
Nk) is strongly equivalent to that of (P,N,D).

5.5.2 Construction and Proof

The proof of this theorem is achieved by constructing a strong ≈-bisimulation

where ≈ is context equivalence suitably extended to include timed states of
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of product automaton. The construction is described here, and the bulk of

the details of the proof appear in appendix B.

Suppose N consists of CAN channels Nk, k ∈ K. A channel Nk will be

in one of the states (↓, u)h, (
t1,t2
; m,u)h, (↑ m;u)h, (m

t1,t2
; , u)h explained in

§ 4.2. These map into the locations Free, PreAcc, Acc, PostAcc of the timed-

automaton model of the CAN channel displayed in § 5.3. Let Ck(k ∈ K)

denote an instance of this automaton, corresponding to Nk.

The product automation proposed to represent the bCANdle system is

(‖ni=1 A(P̂i, Di)) ‖ (‖k∈K Ck).

The main task is to construct a bisimulation relating (P,N,D) to the

timed transition system of this product. This will be done by adapting a

construction of Kendall’s ([79], appendix B).

A general state of the timed transition system of the product automaton

has the form

((Q̂i, DQi)i=1...m, (ηk)k∈K , v)

where m ≤ n and v is a valuation of clocks. The remaining parts comprise a

vector of A(Pi, Di) locations and channel automaton locations.

The bisimulation is constructed via a mapping of such states to bCANdle

systems, using an adaptation of the age function of [79]. This function is

defined on clocked process terms as in [79], definition B2, but without the

|-clause. Its definition is as below.

unclk(Q̂) is the process term obtained by removing the clock references

from the clocked process term Q̂: unclk(k!i.x) , k!i.x; unclk(k?i.x) ,

k?i.x; unclk([ω, t1, t2]
h) , [ω, t1, t2]; unclk(γ → Q̂1) , γ → unclk(Q̂1);

unclk(Q̂1; Q̂2) , unclk(Q̂1); unclk(Q̂2) and similarly for unclk(Q̂1 + Q̂2),

unclk(Q̂1[> Q̂2); unclk(recX.Q̂1) , recX.unclk(Q̂1); unclk(X) , X.
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t
.
− t′ is the greater of t− t′, 0.

age(k!i.x, v) , k!i.x

age(k?i.x, v) , k?i.x

age([ω, t1, t2]
h, v) , [ω, t′1, t

′
2] where t′i = ti

.
− v(h)

age(γ → Q̂, v) , unclk(Q̂)

age(Q̂; Q̂′, v) , age(Q̂, v); unclk(Q̂′)

age(Q̂+ Q̂′, v) , age(Q̂, v) + age(Q̂′, v)

age(Q̂[> Q̂′, v) , age(Q̂, v)[> age(Q̂′, v)

age(recX.Q̂, v) , age(Q̂[recX.Q̂/X], v)

Similarly, a function age maps a timed state of a channel automaton to

a bCANdle network channel state thus.

age(Free, v) , (↓, u)

age(PreAcc, v) , (
t1,t2
; m,u) where t1 = l

.
− v(h), t2 = u

.
− v(h)

age(Acc, v) , (↑ m,u)

age(PostAcc, v) , (m
t1,t2
; , u) where t1 = L

.
− v(h), t2 = U

.
− v(h)

Free, PreAcc, Acc, PostAcc are the locations of a channel automaton in

which m is the current message and u the current state of the message queue

for the channel, h a clock in the channel automaton reset when it goes to

PreAcc or PostAcc. The notation on the right hand side is that of section

4.2 for a bCANdle network channel.

A general state of the timed transition system of the product automaton,

maps to a bCANdle system:

((Q̂i, DQi)i=1...n, (ηk)k∈K , v) 7−→ (|ni=1age(Q̂i, v), (age(ηk, v))k∈K ,tni=1DQi)

(5.5)

– the data environment component DQ1 t ... tDQn is formed in the natural

way from the data environments DQi over disjoint sets of variables.

To complete the proof it suffices to show that the graph B of this mapping
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is a strong ≈-bisimulation up strong equivalence (') between the two timed

transition systems, the transition graph of the product automaton, and the

transition graph of of the bCANdle system, where ≈ is a relation of context-

equivalence suitably generalised to states of either timed transition systems.

Let σ1, σ2 denote two states of either timed transition system; say σ1 ≈ σ2

(σ1 is context equivalent to σ2) iff σ1, σ2 fit one of the following clauses:

• Two bCANdle systems: (Q,N,D) ≈ (Q′, N ′, D′) iff N = N ′, D = D′

• A bCANdle system and an automaton state:

((Q̂i, DQi)i=1...m, (ηk)k∈K , v) ≈ (Q,N,D) iff

(Q,N,D) ≈ ((Q̂i, DQi)i=1...m, (ηk)k∈K , v) iff

(∀k ∈ K)Nk = age(ηk, v) and D = DQ1 t ... tDQm

• Two automaton states:

((Q̂i, DQi)i=1...m, (ηk)k∈K , v) ≈ ((Q̂′i, D
′
Qi)i=1...m′ , (η

′
k)k∈K , v

′) iff

(∀k ∈ K)age(ηk, v) = age(η′k, v
′) and DQ1t...tDQm = D′Q1t...tD′Qm′

To see that the mapping (5.5) provides a strong ≈-bisimulation up to

strong equivalence (') one needs to check, for ((Q̂i, DQi)i=1...m, (ηk)k∈K , v)

as a general timed state of the automaton, and

(|ni=1age(Q̂i, v), (age(ηk, v))k∈K ,tni=1DQi) as the bCANdle system to which it

maps,

1. ((Q̂i, DQi)i=1...m, (ηk)k∈K , v) ≈ (|ni=1age(Q̂i, v), (age(ηk, v))k∈K ,tni=1DQi);

2. For every transition λ from (|ni=1age(Q̂i, v), (age(ηk, v))k∈K ,tni=1DQi)

in the bCANdle timed transition system there is a transition with the

same label λ from ((Q̂i, DQi)i=1...m, (ηk)k∈K , v), and the targets are con-

text equivalent to states related by the mapping;

3. For every transition λ from ((Q̂i, DQi)i=1...m, (ηk)k∈K , v) there is a tran-

sition with the same label λ from (|ni=1age(Q̂i, v), (age(ηk, v))k∈K , tni=1DQi),

and the targets are context equivalent to states related by the mapping.

The first of these requirements is met by definition of context equivalence.
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The second is established by considering a number of cases and using

induction on the computation of |ni=1age(Q̂i, v). Details appear in appendix

B.

The third is established in a way symmetrical with the second, again by

induction on the computation of |ni=1age(Q̂i, v). Details are in appendix B.

5.6 Conclusion

In this chapter we have established a formal construction which derives from

a bCANdle model of a broadcasting embedded system a semantically equiv-

alent parallel composite of timed automata. This will be useful in the sequel

because it will allow one to reason compositionally about bCANdle mod-

els. The components of a model can be examined individually, replaced

with abstractions and reasoned about; then, using suitable compositionality

theorems developed in chapter 7, properties of the model can be inferred

from properties of a model in which come components have been abstracted.

This, as we shall see, is a useful thing to be able to do in situations where

the model’s state space is “blowing up”, becoming unmanagably large.



Chapter 6

Composition without Shared

Variables

Chapter 5 showed how a CAN-based distributed (broadcasting) embedded

system could be modelled by a parallel composition of timed automata, and

showed it strongly equivalent to a bCANdle system. This approach depends

on the construction of a CAN channel as a process or timed automaton and

indeed such a construction arose in a natural way from the definition of the

behaviour of a CAN channel. The aim is to use this compositional method

of modelling in order to verify properties of CAN systems by inference from

properties of components, or of system models in which components have

been abstracted in some way. The compositionality theorems presented in

chapter 7 provide a theoretical basis for doing this, using a form of assume-

guarantee reasoning; but this requires the composition of timed automata to

have no shared variables. The naturally arising CAN automaton described

above uses shared variables. A formally equivalent structure exists which

looks much less natural and elegant, but does the job without shared vari-

ables. The present chapter presents such a structure and shows it to be

equivalent to the formalism already developed.

115
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6.1 Another CAN Channel Automaton

An alternative formulation of a timed automaton for a CAN channel is in-

troduced and will be shown to be strongly equivalent to that of chapter 5.

This automaton is based closely on that of §5.3: indeed, it is like its

prototype, an UPPAAL process template, and has the same locations and

the same cyclic behaviour.

The major difference is motivated by the need to do without shared vari-

ables. The original model (§5.3) shared with its environment

• Variables iIn, vIn of the types of the i-values and the v-values respec-

tively. These hold the type and the value of a CAN message i.v being

put onto the network.

• Variables iDlvr, vDlvr of the types of the i-values and the v-values

respectively. These hold the type and the value of a CAN message i.v

being delivered from the network to a receiving process.

• The channel automaton receives a synchronisation on an UPPAAL “ur-

gent channel” nMsg? when a process wishes to send a message: it reacts

by copying the message payload in vIn into Q[iIn].

• When a message in the channel is ready to be handed off to the receiving

process, its type and payload are copied to iDlvr and vDlvr and a

broadcast synchronisation issued on an UPPAAL ‘broadcast channel”

dMsg!.

Figure 6.1 shows the new channel automaton in an abbreviated form.

The logical flow is for the most part the same as that of the original §5.3

channel: compare this diagram with figure 5.1 on page 93. (Note: the legend

(c) denotes a committed location in the UPPAAL sense.)

The array Q is carried over from the old model. This is indexed by mes-

sage identifiers, the possible values of component i of a CAN message. The

type of these is a subrange 0 .. (m − 1) where m is the number of message

types supported by the channel; and the type of the array entries is that of

the message payload, the component v of a CAN message. For the purposes
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nMsg[µ,ν]?

vp=
h=0

ip=µ
ν

nMsg[µ,ν]?

M2S[µ,ν] (c)

PreAcc [µ,ν] (c)

(ip == µ && vp == ν)

Acc[µ,ν] (c)

nMsg[µ,ν]?
PostAcc[µ,ν] (c)

(Q[µ −1]==−1)

PostChk[µ ](c)

(Q[µ ]==−1)

(Q[µ ]== ν)

Q[ µ ]=−1

Q[ µ ] = ν

Q[ µ ] = ν

PreAcc{h<=u}

Acc(u)

Init(c)

PostAcc{h <= U}

PostChk[0](c)

Free PostChk[m−1](c)

h = 0 (Q[m−1]==−1)

(Q[0]==−1)

(h >= L)

(h >= l)

h = 0

dMsg

(Q[m−2]==−1)

(ip == m)

[µ,ν]!

Q[ip] = −1; ip++; h = 0

(ip < m)

Figure 6.1: Automaton to model a CAN Channel without shared variables

of the present work, this is also a subrange of integers from 0 to some max-

imum supported v value. Q[i] may also hold the value FREE (actually, −1)

indicating that this message type is currently vacant.

The important differences in the new model are as follows. Suppose there

are m different message types and n different values (that is, a message type

is an integer in the range 0 .. (m − 1) and a message value is an integer in

the range 0 .. (n− 1)).

• In place of iIn, vIn and the single urgent channel nMsg are m × n

urgent channels nMsg[µ, ν], 0 ≤ µ < m, 0 ≤ ν < n.
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• In place of the committed location M2S is the family of committed loca-

tions M2S[µ, ν], 0 ≤ µ < m, 0 ≤ ν < n, with urgent synchronising edges

decorated nMsg[µ, ν]? fanning out from location Free to M2S[µ, ν]. In

figure 6.1 the thick arrows denote such bundles of edges. These edges

play a role analogous to the synchronising edge

Free
nMsg?,Q[iIn]:=vIn,...−→ M2S

in figure 5.1 (p93).

• There are also families of committed locations PreAcc[µ, ν], Acc[µ, ν],

PostAcc[µ, ν], 0 ≤ µ < m, 0 ≤ ν < n in addition to locations PreAcc,

Acc (urgent), PostAcc. The thick arrows in the figure between these

locations denote bundles of edges fanning-in or fanning-out.

• Note, in particular, the arrows Acc[µ, ν]
dMsg[µ,ν]!−→ PostAcc fanning in.

These are analogous to the edges in figure 5.1 (p93),

Acc
iDlvr := ip,vDlvr := vp−→ S1

dMsg!−→ PostAcc

• Similarly, the edges labelled nMsg[µ, ν]? from PreAcc to PreAcc[µ, ν]

and from PostAcc to PostAcc[µ, ν], followed by edges back again guarded

by the condition (Q[µ] == ν), are analogous to the self-loops on PreAcc

and PostAcc in figure 5.1.

• The array Q[] is still present in the new model but is a local variable.

The shared variables iIn, vIn, iDlvr, vDlvr have been replaced by the

multiple synchronisations nMsg[µ, ν], dMsg[µ, ν].

• Note the edges from PostAcc to PostChk[0] to ... to PostChk[µ] ... to

PostChk[m−1] to Free with bundles of edges, an edge from PostChk[µ]

to M2S[µ, ν] guarded by (Q[µ] == ν) and with update Q[µ] = −1.

These provide for messages being removed from the queue in priority

order (µ == 0 first) and sent.
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The corresponding part of the old model (fig 5.1, p93) is the guarded

self-loop at location M2S together with the guarded edges from here to

locations Free and PreAcc, using local variables ip, vp. In the new

model, the multiple paths indexed by µ and ν values replace these local

variables.

It should be borne in mind throughout this account that the µ, ν are

metavariables – every occurrence of them in the foregoing in reality occurs

as specific values occurring in the context of an indexed set of UPPAAL

tokens – locations, synchronisation channels and so forth.

The following pseudo code is an UPPAAL xta listing of the new channel:

compare this with the listing in §5.3.2. The metavariables µ, ν in the account

above appear here as µ, ν also; lines containing these metavariables and dec-

orated with inequalities on them, such as [0 ≤ µ < m] and/or [0 ≤ ν < n]

are to be understood as being repeated over all (integer) values of µ, ν sat-

isfying the inequalities. Symbols rendered in figure 6.1 and the commentary

on it, as for instance M2S_[µ, ν], are written below as M2S_µ_ν and so forth,

and expanded into “proper” UPPAAL xta as M2S_000_000, M2S_000_001,

..., M2S_001_000, ... and so on.

process Channel(const int l, const int u, const int L, const int U,

urgent chan nMsg_µ_ν[0 ≤ µ < m, 0 ≤ ν < n],
broadcast chan dMsg_µ_ν[0 ≤ µ < m, 0 ≤ ν < n]) {

clock h;

int[0,m] ip;

int[0,n− 1] vp;

int[-1,n− 1] Q[m];

state

Init, Free,

M2S_µ_ν[0 ≤ µ < m, 0 ≤ ν < n], PreAcc_µ_ν[0 ≤ µ < m, 0 ≤ ν < n],
Acc_µ_ν[0 ≤ µ < m, 0 ≤ ν < n], PostAcc_µ_ν[0 ≤ µ < m, 0 ≤ ν < n],
PreAcc{h<=u}, Acc, PostAcc{h<=U},

PostChk_µ[0 ≤ µ < m];
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commit

Init,

M2S_µ_ν[0 ≤ µ < m, 0 ≤ ν < n], PreAcc_µ_ν[0 ≤ µ < m, 0 ≤ ν < n],
Acc_µ_ν[0 ≤ µ < m, 0 ≤ ν < n],
PostAcc_µ_ν[0 ≤ µ < m, 0 ≤ ν < n],
PostChk_µ[0 ≤ µ < m];

urgent

Acc;

init

Init;

trans

Init -> Init {

guard ip < µ;
assign Q[ip] = -1, ip++, h = 0;

},

Init -> Free { guard ip == µ; assign h = 0; },

Free -> M2S_µ_ν { sync nMsg_µ_ν?; }[0 ≤ µ < m, 0 ≤ ν < n],
M2S_µ_ν -> PreAcc { assign ip=µ, vp=ν, h = 0; }

[0 ≤ µ < m, 0 ≤ ν < n],
PreAcc -> PreAcc_µ_ν { sync nMsg_µ_ν?; }[0 ≤ µ < m, 0 ≤ ν < n],
PreAcc_µ_ν -> PreAcc { assign Q[µ] = ν;}[0 ≤ µ < m, 0 ≤ ν < n],
PreAcc -> Acc { guard h >= l; assign h = 0; },

Acc -> Acc_µ_ν { guard ip == µ && vp == ν; }

[0 ≤ µ < m, 0 ≤ ν < n],
Acc_µ_ν -> PostAcc {sync dMsg_µ_ν!; }[0 ≤ µ < m, 0 ≤ ν < n],
PostAcc -> PostAcc_µ_ν {sync nMsg_µ_ν?;}[0 ≤ µ < m, 0 ≤ ν < n],
PostAcc_µ_ν -> PostAcc {assign Q[µ]=ν;}[0 ≤ µ < m, 0 ≤ ν < n],

PostAcc -> PostChk_0 { guard h >= L; },

PostChk_(µ− 1)->PostChk_µ {guard Q[(µ− 1)] == -1;}[1 ≤ µ < m],
PostChk_(m− 1)->Free {guard Q[(m− 1)] == -1;},

PostChk_µ -> M2S_µ_ν {guard Q[µ] == ν; assign Q[µ] = -1;}

[0 ≤ µ < m, 0 ≤ ν < n];

This pseudo-UPPAAL code is expanded, for a particular choice of value

for the parameters m and n, the number of message types and or message

payload values supported, by a software tool CANGen devised by the author.

The CANGen output for m = 3, n = 4 corresponding to the pseudocode above
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appears as appendix C.

It will be evident that the no-shared-variables model of the CAN chan-

nel has a large number – m × n – of locations and synchronisation chan-

nels. In effect these have been taken on in lieu of the shared variables

(iIn, vIn, iDlvr, iDlvr) of the old model, whose values occupied a similarly

sized portion of the state space. Technically, this change is not expensive in

terms of the state space the model-checker must search, although admittedly

it is conceptually unwieldy. It will transpire, however, that even with the

large number of locations and synchronisations, the compositional approach

afforded by this model does afford considerable speed-up and economy in

model-checking.

As to the unwieldiness of the large number of locations and synchroni-

sations: in the sequel and in practice we spend very little time looking at

the “full” automaton, the CANGen output. the pseudocode is easier to read

and also to diagram. As will be seen in chapter 8 one can concisely draw

automaton diagrams corresponding to the pseudocode, in which a single edge

or location may represent a “bundle” of edges or locations indexed by µ, ν

(which also figure in guards, synchronisations, updates decorating the edges).

It is thus possible to retain a simple view of the model in spite of the poten-

tially large number of locations and edges.

Practical limits to the size of m × n will be discussed in chapter 8. Of

course, in practice it may well be possible simplify a model checking problem

by working with an abstraction in which these parameters are of modest size.

6.2 The Equivalence of the Two CAN Models

The new model was developed with reference to the old one, and intended to

have exactly the same semantics, so that the equivalence with bCANdle is

preserved. To demonstrate this equivalence formally a bisimulation will be

developed between the following two systems -

1. An UPPAAL system combining an old-style CAN channel model with

a sending process which repeatedly sends messages of some type µ (0 ≤
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µ < m) and value ν (0 ≤ ν < n), chosen non-deterministically, and a

receiving process which indefinitely and repeatedly waits for messages

from the channel and takes receipt of them.

The sender’s duty cycle will set shared variable iIn to µ and vIn to ν

before offering a synchronisation on nMsg. The receiver will, on each

synchronisation with dMsg save the shared variables iDlvr and vDlvr

and switch to a location determined by their values. See figure 6.2. As

before, (c) denotes an UPPAAL committed location and (u) an urgent

location; and the thick arrows a bundle of edges fanning in or out,

replicated over all µ, ν.

µiIn = νvIn = 

SInit

Sender

nMsg! && vDlvr == ν)

(iDlvr == µ

R[µ, ν] (u)

Receiver

Init R(c)

dMsg?

Figure 6.2: A Sender and a Receiver process to drive the old Channel au-
tomaton

2. An UPPAAL system combining a new-style CAN channel model with

a sending process which repeatedly sends messages of some type µ and

value ν, chosen non-deterministically, and a receiving process which

indefinitely and repeatedly waits for messages from the channel and

takes receipt of them – just as above.

In this case the sender will non-deterministically choose a synchroniza-

tion nMsg µ ν to offer to the channel. The receiver will wait for any

one of the m× n synchronisations dMsg µ ν. See figure 6.3.

The bisimulation will be a relation between states of the two systems.

The variables of the “new” system (sender, new channel model, receiver)

are just the local variables of the channel automaton: integer subranges ip,
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nMsg[µ, ν]!

SInit

Sender

[µ, ν]

dMsg[µ, ν]?

R[µ, ν](u)

Receiver

Init

Figure 6.3: A Sender and a Receiver process to drive the new Channel au-
tomaton

vp, array Q[], clock h. Thus a state of the “new” system is a valuation of

these variables together with a vector of locations.

The “old” system (sender, old channel model, receiver) has just these

variables plus integer subranges iIn, vIn, iDlvr, vDlvr. Thus a state is a

valuation of these variables together with a vector of locations.

The semantics of UPPAAL committed locations say that no time may

pass in a state containing a committed location, and that after a transition to

such a state, the next transition must be from a state containing a committed

location. This means, that in the absence of simultaneous committed states

elsewhere in the model a sequence of transitions

C1 → C2 → ...→ Cn → D

in which all but the last location are committed may be regarded as atomic.

The committed locations are interposed simply to enforce a particular se-

quence of actions – synchronisations, assignments, including choices driven

by guards. This, indeed, is how committed locations have been used in the

present work. Let us call a sequence of edges like this a committed sequence.

6.2.1 Definition - Weak Bisimulation of UPPAAL Sys-

tems

Bearing this in mind, a bisimulation between the “old” and the “new” system

will be developed as a relation between states of the two systems in which
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only non-committed locations figure, and such that whenever we have related

states σold, σnew,

1. For any sequence of timed transitions

σold → σ1
old → σ2

old → ...→ τold

in which the transitions arise from a committed sequence of edges of

one of the components, there is a sequence (based on a committed

sequence in one of the components)

σnew → σ1
new → σ2

new → ...→ τnew

for some τnew related to τold;

2. For any sequence of timed transitions

σnew → σ1
new → σ2

new → ...→ τnew

in which the transitions arise from a committed sequence of edges of

one of the components, there is a sequence (based on a committed

sequence in one of the components)

σold → σ1
old → σ2

old → ...→ τold

and τold and τnew are related.

Any such relation we term a weak bisimulation of UPPAAL systems. Of

course, it is strong enough for us to regard the systems as equivalent in their

external behaviour.

6.2.2 The bisimulation

Let us write (So, Co, Ro, vo) for a state of the “old” system: these are, re-

spectively, non-committed locations of the Sender (figure 6.2), the Channel

automaton (figure 5.1, page 93), and the Receiver (figure 6.2); and a valua-

tion of the clock and other variables of the old system.
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Similarly we write (Sn, Cn, Rn, vn) for a state of the “new” system (figures

6.3, 6.1).

Note that the domain of vo is the domain of vn together with the shared

variables iIn, vIn, iDlvr, vDlvr, and Co, Cn ∈ {Free, PreAcc, Acc, PostAcc}.
Let us say (So, Co, Ro, vo)B(Sn, Cn, Rn, vn) iff -

1. Co = Cn ∈ {Free, PreAcc, Acc, PostAcc};

2. vo and vn agree on the channel local variables;

3. So = Init⇔ Sn = Init;

4. ∀µ∀ν : (So = S ∧ vo(iIn) = µ ∧ vo(vIn) = ν)⇔ Sn = S[µ, ν];

(the quantifiers range over 0 ≤ µ < m, 0 ≤ ν < n)

5. Ro = Init⇔ Rn = Init;

6. ∀µ∀ν : (Ro = R[µ, ν]⇔ Rn = R[µ, ν];

7. ∀µ∀ν : (Ro = R[µ, ν]⇒ v0(iDlvr) = µ ∧ v0(vDlvr) = ν.

6.2.3 Theorem

The relation between state of the “old” and the “new” systems defined by

§6.2.2 is a weak bisimulation of UPPAAL systems.

Proof. It will be useful to refer to figures 5.1 (page 93) and 6.1 (page 117)

and the (pseudo) UPPAAL code relating to these diagrams.

In both systems, any run begins from a state in which all variables have

value 0, and both channel models pass initially through committed locations

to Free, where the message queue Q[] has been initialised so that all entries

are −1 = FREE. The two FREE locations are related.

A committed sequence in the “old” model from Free to PreAcc will neces-

sarily involve first synchronising on nMsg with the sender process (ip, vp will

be set to the type and payload of the message sent), then the channel’s local

clock h is reset, then (while l ≤ h ≤ u) there may be 0 or more transitions

on the loop at PreAcc synchronising on nMsg with the sender process and
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resulting in the queue being populated with more messages. The correspond-

ing sequence of events in the “new” model is first, a transition synchronising

with the sender process on nMsg[µ, ν] (for some µ, ν), then the message type

and payload value (in fact, µ, ν) are saved to ip, vp and the channel’s local

clock h reset, then (while l ≤ h ≤ u) there are 0 or more transition sequences

from PreAcc via a synchronisation with the sender on some nMsg[µ, ν] (in

general different from the previous µ, ν) to committed location PreAcc[µ, ν]

and back via a transition which updates Q[µ] to ν. Thus, the variables h, ip,

vp, Q[] end up in the same state in the two models. From this one can find,

for any sequence in the old model (..., Free, ...) → ... → (..., PreAcc, ...), a

corresponding sequence in the new model leading from a related source state

to a related target state.

The reasoning is simpler in the case of a committed sequence in either

model from PreAcc to Acc as the two channel models correspond closely. The

sequence in the old model will begin with 0 or more transitions on the loop

at PreAcc synchronising on nMsg with the sender process and resulting in the

queue being populated with more messages. The corresponding sequence in

the new model will begin with 0 or more transition sequences from PreAcc

via a synchronisation with the sender on some nMsg[µ, ν] to PreAcc[µ, ν] and

back via a transition which updates Q[µ] to ν. As in the previous case, the

two corresponding sequences update the system state in the same way and the

bisimilarity of sequences (..., PreAcc, ...)→ ...→ (..., Acc, ...) is preserved.

A committed sequence in the old model from Acc to PostAcc updates

shared variables iDlvr, vDlvr from ip, vp, then synchronises on dMsg with

the receiver process, then possibly (while L ≤ h ≤ U) does 0 or more transi-

tions on the loop at PostAcc synchronising on nMsg with the sender process

and resulting in the queue being populated with more messages. A corre-

sponding sequence in the new model goes from Acc to Acc[µ, ν] matching

µ, ν to the current values of ip, vp, then synchronising with the receiver

process on dMsg[µ, ν]. This may be followed (while L ≤ h ≤ U) with 0

or more transition sequences from PostAcc via a synchronisation with the

sender on some nMsg[µ, ν] to committed location PostAcc[µ, ν] and back via

a transition which updates Q[µ] to ν. Again it can be seen that correspond-
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ing sequence in the two models update state in equivalent ways, so that

bisimilarity of sequences of the form (..., Acc, ...)→ ...→ (..., PostAcc, ...) is

preserved.

A committed sequence in the two models from PostAcc will begin with 0

or more sub-sequences synchronising with the sender nMsg or nMsg[µ, ν] as the

case may be and, as we have seen, updating the message queue in equivalent

ways. After this, the sequence in the old model goes to committed location

PostChk resetting ip to 0, then executes repeated ip++ updates until either

• a message Q[ip] is found waiting to be sent:v there is a move to com-

mitted location M2S then to PreAcc and vp is set to Q[ip], Q[ip] to

FREE an h to 0; or

• ip reached the end of the queue (QCAP or m in the new model) finding

no waiting messages: in this case the sequence moves to location Free.

An examination of the committed locations PostChk[µ], 0 ≤ µ < m

and the guarded edges between them and from them to M2S[µ, ν] will show

exactly the same logic. If µ is the smallest such that Q[µ] is not -1 (FREE) the

sequence goes PostAcc → PostChk[0] → ... → M2S[µ, ν] (for some ν) and

thence to PreAcc, updating ip, vp appropriately and resetting the clock. If

the queue is empty, the sequence rather goes all the way to PostChk[m− 1]

and thence to Free. (m is the number of distinct message types supported

– QCAP in the old model.)

Thus, again, the sequences do equivalent things to the system state, and

the bisimilarity is preserved.

6.3 Conclusion

The formal derivation from a bCANdle model of a broadcasting embedded

system of a semantically equivalent parallel composite of timed automata has

now been developed into a construction of a parallel composite of UPPAAL

timed automata which communicate without recourse to shared variables. As

pointed out at the beginning of the chapter this will allow the construction of
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compositional models of CAN-based systems to which assume-guarantee-type

compositionality theorems can be applied, to infer properties of a model from

properties of abstractions of it. The compositionality results are presented

in the next chapter.



Chapter 7

Compositionality Theorems

In this chapter are developed compositionality theorems which will under-

pin the compositional analysis of the broadcasting embedded system models

developed in the framework outlined in the chapters above. The definitions

and results presented here are motivated by the work of Kaynar, Lynch et al.

[77], [78] in which they develop a type of timed-automaton-style modelling to

which they apply a type of assume-guarantee reasoning. It will be seen that

our timed automata and also UPPAAL models map into their formalism,

although we have found it instructive to prove analogues of their assume-

guarantee result directly for our timed automata and UPPAAL models.

The main result of this work appears in section 7.5, where an assume-

guarantee theorem for UPPAAL systems (theorem 7.5.2) is developed and

presented. This (and some lesser results in §7.6) underpin the practical work

discussed in chapter 8.

7.1 Preamble

The starting point of the present work was the modelling real-time systems

with timed automata of the type developed by Alur and Dill (see [7]) and

with hybrid automata, using constructs which generalise them in a natural

way. The UPPAAL tool set uses essentially hybrid automata of this form

also [109].

129
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Kaynar, Lynch, Segala and Vaandrager in [77], [78] develop a form of

Timed Automaton for timed systems with data input and output. Their

formal definition is different from ours. However they explain how their

construct subsumes ours (which they call Alur-Dill automata) and they state

(but do not prove in detail) a useful “assume-guarantee” theorem allowing

properties of an automaton which is a parallel composition to be inferred

from properties of its components.

The purpose of this chapter is to describe some work done comparing

the automaton constructions of Kaynar, Lynch et al. with ours, and ex-

ploring their compositionality theorem, proving a version of it for “our”

(Alur/Dill/UPPAAL) type of timed automata.

7.2 Timed Automata

We have been modelling with a notion of timed automata which Kaynar,

Lynch et al. term “Alur-Dill” automata: (L, l0, A,H,→, I) where

• L is a set of control locations

• l0 is the initial location

• A is a set of discrete action labels

• H is a set of clock variables

• → is a transition relation. Specifically, let Z(H) denote the set of

boolean conjunctions of upper or lower bound expressions on clock

variables in H; then →⊆ L×Z(H)× A× ℘(H)× L. We write

l
ζ,a,λ−→ l′

for (l, ζ, a, λ, l′) ∈→, meaning that action a is enabled when the au-

tomation is at location l and the guard ζ ∈ Z(H) is satisfied by the

values of the variables inH; then the automaton may transit to location

l′, resetting the clocks in subset λ ⊆ H.
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• I : L → Z(H), I(l) is a predicate that must be satisfied by the clocks

while the automaton is at location l.

7.2.1 KLSV Structures

Kaynar, Lynch et al. [77], on the other hand, describe an automaton in

a different way as a structure (X,Q,Θ, E,H,D, T ). X is a set of internal

variables ; Q ⊆ val(X) a set of states (val(X) is the set of valuations –

assignments of values to variables in X; thus a state is identified with a

valuation of variables). Θ ⊆ Q is a set of initial states and E,H are sets of

possible external and internal actions ; E ∩H = ∅. This structure they call

a timed automaton; in their timed I/O automaton E is further partitioned

into a disjoint pair of subsets I of input actions and O of output actions,

although these will not concern us much at present.

Let A , E ∪ H. D ⊆ Q × A × Q is the transition relation and T a

set of possible trajectories in Q. These are “curves” in Q, mappings from a

left-closed interval of the time line ([0, b] or [0, b) or [0,∞), b ∈ R) to Q. T

has certain closure properties:

• For each q ∈ Q the point trajectory [0, 0]→ Q, 0 7→ q is in T ;

• a trajectory τ ′ is a prefix of τ , written τ ′ ≤ τ , iff τ ′ is the restriction of

τ to a left-closed subinterval of its domain.

If τ ′ ≤ τ ∈ T then τ ∈ T ;

• if τ is a trajectory and t ∈ dom(τ) then the suffix τ D t (to use the

notation of [77]) is the mapping u 7→ τ(t + u) defined for u ≥ 0 such

that u+ t ∈ dom(τ), which defines a trajectory.

Any suffix of a trajectory in T is in T ;

• If τ is a closed trajectory – dom(τ) = [0, b], a finite closed interval,

and τ ′ another trajectory, the concatenation τ a τ ′ is the mapping

u 7→ τ(u) if u ∈ [0, b] and u 7→ τ ′(u− b) if u > b and u− b ∈ dom(τ ′)1.

1[77] proves a number of expected formal properties, such as τ ≤ υ iff (∃τ ′)τ a τ ′ = υ,
and that ≤ is a complete partial ordering.
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If τk, k = 0, 1, 2, ... is a sequence of closed trajectories with domains

[0, bk] and (∀k)τk(bk) = τk+1(0), another sequence is defined recursively

by τ ′0 , τ0, τ
′
k+1 , τ ′k a τk+1. This sequence {τk} is monotonic in-

creasing with respect to the prefix relation (which is a complete partial

ordering) ≤. The infinite concatenation τ0 a τ1 a τ2 a ... is defined to

be the ≤-least upper bound of the the directed set {τ ′k|k = 0, 1, 2, ...}.

T is closed under the concatenation operation: Given a finite or infinite

sequence of trajectories as above, in T , their concatenation is in T .

An execution fragment is a hybrid sequence τ0a1τ1a2τ2... of alternating

trajectories and actions (ai ∈ A); a run or execution is an execution frag-

ment such that τ0(0) ∈ Θ. The sequence is infinite, or else the last term is a

trajectory; and each trajectory other than the last is closed. There is a prefix

ordering among such sequences: α ≤ β iff α = β or α is finite, ending in a

closed trajectory and this forms an initial segment of sequence β. Similarly,

if α is a finite sequence τ0a1τ1a2...τn with a closed final trajectory, the con-

catenation α a β is formed by concatenating τn with the initial trajectory

of β. Kaynar, Lynch et al. [77] show that α ≤ β iff (∃β′)α a β′ = β, and

that ≤ among hybrid sequences renders them a complete partially ordered

set, so that concatenation of an infinite hybrid sequence can be defined in a

fashion similar to that of a sequence of trajectories.

7.2.2 Timed Automata and KLSV Structures

Our timed automaton (L, l0, A,H,→, I) can be represented as a structure of

this type:

• Let X = H ∪ {loc} where loc is a discrete variable whose values are

the control locations L;

• Q = val(X);

• Actions: E = A,H = ∅;

• Θ is the set of valuations which assign 0 to all clock variables (H) and

the value l0 to loc.
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• D is the set of (x, a, x′), a ∈ A, x, x′ ∈ val(X), such that l
ζ,a,λ−→ l′ in

(L, l0, A,H,→, I), and x(loc) = l, x |= ζ, x′(loc) = l′, x′ |= I(l′), and

∀h ∈ λ.x′(h) = 0.

• The trajectories are constrained by the requirements that the discrete

values of loc do not vary in time, the values of the clock variables have

unit rate of change, and the location invariants I(l) be satisfied.

See, for example, [77] pp. 38-40 (where our timed automata are called “Alur-

Dill automata”). The KLSV structure so defined by Kaynar, Lynch et al. is

functionally equivalent to the timed transition system of the timed automa-

ton.

Alternatives to setting E = A, H = ∅ are E = ∅, H = A, or possibly

partitioning A into E ∪ H so that E contains the edge labels intended to

participate in synchronisations, while H contains those intended to be purely

“local”, H = A− E.

7.2.3 Composition

KLSV structures of the type described in [77] can be composed in parallel;

we have already seen such a construction for simple timed automata. Briefly,

Ai = (Xi, Qi,Θi, Ei, Hi, Di, Ti), for i = 1, 2 are compatible iff H1 ∩ (H2 ∪
E2) = ∅ and vice versa and X1 ∩ X2 = ∅. In that case, the composite is

A1 ‖ A2 = (X,Q,Θ, E,H,D, T ) where

• X = X1 ∪X2,

• Q = {x ∈ val(X) : x � Xi ∈ Qi, i = 1, 2}

• Θ = {x ∈ val(X) : x � Xi ∈ Θi, i = 1, 2}

• E = E1 ∪ E2, H = H1 ∪H2,

• For x, x′ ∈ Q, a ∈ A ⊆ E ∪H, (x, a, x′) ∈ D iff for i = 1, 2,

either a ∈ Ai = Ei ∪Hi and (x � Xi, a, x
′ � Xi) ∈ Di;

or a /∈ Ai and x � Xi = x′ � Xi
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• T consists of X-trajectories whose restrictions in Xi lie in Ti

This composition turns out to be equivalent to ours for structures derived

from our automata. Consider two of our automata: Ai = (Li, l
0
i , Ai,Hi,→i

, Ii), i = 1, 2. Translating these into the formalism of [77] as above yields, for

i = 1, 2,

• Xi = Hi ∪ {loci} where loci’s values are the Li;

• Qi = val(Xi);

• Ei = Ai, Hi = ∅;

• x ∈ Θi ⇔ ∀h ∈ Hi.x(h) = 0 & x(loci) = l0i .

• (x, a, x′) ∈ Di iff for some li
ζi,a,λi−→i l

′
i in Ai, x(loci) = li,

x′(loci) = l′i, x |= ζi, and x(h) = 0 for h ∈ λi.

Forming the composite of [77],

• X = H1 ∪H2 ∪ {loc1, loc2},

• Q = val(X)

• x ∈ Θ iff for every h ∈ H1 ∪ H2, x(h) = 0 and also x(loci) = l0i for

i = 1, 2.

• E = A1 ∪ A2, H = ∅,

• For x, x′ ∈ Q, a ∈ A1 ∪ A2, (x, a, x′) ∈ D iff for i = 1, 2,

either a ∈ Ai and (x � Xi, a, x
′ � Xi) ∈ Di;

or a /∈ Ai and x � Xi = x′ � Xi.

The last item above is equivalent to: for i = 1, 2,

either a ∈ Ai and for some li
ζi,a,λi−→i l

′
i in Ai, x(loci) = li,

x′(loci) = l′i, x |= ζi, and x(h) = 0 for h ∈ λi;

or a /∈ Ai and x, x′ agree on Hi and x(loci) = x′(loci). (7.1)
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By comparison, our parallel composite is

A1 ‖ A2 = (L1 × L2, (l
0
1, l

0
2), A1 ∪ A2,→, I)

where

I(l1, l2) = I1(l1) ∧ I2(l2) and

(l1, l2)
ζ,a,λ−→ (l′1, l

′
2) iff one of the following obtains for some l1

ζ1,a,λ1−→1 l
′
1 in A1

and/or some l2
ζ2,a,λ2→2 l′2 in A2:

a ∈ A1 ∩ A2, ζ = ζ1 ∧ ζ2, λ = λ1 ∪ λ2 (7.2)

a ∈ A1 − A2, ζ = ζ1, λ = λ1, l2 = l′2 (7.3)

a ∈ A2 − A1, ζ = ζ2, λ = λ2, l1 = l′1 (7.4)

If we identify {loc1, loc2} with {loc} where x(loc) = (x(loc1), x(loc2))

then we see that the two composite constructions are equivalent.

The definition of (l1, l2)
ζ,a,λ−→ (l′1, l

′
2) is essentially equivalent to condition

(7.1) above, bearing in mind that if a /∈ A1, A2, the condition yields a trivial

“identity transition”.

Condition (7.2) gives “synchronising transitions” and conditions (7.3, 7.4)

give “interleaving transitions”.

7.2.4 UPPAAL Automata as KLSV Structures

An UPPAAL process template can be rendered as a KLSV-style timed au-

tomaton in a way that naturally generalises the definition of §7.2.2:

• Let X = H ∪ {loc} where loc is, as before, a discrete variable whose

values are the control locations of the template; but now H is the set

of all variables of the process template.

• Q = val(X) is now the set of all valuations of variables in X;

• Actions: E is the set of actions which synchronise: c? or c! where c is

some channel identifier. Internal actions are anonymous in UPPAAL

(“τ”): H is thus a singleton.
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• Θ is the set of valuations which assign 0 to all variables inH, or initialise

them as prescribed by their UPPAAL declarations, and assign the value

l0 to loc.

• D is the set of (x, a, x′), a ∈ E ∪ H, x, x′ ∈ val(X), such that there is

an edge from location x(loc) to x′(loc) labelled a, and x satisfies the

guard (if any) on the edge, and x′ satisfies the invariant at x′(loc), and

x′ respects any updates that occur on the edge.

• The trajectories are constrained by the requirements that the discrete

values of loc do not vary in time, neither do the values of non-clock

variables, the values of the clock variables have unit rate of change, and

the location invariants be always satisfied.

7.3 An Assume-Guarantee Theorem

7.3.1 Implementation Relationships

Kaynar, Lynch, Segala and Vaandrager in [77], [78] are interested in imple-

mentation relationships between their automata. Of particular interest is a

relation A1 � A2 between two automata of the (X,Q,Θ, E,H,D, T )-type,

KLSV-structures: every trace of A1 is also a trace of A2.

As seen above, in the parlance of Kaynar, Lynch et al., an execution

fragment of a (KLSV) automaton is a sequence τ0, a1, τ1, a2, ...of alternate

trajectories and discrete actions. Each trajectory τk is a mapping of an

interval of time into Q, and so tracks changes in values of the continuous

variables as an interval of time passes. Each ak is an action drawn from

E ∪ H. A trace is an execution restricted to the empty set of variables:

that is, a sequence showing pure passages of time alternating with discrete

actions.

A1 � A2 therefore means, in effect, every possible behaviour (timed se-

quence of actions) of A1 is a possible behaviour of A2; or more succinctly,

the behaviour specified by A2 is implemented by A1.
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Kaynar, Lynch et al. call two of their (KLSV) automata comparable if

they have the same external action labels (set E). Their I/O automata have

E partitioned into input actions I and output actions O: in this case these

two sets of action labels are the same if the automata are comparable. They

call two automata compatible if the two sets of states X are disjoint, each

set of internal actions H is disjoint from the other’s E ∪H, and the output

action labels O are disjoint.

7.3.2 Simulation and Trace Inclusion

Given comparable KLSV structures Ai = (Xi, Qi,Θi, Ei, Hi, Di, Ti), i = 1, 2,

a simulation is defined as a relation between states, R ⊆ Q1×Q2, analogously

to §2.4.2:

• ∀q1 ∈ Θ1∃q2 ∈ Θ2 : (q1, q2) ∈ R.

• If (q1, q2) ∈ R and (q1, a, q
′
1) ∈ D1 then there is an execution fragment

in A2 consisting of the action a preceded by a closed trajectory from2

q′1 and succeeded by a closed trajectory to3 q′2 (say), and the trace

in A2, the restriction of the trajectories to clocks, is the same as the

trace in A1: action a preceded and succeeded by point trajectories; and

(q′1, q
′
2) ∈ R.

• If (q1, q2) ∈ R and τ is a closed trajectory in A1 from q1, to q′1, say,

then there is in A2 a closed trajectory with the same trace as τ , from

q2 to a state q′2 such that (q′1, q
′
2) ∈ R.

Kaynar, Lynch et al. term this a forward simulation – see [77] §4.5 (p41).

They prove (Theorem 4.23, Corollary 4.24) that if such a forward simulation

exists, then the traces of A1 are included in the traces of A2, i.e., A1 � A2.

2By a trajectory τ from q we mean τ(0) = q.
3Recall a closed trajectory τ is defined on a closed interval [0, b]; by a trajectory to q′

we mean τ(b) = q′
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Proposition If we refer back to the representation of a simple timed au-

tomaton as a KLSV structure, subsection 7.2.2 we can infer a simulation re-

lation exists between (the timed transition systems of) two timed automata,

in the sense of §2.4.2, then again the traces of the first timed automaton are

included in the traces of the second.

7.3.3 An Assume-Guarantee Theorem

Kaynar, Lynch et al. define a Timed I/O Automaton ([77], section 7) to

be a structure consisting of what we have hitherto called a KLSV structure,

(X,Q,Θ, E,H,D, T ) together with a partition E = I ∪O, I ∩O = ∅ of the

external actions into a set of input actions I and a set of output actions O.

The structure must satisfy two additional axioms:

• An input-action enabling axiom: ∀x ∈ Q ∀a ∈ I ∃x′ : (x, a, x′) ∈ D;

• A time-passage-enabling axiom: For every x ∈ Q there is a τ ∈ T from

x such that either τ is infinite or τ is closed and is to a state where

some internal (H) or output (O) action is enabled.

These structures are an interesting possible subject of future work, but

what interests us at present is a form of assume-guarantee theorem which

these authors state as Theorem 8.7:

Given automata A1,A2,B1,B2 such that

1. A1,A2 are comparable;

2. B1,B2 are comparable;

3. Ai is compatible with Bi (i = 1, 2);

4. The set of traces of A2 and the set of traces of B2 are limit-closed (i.e.

the set contains all sequences of which all finite prefixes are in the set);

5. Suffixing a trace over A2 with a trajectory over ∅ yields again a trace

over A2; and similarly for B2;

IF A1 ‖ B2 � A2 ‖ B2 AND A2 ‖ B1 � A2 ‖ B2 THEN A1 ‖ B1 � A2 ‖ B2.
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7.3.4 UPPAAL Templates as TIOA

An UPPAAL process template can be construed as a timed I/O automaton

in the sense of Kaynar, Lynch, et al. [77] provided it satisfies certain extra

axioms. Let us define an UPPAAL process template to be an UPPAAL I/O

automaton iff

1. (Input enabling axiom) For every synchronisation of the form c? and

at every location other than a committed or urgent location there is an

enabled edge from the location labelled c?.

2. (Time passage enabling axiom) At every location, either the invariant

is satisfied for all time, or time passage proceeds to a state at which

some output (c! for some c) or local (internal) action is enabled.

The assume-guarantee theorem of [77] can be stated and proved in terms

of these structures. One obtains s KLSV-style I/O automaton by defining

the KLSV structure as in §7.2.4 and additionally defining the set O of output

actions as those actions of the structure which are c!-synchronisations for

channels c, and the set I of input actions as the c?-synchronisations. The

two conditions set out above are required in order to satisfy the input action

enabling and time passage enabling axioms for KLSV-type I/O automata.

In order to state the theorem, first note that a trace as defined by [77] to

be an execution restricted to the empty set of variables and external actions

(cf §3.4.3) is, in the case of an UPPAAL template, simply an alternating

sequence of time passages and discrete actions, starting with a time passage:

l0
t0→ l0

a1→ l1
t1→ l1

a2→ l2
t2→ ...

The invariant at location ln is satisfied throughout tn. Location ln+1

carries a (timed) state which incorporates any update associated with action

an. The timed state associated with ln after time passage tn satisfies any

guard on an. Of course, the trace is the sequence t0a0t1a1t2...; the locations

are not part of the trace. A closed trace finishes with a time passage, or

the sequence may go to infinity. A time passage of 0 corresponds to a point

trajectory of c.
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Also following these authors, let us call the set of traces of an UPPAAL

I/O automaton limit-closed iff any sequence, all of whose finite prefixes are

a trace, is itself a trace. Also say that two UPPAAL I/O automata are

comparable if they have the same external actions (i.e. synchronisations)

and compatible if the internal actions of either are disjoint from the actions

of the other. The latter is what we require in order to be able to compose

two automata. Let us also follow them in writing A1 � A2 (when A1,A2 are

comparable) to denote that traces of A1 ⊆ traces of A2.

Composition of automata is our composition. In §7.2.3 it was seen to be

equivalent to that of Kaynar, Lynch et al. and this is the case for UPPAAL

automata too.

In the sequel, we speak of “UPPAAL I/O automata” while considering

that an UPPAAL I/O automaton may in fact itself be a composite; so that

the locations ln referred to above are actually vectors.

7.3.4.1 Theorem

Let A1, A2 be comparable UPPAAL I/O automata, B1, B2 be comparable

UPPAAL I/O automata, and suppose each Ai is compatible with each Bj

(i, j = 1, 2). Suppose further that

1. The set of traces of A2 is limit-closed, and the set of traces of B2 is

limit-closed;

2. Concatenating a closed trace of A2 with further time passage yields

again a trace of A2 (i.e., the invariants are satisfied) and likewise for

B2;

THEN A1 ‖ B2 � A2 ‖ B2 and A2 ‖ B1 � A2 ‖ B2 imply A1 ‖ B1 � A2 ‖ B2.

Remark This is exactly theorem 8.7 Kaynar, Lynch et al. [77] (see also

§7.3.3), applied to UPPAAL I/O automata and stated in terms of these. It

is instructive also to work through these authors’ proof in terms of UPPAAL

I/O automata.
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Proof Suppose A1 ‖ B2 � A2 ‖ B2 and A2 ‖ B1 � A2 ‖ B2.

One first proves that any closed trace of A1 ‖ B1 is a trace also of A2 ‖ B2.

This is proven by induction on the length of a trace

l0
t0→ l0

a1→ l1
t1→ l1

a2→ l2
t2→ ...

The locations here are, of course vectors of A1 components and B1 com-

ponents.

The base of the induction is a simple time transition l0
t0→ l0 in A1 ‖ B1.

Then, t0 satisfies the invariants the components of l0 in A1 ‖ B1. From the

comparability hypotheses we can infer that t0 is also a trace in A2 ‖ B2.

Now suppose given a closed trace αn = (l0
t0→ ...

tn−1→ ln−1
an→ ln) in A1 ‖ B1.

Assume by induction hypothesis that the prefix αn−1 = (l0
t0→ ...

tn−1→ ln−1)

in A1 ‖ B1 is actually a closed trace in A2 ‖ B2. To establish the induction,

that αn is a trace in A2 ‖ B2 there are the following cases to consider.

1. an is an output action c! of (a component of) A1 and tn = 0. In

this case, αn projects on A1 to a trace αn � A1 and also αn−1 by

induction hypothesis, projects on B2 to a trace of B2. Because A1,B1

are compatible and B1,B2 are comparable, either an is an input action

(c?) of B2 or it is not an action of B2 at all. In the former case, the

input enabling axiom implies that B2 has an action an synchronising

with the A1 action an (i.e. c!, c?) whence projecting αn to the external

actions B2 gives a trace of B2. In the latter case, αn and αn−1 agree

on B2. Either way, pasting these traces on A1, B2 together, we have a

trace in A1 ‖ B2. By the hypothesis of the theorem, A1 ‖ B2 � A2 ‖ B2,

this is a trace in A2 ‖ B2.

2. an is an output action c! of (a component of) B1 and tn = 0. This is

symmetrical with the previous case, using hypothesis A2 ‖ B1 � A2 ‖
B2 rather than A1 ‖ B2 � A2 ‖ B2.

3. an is an input action c? of both A1 and B1, and tn = 0. By induction

hypothesis, αn−1 is a trace of A2 ‖ B2. Projecting onto the two com-

ponent subsystems, we have projections of αn−1 which are traces of A2
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and of B2. Let α be a run of A2 whose trace is the projection of αn−1

on A2. Because A1 and A2 are comparable, an is an input action of A2.

By the input enabling axiom there is an input action labelled an from

the projection of ln−1 on A2. It follows that the projection of αn on A2

is a trace of A2.

Repeating this reasoning swapping the roles of A2 and B2, we see that

also the projection of αn on B2 is a trace of B2. It follows the αn is a

trace of A2 ‖ B2.

4. an is an input action of A1 but not an action of B1, and tn = 0. By

induction hypothesis, αn−1 is a trace of A2 ‖ B2. As in the previous

case, it projects to traces in A2 and in B2. Let α be a run of A2

whose trace is the projection of αn−1 on A2. Because A1 and A2 are

comparable, an is an input action of A2. By the input enabling axiom

we can concatenate to α an action ln−1 � A2
an→ ln � A2 (where � denotes

projection). So αn projects to a trace of A2.

B1 and B2 are comparable and an is not an action of B1, hence it is

also not an action of B2. So αn, αn−1 agree on B2. Combining this

information with the previous paragraph we obtain αn as a trace in

A2 ‖ B2.

5. an is an input action of B1 but not an action of A1, and tn = 0. This

is symmetric with the previous case, swapping As and Bs.

6. tn > 0. We can assume ...
an→ ln

0→ ln in A2 ‖ B2 by induction hy-

pothesis. Project this onto each of A2, B2 and apply premiss 2 of the

theorem to each projected trace. This yields ...
an→ ln

tn→ ln projecting

to a trace on each of A2, B2. It follows that in its totality it is a trace

of A2 ‖ B2.

This completes the proof that any closed trace of A1 ‖ B1 is a (closed)

traces of A2 ‖ B2.

We infer the same inclusion for all traces (including infinite ones) by

lifting closed prefixes of a trace in A1 ‖ B1 to A2 ‖ B2, projecting each of
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these onto each of A2, B2 and on each component, invoking limit-closure

(theorem premiss 1) to infer a sequence which projects on each of A2, B2 to

a trace, and which is therefore a trace of A2 ‖ B2.

7.4 A Compositionality Theorem for Our Timed

Automata

This section and the next explore the possibility of a similar assume-guarantee

theorem for our timed automata, and also (next section) for UPPAAL au-

tomata. There are theorems asserting inclusion of runs, not merely traces;

but we shall see rather strong assumptions are required regarding the nature

of synchronised actions, which may limit the usefulness of these theorems.

7.4.1 Runs, Traces

A trace in the sense of Kaynar, Lynch et al. turns out in the case of our

automata to be just a run of the type described in this subsection. When

the action labels A of two of our automata, A1,A2 are the same, the relation

A1 � A2 says just that every possible run of A1 is a possible run of A2.

A run of A = (L, l0, A,H,→, I) is a sequence of alternate time passages

tk ∈ R and discrete actions ak ∈ A:

(v0, l0)
t0→ (v0 + t0, l

0)
a1→ (v1, l1)

t1→ (v1 + t1, l
1)

a2→ ...
ak→ (vk, lk)

tk→ ... (7.5)

Each state on the way consists of a control location lk ∈ L of the under-

lying automaton, and a valuation, vk ∈ val(H), an assignment of values to

the variables in H (cf val(X) in the formalism of Kaynar, Lynch et al.). v0

is the 0 valuation, v0(x) = 0, and vk + t is the valuation which assigns the

value vk(x) + t to variable x.

The arrows labelled with a real numbers represent time passage; tk rep-

resents time passage at location lk. The invariant must remain true during

time spent at a location: ∀k.∀t ∈ [0, tk].(v
k + t) |= I(lk).
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The arrows labelled with discrete actions arise from transitions of A.

The arrow (vk−1 + tk−1, l
k−1)

ak→ (vk, lk) arises from A-transition lk−1 ζ,ak,λ−→ lk

where vk−1 + tk−1 |= ζ and vk = (vk−1 + tk−1)[λ], the valuation assigning

0 to variables in λ and otherwise agreeing with vk−1 + tk−1. Note that the

previous paragraph ensures that the invariant will be satisfied in the target

state.

Now let

A = (L, l0, A,H,→A, I) (7.6)

B = (M,m0, B,K,→B, J) (7.7)

denote two automata. Assume H ∩K = ∅ – the clock variables are disjoint.

Thus, a valuation in A ‖ B is just the union of an A-valuation and a B-

valuation. There is no overlap to worry about.

A run of A ‖ B is a sequence of the form

(v0, l0,m0)
t0→ (v0 + t0, l

0,m0)
a1→ (v1, l1,m1)

t1→ (v1 + t1, l
1,m1)

a2→ ...
ak→ (vk, lk,mk)

tk→ (vk + tk, l
k,mk)→ ... (7.8)

where

• tk ∈ R, ak ∈ A ∪B and

• ∀k.∀t ∈ [0, tk].(v
k + t) |= I(lk) ∧ J(mk); and

• For all k, one of the following obtains: EITHER

– (a synchronised transition) ak ∈ A ∩ B and there are transitions

lk−1 ζA,ak,λA−→ lk in A and mk−1 ζB ,ak,λB−→ mk in B, and

(vk−1 + tk−1) |= ζA ∧ ζB and

vk = (vk−1 + tk−1)[λA ∪ λB] = (vk−1 + tk−1)[λA][λB]; OR

– (an interleaving transition) ak ∈ A−B and

there is a transition lk−1 ζ,ak,λ−→ lk in A; and

mk−1 = mk, and

(vk−1 + tk−1) |= ζ and vk = (vk−1 + tk−1)[λ]; OR
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– (an interleaving transition) ak ∈ B − A and

lk−1 = lk, and

there is a transition mk−1 ζ,ak,λ−→ mk in B; and

(vk−1 + tk−1) |= ζ and vk = (vk−1 + tk−1)[λ]

7.4.2 Theorem

Let A1,A2 be automata with a common action alphabet, B1,B2 be automata

with a common action alphabet, and suppose Ai is compatible with Bj for

i, j = 1, 2 – the clocks and locations of Ai, Bj are disjoint. Suppose that

A1 ‖ B2 � A2 ‖ B2 (7.9)

A2 ‖ B1 � A2 ‖ B2 (7.10)

Then A1 ‖ B1 � A2 ‖ B2.

To prove this, we need to check, under the stated premisses, that any run

of A1 ‖ B1 is also a run in A2 ‖ B2.

The argument will be an induction on the length (number of actions) of

a run. First, Consider a “trivial run” of A1 ‖ B1,

(0, l0,m0)
t0→ (0 + t0, l

0,m0) (7.11)

where t0 ∈ R, 0 is the zero valuation and l0,m0 are the initial locations of

A1,B1.

Without loss of generality, in view of (7.9, 7.10) we can assume l0,m0

are also the respective initial locations of A2,B2 – re-label if necessary. Let

α1, α2, β1, β2 denote the invariants at l0 in A1,A2 and at m0 in B1,B2. Then

(7.11) implies that

∀t < t0 : (0 + t) |= α1 ∧ β1

We aim to deduce that (0 + t) |= α2 ∧ β2.
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Now, the Ai-variables are disjoint from the Bj-variables. Let v1 denote a

valuation which agrees with (0 + t) on the A-variables, and which is 0 on the

B-variables. We can assume with no loss of generality that 0 |= β2.

Then v1 |= α1 ∧ β2. It follows from (7.9) that v1 |= α2 ∧ β2. In particular,

v1 |= α2.

Therefore, by construction of v1, (0 + t) |= α2.

By a similar argument employing premiss (7.10), (0 + t) |= β2.

Applying this to all t ∈ [0, t0] we can deduce that the time delay (7.11)

is actually a run in A2 ‖ B2.

Now, let

(0, l0,m0)
t0−→ (0 + t0, l

0,m0)
a1−→ ...

tn−1−→ (vn−1 + tn−1, l
n−1,mn−1)

an−→ (vn, ln,mn)
tn−→ (vn + tn, l

n,mn) (7.12)

be a run of “length” n in A1 ‖ B1. Assume as induction hypothesis that all

runs of length shorter than n in A1 ‖ B1 map into A2 ‖ B2. We shall abuse

notation by using the same symbols lk,mk (k < n) for “corresponding”

locations in A2 ‖ B2.

Then the part of (7.12) up to (vn−1 + tn−1, l
n−1,mn−1) is already a run in

A2 ‖ B2.

At each stage, k < n, vk = vk−1 + tk−1 with the resets of ak applied.

Now we have to consider three possibilities for the transition:

(vn−1 + tn−1, l
n−1,mn−1)

an−→ (vn, ln,mn)

We could have (1): an ∈ A1 − B1, an “interleaving” transition of A1, or

(2): an ∈ B1 − A1,an interleaving transition of B1, or (3): an ∈ A1 ∩ B1, a

synchronizing transition.
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First, suppose an to be an “interleaving” transition of A1. Thus,

mn = mn−1,

vn = vn−1 + tn−1

with resets on A-variables only.

This lifts to A1 ‖ B2 since mn “is” already in B2. (Abuse of notation

again: more precisely, there is a corresponding location of B2 which we can

label mn.)

Consider the time delay (vn, ln,mn)
tn→ (vn + tn, l

n,mn) in A1 ‖ B1. Let

α1, β1 be the invariants in A1,B1 at ln,mn. Then,

∀t < tn : (vn + t) |= α1 ∧ β1

Let α2, β2 be the invariants in A2,B2 at ln,mn (abuse of notation again)

and for arbitrary t < tn define the valuation wt on the A-variables as vn + t

and on the B-variables as vn. Then wt |= α1 and also wt |= β2 because

mn = mn−1 and we can appeal to the induction hypothesis.

Now,

∀t < tn : wt |= α1 ∧ β2

exhibits tn as a possible time delay “run” in A1 ‖ B2; hence by premiss (7.9),

as a time delay in A2 ‖ B2. It follows (the reasoning is the same as in the

induction base case) that

∀t < tn : wt |= α2 ∧ β2

In particular, ∀t < tn : wt |= α2. So, since wt agrees with vn + t on

A-variables, ∀t < tn : (vn + t) |= α2.

By a similar argument swapping the roles of Ai,Bi and employing premiss

(7.10), ∀t < tn : (vn + t) |= β2.
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Thus tn is a permissible time delay in A2 ‖ B2 and the segment

...
an−→ (...)

tn−→ (...)

extends the “tail” of (7.12) to a run in A2 ‖ B2.

A similar argument lifts (7.12) to a run in A2 ‖ B2 in the case of the

second possibility: that an is an interleaving transition of B1.

Now consider the third possibility: an ∈ A1 ∩ B1, an is a synchronizing

transition of A1 ‖ B1. In particular, there are transitions

ln−1 ζ1,an,λ1−→ ln in A1 (7.13)

mn−1 η1,an,µ1−→ mn in B1 (7.14)

where (vn−1 + tn−1) |= ζ1 ∧ η1 (the guards of an in A1 and B1) and

vn = (vn−1 + tn−1)[λ1 ∪ µ1] |= α1 ∧ β1, the invariants at ln,mn.

Also, in view of the time delay (vn, ln,mn)
tn−→ (vn+tn, l

n,mn) in A1 ‖ B1,

we have ∀t < tn : (vn + t) |= α1 ∧ β1.

Now define a valuation w in A1 ‖ B2 to agree with vn on A1 and vn−1+tn−1

on B2. Remember, by the induction hypothesis, the “tail” of (7.12) lifts from

A1 ‖ B1 to A2 ‖ B2; in particular, vn−1 + tn−1 makes sense in B2.

This w gives a transition enabled in A1 ‖ B2:

(vn−1 + tn−1, l
n−1,mn−1)

an−→ (w, ln,mn−1)

which by premiss (7.9) lifts to A2 ‖ B2

It follows from this that the guard of an in A2 is satisfied by vn−1 + tn−1

and the invariant at ln in A2 by w, hence (by definition of w) by vn.

Now apply the same argument with Ai,Bi reversed to obtain an edge in

B2 corresponding to an, whose guard is satisfied by vn−1 + tn−1 and such that
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the invariant at its target (corresponding to ln−1,mn in A2 ‖ B1) is satisfied

by vn. For this we need to define w to be like vn on B1 and vn−1 + tn−1 on

A2.

The result is edges in A2,B2 corresponding to (7.13, 7.14) whose guards

and target invariants are satisfied, and so the synchronized an is lifted to

A2 ‖ B2.

The time delay transition tn is lifted to A2 ‖ B2 using exactly the same

reasoning as before.

Thus the run (7.12) is in A2 ‖ B2 in the case of a synchronised transition

and the induction is complete.

7.5 Compositionality Theorem for UPPAAL

Automata

It is interesting to see if the theorem of 7.4.2 can be extended to UPPAAL

systems, whose semantics are described in 5.2.2. Again, the result will apply

to parallel compositions of automata (UPPAAL process instances) with no

shared variables. For our purposes, therefore, we shall suppose an UPPAAL

System with no global variables apart from the channels used to mediate

synchronisation, and just two process instances. By variables in the sequel,

we mean just local variables within process instances.

7.5.1 Runs of the UPPAAL System

The first point to note is that a run as described by (7.5) above is the same

in UPPAAL except for the following points.

• The component H is, for each type, a set of variables of that type;

• Variables of all types may participate in transition guards and location

invariants;
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• The valuations v assign values to all the variables; for t ∈ R, valuation

v + t advances the clocks but leaves other values unchanged;

• A transition is not generally decorated with an action label (although

a synchronisation label could be pressed into service) but the update

λ is now a set of UPPAAL assignments to local variables rather than

just a set of clocks to assigned 0.

• A discrete action in the run is as before an interleaving transition or

several component actions in synchrony; but now the UPPAAL seman-

tic rules of 5.2.2 decide which kind of action occurs when. UPPAAL

priorities have not been employed in this work and will therefore not

be mentioned in the following.

Consider now a run of a system A1 ‖ ... ‖ An generalising (7.6)(7.7),

with Ai, i = 1...n the component UPPAAL processes. Unlike in the case of

KLSV traces, we are now considering inclusion of runs without necessarily

restricting to external actions and to the empty set of variables. It is use-

ful to consider several processes rather than just two when considering the

semantics of broadcast synchronisations. Recall that internal actions in UP-

PAAL are anonymous (“τ”); the action labels in A,B may be “borrowed”

to denote synchronisations c!, c?, etc. Again we have a sequence of the form

(v0, (l0i )i=1...n)
t0→ (v0 + t0, (l

0
i ))

a1→ (v1, (l1i ))
t1→ (v1 + t1, (l

1
i ))

a2→ ...
ak→ (vk, (lki ))

tk→ (vk + tk, (l
k
i ))→ ... (7.15)

where

• (lki )i=1...n, or by slight abuse of notation, (lki ), is an abbreviation for a

vector of locations (lk1 , l
k
2 , l

k
3 , ..., l

k
n);

• The l0i are the initial locations of the component processes; lki , i = 1...n

are their subsequent locations;

• tk ∈ R;
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• ak is normally in UPPAAL anonymous (a “τ” action), but we may

borrow it to use as a synchronisation label;

• ∀k.∀t ∈ [0, tk].(v
k + t) |=

∧m
i=1 Ii(l

k
i ), the invariants at (lki ); and

• For all k, one of the following obtains:

1. There is an internal transition arising from a transition

lk−1
i

ζ,ak,λ−→ lki on one component Ai: ak is “τ” (denoted “*” by

nothing at all in the UPPAAL Help),

(∀j 6= i)lk−1
j = lkj ,

(vk−1 + tk−1) |= ζ,

vk = (vk−1 + tk−1)[λ], the result of applying the UPPAAL assign-

ment(s) λ to the valuation vk−1 + tk−1,

vk |= Ii(l
k
i ),

either lk−1
i is committed (in the UPPAAL sense) or (∀j 6= i)lk−1

j

is not committed.

2. There is a binary synchronization: ak denotes a binary channel

and there are transitions on different processes i, j, lk−1
i

ζi,ak!,λi−→ lki

in Ai and lk−1
j

ζj ,ak?,λj−→ lkj in Aj,

(∀h 6= i, j)lk−1
h = lkh,

(vk−1 + tk−1) |= ζi ∧ ζj,
vk = (vk−1 + tk−1)[λi][λj] (Note that the UPPAAL assignment(s)

of the !-edge are applied before the assignment(s) of the ?-edge),

vk |= Ii(l
k
i ) ∧ Ij(lkj ),

either lk−1
i , lk−1

j are both committed or (∀h 6= i, j)lk−1
h is not

committed.

3. There is a broadcast synchronisation: ak denotes a broadcast

channel and there are transitions on different processes i, j1, ..., jm,

lk−1
i

ζi,ak!,λi−→ lki in Ai and lk−1
jh

ζjh
,ak?,λjh−→ lkjh in Ajh for h = 1...m, with

j1, ..., jm indexed in such a way that the Ajh are numbered in the

order they occur in the UPPAAL system definition,

(∀h 6= i, j1, ..., jm)lk−1
h = lkh,

(vk−1 + tk−1) |= ζi ∧ ζj1 ∧ ... ∧ ζjm ,
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Every edge from a location other than li, lj1 , ..., ljm either has no

synchronisation label ak?, or the valuation (vk−1 + tk−1) does not

satisfy its guard, vk = (vk−1 + tk−1)[λi][λj1 ]...[λjm ] (note the order

in which the assignments are applied),

vk |= Ii(l
k
i ) ∧ Ij1(lkj1) ∧ ... ∧ Ijm(lkjm),

either at least one of lk−1
i , lk−1

j1
, ..., lk−1

jm
is committed or no location

other than these is committed.

The assume-guarantee theorem 7.4.2 relied on a rather liberal synchro-

nisation semantics; UPPAAL takes a rather stricter view of enforcing syn-

chronisation. In view of this, the UPPAAL version of the assume-guarantee

theorem requires stronger hypotheses.

7.5.2 Theorem

Let A1, ...,An be UPPAAL-type timed automata comprising a composite

UPPAAL system (not employing priorities or global variables other than

channels) and suppose each component Ai can be replaced by a component

A′i with the same synchronisations. Suppose further that if i 6= j, the local

variables of Ai, A′i are disjoint from those of Aj, A′j. In the sequel, let
∏

denote a parallel product4.

If (a) for i = 1, ..., n,( ∏
1≤j<i

A′j

)
‖ Ai ‖

( ∏
i<j≤n

A′j

)
�

n∏
i=1

A′i, (7.16)

and (b) whenever a subset of indices I = {i1...ir} identifies system compo-

nents which participate in a synchronised action,

n∏
i=1

A′′i �
n∏
i=1

A′i (7.17)

where A′′i is Ai when i ∈ I and A′i otherwise;

4e.g.
∏n
i=1 Ai for A1 ‖ ... ‖ An
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then
n∏
i=1

Ai �
n∏
i=1

A′i (7.18)

Proof. To show any trace of the product on the left of (7.18) is also a

trace of the product on the right, we reason by induction on the length (the

number of actions) of a trace.

First, consider a “trivial run” of A1 ‖ ... ‖ An,

(v0, (l0i )i=0...n)
t0→ (v0 + t0, (l

0
i )i=0...n) (7.19)

where t0 ∈ R, v0 is the valuation which zeros all clocks and initialises local

variables, and (l0i )i=0...n is the vector of initial locations of
∏n

i=1 Ai. In the

sequel such a vector of locations (li)i=1...n will be abbreviated
−→
l .

Without loss of generality, in view of (7.16), we can assume the
−→
l 0 are

also the respective initial locations of
∏n

i=0 A′i – re-label if necessary. Let

αi, α
′
i denote the invariants at l0i in Ai,A′i. Then (7.19) implies that

∀t < t0 : (v0 + t) |=
∧
i

αi

We aim to deduce that (v0 + t) |=
∧
i α
′
i.

Now, the variables of Ai,A′i are disjoint from those of Aj,A′j when i 6= j.

For i = 1, ..., n, let vi denote a valuation which agrees with (v0 + t) on the

Ai,A′i-variables, and which is as v0 on the Aj,A′j-variables for all j 6= i. We

can assume with no loss of generality that v0 |= α′j.

Then vi |= αi ∧
∧
j 6=i α

′
j. It follows from (7.16) that vi |=

∧
j α
′
j. In

particular, vi |= α′i.

Therefore, by construction of vi, (v0 + t) |= α′i.

∀t < t0 : (v0 + t) |=
∧
i

α′i

Applying this for all i and to all t ∈ [0, t0] we can deduce that the time
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delay (7.19) is actually a run in
∏n

i=1 A′i.

Now, let

(v0,
−→
l 0)

t0−→ (v0 + t0,
−→
l 0)

a1−→ ...
tm−1−→ (vm−1 + tm−1,

−→
l m−1)

am−→ (vm,
−→
l m)

tm−→ (vm + tm,
−→
l m) (7.20)

be a run of “length” m in
∏n

i=1 Ai. The action labels ak are largely ignored

in UPPAAL but here they serve admirably as references to the action tran-

sitions. Assume as induction hypothesis that all runs of length shorter than

m in
∏n

i=1 Ai map into
∏n

i=1 A′i. We shall abuse notation and use the same

symbols
−→
l k (k < n) for “corresponding” locations in

∏n
i=1 A′i.

Then the part of (7.20) up to (vm−1 + tm−1,
−→
l m−1) is already a run in∏n

i=1 A′i.

At each stage, k < m, vk = vk−1+tk−1 with the assignments of ak applied.

Now we have to consider three possibilities for the transition:

(vm−1 + tm−1,
−→
l m−1)

am−→ (vm,
−→
l m)

We could have (1): an internal transition of a single component Ai, or (2): a

binary synchronisation between two components carrying the labels am!, am?

or (3): a broadcast synchronisation between a “sending” component carrying

the label am! and “receiving components” carrying the label am?.

First, suppose am to be an internal transition on Ai. Thus,

∀j 6= i : lmj = lm−1
j ,

vm = vm−1 + tm−1

with update assignments on Ai-variables only.

This lifts to
(∏

1≤j<i A′j
)
‖ Ai ‖

(∏
i<j≤n A′j

)
since for j 6= i, lmj “is”

already in A′j. (Abuse of notation again: more precisely, there is a corre-
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sponding location of A′j which we can label lmj .)

Consider the time delay (vm,
−→
l m)

tm→ (vm + tm,
−→
l m) in

∏n
i=1 Ai. For

j = 1, ..., n, Let αj be the invariant in Aj at
−→
l m. Then,

∀t < tm : (vm + t) |=
∧
j

αj

Let α′j be the invariant in A′j at lmj (abuse of notation again) and for

arbitrary t < tm define the valuation wt on the Ai, A′i-variables as vm+ t and

on the Aj, A′j-variables for j 6= i as vm. Then wt |= αi and also wt |=
∧
j 6=i α

′
j

because for j 6= i, lmj = lm−1
j and we can appeal to the induction hypothesis.

Now,

∀t < tm : wt |= αi ∧
∧
j 6=i

α′j

exhibits tm as a possible time delay “transition” in
(∏

1≤j<i A′j
)
‖ Ai ‖(∏

i<j≤n A′j
)

; hence by premiss (7.16), as a time delay in
∏n

j=1 A′j. It follows

(the reasoning is the same as in the induction base case) that

∀t < tm : wt |=
∧
j

α′j

In particular, ∀t < tm : wt |= α′i. So, since wt agrees with vm + t on

Ai, A′i-variables, ∀t < tm : (vm + t) |= α′i.

By repetitions of this argument for all i, using all the parts of premiss

(7.16), tm is a permissible time delay in
∏n

i=1 A′i and the segment

...
an−→ (...)

tn−→ (...)

extends the “tail” of (7.20) to a run in
∏n

i=1 A′i.

Now consider the second possibility: am is a binary synchronisation of
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∏n
i=1 Ai. In particular, there are transitions

lm−1
i

ζi,am!,λi−→ lmi in Ai (7.21)

lm−1
j

ζj ,am?,λj−→ lmj in Aj (7.22)

where (vm−1 + tm−1) |= ζi ∧ ζj (the guards of am in Ai and Aj) and

vm = (vm−1 + tm−1)[λi][λj] |= αi ∧ αj, the invariants at lmi , l
n
j . The semantic

rules of UPPAAL are satisfied and the update assignments λi, λj applied in

the correct order.

Also, in view of the time delay (vm,
−→
l m)

tm−→ (vm + tm,
−→
l m) in

∏n
h=1 Ah,

we have ∀t < tm : (vm + t) |= αi ∧ αj.

This am synchronised action lifts to( ∏
1≤h<i

A′h

)
‖ Ai ‖

( ∏
1≤i<h<j

A′h

)
‖ Aj ‖

( ∏
j<h≤n

A′h

)
(7.23)

(without loss of generality, we may assume i < j) since for h 6= i, j, lmh is

“already” (by abuse of notation) already in A′h.

As before, considering the time delay tm in
∏n

h=1 A′h, where for h =

1, ..., n, αh be the invariant in Ah at
−→
l m,

∀t < tm : (vm + t) |=
∧
h

αh

Let α′h be the invariant in A′h at lmh (abuse of notation again) and for

arbitrary t < tm define the valuation wt on the Ai, A′i, Aj, A′j-variables as

vm + t and on the Ah, A′h-variables for h 6= i, j as vm. Then wt |= αi ∧ αj
and also wt |=

∧
j 6=i,j α

′
j because for h 6= i, j, lmh = lm−1

h and we can appeal to

the induction hypothesis.

Now,

∀t < tm : wt |= αi ∧ αj ∧
∧
h6=i,j

α′h
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exhibits tm as a possible time delay “transition” in the product automaton

7.23; hence by premiss (7.17), as a time delay in
∏n

h=1 A′h. It follows as before

that

∀t < tm : wt |=
∧
h

α′h

In particular, ∀t < tm : wt |= α′i ∧ α′j. So, since wt agrees with vm + t on

Ai, A′i, Aj, A′j-variables, ∀t < tm : (vm + t) |= α′i ∧ α′j.
tm is a permissible time delay in

∏n
i=1 A′i and the segment

...
an−→ (...)

tn−→ (...)

extends the “tail” of (7.20) to a run in
∏n

i=1 A′i.

The third possibility is that am is broadcast synchronisation. The com-

putational details of the inductive step are in this case similar to the previous

one, except instead of a single receiving edge in component j there are sev-

eral, in components j1, ..., jr and so the “exceptional” edges are in i, j1, ..., jr.

Thus the run (7.20) is in
∏n

h=0 A′h in the case of a synchronised transition

and the induction is complete.

7.6 Further Composition Theorems

In applications, it is useful to replace one component of a system with an

abstraction with the same external interface: synchronising actions (at least)

and locations, and have in consequence a system which simulates the original.

7.6.1 Definition

Given two timed automata A = (L, l0, A,H, E, I) and

A′ = (L′, l′0, A,H, E ′, I ′) with the same set of clocks and set of action labels,

call a relation R ⊆ L × L′ a component-simulation if for all (l, l′) ∈ R, for



158 CHAPTER 7. COMPOSITIONALITY THEOREMS

every edge from l, l
ζ,a,λ−→ m there exists an edge from l′, l′

ζ′,a,λ′−→ m′5, with

• the same action label;

• targets related by R: (m,m′) ∈ R;

• ζ ` ζ ′, I(m) ` I ′(m′) and λ′ = λ.

If A, A′ are UPPAAL automata (process templates), this definition ap-

plies with a ∈ A understood as an “empty” (“anonymous”, “τ”) action label

or a synchronisation label, and λ, λ′ as sets of the more general UPPAAL

assignment/updates involving variables of UPPAAL types, not just clocks.

7.6.2 Proposition

Let let A, A′ be automata as above and suppose them to be components

of composite system: A ‖ ... and A′ ‖ ..., the ellipses representing the other

components which are the same in two systems. Let V denote the set of

valuations of clocks and other variables (interpreted in a suitably general way

in the case of UPPAAL automata) of the two systems. Given a component-

simulation R ⊆ L × L′, define a relation R̂ between timed states of the

systems by

(l, ..., v; l′, ..., v, ) ∈ R̂ iff (l, l′) ∈ R and the remaining component locations

match, and v = v′ in V .

Then R̂ is a simulation of timed transition systems 2.4.2.

Proof. Say (l, l′) ∈ R, v = v′ and there is a timed transition (l, ..., v)
a→

(m, ..., w) in the A-based system. This must arise from some edge (which may

or may not be participating in a synchronised action) l
ζ,a,λ−→ m of A, with

v |= ζ and w = v[λ] |= I(m). (v[λ] means v with the updates – assignments

and clock resets of λ.)

By hypothesis, there exists an edge with the same label, l′
ζ′,a,λ′−→ m′ with

(m,m′) ∈ R, ζ ` ζ ′, I(m) ` I ′(m′) and λ′ = λ: so v′ = v |= ζ ′ and

w′ , w = v[λ] = v′[λ′] |= I ′(m′). There is therefore a corresponding timed

5The −→ refers to E or E′ according to context.
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transition in the A′-based system: (l′, .., v′)
a→ (m′, ..., w′). If synchronisation

is required, the requirements carry over from the one system to the other.

7.6.3 Definition

Given two timed automata A = (L, l0, A,H, E, I) and

A′ = (L′, l′0, A,H, E ′, I ′) with the same set of clocks and set of action labels,

call a relation B ⊆ L× L′ a component-bisimulation if for all (l, l′) ∈ R,

• For every edge from l, l
ζ,a,λ−→ m there exists an edge from l′, l′

ζ′,a,λ′−→ m′,

with the same action label, targets related by R: (m,m′) ∈ R, and

ζ ` ζ ′, I(m) ` I ′(m′) and λ′ = λ.

• For every edge from l′, l′
ζ′,a,λ′−→ m′ there exists an edge from l, l

ζ,a,λ−→ m,

with the same action label, targets related by R: (m,m′) ∈ R, and

ζ ′ ` ζ, I ′(m′) ` I(m) and λ = λ′.

7.6.4 Proposition

Let let A, A′ be components of composite systems as above, the other com-

ponents being the same in the two systems. Let V denote the set of valuations

of clocks and other variables . Given a component-simulation B ⊆ L × L′,
define a relation B̂ between timed states of the systems by

(l, ..., v; l′, ..., v, ) ∈ B̂ iff (l, l′) ∈ R and the remaining component locations

match, and v = v′ in V .

Then B̂ is a strong bisimulation of timed transition systems 2.4.1.

The proof is is essentially a repetition of the previous proof in two logical

directions.

7.7 Conclusions

7.7.1 Hybrid Automata, UPPAAL

The formal proof given in subsection 7.4.2 dealt specifically with timed au-

tomata but most tool sets and many modelling situations deal with more
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general hybrid automata. These carry an arbitrary set of variables, not just

clocks, and a subset of variables can be updated to arbitrary values (not

just reset to 0) on each discrete action. Actually, hybrid automata come in

many flavours, some featuring real (continuous) variables, some integers only,

some, like the UPPAAL toolset [109], quite a complex type system including

arrays. Since UPPAAL is such a useful tool for applying the results of this

thesis, developing compositionality results for UPPAAL automata seems a

good idea.

7.7.2 The � Relation

The � relation between automata corresponds loosely to the notion of sat-

isfaction of specified properties of a system. Behaviour can be specified by

an automaton S; then A � S tells us that the behaviour described by A
implements the specification S.

The UPPAAL tool set includes a CTL-like language (including modal op-

erators � = “always”, ♦ = “eventually”, U = “until”, and ∀,∃-quantification

over execution paths) described in [109] for expressing properties of an au-

tomaton or, more generally, of systems modelable by automata.

It will useful that, whenever A � S and ϕ is formula of the specification

language expressing some system property, then S |= ϕ implies A |= ϕ. In

fact this is the case provided ϕ employs only universal quantification over

paths: see, for instance Clarke et al. [45], p177, Theorem 16. Briefly, if ϕ is

∀�ψ, satisfied by S, then ψ is true at every state on every run of S, hence

a fortiori at every state on every run of A. Similarly if ϕ is ∀♦ψ: ψ is true

atsome state on every run of S, hence at some state on every run of A.

A related question is, given a property ϕ for which we would like to

know whether some model A |= ϕ, whether there is some more abstract

specification S such that A � S |= ϕ.

7.7.3 Decomposition

The case studies to be considered in the sequel make use of UPPAAL which

does in fact support hybrid automata, although in the first instance we are
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primarily interested in modelling and checking bCANdle models via the plain

timed-automaton representation. We shall in the sequel show that UPPAAL

semantics simulates timed-automata semantics in the sense of 2.4.2.

So far, work in UPPAAL with questions such as those of the previous

subsection has run frustratingly often into the state-explosion problem: it

will be useful, therefore, to decompose automaton-based models into parallel-

composites and employ results such as those obtained in this chapter. The

work of the next chapter will be to examine some examples of how this may

be done in practice, and the benefits that accrue from this approach.
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Chapter 8

Compositional Model Checking

in Practice

In this chapter, examples will show how the results of the last chapter may

be used with decomposition to make checks of composite models faster, using

less memory, and, indeed, to make previously intractable checks tractable.

The focus is on distributed timed systems in which components communicate

via CAN, modelled in UPPAAL using the CAN representation described in

chapter 6. The checks were performed using the UPPAAL verifier tool.

8.1 A Translation Tool

There is a practical problem with the no-shared-variables CAN model. For

a given value of the parameters m and n, the number of message types and

values (of each type) supported, the UPPAAL source hard-codes multiple

synchronisation “channels”, locations and edges with multiplicity m or m×n
(denoted by the thick lines in figure 6.1 and by the indices µ, ν in this figure

and in the pseudo code at the end of §6.1). In early experiments this was

coded by hand, and quickly became tedious.

To help with this, CANGen, a code-generating “front-end” to UPPAAL was

developed, which reads an input file and generates UPPAAL source code in

.xta format. The input file starts with lines specifying values of m and n;

163
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then a line beginning #channel specifies that code for a CAN channel be

generated, using l,u,L,U-parameters given on the line.

After this are lines of ordinary UPPAAL source code interspersed with

other CANGen directives

• #fanoutTypes generates code for a process to fan an urgent synchro-

nisation out over multiple channels;

• #globals causes subsequent input to be placed in the global declara-

tions area of the UPPAAL source;

• #processes causes subsequent input to be placed in the process tem-

plate area of the UPPAAL source;

• #procInstances causes subsequent input to be placed in the process

instance definition area of the UPPAAL source;

• #sysDef causes subsequent input to be placed in the system definition

area of the UPPAAL source.

The most important syntactic constructs in the input to CANGen are

• FORType(t) ... token|t|... ROF

• FORVal(v) ... token|v|... ROF

These cause input tokens to be replicated over all message idetifiers (types)

and, respectively, all message values. The sequence of tokens between FORType(t)

and ROF is replicated m times, each instance of |t| becoming 000 then 001

and so on up to m− 1. The sequence of tokens between FORVal(v) and ROF

is replicated n times. There may be multiple occurrences of |t| or |v| in a

sequence being replicated; the metavariable may be something other than t

or v but must match the one in the FOR token.

The replicated sequences are generated as a list separated by “,” or by

“;” depending on the UPPAAL context.

The construct may run over several lines in the source file: \n is just a

source code character as far as CANGen is concerned.

These constructs may be nested. For instance,
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FORtype(t) FORval(k) broadcast chan &rdg|t|_|k| ROF ROF

expands in the case m = 2, n = 3 to

broadcast chan &rdg000_000, broadcast chan &rdg000_001,

broadcast chan &rdg000_002, broadcast chan &rdg001_000,

broadcast chan &rdg001_001, broadcast chan &rdg001_002

As an illustration, the input file to CANGen and the generated UPPAAL

source code are listed in appendix D.

8.2 A First Example

variable reading swOn/Off
swOn/Off

request reading

variable reading

request reading

network (CAN channel) −− C

plant − sensor −− A controller −− B

Figure 8.1: A distributed control system: the component processes and mes-
sages

Figure 8.1 shows a small control system comprising a sensing process and

a controller process communicating via a CAN network.

The sensing process A might naturally be conceived as a composite, a

“plant”, P synchronising in parallel with a “sensor” process S as in figure

8.2. After some analysis one may obtain a simulation P ‖ S � A, the latter

being a combined plant-sensor process like the one depicted in figure 8.3.

The controller B is depicted in figure 8.4 and the connecting CAN network

is represented by a channel process C. From proposition 7.6.2 we can infer

that P ‖ S ‖ B ‖ C � A ‖ B ‖ C and so the system is modelled at an abstract

level as A ‖ B ‖ C. The CANGen source code for this is to be found in appendix



166CHAPTER 8. COMPOSITIONAL MODEL CHECKING IN PRACTICE

s

s’

Init(u)

rq?

rqstd (u)

p1

inc?

v++

v = V/2

inc?

v−−

dec?

val|k| (u)

(v == |k|)

rdg|k|!

on {h <= p}

off {h <= p}

h = 0

swOn?

swOff?

(h >= p/2) h = 0 (h >= p/2) h = 0 
(h >= p/2)

(h >= p/2)

inc! h = 0

(h >= p/2) h = 0 

Sensor, SPlant, P

dec! h = 0

Figure 8.2: Synchronising Plant and Sensor processes

E.1. The system can be in an “on” state or an “off” state and features a

variable which non-deterministically increments when the state is “on”, and

decrements when the state is “off”. The variable, perhaps a temperature, is

being continuously monitored by the sensor process and readings fed through

a network to the controller process which decides whether to switch the

system state (perhaps a heater) on or off.

The sensing process (see figure 8.3) has a duty cycle in which it repeat-

edly waits for a request (delivered through the network, denoted rq) from

the controller for a sensor reading, then outputs the current reading onto a

network. While waiting (at location p1), it simulates the variable being in-

cremented or decremented non-deterministically, and at any location in the

duty cycle it can respond to a request swOn or swOff from the controller via

the network, to switch the system state (heater) on or off. This is, perhaps,

more than simply a sensing process as it simulates the variable being sensed

as well.

CANGen is modelling the network for the system using three message types

and V distinct values. Type 0 messages from the plant-sensor deliver readings
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p1 {h <= p}

rqstd (u)

(v == |k|)

rq?

swOff?

h = 0

v = V/2, on = 0

on = 0

swOn?

(h >= p/2 && on) 

v++; h = 0

(h >= p/2 && !on) 

v−−; h = 0

val|k| (u)

swOff?

swOff?

on = 0

on = 0

swOn?

swOn?

on = 1

on = 1

rdg|k|!

on = 1

Init(u)

Figure 8.3: A Plant Sensor process with a single sensor

to the controller; type 1 messages deliver switch-on, switch-off (values 1, 0)

requests from the controller, and type 2 messages reading requests. In figure

8.3, p denotes an integer parameter to the plant sensor process template, and

g, h denote UPPAAL clock variables.

The controller process (figure 8.4) duty cycle begins at location rqstVal

and repeatedly requests a reading by issuing the rq! synchronisation and

then obtains a sensor reading from the network, assigning the value to vari-

able vAv. Parameters lo, hi define limits within which the controller would

like to keep the sensor reading. If vAv falls below lo, an instruction to the
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Init(u)

got|k| (u)

vAv = V/2, g = 0, h = 0

rqstVal {h <= dly}

(h >= dly) h = 0

rq!  h = 0

rqstd (u)

getVals {h <= dly2}
(h >=   dly2)

h = 0

rdg|k|?

vAv = |k|

sndOff {h <= dly2}
(vAv > hi)(vAv < lo)

h = 0h = 0

swOff! h = 0swOn! h = 0

sndOn {h <= dly2}

h = 0

(lo <= vAv <= hi)

Figure 8.4: A Plant Controller process

sensing process to “switch on” is issued; if vAv rises above hi, an instruction

to “switch off” is issued; otherwise, the process returns to the beginning of

its duty cycle.

With this system, one can check various desirable properties such as that

it will not deadlock, and that values of the variable are kept within bounds.

Properties such as these are expressible in the UPPAAL specification lan-

guage (essentially CTL):

• ¬∃♦deadlock (or ∀�¬deadlock)

• ∀�(controller.vAv < 28)

• ∀�(controller.getVals⇒ controller.vAv > 12)

When lo and hi are given as 19 and 21 respectively, UPPAAL’s verifyta
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tool verifies1 that these three properties are satisfied. Further, verifyta can

be run inside J Bengtsson’s memtime tool to obtain execution times and

measures of memory usage. This simple software tool, obtainable from the

UPPAAL web site, forks a child process within which the command (e.g.

verifyta) runs, while the parent process gathers time and memory usage

statistics for the child process from its /proc/(pid)/stat file. CPU time

(in user and in kernel mode) and maximum (virtual) memory allocated to

the process and maximum resident set size (real memory usage – the size of

segment of the process permanently resident in memory) are reported.

Results for the present case, obtained on a simple Intel-based machine,2

are as below. These figures are averages over 20 trials: means and stahdard

deviations are quoted

∀�(controller.getVals ⇒ controller.vAv > ξ) is abbreviated o(ξ) and

∀�(controller.vAv < ξ) is abbreviated u(ξ). Maximum memory usages (vir-

tual memory usage and resident set size) are reported in megabytes.

check: o(12) o(14) o(16) u(24) u(26) u(28)

mean user time: 94.0” 96.5” 92.9” 94.6” 94.9” 93.3”

standard dev : 0.8 1.0 0.8 1.6 2.3 0.5

mean max v mem: 43.331 43.331 43.332 43.330 43.330 43.330

standard dev : 0.003 0.003 0.003 0.002 0.002 0.003

mean max rss: 8.851 8.851 8.851 8.851 8.849 8.849

standard dev : 0.004 0.003 0.003 0.004 0.004 0.002

A check that the system is deadlock-free took somewhat longer, 693.1

seconds averaged over 20 trials, with stamdard deviation 13.8; maximum

virtual memory usage was 45.571 Mb (SD = 0.003) and maximum rss was

11.5 Mb (SD = 0.003).

It would be good to see whether such desirable behaviour of the system

is also guaranteed in more “developed” versions of this control system, and

these figures provide a base line for comparison with the computing effort

associated with this.

1using breadth-first search and conservative state space optimisation
2an Acer Aspire 1360 running at 2.8 GHz with 1Gb RAM, running Ubuntu 8.04
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p1 {h <= p}

rqstd (u)

rq?

swOff?

h = 0

v = V/2, on = 0

on = 0

val|k| (u)

swOff?

swOff?

on = 0

on = 0

swOn?

swOn?

on = 1

on = 1

rdg|k|!

(h >= p/2 && on) 
v2 −−; h = 0

(h >= p/2 && !on) 

(h >= p/2 && on) 

(h >= p/2 && !on) 

v2 ++; h = 0

v1 ++; h = 0

v1 −−; h = 0

((v1+v2)/2 == |k|)

Init(u)

on = 1
swOn?

Figure 8.5: A Plant Sensor process with two sensors, averaged

For instance, one might decide to use two sensors whose readings are

averaged instead of a single sensor. Figure 8.5 shows a replacement for the

sensing process in which two variables are sensed (again this is simulated by

non-deterministic random-walk) and on request, their average is output to

the network for the controller to pick up. The controller process is the same

as before.

With just this admittedly artificial but simple increase in complexity, it

now takes UPPAAL a long time (over an hour) to verify any of the o(ξ), u(ξ)

properties. For instance a check of o(12) inside memtime took 1 hour, 44

minutes, 33 seconds. Total memory usage in this case rose to 189 Mb (rss to



8.2. A FIRST EXAMPLE 171

155 Mb) – still feasible with current resources.

However with a further increase in complexity, to a system which averages

three sensors, verfication of o(ξ) failed altogether. After a little over 10 hours,

with memtime reporting 10h 3m 50s elapsed CPU time, memory usage rose

dramatically to 936 Mb (around the limit of installed RAM) and the disk

drive started thashing. Therafter, the CPU time indication made very little

progress. Memory demand (the size of the state space) had outstripped the

machine.

Clearly this limit could be pushed further out by using a bigger machine;

but then what about a further small increase in the complexity of the prob-

lem? Fortunately, all the properties considered here can be inferred from

the corresponding properties of the simpler 1-sensor system. First, if one

imagines computing (v1+v2)/2 every time v1 or v2 is incremented or decre-

mented by the plant sensor process at location p1, then the externally visible

behaviour of the two-sensor process is (with this addition) just that of a state

machine looking like that of the one-sensor process (8.3) except with (for all

k) the transition rqstd −→ val|k| guarded by (v/2 == |k|).

This in turn is easily seen to be simulated by a version of the one-sensor

process. The simulation relation is the diagonal. One may now use the

proposition 7.6.2 to infer the properties set out above for the two-sensor

system: it is simulated by a one-sensor system for which corresponding prop-

erties are easily verified; and for any execution of the the simulated system

there is a corresponding execution of the simulating system with the desired

properties.

The reasoning behind this example generalises to systems which aver-

age more than two sensors, for which a direct check is, as we have seen,

intractable.
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8.3 Using Assume-Guarantee

8.3.1 Another Control System

Consider now a control system with the same high-level structure as the

examples of the previous section (Figure 8.6).

variable reading swOn/Off
swOn/Off

request reading

variable reading

request reading

network (CAN channel) −− C

plant − sensor −− A controller −− B

Figure 8.6: Distributed control system: the component processes and mes-
sages

A plant-sensor process models and simulates a plant which obtains read-

ings of a sensed variable and sends them through a CAN network to a con-

troller process. The controller sends requests for readings, receives these

readings and sends switch-on, switch-off requests to the plant-sensor process.

The plant-sensor process non-deterministically increments the sensed vari-

able when it is “on” and decrements it when “off”. So far, this is very like

the examples of §8.2.

Imagine now, though, that we wish to model a kind of system inertia in

the plant-sensor process. In particular, there is an “inertia” parameter which

specifies a minimum time that must elapse from a switch-on or switch-off

before the change of state takes effect. Before this time has elapsed, the

variable does not change value.

There is also some inertia now in the controller. In the previous version

of this, there was a “switch-on threshold” and “switch-off threshold”; the

controller could issue a switch-on command if a received value was below the

switch-on threshold, and a switch-off command if it was above the switch-off

threshold. A more complex logic is now modelled. There is, in addition, a
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parameter e, and also an “inertia” parameter provided. When a reading is

received which is below the lower threshold or above the upper threshold, a

switch-on or switch-off command (as appropriate) may be issued provided a

time of at least the inertia parameter has elapsed since the last issue of a

switch-on or -off. A switch-on or -off will also be issued if the received reading

is below the lower or above the upper threshold by e or more, regardless of

the time elapsed. Otherwise no switch-on or -off is issued. This models a

situation where the controller may respond sluggishly to small crossings of the

thresholds, but respond urgently to large deviations (modelled by parameter

e).

As before the system is modelled as an UPPAAL system A ‖ B ‖ C
composed of three processes: (A) the plant-sensor process (figure 8.7), (B)

the controller process (figure 8.8), and (C) the CAN network channel.

The plant-sensor process sends readings of its variable v through the

network channel as before (as messages of type 000) to the controller process.

The controller sends commands to “switch on” or “switch off” to the plant-

sensor as before, as messages of type 001, value 000 for “off”, value 001 =

“on”; and requests for a reading as messages of type 002.

As before, the plant-sensor process simulates a variable v whose value,

initially set to the middle of the range of integer values modelled by the chan-

nel process, goes up when the system is “on” and down when it is “off”. After

half the permitted delay at location p1, v may (but does not have to) incre-

ment if the system is “on” and decrement if it is “off”, provided also that the

required “inertia time” has elapsed. The latter is modelled by the conjunct

g > in in the guards of the self-loops at p1 which increment and decrement

v. Clock g is reset whenever a request to switch on or switch off is received.

This may happen at every location in the duty cycle. Bear in mind that

these messages are, in the fashion of UPPAAL broadcast-synchronisation

semantics, picked up as soon as they are available.

Similarly, the plant-sensor process may not linger at p1 when a rq message

arrives, but must proceed to the rest of the duty cycle in which a reading

of v is sent through the network to the controller in a fashion similar to the

the example of §8.2. An UPPAAL urgent synchronisation rdg|k|! sends
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p1 {h <= p}

(v == |k|)

rq?

g = 0, h = 0

v = V/2, on = 0

Init(u)

rqstd (u)

val|k| (u)

(h >= p/2 && on && g > in) 

(h >= p/2 && !on && g > in) 
v−−; h = 0

v++; h = 0

(h >= p/2 && g <= in)

h = 0

swOff? on = 0,

swOn? on = 1,

swOff? on = 0,

swOn? on = 1,

swOff? on = 0,

swOn? on = 1,

g = 0

g = 0

g = 0

g = 0

g = 0

g = 0

rdg|k|!

Figure 8.7: A plant-sensor process

the value k onto the network where it is eventually received by the controller

process.

The controller process B is shown in figure 8.8. In addition to the features

of the previous version, there is a clock g measuring time since the last switch-

on or switch-off command was sent. Guards test clock g against an “extra

inertia” parameter in the process of deciding whether to issue switch-on or

switch-off instructions.

Its duty cycle begins at location rqstVal with, after a delay, a move to a

location rqstd from which a request to the plant-sensor process for a variable
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Init(u)

got|k|

vAv = V/2, h = 0, g = 0

rqstVal {h <= dly}

sndOn

rqstd

(h >= dly) h = 0

vAv = |k|

{h <= dly2}h = 0
sndOff

h = 0

getVals

rq!  h = 0

rdg|k|?

h = 0

(lo−e <= vAv <= hi+e)))

h = 0

((lo <= vAv <= hi) ||

(g <= inert &&

|| vAv < lo−e)
((vAv < lo && g > inert)

|| vAv > hi+e)

((vAv > hi && g > inert)

h = 0, g = 0swOn!

h = 0, g = 0

swOff!

Figure 8.8: A controller process

reading is sent to the network. This happens by means of an UPPAAL urgent

synchronisation, as soon as it can happen. Then, from location getVals, a

value is received from the network and assigned to the variable vAv.

Bear in mind that as usual in CANGen notation, got|k| is actually

shorthand for a set of locations (k = 0 ... 39) and the edges into and out

of got|k| are likewise sets of edges. The edges from getVals “fan out” and

the edges to sndOn “fan in”, as do the edges to sndOff and back to rqstVal.

If either the value of vAv has fallen below lo and time since the last

switch-off or -on (measured by g) exceeds inert, or vAv has fallen below

lo - e, the edge to sndOn may be followed, whence a switch-on message is

urgently sent to the network (and thence to the plant-sensor). If either vAv

has risen above hi and g > inert, or vAv has risen above hi + e, the edge

to sndOff may be followed, whence a switch-off message is sent. However, as

long as the value of vAv is between lo-e and hi+e and less time than inert

has elapsed since the last switch-on or -off, the edge back torqstVal may be
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taken, bypassing the sending of switch-on or switch-off messages.

The CANGen source code for this model is listed in appendix F.1.

Can this model deadlock? How good is the control provided by it?

In experiments, the “nominal” value of the variable plantSensor.v was

set to 20: plantSensor.v and controller.vAv were initialised to this.

controller.lo and controller.hi are 19, 21 respectively. The properties

[o(ξ)] : ∀�(controller.getVals⇒ controller.vAv > ξ)

were checked for ξ = 12, 14, 16 and the properties

[u(ξ]) : ∀�(controller.vAv < ξ)

were checked for ξ = 24, 26, 28. As in the previous section, the checks were

by UPPAAL verifyta running inside memtime. The results are means and

standard deviations of 20 trials. When e was set at 2, all these properties

were satisfied. Here are the times and memory usage of these checks when e

= 2:

check: o(12) o(14) o(16) u(24) u(26) u(28)

mean user time: 261.2” 264.9” 252.2” 252.6” 252.8” 256.9”

standard dev : 5.6 9.1 0.5 0.5 1.0 7.0

mean max v mem: 43.415 43.415 43.417 43.415 43.415 43.415

standard dev : 0.003 0.002 0.003 0.002 0.002 0.003

mean max rss: 9.002 8.851 8.999 8.998 8.999 9.001

standard dev : 0.008 0.009 0.005 0.006 0.006 0.007

In all cases the model was found also to be deadlock-free: ¬∃♦deadlock (or

∀�¬deadlock). However, the check for this took much longer: the companion

to the result above took 2461 seconds (41 minutes, 1 second) averaged over 20

trials, with a standard deviation of 40 seconds; maximum (virtual) memory

reached 45.4 Mb and rss 11.5 Mb, on average with standard deviations of

0.003 Mb, 0.004 Mb respectively.

It would be useful to these properties could be checked more rapidly. This
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can in fact be done if the component A can be replaced by a simpler, faster to

check, component A′ which nevertheless simulates it (in the presence of the

rest of the system), and if the component B is likewise replaced by a simpler

abstraction B′. For this to be valid, we need to know that all timed runs of

A ‖ B ‖ C are also timed runs of A′ ‖ B′ ‖ C. To be useful, the abstract

model must be quicker to check.

We shall construct models A′,B′ by abstracting from A,B and find that

the checks can indeed be performed much more quickly on A′ ‖ B′ ‖ C which

the model A ‖ B ‖ C simulates. The relation A ‖ B ‖ C � A′ ‖ B′ ‖ C is

inferred using the assume-guarantee theorem 7.5.2 and, using this, the o(ξ),

u(ξ) and deadlock-freeness properties for A ‖ B ‖ C can be inferred from the

analogous properties of A′ ‖ B′ ‖ C.

A′ is devised by abstracting out some of the logic of A. Figure 8.9 shows

the (non-deterministic) abstraction A′ of the plant-sensor process A of figure

8.7. This has the same structure as A, the only difference being that the

guards on three of the loops at location p1 are weaker. The clock g has

disappeared; it is not needed.

Similarly, B′ is abstracted from B. Figure 8.10 shows the abstraction B′

of the controller process B of figure 8.8. Again the structure of locations and

guards is the same, but the inertia modelling involving tests on clock g have

been replaced by weaker guards. The CANGen source code for the whole

abstraction is listed in appendix F.2.

It will be seen that the properties of the system A′ ‖ B′ ‖ C are checkable

very quickly. To be useful, though, it needs be established that runs of this

system subsume those of the original system A ‖ B ‖ C.

The assume-guarantee theorem 7.5.2 (page 152) is now used to establish

A ‖ B ‖ C � A′ ‖ B′ ‖ C.

Indeed, given that the same version, C appears on both sides of this

relation, the premisses (a) and (b) of the theorem are covered provided we
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p1 {h <= p}

(v == |k|)

rq?

h = 0

v = V/2, on = 0

Init(u)

rqstd (u)

val|k| (u)

(h >= p/2 && on) 

(h >= p/2 && !on) 
v−−; h = 0

v++; h = 0

swOff? on = 0

swOn? on = 1

swOff? on = 0

swOn? on = 1

swOff? on = 0

swOn? on = 1

rdg|k|!

(h >= p/2) 

h = 0

Figure 8.9: An abstract plant-sensor process

can show

A ‖ B ‖ C � A′ ‖ B ‖ C and A ‖ B ‖ C � A ‖ B′ ‖ C.

Now, A and A′ have the same locations and transition edges, save that

some guards in A are stronger than the corresponding guards in A′. From

this it is straightforward to infer that the diagonal relation between states

provides a simulation from A ‖ B ‖ C to A′ ‖ B ‖ C.
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Init(u)

got|k|

vAv = V/2, h = 0

rqstVal {h <= dly}

swOff!swOn!

sndOn

rqstd

(h >= dly) h = 0

h = 0

h = 0 h = 0

{h <= dly2}h = 0

(vAv < lo)
sndOff

h = 0

(vAv > hi)

getVals

rq!  h = 0(lo−e <= vAv <= hi+e)

h = 0

rdg|k|?

vAv = |k|

Figure 8.10: An abstract controller process

Similarly, B and B′ have the same locations and transition edges, save

that some guards in B are stronger than the corresponding guards in B′,
from which similarly one infers a simulation from A ‖ B ‖ C to A ‖ B′ ‖ C.

Thus, the premisses of theorem 7.5.2 are fulfilled and A ‖ B ‖ C � A′ ‖
B′ ‖ C.

This implies that all traces of A ‖ B ‖ C are therefore possible traces of

A′ ‖ B′ ‖ C and since ∀�(controller.vAv < ξ) is (for suitable ξ) satisfied by

A′ ‖ B′ ‖ C, it is also by A ‖ B ‖ C.

Likewise, ∀�(controller.getVals ⇒ controller.vAv > ξ) (for suitable ξ)

and ∀�¬deadlock are satisfied by A ‖ B ‖ C.

Now we know that all universally quantified properties of the abstraction

are also properties of the original, we can test the properties on the abstrac-

tion A′ ‖ B′ ‖ C. The results, as before presented as averages of 20 trials, are
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as follows. Parameter e is set to 2 as before.

check: o(12) o(14) o(16) u(24) u(26) u(28)

mean user time: 30.8” 30.9” 15.7” 28.8” 30.52” 32.3”

standard dev : 0.1 0.5 0.1 0.2 0.1 0.4

mean max v mem: 44.791 44.791 42.552 44.624 44.790 44.792

standard dev : 0.003 0.003 0.002 0.058 0.002 0.002

mean max rss: 10.010 10.010 7.874 9.863 10.010 10.099

standard dev : 0.005 0.002 0.005 0.005 0.006 0.005

Now the time to check for deadlock-freeness is down from 41 minutes to

172.7 seconds (averaged over 20 trials with standard deviation 7.6). Memory

usage was similar: max v mem = 48.7 Mb (SD = 0.003), rss = 14.1 Mb (SD

= 0.002).

This abstract system is deadlock-free, of course, and also the o(12), o(14),

u(26) and u(28) properties were verified. However in this abstraction, the

properties o(16), u(24) fail when e set to 2. This is not in fact a very

surprising result: it is telling us that the abstraction will not keep the variable

controller.vAv within 2 of the set point when e=2: there is too much “slack”

in the system. Notice the checks on o(16), u(24) took less time than the

other checks in this test: the o(16) check was especially quick, presumably

because UPPAAL verifyta found a counter-example very quickly.

We now have a situation where we can infer deadlock-freeness and also

o(12), o(14), u(26) and u(28) for the original more “concrete” process (figures

8.7, 8.8) an order of magnitude faster than by checking it directly. However

the failure of o(16), u(24) leaves us with no help with the original process.

In view of the fact that these properties were verified in the original check

we evidently have in the abstract model spurious counterexamples for them.

When e = 1 in the, all properties, o(12), o(14), o(16), u(24), u(26) and

u(28) and deadlock-freeness, were verified. The o(16) check of the abstract

model took 21.9 seconds (averaged over 20 trials; SD = 0.2) and the u(24)

check took 21.5 seconds. By comparison, checks of these two properties of

the concrete model took 260.1 seconds (SD = 4.3) and 259.2 seconds (SD =

8.7) respectively, over an order of magnitude longer.
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This abstraction has, overall, yielded a significant speed-up of checks of

∀�-properties of the original model. A limitation is that it is possible for a

properties to be falsified by the abstraction even when true in the concrete

model: the abstraction can yield spurious counterexamples.

Nevertheless, the example illustrates how compositional reasoning can

be used to speed up the checking of an embedded system model: decom-

pose it and replace components with abstractions which the original compo-

nents simulate; use compositional theorems and reasoning (such as assume-

guarantee) to infer an overall simulation relationship and hence infer prop-

erties of the system model from the same properties of its abstraction.

8.3.2 Broadcasting

network (CAN channel) −− C

swOn/Off

rq rdg
rdg

controller −− Bplant − sensor −− A

rq rdg

swOn/Off

rdg

esd
esd

esd

emergency −− E

Figure 8.11: A system with broadcast emergency-shutdown

A slight extension of this scenario introduces broadcast – a sender sending

to multiple receivers. In figure 8.11, The system A ‖ B ‖ C is extended with

a process E which simulates an emergency, causing it to emit an urgent

“emergency shut-down” synchronisation esd – see figure 8.12.

esd!

h = 0
down {h <= T}eminit

(h >= T)

h = 0

Figure 8.12: The emergency simulator

Processes A and B both receive this broadcast and are accordingly ex-
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tended each with an extra location down and a transition from every other

location with a broadcast synchronisation with the emergency shutdown mes-

sage.

It can be checked that the broadcast emergency shut-down works as

intended: ∀�(emsd.down ⇒ ∀♦(controller.down ∧ plantSensor.down))

where emsd denotes an instance of the emergency simulator. Using the ab-

stractions A′, B′ in lieu of A, B, this property was verified for the system

A′ ‖ B′ ‖ C ‖ E using the same hardware set as before in 35 minutes, 52.1

seconds. The o(ξ), u(ξ) and non-deadlock properties were still satisfied also.

Unfortunately, the assume-guarantee theorem is no longer useful, for in

order to infer A ‖ B ‖ C ‖ E � A′ ‖ B′ ‖ C ‖ E one needs this already in

order to satisfy premiss (b) of the theorem.

A limitation of the assume-guarantee theorem is that processes jointly

participating in a synchronisation (such as A, B, C in the present instance)

cannot be simulated separately, but must be simulated (or abstracted) to-

gether.

8.4 Working with bCANdle

So far, our examples have focussed on systems modelled by UPPAAL-type

automata, communicating via a CAN channel. These are interesting in that

they show how compositional reasoning can be applied to UPPAAL models

of embedded systems communicating by CAN. However our starting point

was the bCANdle specification framework.

The example of section 8.3, however, uses constructs which can all be

defined in bCANdle.

A process very similar to the plant-sensor process of (figure 8.7) can be

specified as a bCANdle process term PlantSensor by the equations below,

in which g, h are clock variables, v an integer variable, on a boolean, and p

an integer parameter.

PlantSensor = [g = h = 0, v = V/2, on = 0 : 0, 0] ; PSDutyCycle
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PSDutyCycle = [idle: p/2, p]

[> ChgState; PSDutyCycle

[> RecOffOn; PSDutyCycle

[> Comm; PSDutyCycle

ChgState = (on→ [v + +, h = 0 : p/2, p]+!on→ [v −−, h = 0 : p/2, p]

+[h = 0 : p/2, p]

RecOffOn = ch?1.s; (s == 0→ [on = 0, g = 0 : 0, 0]

+s == 1→ [on = 1, g = 0 : 0, 0])

Comm = RecRq; SendVal

RecRq = ch?2.x[> (RecOffOn; RecRq)

SendVal =
∑

k(v == k → ch!0.k)[> (RecOffOn; SendVal)

Here, we assume a data environment DPS which supports integer variable v

(whoe type is a subrange from 0 to some maximum V ) and boolean variable

on, basic operations to initialise these varaibles and the clocks, a predicate

to test whether v has value k (k = 0, ..., V − 1) and basic operations to

increment and decrement v.

Symbol p is a time-delay parameter corresponding to the p in figure 8.7,

and ch denotes the CAN channel. Also recall that a message of type 0 sends

a variable reading, a message type 1 sends a command to switch on or switch

off, and a message of type 2 requests a reading.

Similarly, to define a process like the controller of figure 8.8 would require

a bCANdle equational specification of the form

Controller = [g = h = 0, vav = V/2 : 0, 0] ; ControllerDutyCycle

ControllerDutyCycle =

[ωnull : dly, dly]; ch!2.0; ch?0.vav;

((γlo → ch!1.1) + (γmed → [ωnull : 0, dly2] + (γhi → ch!1.0));

ControllerDutyCycle

As with the plant-sensor process we assume given a data environment DC
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with support for the integer variable vav, a basic operation to initialise vav

and the clocks g, h, operation ωnull which does nothing but reset clock h on

completion, and predicates

γlo ≡ (vav < lo ∧ g > inert) ∨ vav < lo− e,
γhi ≡ (vav > hi ∧ g > inert) ∨ vav > lo+ e,

γmed ≡ ((vav ≥ lo∧ vav ≤ hi)∨ (g ≤ inert∧ (vav ≥ lo− e∧ vav ≤ hi+ e)))

to test the value of variable vav in relation to the values of parameters lo, hi, e

and the clock g in relation to the inertia parameter. Parameters lo, hi, e, inert

are as depicted in figure 8.8 and discussed in §8.3. The clock resets h = 0

appearing in 8.8 add nothing to the functionality of the model but do poten-

tially aid verification by reducing the number of states needing to be checked.

A bCANdle specification (P,N,D) analogous to the example would be

constructed as the parallel composite P = PlantSensor|Controller with

a network term N containing the channel k and data environment D =

DPS tDC .

This example shows how, starting from a bCANdle specification, a paral-

lel composite of timed automata can be constructed using the constructions

employed in the proof of theorem 7.4.2: see § 5.4.2 and appendix B).

Developing canGen. To do this is always possible, but to do it by hand

is laborious, of course. An interesting future project is to develop a software

tool, an extension of CANGen, to parse a bCANdle specification and gen-

erate an equivalent composite of timed automata, an equivalent UPPAAL

“system”.

Parsing bCANdle process terms is straightforward, as the syntax is de-

fined by a BNF grammar. As the examples above and in §5.4.2 show, the

bCANdle data environment D accompanying a process term must be inferred

at a suitable level of abstraction from from the variables and atomic oper-

ations occurring in the process terms. a CANGen-generated channel of m

message types and n values The tool will then have to generate from the

parse tree the clocked bCANdle terms (with associated data environment

states) and transitions between them as illustrated in the example of §5.4.2.
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The rules of this section will need to be recursively applied to generate the

a timed automaton equivalent to the the original clocked process term and

data environment. There will be opportunities for optimising the automa-

ton, for instance by resetting clocks in order to trim the state space size. A

system defined as a bCANdle system comprising a set of parallel processes

not employing parallelism at a lower level (a restriction also imposed in the

original bCANdle analysis) will thus give rise to a set of parallel timed au-

tomata communicating by CAN channels. An extended version of CANGen

expand this into an UPPAAL “system”.

A possible further development of this tool would be to integrate it with

a model checker rather than using UPPAAL, and to incorporate counter-

example-guided abstraction refinement (CEGAR). The latter is reported

([44], see below) to be a powerful model-checking technique in itself. Be-

cause of the essential role of “human” reasoning in obtaining compositional

abstractions via simulations of components, such a tool will need to output

timed automata (in some suitable) language and accept such timed automata

as well as bCANdle systems as input.

8.5 Scope and Limits of the Method

The method described in this chapter will in theory extend to as many CAN

channels, message types and payload values as one would wish, although

the present version of CANGen generates only a single channel automaton.

This has sufficed to prove the concept of the approach and an upgrade of

CANGen to generate multiple channels is future work. Of course, the def-

inition of a CAN frame allows 211 message types and 264 data values. One

could in theory thus have for a single channel 275 urgent synchronisations (in-

put), broadcast sychronisations (output) and associated indexed automaton

locations: theoretically possible, but well beyond what is practicable using

current computing technology.

Alur [15] reports that the computational time-complexity of reachability

analysis of the state space of a timed automaton with n locations and k

clocks, in which every clock constraint constant is ≤ c, is n.2O(klog(kc)) (cf
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§3.3.1), the region automaton has n.k!.2k.(2c + 2)k vertices and that the

reachability problem is PSPACE-complete. On the other hand, the space-

and time-complexity of expanding a CANGen source is linear both in the

number of of message types and in the number of message values. Thus the

complexity of the combined verification is essentially the complexity of the

back-end model-check.

L[µ,ν]

[µ,ν]!snd

ini{h<=100 }

h = 0

(h >= 90)

h = 0

[µ,ν]?rcv

R[µ,ν] {urgent}

ini

Figure 8.13: Simple sender and Receiver

The practical limit of the method is therefore at present determined by

UPPAAL and the complexity of the systems it can check. As a simple test,

checks were tried on a simple system in which a CANGen-generated channel

of m message types and n values was fed every 90–100 time units by a simple

sender process with a message of arbitrary type µ (0 ≤ µ < m) and value ν

(0 ≤ ν < n), and a simple receiver process took delivery of it (figure 8.13).

The UPPAAL property sender.Lµ,ν --> receiver.Rµ,ν
3 was checked for

various values of m,n, µ, ν.

With ten message types and 50 values (m = 10, n = 50) the property

sender.L8,10 --> receiver.R8,10 was verified in around 75 seconds. With

m = 5, n = 120 the property sender.L4,60 --> receiver.R4,60 was verified

in around 150 seconds. However, doubling either the number of message

types or the number values modelled overwhelmed the simple resources that

have been used for the experiments described in this chapter. For example,

the following caused the verification run to thrash -

• m = 5, n = 240: sender.L4,120 --> receiver.R4,120

• m = 5, n = 180: sender.L4,120 --> receiver.R4,120

3ie ∀�(sender.Lµ,ν ⇒ ∀♦receiver.Rµ,ν)
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• m = 10, n = 100: sender.L8,90 --> receiver.R8,90

• m = 10, n = 75: sender.L8,60 --> receiver.R8,60

The method is clearly restricted to rather small numbers of message types

and values, although the boundaries might be pushed a little by use of more

powerful computing equipment (or at least, more RAM). Future work might

include adaptation of the method to model checkers other than UPPAAL,

or perhaps, even, a custom checker. However, it is unlikely we shall be able

accommodate very large values of m,n.

On the other hand, do we need to? The method is intended to work with

CAN-communicating systems at an abstract level and although an imple-

mented system might well communicate numerical values from a large range

of values, an abstraction of it might well (depending on the logic of the sys-

tem) simulate it adequately using a much smaller range – small enough to

be accommodated within the limits implied by these tests.

As discussed briefly in §1.3, methods other than model-checking with

timed automata might well be appropriate for checking systems at a low level

of implementation detail, such as true, as opposed to interleaving concurrency

methods. The present work focuses on modelling timed automata, however,

as this is widely used for checking properties at a high level of abstraction.

The approach is suitable for working at such an abstract level with, for

instance, communication protocols or distributed control systems in which

the potential number of states is bounded and where one is interested in

properties such as

• safety properties: for instance, a variable is maintained within a desired

range;

• liveness and bounded liveness: for example, the system responds to an

input from its environment or delivers output to its environment within

some time bound ;

• fairness and freedom from starvation: for instance, actions or processes

that are required to be performed with minimum frequency are.
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The approach of this thesis is not intended for analysing aspects of system

performance such as “throughput”, speed, bandwidth. It focusses pretty

much on the ability of a system to respond and to meet real-time deadlines.

It was mentioned in §3.3.1 that forward reachability analysis allows a

tool like UPPAAL to check many properties other than those which can be

expressed directly in its specification language, by means of test automata.

These allow one to formulate checks for safety, liveness and fairness properties

as above – indeed anything that may be formulated in timed T CTL (§3.3.2).

Also, as Bowman and Gomez [29] point out in their chapter 11, reachability

analysis is versatile: many general liveness properties can be handled by

nested reachability checks, although this is computationally expensive.

Of course, when one is making use of simulation relations in order to em-

ploy compositionality, we must confine ourselves to universal quantification

over paths.

As it stands, the method used in the present work is a mixture of manual

and automatic procedures. A simple prototype translator exists which, start-

ing with a bCANdle system, generates equivalent CANGen source code. This

tool (CANTranslator on the accompanying CD) is at a very early stage of de-

velopment, defined earlier in the thesis as future work, and has not figured in

the experiments of the present chapter. The CANGen source code, explained

in §8.1, can on a small scale be easily written by hand working from timed

automata or translating from bCANdle according to the operation semantic

rules of bCANdle (as in the example at the end of §5.4.2).

The source code is expanded by CANGen into UPPAAL .xta-format code

which can be checked by UPPAAL’s verifyta tool. CANGen at present sup-

ports one CAN channel: this has sufficed for our experiments but a upgrade

is envisaged for “production” use.

Thus far, a mixture of automatic and manual methods has be employed

but it is envisaged that in the future this part of the method will be fully au-

tomated. Constructing component-wise abstractions via simulation relations

is, on the other hand, a matter of human creativity. One needs to study the

logic a particular compositional model in order to find suitable abstractions

which simulate its components.
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J Berendsen and F Vaangrager [27], exploring compositional abstraction

in a more general setting than the present work, do suggest some approaches

to this. They suggest -

• Weaken guards and location invariants of a component to obtain an

“overapproximating” abstraction;

• After weakening guards and invariants, omit variables that are no

longer tested;

• It may be possible to keep one component (or a small number of com-

ponents) exact and replace the remainder by a single very coarse ab-

straction, preserving just the information about their interaction with

the one “in the spotlight”. B Wachter and B Westphal [112] develop

this approach, which they call the “Spotlight Principle”;

• It may be possible to abstract a component automaton by a parallel

combination of automata; although Berendsen and Vaandrager found

proving the correctness of an instance of this hard.

The examples discussed earlier in this chapter (§§8.2, 8.4) employed rea-

soning of the type covered by the first two items.

This element of the approach will inevitably require some manual input

but possible future work will explorer automated methods such as counterexample-

guided abstraction refinement.

8.6 Summary

An embedded system composed of parallel components communicating by

CAN can be modelled in bCANdle. The several components of this model

can be translated into timed automata as explained in §5.4.2, using the rules

set out there. The translation is in fact into the formalism comprising the

input to CANGen. As just discussed, this procedure can (and eventually will)

be implemented in a software tool. The result is a composition of parallel

timed automata including automata which model the CAN channel(s). After
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expansion with CANGen the result is an UPPAAL “system”, whose properties

expressible in ACTL can be checked.

In the case of models which are unfeasibly large for this, there is the op-

portunity for replacing components of the model with (usually more abstract)

components which simulate them. The framework for doing this is provided

by the theorems of chapter 7 and examples explored in the preceding sections

of this chapter. Finding useful simulations will usually be a matter of human

ingenuity although, as seen in §8.3, abstracting data and operations of the

model is generally a promising strategy. Counterexample-guided abstraction

refinement is a promising “automatic” technique for refining such simula-

tions when a property is found to fail: this possible refinement of our work

is discussed briefly in the next chapter.

Compositional models can be developed directly as timed automata, as

well as bCANdle models; and the framework devloped here could be ported

to other kinds of communicating systems, as long as the communication

mechanism is modellable as a timed automaton.



Chapter 9

Conclusions and Further Work

9.1 Model Checking Broadcasting Embedded

Systems

This thesis has examined the used of compositional methods for checking

models of broadcasting embedded systems comprising processes communi-

cating via CAN network channels. In particular, it has examined D Kendall’s

bCANdle formalism (chapter 4), and shown (chapter 5) how it can be cast

into an equivalent form in which all the system components are (parallel)

timed automata modellable in UPPAAL.

Thus, a system expressible in bCANdle can be modelled as a parallel

composition of UPPAAL timed automata. This representation was further

cast into an equivalent form (chapter 6) in which variables were not shared

between processes. This allowed some compositionality results (chapter 7)

to be applied.

The compositionality results allow one to infer a simulation of a given

composite model A ‖ B ‖ C ‖ ... by some more abstract model A′ ‖ B′ ‖
C′ ‖ ... for which checking of some property ϕ might be more tractable. The

simulation relation implies a trace inclusion

A ‖ B ‖ C ‖ ... � A′ ‖ B′ ‖ C′ ‖ ...

191
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and so the properties ϕ need to be universally quantified over times and paths

(of the form ∀�ψ in CTL, for instance). Since we are dealing with timed

systems, this is not unduly restrictive. For instance, absence of deadlock can

be cast into an assertion that in every run, every state is non-deadlocking.

In particular, assume-guarantee theorems such as that of §7.4.2 allow one

to infer such a trace-inclusion relation between composite systems by ab-

stracting “component-wise”. An example of this was described in section

8.3. The premiss (b) of the assume-guarantee theorem 7.5.2 is a tough re-

quirement, however, and some creativity is required to devise models that

satisfy it. Useful further work includes a possible strengthening of the theo-

rem by some sort of relaxation of this premiss.

In the example just cited, the method was applied to a composite model

built in terms of timed automata; it can a fortiori be applied to bCANdle

models, as discussed in section 8.4. It is hoped that the results presented

here have wider applicability and interest than in systems employing CAN

networks; nevertheless these are an important class of embedded systems and

the present compositional formulation is a useful adjunct to bCANdle.

The models explored in chapter 8 were reasoned about by means of ab-

stractions which had the same timed-automaton structure as their more re-

fined, detailed counterparts, but weaker guards on some transitions. This

turned out to be a powerful way of obtaining the simulation relations use-

ful in compositional reasoning. One can verify a property of a (component

of a) system by exhibiting the system as a “more determined” version of

some abstract non-deterministic model (with the same locations and weaker

transition guards) which nevertheless has the required behaviour.

9.2 Model Checking More Generally

The compositional reasoning illustrated by the examples in chapter 8 is a

useful adjunct to any method that uses timed automata to model concurrent

real-time systems. Models of practical systems become intractable when

scaled up to “real-world” size because of the “state explosion” problem which

besets them. This was found, for instance, in early attempts by the present
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author to model a simple robotic manufacturing cell with a conveyor that

could stop and start. Compositional reasoning provides a way of dealing with

state explosion by allowing one to “divide and conquer” by using abstraction.

The models discussed in chapters 5, 6, 8 were models of systems employing

CAN, but were built directly using UPPAL-type timed automata. In fact

nothing in the present work implies that it has to apply only to these. In

fact the compositional reasoning illustrated in chapter 8 could apply to any

system modellable in UPPAAL, or indeed, with “plain” timed automata, in a

way which is compatible with the compositionality theorems. One could, for

instance, model distributed systems using a network technology other than

CAN, provided only that the network behaviour can be modelled as a timed

process.

9.3 Further Work

A number of papers, while not bearing directly on the work of this thesis, do

suggest avenues of future investigation.

Alexander Rabinovich [106] defines a generalised parallel product of which

many parallel compositions are special cases, and obtains positive results for

a compositional method based on it, at least for “basic propositional modal

logic”. G Frehse [57] has worked in a similar way to the present work, using

hybrid automata communicating using discrete events and without shared

variables; this work does not use UPPAAL or deal with CAN broadcasting

but offers some interesting future directions. Rodolfo Gmez [61] develops a

representation of urgent actions using timed automata with deadlines which

avoids “timelocks” and provides a compositional translation of these into

UPPAAL. A Gupta, K L McMillan and Z Fu [64] use a boolean satisfiability

solver in assume-guarantee reasoning which they say outperforms BDD-based

model checking. Junyan Qian, Lingzhong Zhao, Guoyong Cai and Tianlong

Gu [105] present formula-dependent abstraction for CTL which does not

preserve ACTL formulae as simulation does, so might be too coarse, but

does, they say, reduce the size of the Kripke structure; and they provide

an accompanying refinement method. Timothy Bourke and Arcot Sowmya
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[28] are interested in the fact that a deterministic τ -free timed automaton

can be transformed into a form where reachability analysis can decide trace-

inclusion in another automaton. They remark that manual transformation

is tedious and error-prone and provide a tool for automatically transforming

UPPAAL automata.

9.3.1 Counterexample-guided Abstraction Refinement

Section 3.5 described a method developed by E Clarke, O Grumberg, S Jha,

Y Lu and H Veith [44] for making and then refining abstractions of a model.

If a universally quantified property holds in the abstraction then it holds

also in the original model as execution traces of the original model are in-

cluded among traces of the abstraction. If the property does not hold in the

abstraction, the method produces a counterexample which either pulls back

to a counterexample in the original model or is spurious, in which case the

method suggests a refinement of the abstraction which eliminates at least

one element of spuriousness. The CEGAR approach is surveyed by Orna

Grumberg in [62].

This method was developed for automatic use in model-checking tools

for untimed systems specified by ACTL* formulae – indeed, the authors

describe how their algorithms are implemented using data structures such as

ordered binary decision diagrams (OBDD). However, their algorithms and

their reasoning are couched entirely in terms of states of a Kripke structure,

sets of states and transitions between states.

The timed transition systems of our models are in fact Kripke structures

whose states are vectors of variable values. Indeed, in §§7.2.1, 7.2.2 it was

shown how the structures of Kaynar, Lynch et al. [77, 78] subsume the timed

transition systems of our models. They are easily endowed with the Kripke

structure: they have a set of states (which are vectors of variable values),

an initial state subset (usually a singleton), a transition relation, and the

function L can be set in the same fashion as in Clarke et al. [44], mapping a

state to the set of “atoms”1 of the system true there.

1atomic subformulae of the guards of the system, and their negations; cf. §3.5.1
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A timed automaton (in our sense) can be seen as a “concurrent program”

in the sense of Clarke et al.: see §3.5.1, page 64. In the notation used there,

each variable vi is associated with an initialiser Ii derived from the automaton

and undergoes an update Aki when a guard Ck
i is satisfied. The Aki and Ck

i

are again derived from the guards and updates of the automaton. The timed

transition system of one of our models is thus, in effect, a Kripke structure

of the type constructed by Clarke et al.

The reasoning set out in §3.5.1 leading to the construction of an exis-

tential abstraction of the timed transition system based on an equivalence

relation between states extends in a straightforward way to the timed transi-

tion systems of our models. Thus we can envisage an existential abstraction

M′ of a model M of our type, such that M �M′, M is simulated by M′.
Spurious counterexamples arise in these abstract models in the fashion

described in §3.5.3 and can in principle be detected by an algorithm like the

SplitPATH described in that section. Abstractions containing spurious coun-

terexamples can be refined using the procedures of Clarke et al. described in

§3.5.4.

This approach was developed by Clarke et al. for use in an automatic

(software) model-checking tool working with efficient representations of states

(using ordered binary decision diagrams) of the timed transition system of

the model. To apply it to our framework would similarly require detailed

examination of timed states: not suitable for working “by hand” but worth

incorporating in a software model-checking tool for our framework.

Chao Wang, Hyondeuk Kim, Aarti Gupta [113] present a hybrid method

combining CEGAR with variable-hiding methods to obtain abstraction meth-

ods which they claim perform better than previously existing ones.

Our approach has been to build models in a “macro” language which is

preprocessed by our CANGen into input to UPPAAL’s verifyta tool. It does

indeed seem a worthwhile future enterprise to streamline this process into

a single tool which will verify the model directly. Counterexample-guided

abstraction refinement will form a useful adjunct to this.

A number of more recent papers suggest a variety of novel approaches to

generating and refining abstractions and also assumptions for use in auto-
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mated assume guarantee reasoning, including use of machine learning, theo-

rem proving and syntactic transfomrations, and SAT solvers: J M Cobleigh,

G S Avrunin and L A Clarke [48]; R Ben Salah, M Bozga and O Maler

[107, 21]; N Sharygina, S Tonetta and A Tsitovich [108]; V D’Silva, S Son-

alkar and S Ramesh [52]; S Kundu, S Lerner and R Gupta [86]; B Finkbeiner,

H Peter, and S Schewe [55]; H Yao and H Zheng [116]; C Pasareanu and D

Giannakopoulou [103]; Y Meller, O Grumberg and S Shoham [96]; E Clarke,

M Talupur and H Veith [47]; B Finkbeiner, S Schewe and M Brill [56]; S

Bensalem, M Bozga, J Sifakis and Thanh-Hung Nguyen [24, 25]; W Nam, P

Madhusudan and R Alur [100, 18].

9.3.2 Stopwatch and Hybrid Automata

We have spent the most time in the world of timed automata; but early

invesigations of compositional model checking problems looked at linear hy-

brid automata (Cassez, Larsson [43], Alur et al. [3]). These are “classic”

timed automata extended with variables which vary at a constant rate in

time, may be updated in a mathematically linear fashion on discrete ac-

tions, and linear combinations of which may feature in guards. Special cases

include stopwatch automata, timed automata with clocks that can stop and

start. Hybrid automata have not figured explicitly in the later work here

as they are subsumed by UPPAAL, supporting as it does a rich set of data

types. Interestingly, stopwatches are also straightforward to model in UP-

PAAL, but models that incorporate them are notoriously difficult to check.

Compositional techniques may provide a way into this.

The linear hybrid systems of Thao Dang ([49]) are an altogether more

ambitious construction, incorporating as they do continuous variables whose

values evolve according to linear differential equations. Interestingly she has

worked with predicate abstraction, including counterexample-guided predi-

cate abstraction, in collaboration with Alur and F Ivancic [5, 6]. It would be

interesting to see if the framework developed in this thesis extends to them.
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9.3.3 Hybrid I/O Automata

These are a development by N Lynch, R Segala and F Vaandrager [94] of

their Timed I/O Automata, discussed in §§3.4.3, 7.2.2. The main innovation

is that their structures not only distinguish discrete internal and external

discrete actions, but also internal and external (continuous) variables. In

their hybrid I/O automaton the external variables are further partitioned

into input and output variables – essentially, variables which might be passed

into a process and which might return data from a process, respectively

(internal variables are local to a process). UPPAAL supports something like

this, as it provides reference parameters to a process; but we have gone to

quite a bit of trouble to avoid shared variables between processes in our

framework, so it is a moot point whether this will usefully extend it.

One possibility is that the compositionality theorems may be sharpened

to versions that do apply to systems with shared variables.

9.3.4 Separation Logic and Rely-Guarantee Reasoning

Rely-guarantee reasoning is an approach to verifying properties of concurrent

programs (see e.g. V Vafeiadis [110], Vafeiadis and Parkinson [111], Xu et

al. [115]) that is reminiscent of assume-guarantee reasoning.

Vafeiadis and Parkinson, for instance, deal with formulae of the form

PCQ in which P,Q are predicates on the program state and C a “command”,

some sort of processing. The formula’s intended meaning is then, “if P was

true of the program state immediately before C is issued, Q is true of the

state immediately after”. Formulae of this type can be compared with the

assume-guarantee formulae 〈ϕ〉M〈ψ〉 briefly discussed in §3.4.1.

Vafeiadis and Parkinson use the separation logic of Peter O’Hearn and his

collaborators [101, 102] which extends the syntax and semantics of P,Q by

adding to classical boolean logic a “separating conjunction” P ∗Q, true in a

state if the state separates into two disjoint states, one satisfying P and one

satisfying Q. There is also a “separating implication” P −∗Q true at a local

state s if any state disjoint from s and satisfying P results in a conjoined

state satisfying Q.
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O’Hearn et al. develop axioms and rules of inference for a separation logic

which allows them to “prove” a concurrent program by deriving formulae of

the form {P}C{Q} where C is a program command with pre-condition(s) P

and post-condition(s) Q. Vafeiadis and Parkinson extend this work in [111]

by carefully distinguishing the local state from the shared state of a process

and developing from this a notion of interference in a command C by its

environment. They define a formula

` C sat(p,R,G, q)

in which p is a preconditon of command C, q a post-condition, and R,G

are sets of actions. The intended meaning is that if (1) the execution of C

from an initial state satisfying p and under interference ⊆ R (R forms a rely

condition) does not fault, and (2) this execution causes interference ⊆ G and,

and (3) it terminates, then the final state satisfies q. They develop a system of

proof rules by which a set of concurrent programs or processes may be proved

to satisfy such formulae, formalising the reliance of each command in each

process on a bound R on interference it suffers, and asserting a guaranteed

bound G on the interference it causes.

This work was motivated by the problem of proving correct a system

of concurrent processes sharing memory. The work of this thesis, on the

other hand, has addressed its problems by recasting them into a form in

which variables are not shared. Future work could to investigate possible

extensions to the theorems of chapter 7 to models with shared variables. If

this turns out to be useful, some analogue of separation logic may play a

useful role. Local rely-guarantee reasoning (X Feng, [53] may also prove an

interesting extension.

9.3.5 Practical Work

The bulk of the present work has been a theoretical exploration of compo-

sitional techniques for verifying properties of CAN-broadcasting embedded

systems. The main verification tool was UPPAAL, but a simple “front-end”

tool, CANGen, was developed to ease the task of defining models without
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shared variables. CANGen is rather crude – it needs upgrading if it is to

support more than one CAN channel, for instance, and its input “macro

language” could be developed. It is used in conjunction with UPPAAL’s

verifyta program.

A promising idea is to make an integrated tool which generates the model

from the CANGen input language or from a bCANdle specification, and does

the verification.

An interesting adjunct to such a tool would be support for counterexample-

guided abstraction refinement – see the discussion in §9.3.1. This would allow

us to evaluate the usefulness of this technique in the present framework.

9.3.6 Heuristics

As already mentioned, it transpired in course of exploring assume-guarantee

reasoning that a good approach was to obtain a model as a “concrete case”

with the same automaton structure and stronger guards, of a more abstract

non-deterministic model with desirable properties. What is required are more

case studies to uncover more heuristics of this kind.

9.3.7 Assume-Guarantee

As already mentioned, it would be useful to know whether theorem 7.5.2 can

be strengthened by admitting in place of its premiss (b) some weaker premiss.

At the moment, it seems that when multiple components participate in a

broadcasting synchronisation, they have to be consider together, indivisibly,

in any compositional reasoning.
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[61] Rodolfo Gómez. A compositional translation of timed automata with

deadlines to uppaal timed automata. In FORMATS ’09: Proceedings

of the 7th International Conference on Formal Modeling and Analysis

of Timed Systems, pages 179–194, Berlin, Heidelberg, 2009. Springer-

Verlag.

[62] Orna Grumberg. Abstraction and refinement in model checking. In

Formal Methods for Components and Objects, 4th International Sym-

posium, pages 219–242, 2005.

[63] Orna Grumberg and David E. Long. Model checking and modular ver-

ification. ACM Transactions on Programming Languages and Systems,

16, 1994.

[64] Anubhav Gupta, K. L. Mcmillan, and Zhaohui Fu. Automated assump-

tion generation for compositional verification. Form. Methods Syst.

Des., 32(3):285–301, 2008.

[65] W Henderson, D Kendall, and A Robson. Improving the accuracy of

scheduling analysis applied to distributed systems. Real-Time Systems,

20:5–25, 2001.

[66] W Henderson, D Kendall, A Robson, and S Bradley. Xrma: An holis-

tic approach to performance prediction of distributed real-time can

systems, 1998.

[67] T A Henzinger, P W Kopke, A Puri, and P Varaiya. What’s decidable

about hybrid automata. Journal of Computer and System Sciences,

57:94–124, 1995/1998.

[68] T A Henzinger, Z Manna, and A Pnueli. What good are digital clocks?

In Proceedings of the 19th International Colloquium on Automata, Lan-

guages, and Programming (ICALP), number 623 in Lecture Notes in

Computer Science, pages 545–558. Springer-Verlag, 1992.



REFERENCES 209

[69] T A Henzinger, X Nicollin, J Sifakis, and S Yovine. Symbolic model

checking for real-time systems. Information and Computation, 111:193–

244, 1994.

[70] T A Henzinger, S Qadeer, and S K Rajamani. You assume, we guar-

antee: Methodology and case studies. In Proc 10th International Con-

ference on Computer-aided Verfiication, number 1427 in Lecture Notes

in Computer Science, pages 440 – 451. Springer, 1998.

[71] G Holzmann. Design and Validation of Computer Protocols. Prentice-

Hall, 1991.

[72] G Holzmann. The model checker spin. IEEE Trans Software Eng,

23(5), May 1997.

[73] J E Hopcroft and J D Ullman. Automata Theory, Languages and Com-

putation. Addison Wesley, 1979.

[74] ISO. ISO/DIS 11898: Road vehicles - interchange of digital informa-

tion - Controller Area Network (CAN) for high speed communication.

Technical report, ISO, 1992.

[75] C B Jones. Specification and design of (parallel) programs, volume

Proceedings of IFIP ’83, pages 321–332. North Holland, 1983.

[76] Bernhard Josko. Modular specification and verification of reactive sys-

tems. Technical report, University of Oldenburg, 1993.

[77] D Kaynar, N Lynch, R Segala, and F Vaandrager. The theory of timed

i/o automata. Technical Report MIT-LCS-TR-917, MIT Laboratory

for Computer Science, 2003.

[78] D Kaynar, N Lynch, F Vaandrager, and R Segala. Decomposing ver-

ification of timed i/o automata. In Formal Techniques, Modelling

and Analysis of Timed and Fault Tolerant Systems: Joint Interna-

tional Conferences on Formal Modeling and Analysis of Timed Sys-

tems, FORMATS 2004, and Format Techniques in Real-Time and



210 REFERENCES

Fault-Tolerant Systems, FTRTFT 2004, number 3253 in Lecture Notes

in Computer Science, pages 84–101. Springer-Verlag, 2004.

[79] D Kendall. Formal Modelling and Analysis of Broadcasting Embedded

Control Systems. PhD thesis, Newcastle University School of Comput-

ing Science, 2001.

[80] D Kendall, S Bradley, W Henderson D, and A Robson. A formal basis

for tool-supported simulation and verification of real-time can systems.

In Proceedings of 4th International CAN Conference (iCC’97), pages

719–727, 1997.

[81] D Kendall, S Bradley, W Henderson D, and A Robson. bcandle: Formal

modelling and analysis of can control systems. In Proceedings of 4th

IEEE Real Time Technology and Applications Symposium (RTAS’98),

pages 171–177. IEEE Press, 1998.

[82] D Kendall, S Bradley, W Henderson D, and A Robson. Candle: A

high level language and development environment for high integrity

can control systems. In Proceedings of 4th IEE Workshop on Discrete

Event Systems, pages 58–63, 1998.

[83] D Kendall, W Henderson D, and A Robson. Modelling and analysis of

embedded control systems, 1998.

[84] D Kendall, W Henderson D, and A Robson. Space efficient reachability

analysis for a value passing, timed process algebra, 1999.

[85] D Kendall, W Henderson D, and A Robson. Using sharing trees in the

automated analysis of real-time systems with data. In IEE Colloquium

on Applicable Modelling, Verification and Analysis Techniques for Real-

Time Systems (Ref. No. 1999/006), pages 6/1–4, 1999.

[86] Sudipta Kundu, Sorin Lerner, and Rajesh Gupta. Automated refine-

ment checking of concurrent systems. In ICCAD ’07: Proceedings of the

2007 IEEE/ACM international conference on Computer-aided design,

pages 318–325, Piscataway, NJ, USA, 2007. IEEE Press.



REFERENCES 211

[87] F Laroussinie and K G Larsen. Cmc: A tool for compositional model

checking of real-time systems. Proc IFIP Joint Conf Formal Descrip-

tion Techniques and Protocol Specification, Testing and Verification,

pages 439–456, 1998.

[88] K G Larsen, F Larsson, P Pettersson, and W Yi. Efficient verification of

real-time systems: Compact data structure and state space reduction.

In Proceedings of the 18th IEEE Real-Time Systems Symposium, pages

14–24, 1998.

[89] K G Larsen, P Pettersson, and W Yi. Uppaal in a nutshell. Inter-

national Journal on Software Tools for Technology Transfer (STTT),

1:134–152, 1998.

[90] K G Larsen, C Weise, W Yi, and J Pearson. Clock difference diagrams.

Nordic Journal of Computing, 1999.

[91] Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Com-

pact data structures and state-space reduction for model-checking real-

time systems. Real-Time Syst., 25(2-3):255–275, 2003.

[92] G Leduc, A Jeffrey, and M Sighireanu. Introduction à E-LOTOS, pages
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Appendix A

Glossary of Symbols

Here are summarised the symbols and notations introduced in the body of

the thesis. Here they are grouped by subject.

CTL*, Temporal Logic Syntax (§2.1.1)

ϕ, ψ, ρ, χ, ...: state, path formulae;

©ϕ: ϕ true next;

♦ϕ: ϕ now or eventually;

�ϕ: ϕ true from now on;

ϕUψ: ψ eventually; meanwhile ϕ;

ϕWψ: ϕ now and until ψ;

ϕRψ: ψ until ϕ first true;

∀ρ: for all paths ρ ...

∃ρ: for some path ρ ...

Temporal Logic Semantics (§2.1.2)

〈S,R, L〉: a Kripke structure;

L(s): the set of atomic formulae true at s ∈ S;

〈s0, s1, s2, ...〉 or −→s : a path in the Kripke structure ((si, si+1) ∈ R);

s |= ϕ: ϕ is true at state s (s ∈ S);

〈Σ, σ0, A,→〉: a labelled transition system with initial state σ0;

σ1
λ→ σ2: transition from σ1 to σ2 labelled λ;

σ0
λ0→ σ1

λ1→ σ2
λ2→ ...: a run of the LTS;

215
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Timed Temporal Logics (§2.1)

♦≤mϕ: parametrised ♦: ϕ will be true in up to m time units;

�≤mϕ: parametrised �: ϕ will be true for at least m time units;

ϕU<mψ: ψ will be true less than m time units from now and in the mean

time, ϕ is true;

µ-Calculus (§2.1.3)

℘(S): set of predicates over states (power set of S);

f : ℘(S)→ ℘(S): a (monotonic) function;

µX.f(X): least fixed point of f ;

νX.f(X): greatest fixed point of f ;

Timed Automata (§2.2, §7.2)

(L, l0, A,H, E, I): a timed automaton with locations set L, action label al-

phabet A, initial location l0, clocks H, edges E, invariant function I;

I(l): invariant at location l;

ζ: a clock zone or constraint; a guard on an edge;

Z(H): the set of clock zones over H;

l
ζ,a,H−→ l′: an edge from l to l′ with guard ζ, label a, and set H of clocks to

reset;

A1 ‖ A2: composite of timed automata A1, A2;(§2.2.3)

Timed Automata Semantics (§2.2.2)

〈Σ, σ0, A ∪ R,→〉: timed transition system of the automaton;

Σ , L× RH;

σ = (l, v) ∈ Σ: a timed state at location l, with clock valuation v;

a(∈ A): a discrete action transition;

t(∈ R): a time-elapse transition;

v + t: clock valuation which gives h the value v(h) + t;

v[h := 0]: clock valuation like v except h has value 0;
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UPPAAL Semantics and Compositionality (§5.2.2, §7.5.1, §7.5.2)

(
−→
l , v): a timed state:

−→
l = (l1, ..., ln) is a vector of component process

“states” (locations) and v a valuation of variables;

(
−→
l , v)→ (

−→
l ′, v′): a transition;

(
−→
l , v)

d→ (
−→
l , v): a time-passage transition (d ∈ R, d ≥ 0);

lk
ζ,λ−→ l′k: an edge of one component with guard ζ, update λ and no synchro-

nisation label gives rise to an internal (interleaving) transition;

lj
ζj ,c!,λj−→ l′j and lk

ζk,c?,λk−→ l′k: a pair of component edges with complementary

synchronisation labels c!, c? on channel c gives rise to a binary synchronisa-

tion transition;

lj
ζj ,c!,λj−→ l′j and inm (possibly 0) component processes k1, ..., km edges lkp

ζkp ,c?,λkp−→
l′kp

(p = 1, ...,m): gives rise to the broadcast synchronisation on broadcast

channel c;

(v, (lki )i=1...n): a timed state of an UPPAAL system with valuation v, vector

of locations (lki )i=1...n (§7.5.1);

v + t: advance of timed valuation v by time t;

v[λ]: a timed valuation updated by λ;

v |=
∧m
i=1 Ii(l

k
i ): valuation v satisfies all the invariants of (lki )i=1...n;

v |= ζi ∧ ζj1 ∧ ... ∧ ζjm : v satisfies several guards;∏n
i=1 Ai or A1 ‖ ... ‖ An: a parallel composite of UPPAAL process automata;

A � B: trace inclusion;

Symbolic Model Checking with OBDD (§2.3.2)

2: the two-element Boolean algebra;

fv : 2n → 2: the boolean function determined at vertex v of a binary decision

diagram;

f , ¬f , f ∨ g, f ∧ g, ∃vf , ∀vf : QBF formulae (v a propositional variable);

σ |= f : with truth assignment σ, t evaluates to 1 (true);

Model Checking with Timed automata (§2.3.5)

v ' v′: clock-region-equivalence of two clock valuations;

ζ + t: clock zone ζ advanced by t;

ζ[H := 0]: clock zone like ζ but with clocks in H reset;
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Bisimulation and simulation (§2.4)

s1 ' s2: strong equivalence of states of a labelled transition system;

(S1, S
0
1 , A,→1) � (S2, S

0
2 , A,→2): transition system 1 is simulated by transi-

tion system 2.

bCANdle Data Model (§4.1)

V, V ar,Ω,Γ: (sets of) data values, variables, operation names, predicate

names;

D = (type, op, pred, val): a data environment over V ar,Ω,Γ;

D′ = D[x := v]: D′ like D except D′.x = v;

D
ω−→d D

′: data model transition relation: D evolves to D′ when ω has run;

D |= γ: predicate γ is true in data model D;

bCANdle Network Model (§4.2)

I, V : (sets of) message identifiers (type), data values;

(i, v) or i.v (i ∈ I, v ∈ V ): a message;

i 4 i′, m = (i, v) 4 (i′, v′) = m′: priority ordering of messages;

m ≺ m′: strict priority ordering;

δ(m) = (l, u, L, U): time bounds of preacceptance phase (l, u) and postac-

ceptance phase (L,U);

↓: channel state: free;
t1,t2
; m: channel in preacceptance phase of message m with time to comple-

tion bounded by t1, t2;

↑ m: channel at point of accepting message m;

m
t1,t2
; : channel in postacceptance phase of message m;

u: a message queue; m : u: a message queue with m at the head;

u" i.v: insertion of message i.v in queue u;

N : a network is an indexed set of channels Nk : k ∈ K;

Nk = (s, u): channel k is in state s with message queue = u;

k ; i.v: a network action: enter preacceptance phase of i.v on channel k;

k ↑ i.v: a network action: acceptance of i.v on channel k;

i.v ; k: a network action: enter postacceptance phase of i.v on channel k;
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k ↓: network action: channel k becomes free;

N
a−→n N

′: network model transition relation: N evolves to N ′ upon action

a;

(s, u) + t (where t ∈ R): effect of time elapse on channel state;

N
t−→n N

′: network model transition relation: N evolves to N ′ upon time

passage t;

bCANdle Process Term Syntax (§3.2.2, §4.3)

k!i.x: sending a message (payload x) of type i on channel k;

k?i.x: receiving a message of type i on channel k into x;

[ω : t1, t2]: a data operation ω with time bounds t1, t2;

γ → P : a process term P guarded by a predicate γ;

P ;Q, P + Q, P [> Q, P |Q: sequence, nondeterministic choice, interrupt,

parallel composite of process terms P,Q;

X: a process variable;

recX.P : the recursion construct;

(P,N,D): a bCANdle system;
√

: “ideal” process term, denoting completion;

(P,N,D)
λ−→ (P ′, N ′, D′): a bCANdle transition;

λ may be a network action λn, a time passage t, or a process action arising

from a data model transition ω, validation of a predicate γ, a send action

k!i.v or a receive action k?i.v;

Compositional Model of bCANdle (§5.4)

k!i.x, k?i.x, [ω : t1, t2]
h, X: atomic clocked process terms,

γ → Q̂, recX.Q̂, Q̂; Q̂′, Q̂+ Q̂′, Q̂[> Q̂′: clocked process terms (§5.4.1);

A(P̂0, D0): the timed automaton modelling a clocked process term with data

environment (§5.4.2);

(Q̂,D)
ζ,λ,H−→ (Q̂′, D′): an edge with guard ζ, label λ, update set H;

bCANdle as a Parallel Product (§5.5)

‖ni=1 A(P̂i, Di) ‖ (‖k∈K Nk): a parallel product with timed transition system

strongly equivalent to that (P,N,D) (Theorem 5.5.1);
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((Q̂i, DQi)i=1...m, (ηk)k∈K , v): a general state of the timed transition system

((ηk)k∈K is a vector of network channel automaton locations, v a valuation;

§5.5.2);

unclk(Q̂): the unclk function on clocked process terms;

age(Q̂, v): the age function on clocked process terms;

CAN Without Shared Variables (§6.1, figure 6.1)

nMsg[µ, ν]: a two-index family (µ ranges over message identifier/types, ν over

payload values) of UPPAAL urgent synchronisation channels;

M2S[µ, ν], PreAcc[µ, ν], PostAcc[µ, ν]: families of UPPAAL locations;

dMsg[µ, ν]: a family of UPPAAL broadcast synchronisation channels;

Timed I/O Automata (KLSV Structures) (§3.4.3, §7.2.1)

A = (X,Q,Θ, E,H,D, T ): a KLSV structure with variables X, states Q,

external and internal action labels E,H, discrete action relation D ⊆ Q ×
(E ∪H)×Q, and trajectories T ;

τ : J → Q: a trajectory (domain of J is of form [0, b] or [0, b) or [0,∞));

τ : [0, b]→ Q: a closed trajectory;

τ : [0, 0]→ Q: a point trajectory;

τ ≤ τ ′: τ is a prefix of τ ′;

τ D t (t ∈ dom(τ): suffix of a trajectory;

τ0 a τ1 a τ2 a ...: concatenation of trajectories;

τ0a1τ1a2τ2a3...: an infinite execution fragment (τi ∈ T , ai ∈ E ∪H);

τ0a1τ1a2τ2a3...τn: a finite infinite execution fragment;

A1 ‖ A2: composition (§7.2.3);

A1 � A2: implementation, trace inclusion(§7.3.2);
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Bisimulation Proof Details

Here are details of the proof that the mapping (5.5) is a strong bisimulation

up to strong equivalence of bCANdle systems with product timed automata

of the type constructed in section 5.4.

To see this one needs to check, for ((Q̂i, DQi)i=1...m, (ηk)k∈K , v) a general

timed state of the automaton, and

(|ni=1age(Q̂i, v), (age(ηk, v))k∈K ,tni=1DQi) the bCANdle system to which it

maps,

1. ((Q̂i, DQi)i=1...m, (ηk)k∈K , v) ≈ (|ni=1age(Q̂i, v), (age(ηk, v))k∈K ,tni=1DQi);

2. For every transition λ from (|ni=1age(Q̂i, v), (age(ηk, v))k∈K ,tni=1DQi)

in the bCANdle timed transition system there is a transition with the

same label λ from ((Q̂i, DQi)i=1...m, (ηk)k∈K , v), and the targets are con-

text equivalent to states related by the mapping;

3. For every transition λ from ((Q̂i, DQi)i=1...m, (ηk)k∈K , v) there is a tran-

sition with the same label λ from (|ni=1age(Q̂i, v), (age(ηk, v))k∈K , tni=1DQi),

and the targets are context equivalent to states related by the mapping.

The first of these requirements is met by definition of context equivalence.

The second is established by considering a number cases and using induc-

tion on the computation of |ni=1age(Q̂i, v), as shown below.

The third is established in a way symmetrical with the second, again by

induction on the computation of |ni=1age(Q̂i, v). Further details are given

221
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below.

B.1 Lemmas

To assist with this a number of lemmas a presented. Versions of these appear

in Kendall [79], appendix B where they appear as lemma B1 and lemmas B3

– B8; they are adapted to work with the compositional timed-automaton

formalism for bCANdle presented in this thesis.

B.1.1 Lemma

If (P1, N,D1), (P2, N,D2) are two bCANdle systems with the same network

state N and (P1, N,D1)
λ−→ (P ′1, N

′, D′1) and (P2, N,D2)
λ−→ (P ′2, N

′′, D′2)

are bCANdle timed transitions from these systems with the same label λ

then N ′ = N ′′, D′i = Di (i = 1, 2): the target network states agreed and

data environments are unchanged.

If, in addition, λ ∈ An, a discrete network action, then P ′i ≡ Pi.

This is a straightforward induction on the rule §4.3 that defines the tran-

sitions (behaviour) of bCANdle systems. This lemma needs no adaptation

from [79].

B.1.2 Lemma

Let A(P̂0, D0) as defined in §5.4.2 denote the timed automaton of a clocked

process term with its associated data environment. Let v be a clock valuation

defined on the clocks of the automaton, and H a set of clock variables ⊆ the

domain of v. Let (Q̂,D) denote a location of A(P̂0, D0). If v |= I(Q̂,D) then

v[H := 0] |= I(Q̂,D).

If a location invariant is satisfied by a clock valuation, it is still satisfied

when some additional clocks are reset.

This is easily proven by induction on the definition of I in A(P̂0, D0) (see

§5.4.2.1). Remember the “urgent” clock hu is reset on every edge.
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B.1.3 Lemma

Let (Q̂,D) denote a location of A(P̂0, D0) as in lemma B.1.2 above. Let v be

a clock valuation defined on the clocks of the automaton, and H a set of clock

variables ⊆ the domain of v. Provided hu ∈ H, for any data environment D′

compatible (ref §4.1) with D, v |= I(Q̂,D) implies v[H := 0] |= I(Q̂,D′).

Resetting some additional clocks satisfies the invariant in any compatible

environment, provided the urgent clock is reset.

Again this is easily seen by induction on the definition of I in A(P̂0, D0).

B.1.4 Lemma

Let Q̂ denote a clocked process term. Let v be a clock valuation defined on

the clocks of Q̂, and H a set of clock variables ⊆ the domain of v. Recall

from §5.4.2.2 the set HQ̂ of initial clock variables of Q̂. Provided hu ∈ H and

HQ̂ ⊆ H, for any data environment D, v[H := 0] |= I(Q̂,D).

Again this follows by induction on the definition of I.

B.1.5 Lemma

1. Let K denote a set of network channel identifiers, ηk (k ∈ K) a vector

of network channel automata locations, and v a clock valuation defined

on all the clocks of the ηk; let age(η, v) be an abbreviation for the

network environment defined by (age(ηk, v))k∈K .

If v, v′ are two such clock valuations which agree on all the clocks in

the ηk, then age(η, v) = age(η, v′) – that is (∀k ∈ K)age(ηk, v) =

age(ηk, v
′).

2. If Q̂ denotes a clocked process term and v, v′ are two clock valuations

which agree on all the clocks in HQ̂, then age(Q̂, v) = age(Q̂, v′).

B.1.6 Lemma

Let Q̂ denote a clocked process term and v a valuation defined on all the

clocks of Q̂, and H a set of clock variables ⊆ the domain of v. Let HQ̂ denote
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the set of initial clock variables of Q̂ (§5.4.2.2) and unclk(Q̂) be defined as

in 5.5.1.

If HQ̂ ⊆ H, then age(Q̂, v[H := 0]) ' unclk(Q̂).

This proven by induction on the steps in the definition of age(.).

B.1.7 Lemma

Let η = (ηk)k∈K denote a vector of network channel automata locations, and

v a clock valuation defined on all its clocks, as above. Let I(η) ,
∧
k∈K(ηk).

Let t be a time increment. Let tcp(.) denote the maximum time progress

function on bCANdle network channel states defined in 4.2.

If v+ t |= I(η) then t ≤ tcp(age(η, v)); i.e., (∀k ∈ K)t ≤ tcp(age(ηk, v)).

If a clock valuation can be incremented by t while all the network channel

invariants continue to be satisfied, then the corresponding aged (bCANdle)

network allows passage of t time units.

This assertion follows in a straightforward way from the definition of

tcp(.) and the bCANdle network channel state rule (N5).

B.1.8 Lemma

This is Proposition B4 of [79]. If (P,N,D) ' (
√
, N,D) as bCANdle systems,

then P ≡
√

. Only
√

behaves like
√

.

B.2 The Bisimulation – Details

Further details of the bisimulation now follow. The sketches below contain

some abuse of notation: for instance k may denote a particular channel and

at the same time be employed as a dummy index over K, and v may denote

a valuation, part of a timed state in a timed transition system, and also value

payload of a message, as in k!i.v. The context should make the meanings

clear in these cases. A vector of channel automaton locations, (ηk)k∈K figures

frequently as part of the automaton state: it will be abbreviated simply η, and

age(η, v) will in this context abbreviate the vector (age(ηk, v))k∈K . Similarly,
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η′ abbreviates (η′k)k∈K and so forth. The symbol R when used to denote time

values will strictly mean {t ∈ R : t ≥ 0}.
The relation we aim to establish as a bisimulation is that given by the

mapping

((Q̂i, DQi)i=1...n, (ηk)k∈K , v)
(5.5)7−→ (|ni=1age(Q̂i, v), (age(ηk, v))k∈K ,tni=1DQi)

which maps a timed state of the product automaton – a vector of A(Q̂i, DQi)

and ηk (channel automaton) locations and a clock valuation v – to a bCANdle

system constructed from these elements using the age function.

It is straightforward to check that the right hand side is a well-formed

bCANdle system and we have already noted that

((Q̂i, DQi)i=1...n, (ηk)k∈K , v) ≈ (|ni=1age(Q̂i, v), (age(ηk, v))k∈K ,tni=1DQi) – the

two sides are are context-equivalent, by construction of the extended context-

equivalence relation.

It remains to check the proposed bisimulation relation
(5.5)7−→ respects timed

transitions in each direction, up to strong equivalence (').

B.3 A Transition in bCANdle is Simulated in

the TA Formalism

First, it is required that for every transition

(|mi=1age(Q̂i, v), (age(ηk, v))k∈K ,tmi=1DQi)
λ−→ (Q′, N ′, D′) in the bCANdle

timed transition system there is a transition with the same label λ from

((Q̂i, DQi)i=1...m, (ηk)k∈K , v), and the targets are context equivalent to states

related by the mapping.

Since the age function is defined recursively on clocked process terms,

this will be proven by induction on the definition of age. To this end, it suits

us to prove a slightly stronger property: for every pair of timed states

((Q̂i, DQi)i=1...n, (ηk)k∈K , v)
(5.5)7−→ (|ni=1age(Q̂i, v), (age(ηk, v))k∈K ,tni=1DQi) re-

lated by the mapping, for every transition

(|mi=1age(Q̂i, v), (age(ηk, v))k∈K ,tmi=1DQi)
λ−→ (Q′, N ′, D′) in the bCANdle



226 APPENDIX B. BISIMULATION PROOF DETAILS

timed transition system there is a transition with the same label

((Q̂i, DQi)i=1...m, (ηk)k∈K , v)
λ−→ ((Q̂′i, D

′
Qi)i=1...m′ , (η

′
k)k∈K , v

′), where for some

clocked bCANdle terms, Q̂′′i ' Q̂′i, (i = 1...m′),

((Q̂′′i , D
′
Qi)i=1...m′ , (η

′
k)k∈K , v)

(5.5)7−→ (|m′i=1age(Q̂′′i , v), (age(η′k, v
′))k∈K ,tm

′
i=1D

′
Qi)

and |m′i=1age(Q̂′′i , v
′) ' Q′ and N ′ = age(η′, v′) and D′ = tm′i=1D

′
Qi.

Proof Here are the cases needing to be considered:

1. (Q̂i, DQi)i=1...m is a single term (k!i.x,DQ1) where k ∈ K, i ∈ I, x ∈
V ar. Then Q1 = age(Q̂1, v) = k!i.x. λ can be one of three things:

(a) λ is k!i.v arising by rule (Snd1) of §4.3, where v = DQ1.x.

Then N ′ = age(η, v))[k := (s, u" i.v)] and D′ = DQ1, Q
′ =
√

.

By rule (C Snd) (§5.4.2.2) there is an edge (k!i.x,DQ1)
1,k!i.v,{hu}−→

(
√
, DQ1) in A(Q̂1, DQ1) which synchronises with one of the tran-

sitions in ηk which inserts i.v into the queue for channel k. The

result is a transition

((Q̂1, DQ1), η, v)
k!i.v−→ ((

√
, DQ1), (η

′
k)k∈K , v[hu := 0]) where the

η′k(k ∈ K) are like ηk except for the particular k which is the

subject of rule (Snd1) for which η′k is ηk with i.v inserted in the

queue (e.g. Q[i] := v).

It remains to check that

((
√
, DQ1), (η

′
k)k∈K , v[hu := 0]) 7−→ (Q′, N ′, D′). We already have

Q′ =
√
, D′ = DQ1. Also, age(η′, v) = N ′.

(b) λ arises from a network transition N
λn−→n N ′ on a particular

channel k, via §4.3(Snd 2). This is one of

• N k;m−→n N
′ = N [k := (

l(m),u(m)
; m,u)] where Nk = (↓,m : u);

• N k↑m−→n N ′ = N [k := (↑ m,u)] where Nk = (
0,t
; m,u) for

some t;

• N m;k−→n N
′ = N [k := (m

L(m),U(m)
; , u)] where Nk = (↑ m,u);

• N k↓−→n N
′ = N [k := (↓, u)] where Nk = (m

0,t
;, u) for some

t;
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In each of these cases we have age(k!i.x,DQ1) = k!i.x and N =

age(η, v) and (k!i.x,N,DQ1)
λ−→ (k!i.x,N ′, DQ1). The corre-

sponding transition in the timed-automaton formalism of §5.4.2

is

((Q̂1, DQ1), η, v)
λ−→ ((Q̂1, DQ1), (η

′
k)k∈K , v[hu := 0]) where λ is a

transition on the particular channel k:

ηk = Free⇒ η′k = PreAcc

ηk = PreAcc⇒ η′k = Acc

ηk = Acc⇒ η′k = PostAcc

ηk = PostAcc⇒ η′k = Free

It needs to be checked that age(η′, v) = (age(η′k, v))k∈K = N ′ but

the guards and invariants of the channel automaton have been

chosen to ensure this.

(c) λ = 0 : (k!i.x,N,DQ1) −→ (k!i.x,N,DQ1) by §4.3(Snd 3) with

N = age(η, v). This is mirrored in the timed-automaton formal-

ism by the transition

((k!i.x,DQ1), η, v)
0−→ ((k!i.x,DQ1), η, v) which is enabled assum-

ing v satisfies the invariants of the source state. Also,

((k!i.x,DQ1), η, v) 7−→ (k!i.x,N,DQ1) under the mapping (5.5)

because N = age(η, v) by hypothesis.

2. (Q̂i, DQi)i=1...m is a single term (k?i.x,DQ1) where k ∈ K, i ∈ I, x ∈
V ar. Q1 = age(Q̂1, v) = k?i.x. Again, there are three possibilities for

(k?i.x, age(η, v), DQ1)
λ−→ (Q′, N ′, D′):

(a) λ = k?i.v by rule §4.3(Rcv 1). By hypothesis, Nk = (↑ i.v, u) (so

ηk = Acc), Q′ =
√
, N ′ = age(η, v), D′ = DQ1[x := v].

To obtain the corresponding transition in the timed-automaton

formalism, C Rcv (§5.4.2.2) provides an edge

(k?i.x,DQ1)
1,k?i.v,hu

−→ (
√
, DQ1[x := v]) in which k!i.v receives a

broadcast synchronisation with the channel automaton transition
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leaving location Acc. This results in the transition

((k?i.x,DQ1), η, v)
k?i.v−→ ((

√
, DQ1[x := v]), η, v[hu := 0]).

(b) λ is a network transition and bCANdle rule §4.3(Recv 2) is em-

ployed. Thus, λ = λn is a network transition on a channel k′ 6= k,

or else on channel k but with Nk not at acceptance point. The

construction of a parallel transition in the timed-automaton for-

malism is as in the (Snd 2) case.

(c) λ = t ∈ R, a time delay to which §4.3 rule (Rcv 3) applies. The

parallel transition in the timed-automaton formalism is

((k?i.x,DQ1), η, v)
t−→ ((k?i.x,DQ1), η, v + t).

3. (Q̂i, DQi)i=1...m is a single term ([ω : t1, t2]
h, DQ1). age([ω : t1, t2]

h) =

[ω : t1
.
− v(h), t2

.
− v(h)] and so the mapping/relation (5.5) takes the

form

(([ω : t1, t2]
h, DQ1), η, v) 7−→ ([ω : t1

.
− v(h), t2

.
− v(h)], age(η, v), DQ1).

There are three sub-cases for

([ω : t1
.
− v(h), t2

.
− v(h)], age(η, v), DQ1)

λ−→ (Q′, N ′, D′):

(a) ([ω : t1
.
− v(h), t2

.
− v(h)], N1, DQ1)

ω−→ (
√
, N1, D

′
Q1) by §4.3 rule

(Comp 1), where t1
.
− v(h) = 0, N1 = age(η, v), and D′Q1 is the

data model state after the operation ω, as determined by §5.4.2.2

rule (C Cmp).

In this case, construct the corresponding automaton transition

(([ω : t1, t2]
h, DQ1), η, v)

ω−→ ((
√
, D′Q1), η, v[hu := 0])

(b) λ is a network action, the transition arising via §4.3(Comp 2).

This case is handled similarly to the (Snd 2), (Rcv 2) cases.

(c) λ = t ∈ R via §4.3(Comp 3). This case is similar to the (Rcv 3)

case.

4. (Q̂i, DQi)i=1...m is a single term (Q̂1, DQ1) where Q̂1 = γ → Q̂ and

γ ∈ Γ is a predicate. The mapping relation (5.5) takes the form

((Q̂1, DQ1), η, v) 7−→ (age(Q̂1, v), age(η, v), DQ1); and age(Q̂1, v) =

γ → unclk(Q̂).
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(a) One sub-case is that in which DQ1 |= γ and a transition λ = γ is

inferred from §4.3 rule (Gu 1):

(γ → unclk(Q̂), age(η, v), DQ1)
γ−→ (unclk(Q̂), age(η, v), DQ1).

In this case rule §5.4.2.2(C Gd) gives in the automaton formalism

an edge (γ → Q̂,DQ1)
1,γ,{hu}∪HQ̂−→ (Q̂,DQ1). Using lemmas B.1.2,

B.1.4, one can check that v[{hu} ∪ HQ := 0] |= I(Q̂,DQ1) and

infer a timed transition

((γ → Q̂,DQ1), η, v)
γ−→ ((Q̂,DQ1), η, v[{hu} ∪HQ̂ := 0]) and the

case is completed by checking that by mapping (5.5),

((Q̂,DQ1), η, v[{hu} ∪HQ̂ := 0]) 7−→ (unclk(Q̂), age(η, v), DQ1).

(b) (γ → unclk(Q̂), age(η, v), DQ1)
λn−→ (unclk(Q̂), N ′, DQ1) by §4.3

(Gu 2) where λn : N = age(η, v) −→ N ′ is a discrete network

action on some channel k. In this case N ′ = (age(η′k′ , v))k′∈K =

age(η′, v) for short. ηk′ = η′k′ for all k′ 6= k and η′k is the channel

automaton location following ηk. The rest of the details resemble

the (Snd 2) case.

(c) (γ → unclk(Q̂), age(η, v), DQ1)
t∈R−→ (unclk(Q̂), N ′, DQ1) by §4.3

(Gu 3) where t = 0 or DQ1 2 γ, and N = age(η, v)
t−→ N ′ is a

time delay on the network. In these cases N ′ = age(η′, v+ t). The

case is completed in a fashion similar to the (Rcv 3), (Comp 3)

cases.

5. (Q̂i, DQi)i=1...m is a single term (Q̂1, DQ1) where Q̂1 = Q̂11; Q̂12, a se-

quence of two (clocked) process terms. The mapping relation (5.5)

takes the form ((Q̂1, DQ1), η, v) 7−→ (age(Q̂1, v), age(η, v), DQ1); and

age(Q̂1, v) = age(Q̂11; Q̂12, v) = age(Q̂11, v); unclk(Q̂12).

(a) The first sub-case is that in which there is a transition inferred

by rule §4.3(Seq 1), (age(Q̂11, v); unclk(Q̂12), age(η, v), DQ1)
λ−→

(Q′11; unclk(Q̂12), N
′, D′) from (age(Q̂11, v), age(η, v), DQ1)

λ−→
(Q′11, N

′, D′), where Q11 is not
√

and λ ∈ Ap ∪ An ∪ R.

By induction hypothesis, there is a timed transition in the au-

tomaton formalism, ((Q̂11, DQ1), η, v)
λ−→ ((Q̂′11, D

′
Q1), η

′, v′) with
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Q̂′11 ' Q̂′′11, Q
′
11 ' Q′′11 and ((Q̂′′11, D

′
Q1), η

′, v′) 7−→ (Q′′11, N
′, D′) by

(5.5).

There are three “sub-sub-cases” to consider, depending on the

type of transition λ:

i. If λ ∈ Ap, a discrete process action, then there must be an

automaton edge (Q̂11, DQ1)
ζ,λ,H−→ (Q̂′11, D

′
Q1) with v |= ζ, v′ =

v[H := 0] |= I(Q̂′11, D
′
Q1).

Now, §5.4.2.2 rule (C Seq 1) implies an edge

(Q̂11; Q̂12, DQ1)
ζ,λ,H−→ (Q̂′11; Q̂12, D

′
Q1) with

v |= ζ and v′ = v[H := 0] |= I(Q̂′11; Q̂12, D
′
Q1).

From this can be inferred a timed transition

((Q̂11; Q̂12, DQ1), η, v)
λ−→ ((Q̂′11; Q̂12, D

′
Q1), η

′, v′) where λmay

synchronise with an edge of a channel automaton to make a

change of a network state.

Since ((Q̂′′11, D
′
Q1), η

′, v′) 7−→ (Q′′11, N
′, D′), Q̂′11 ' Q̂′′11, Q

′
11 '

Q′′11, it follows that

Q̂′11; Q̂12 ' Q̂′′11; Q̂12, Q
′
11; unclk(Q̂12) ' Q′′11; unclk(Q̂12) and

((Q̂′′11; Q̂12, D
′
Q1), η

′, v′)
(5.5)7−→ (Q′′11; unclk(Q̂12), N

′, D′) as re-

quired.

ii. If λ ∈ An, a discrete network action, then λ arises from an

edge of a channel automaton. The reasoning in this case is

similar to the previous case.

iii. If λ = t ∈ R, a time passage, then

∀t′ ∈ [0, t](v + t′) |= I(Q̂11, DQ1) ∧
∧
k∈K I(ηk), whence

(v + t′) |= I(Q̂11; Q̂12, DQ1).

Also Q̂11 = Q̂′11, DQ1 = D′Q1, η = η′, v′ = v + t. So

((Q̂11; Q̂12, DQ1), η, v)
t−→ ((Q̂11; Q̂12, DQ1), η, v + t).

By induction hypothesis, Q̂′11 ' Q̂′′11, Q
′
11 ' Q′′11, and

((Q̂′′11, DQ1), η, v + t)
(5.5)7−→ (Q′′11, N

′, D′) whence

((Q̂′′11; Q̂12, D
′
Q1), η

′, v′)
(5.5)7−→ (Q′′11; unclk(Q̂12), N

′, D′) as re-

quired.

(b) A transition inferred by rule §4.3(Seq 2),
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(age(Q̂11, v); unclk(Q̂12), age(η, v), DQ1)
λ−→ (unclk(Q̂12), N

′, D′)

where

λ = λp ∈ Ap and (age(Q̂11, v), age(η, v), DQ1)
λp−→ (
√
, N ′, D′).

By induction hypothesis there is a timed transition in the automa-

ton formalism, ((Q̂11, DQ1), η, v)
λp−→ ((Q̂′11, D

′
Q1), η

′, v′) with

(∃Q̂′′11)Q̂
′
11 ' Q̂′′11, (∃Q′′11)Q

′
11 ' Q′′11 and

((Q̂′′11, D
′
Q1), η

′, v′) 7−→ (Q′′11, N
′, D′) by mapping/relation (5.5).

From the definition of the age function and lemma B.1.8, Q̂′′11 ≡√
, Q̂′11 ≡

√
and Q′′11 ≡

√
.

Now, ((Q̂11, DQ1), η, v)
λp−→ ((

√
, D′Q1), η

′, v′) must arise from a

timed-automaton edge (Q̂11, DQ1)
ζ,λp,H−→ (

√
, D′Q1) where v |= ζ

and v′ = v[H := 0] |= I(
√
, D′Q1). [There may be an additional

synchronisation with an edge ηk −→ η′k in which case additional

clock(s) are reset and v′ |= η′k too. Otherwise η′k = ηk.]

By §5.4.2.2(C Seq 2) there is a timed-automaton edge

(Q̂11; Q̂12, DQ1)
ζ,λp,H∪HQ̂12−→ (Q̂12, D

′
Q1) (where HQ̂12

is the set of

initial clock variables of Q̂12) which may also synchronise with

an edge of a network channel automaton. By lemmas B.1.2 and

B.1.4,

v′′ = v[H ∪HQ̂12
:= 0] |= I(Q̂12, D

′
Q1) ∧ I(η′k)

Hence, ((Q̂11; Q̂12, DQ1), η, v)
λp−→ ((Q̂12, D

′
Q1), η

′, v′′).

Since ((
√
, D′Q1), η

′, v′)
(5.5)7−→ (

√
, N ′, D′Q1) by induction hypothesis,

D′ = D′D1 and by lemma B.1.5, N ′ = age(η′, v′′). Define Q =

age(Q̂, v′′). Then ((Q̂12, D
′
Q1), η

′, v′′)
(5.5)7−→ (Q,N ′, D′). By lemma

B.1.6, unclk(Q̂12) ' Q.

6. (Q̂i, DQi)i=1...m is a single term (Q̂1, DQ1) where Q̂1 = Q̂11 + Q̂12. This

case is similar to the following, which is worked through in more detail.

7. (Q̂i, DQi)i=1...m is a single term (Q̂1, DQ1) where Q̂1 = Q̂11[> Q̂12. In

this case, let Q1j = age(Q̂1j, v), j = 1, 2. Then age(Q̂11[> Q̂12, v) =

Q11[> Q12 and we have

((Q̂11[> Q̂12, DQ1), η, v)
(5.5)7−→ (Q11[> Q12, N,DQ1)) whereN = age(η, v).
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There are now four sub-cases to consider.

(a) (Q11[> Q12, N,DQ1)
λp∈Ap−→ (Q′11[> Q12, N

′, D′Q1) inferred by rule

§4.3(Int 1), where (Q11, N,DQ1)
λp∈Ap−→ (Q′11, N

′, D′Q1) and Q′11 is

not
√

.

By induction hypothesis, ((Q̂11, DQ1), η, v)
λp−→ ((Q̂′11, D̂

′
Q1), η

′, v)

and ∃Q̂′′11 ' Q̂′11, Q
′′
11 ' Q′11 such that: ((Q̂′′11, D

′
Q1), η

′, v′)
(5.5)7−→

(Q′′11, N
′, D′Q1). This timed transition λp arises from an timed-

automaton edge (Q̂11, DQ1)
ζ,λp,H−→ (Q̂′11, D̂

′
Q1) (synchronising with

an edge ηk −→ η′k if some η′k 6= ηk) with ¬Q̂′11 ≡
√

, v |= ζ and

v′ = v[H := 0] |= I(Q̂′11, D̂
′
Q1). Also v′ |= the invariant of η′k if

appropriate; in this case a network clock is additionally reset.

So, by §5.4.2.2 (C Int 1), there is a timed-automaton edge

(Q̂11[> Q̂12, DQ1)
ζ,λp,H−→ (Q̂′11[> Q̂12, D̂

′
Q1) possibly synchronising

with a channel automaton edge.

Now v[H := 0] |= I(Q̂′11, D̂
′
Q1){∧I(η′k)} and v |= I(Q̂12, DQ1).

Since hu is reset at every edge we can appeal to lemmas B.1.2,

B.1.3 and infer v[H := 0] |= I(Q̂12, D̂
′
Q1) whence

v[H := 0] |= I(Q̂′11[> Q̂12, D̂
′
Q1){∧I(η′k)}. Since also v |= ζ there

is a timed transition

((Q̂11[> Q̂12, DQ1), η, v)
λp−→ ((Q̂′11[> Q̂12, D̂

′
Q1), η

′, v)

(H also includes a network channel clock to be reset, if necessary.)

Now, Q̂′′11 ' Q̂′11 and Q′′11 ' Q′11 so Q̂′′11[> Q̂12 ' Q̂′11[> Q̂12

and Q′′11[> Q12 ' Q′11[> Q12. Also Q′′11 = age(Q̂′′11, v[H := 0])

by construction of the
(5.5)7−→ relation, and H ∩HQ̂12

= ∅ assuming

clocks are “safely allocated” so by lemma B.1.5,

Q = age(Q̂12, v[H := 0]) and N ′ = age(η′, v[H := 0]).

Then, by construction of the mapping relation,

((Q̂′′11[> Q̂12, D
′
Q1), η

′, v[H := 0])
(5.5)7−→ (Q′′11[> Q12, N

′, D′Q1).

(b) (Q11[> Q12, N,DQ1)
λp∈Ap−→ (

√
, N ′, D′Q1) by rule §4.3(Int 2), where

(Q11, N,DQ1)
λp−→ (
√
, N ′, D′Q1). This case is handled similarly.

(c) (Q11[> Q12, N,DQ1)
λp∈Ap−→ (Q′12, N

′, D′Q1) by rule §4.3(Int 3), where
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(Q12, N,DQ1)
λp−→ (Q′12, N

′, D′Q1). This case is handled similarly.

(d) (Q11[> Q12, N,DQ1)
λnt∈An∪R−→ (Q′11[> Q′12, N

′, D′Q1) by §4.3(Int 4),

where (Q1j, N,DQ1)
λnt−→ (Q′1j, N

′, D′Q1) for j = 1, 2. There are

two sub-sub-cases.

i. λnt = λn ∈ An. By lemma B.1.1, Q11[> Q12 ≡ Q′11[> Q′12 and

DQ1 = D′Q1. By induction hypothesis,

((Q̂1j, DQ1), η, v)
λn−→ ((Q̂1j, DQ1), η

′, v′) for j = 1, 2; and

∃Q̂′′11 ' Q̂′11, Q̂
′′
12 ' Q̂′12, Q

′′
11 ' Q′11, Q

′′
12 ' Q′12 such that

((Q̂11, DQ1), η, v)
(5.5)7−→ (Q′′11, N

′, DQ1).

But ((Q̂11, DQ1), η, v)
λn−→ ((Q̂11, DQ1), η

′, v′) must arise from

some edge ηk
ζ,λn,H−→ η′k. The same edge yields

((Q̂11[> Q̂12, DQ1), η, v)
λn−→ ((Q̂11[> Q̂12, DQ1), η

′, v′).

ii. λnt = t ∈ R. In this case (∀k)ηk = η′k and v′ = v + t. Also,

(∀t′ ∈ [0, t])v+ t′ satisfies all the location invariants of the ηk.

The rest of the details are straightforward.

8. (Q̂i, DQi)i=1...m is a single term (Q̂1, DQ1) where Q̂1 = recX.Q̂. So

((recX.Q̂,DQ1), η, v)
(5.5)7−→ (age(recX.Q̂, v), age(η, v), DQ1).

Now, age(recX.Q̂, v) = age(Q̂[recX.Q̂/X], v). The expression on the

right hand side is “lower” in the recursive definition of age then the

left, so whenever there is a transition

(age(Q̂[recX.Q̂/X], v), age(η, v), DQ1)
λ−→ (Q′1, N

′, D′Q1)

we can infer by induction hypothesis

∃Q̂′′1 ' Q̂′1, Q
′′
1 ' Q′1 and a corresponding timed transition

((Q̂[recX.Q̂/X], DQ1), η, v)
λ−→ ((Q̂′′1, D

′
Q1), η

′, v′) with

((Q̂′′1, D
′
Q1), η

′, v′)
(5.5)7−→ (Q′′1, N

′, D′Q1) (In particular, age(η′, v′) = N ′).

Two possible cases for λ need to be considered.

(a) A discrete action: λ ∈ Ap ∪ An. This is a discrete process action

or possibly and send or receive action synchronising with an edge

of a channel automaton. A discrete transition

((Q̂[recX.Q̂/X], DQ1), η, v)
λ−→ ((Q̂′′1, D

′
Q1), η

′, v′) must arise from
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an automaton edge (Q̂[recX.Q̂/X], DQ1)
ζ,λ,H−→ (Q̂′′1, D

′
Q1) with v |=

ζ and v′ |= I(Q̂′′1, D
′
Q1), possibly synchronising with a channel au-

tomaton edge. From §4.3 rule (Rec), there is an edge (recX.Q̂,DQ1)
ζ,λ,H−→

(Q̂′′1, D
′
Q1), and hence the required timed transition.

(b) A time passage: λ = t ∈ R. Thus

((Q̂[recX.Q̂/X], DQ1), η, v)
t−→ ((Q̂′′1, D

′
Q1), η

′, v′) which must arise

from passage of time at a (vector of) automaton locations: v′ =

v + t, Q̂′′1 = Q̂[recX.Q̂/X], D′Q1 = DQ1, η
′ = η and ∀t′ ∈

[0, t](v + t′) |= I(recX.Q̂,DQ1).

Hence there is a timed transition

((recX.Q̂,DQ1), η, v)
t−→ ((Q̂′′1, D

′
Q1), η

′, v′) as required to com-

plete the induction step.

9. (Q̂i, DQi)i=1...m is a vector (finite sequence) of clocked process terms.

Without loss of generality we consider just a pair (Q̂1, DQ1), (Q̂2, DQ2)

(this part of the proof generalises to m terms in a natural way). The

mapping relation (5.5) takes the form: ((Q̂1, DQ1), (Q̂2, DQ2), η, v) 7−→
(Q1|Q2, N,DQ1 t DQ2) where Qj = age(Q̂j, v) [j = 1, 2] and N =

age(η) = (age(ηk))k∈K . There are five sub-cases.

(a) (Q1|Q2, N,DQ1 tDQ2)
λp∈Ap−→ (Q′1|Q2, N

′, D′Q1 tDQ2) by §4.3 rule

(Par 1), where (Q1, N,DQ1)
λp−→ (Q′1, N

′, D′Q1) and ¬Q′1 ≡
√

.

By induction hypothesis,

((Q̂1, DQ1)(Q̂2, DQ2), η, v)
λp−→ ((Q̂′1, D

′
Q1)(Q̂2, DQ2), η

′, v′) and

∃Q̂′′1 ' Q̂′1, Q
′′
1 ' Q′1 such that

((Q̂′′1, D
′
Q1)(Q̂2, DQ2), η

′, v′)
λp7−→ (Q′′1|Q2, N

′, D′Q1 tDQ2).

To complete this case, observe that Q′′1|Q2 ' Q′1|Q2.

(b) (Q1|Q2, N,DQ1tDQ2)
λp∈Ap−→ (Q2, N

′, D′Q1tDQ2) by §4.3 rule (Par

2), where (Q1, N,DQ1)
λp−→ (
√
, N ′, D′Q1).

By induction hypothesis, ((Q̂1, DQ1)(Q̂2, DQ2), η, v)
λp−→

((
√
, D′Q1)(Q̂2, DQ2), η

′, v′) ' ((Q̂2, D
′
Q1 t DQ2), η

′, v′) with N ′ =

age(η′, v′) and ∃Q̂′′1 ' Q̂′1 such that
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((Q̂′′1, D
′
Q1)(Q̂2, DQ2), η

′, v′)
λp7−→ (Q′′1|Q2, N

′, D′Q1 tDQ2).

(c) (Q1|Q2, N,DQ1 tDQ2)
λp∈Ap−→ (Q1|Q′2, N ′, DQ1 tD′Q2) by §4.3 rule

(Par 3), where (Q2, N,DQ2)
λp−→ (Q′2, N

′, D′Q2) and ¬Q′2 ≡
√

.

This is symmetrical to the (Par 1) case.

(d) (Q1|Q2, N,DQ1tDQ2)
λp∈Ap−→ (Q1, N

′, D′Q1tDQ2) by §4.3 rule (Par

4), where (Q2, N,DQ2)
λp−→ (
√
, N ′, D′Q2). This is symmetrical to

the (Par 2) case.

(e) (Q1|Q2, N,DQ1 t DQ2)
λnt∈An∪R−→ (Q′1|Q′2, N ′, DQ1 t DQ2) by §4.3

rule (Par 5), where (Qj, N,DQ1 tDQ2)
λnt−→ (Q′j, N

′, DQ1 tDQ2),

j = 1, 2. Let D = DQ1 t DQ2 and recall Qj = age(Q̂j, v) and

N = age(η, v). By induction hypothesis,

((Q̂j, D), η, v)
λnt−→ ((Q̂′j, D), η′, v′) and

∃Q̂′′1 ' Q̂′1, Q
′′
1 ' Q′1, Q̂

′′
2 ' Q̂′2, Q

′′
2 ' Q′2, such that

((Q̂′′j , D), η′, v)
(5.5)7−→ (Q′′j , N

′, D). The rest of the details are similar

to the cases involving network actions and/or time passage.

Remark – these cases generalise to a vector of parallel process terms

(Q̂i, DQi)i=1...m in a natural way.

B.4 A Transition in the TA Formalism is Sim-

ulated in bCANdle

The last part of the bisimulation proof is to show the reverse of the above:

that given a pair of related states,

((Q̂i, DQi)i=1...n, (ηk)k∈K , v)
(5.5)7−→ (|ni=1age(Q̂i, v), (age(ηk, v))k∈K ,tni=1DQi), for

every transition in the timed-automaton formalism,

((Q̂i, DQi)i=1...m, (ηk)k∈K , v)
λ−→ ((Q̂′i, D

′
Qi)i=1...m′ , (η

′
k)k∈K , v

′) there is a tran-

sition with the same label λ from (|mi=1age(Q̂i, v), (age(ηk, v))k∈K ,tmi=1DQi)

in the bCANdle timed transition system, and the λ-targets are strongly (se-

mantically) equivalent to states related by the mapping.
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The proof of this similar, and symmetrical, to that given in the previous

section.

Again, this will be done by proving by induction on the recursive defini-

tion of the age function a slightly stronger property: for every pair of timed

states

((Q̂i, DQi)i=1...m, (ηk)k∈K , v)
(5.5)7−→ (|mi=1age(Q̂i, v), (age(ηk, v))k∈K ,tni=1DQi) re-

lated by the mapping, for every transition

((Q̂i, DQi)i=1...m, (ηk)k∈K , v)
λ−→ ((Q̂′i, D

′
Qi)i=1...m′ , (η

′
k)k∈K , v

′) in the timed-

automaton formalism there is a transition with the same label

(|mi=1age(Q̂i, v), (age(ηk, v))k∈K ,tmi=1DQi)
λ−→ (Q′, N ′, D′) in the bCANdle

timed transition system , where for some clocked bCANdle terms, Q̂′′i '
Q̂′i, (i = 1...m′),

((Q̂′′i , D
′
Qi)i=1...m′ , (η

′
k)k∈K , v)

(5.5)7−→ (|m′i=1age(Q̂′′i , v), (age(η′k, v
′))k∈K ,tm

′
i=1D

′
Qi)

and |m′i=1age(Q̂′′i , v
′) ' Q′ and N ′ = age(η′, v′) and D′ = tm′i=1D

′
Qi.

Proof There are various cases to be considered: time passage with discrete

action, discrete action internal to a channel automaton, and discrete action

on a process term (several cases depending on (Q̂i, DQi)i=1...m). As before,

a vector of channel automaton locations is abbreviated by suppressing the

subscripts: (ηk)k∈K is abbreviated η, (age(ηk, v))k∈K is abbreviated age(η, v)

and so forth.

1. λ = t ∈ R. Then ((Q̂i, DQi)i=1...m, η, v) = ((Q̂′i, D
′
Qi)i=1...m′ , η

′, v′) –

m′ = m, v′ = v + t, and ∀k.η′k = ηk and ∀t′ ∈ [0, t].v + t′ |= I(ηk), and

∀i.Q̂′i = Q̂i, D
′
Qi = DQi and ∀t′ ∈ [0, t].v + t′ |= I(Q̂i, DQi).

From this one can deduce a bCANdle network transition

age(η, v)
t−→ age(η, v+ t) by employing lemma B.1.7. To further infer

(|mi=1age(Q̂i, v), age(η, v),tni=1DQi)
t−→ (|mi=1age(Q̂i, v + t), age(η, v +

t),tni=1DQi), as required, we make use of §4.3 rules (Snd 3), (Rcv 3),

(Comp 3), (Gu 3), (Ch 3), (Int 4), (Par 5).

2. λ = λn, an internal discrete action in just one of the channel automata,

say, ηk −→ η′k. Then v = v′, m = m′, ∀i.Q̂i = Q̂′i, DQi = D′Qi, and

∀l 6= k.η′l = ηl. By construction of the age function, there is a network
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transition age(ηk, v)
λn−→ age(η′k, v), from which a timed transition

(|mi=1age(Q̂i, v), age(η, v),tni=1DQi)
t−→ (|mi=1age(Q̂i, v

′), age(η, v′),tni=1DQi)

may be inferred using §4.3 rules (Snd 2), (Rcv 2), (Comp 2), (Gu 2),

(Ch 3), (Int 4), (Par 5).

In the remaining cases actions λ arising as time passage or as network

actions are handled much as above; the cases below are those of discrete

actions on “process term” components arising via the rules of §5.4.2.2.

In these cases λ ∈ Ap.

3. (Q̂i, DQi)i=1...m is a single term (k!i.x,DQ1) where k ∈ K, i ∈ I, x ∈
V ar. λ must be ((Q̂1, DQ1), η, v)

k!i.v−→ ((
√
, DQ1), η

′, v[hu := 0]) arising

by rule §5.4.2.2(C Snd), where Q̂1 = k!i.x, v = DQ1.x. A synchronous

action ηk −→ η′k in channel k adds message i.v to its queue; for l 6=
k, ηl = η′l.

By rule §4.3(Snd 1) there is a bCANdle transition

(k!i.x,N,DQ1)
k!i.v−→ (

√
, N [k := (s, u" i.v)], DQ1) where age(k!i.x, v) =

k!i.x and N = age(η, v), N [k := (s, u" i.v)] = age(η′, v).

4. (Q̂i, DQi)i=1...m is a single term (k?i.x,DQ1) where k ∈ K, i ∈ I, x ∈
V ar. λ must be ((Q̂1, DQ1), η, v)

k?i.v−→ ((
√
, D′Q1), η

′, v[hu := 0]) arising

by rule §5.4.2.2(C Rcv), where Q̂1 = k?i.x, D′Q1 = DQ1[x := v]. η′l =

ηlforl 6= k and there is a transition ηk −→ η′k from the acceptance

point of channel k broadcasting a synchronisation to communicate the

data value.

By rule §4.3(Rcv 1) there is then a bCANdle transition

(k?i.x,N,DQ1)
k!i.v−→ (

√
, N ′, D′Q1) where age(k?i.x, v) = k?i.x and N =

age(η, v), N ′ = age(η′, v), D′Q1 = DQ1[x := v].

5. (Q̂i, DQi)i=1...m is a single term ([ω : t1, t2]
h, DQ1). A transition from

(([ω : t1, t2]
h, DQ1), η, v) must incorporate an edge from ([ω : t1, t2]

h, DQ1)

and this can only arise from rule §5.4.2.2(C Cmp). It follows that λ

is (([ω : t1, t2]
h, DQ1), η, v)

ω−→ ((
√
, D′Q1), η, v

′) where DQ1
ω−→d D

′
Q1,

that is, D′Q1 is the state of DQ1 after the computation ω has run, and

v |= h ≥ t1, v
′ = v[hu := 0].
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age([ω : t1, t2]
h) = [ω : t1

.
− v(h), t2

.
− v(h)] = [ω : 0, t2

.
− v(h)] and so

the corresponding bCANdle transition takes the form

([ω : t1
.
− v(h), t2

.
− v(h)], age(η, v), DQ1)

ω−→ (
√
, η,D′Q1) which exists

by virtue of §4.3 rule (Comp 1).

6. (Q̂i, DQi)i=1...m is a single term (Q̂1, DQ1) where Q̂1 ≡ γ → Q̂. Recall

that age(γ → Q̂) = γ → unclk(Q̂). The timed transition

((γ → Q̂,DQ1), η, v)
λ−→ ((Q̂′1, D

′
Q1), η

′, v′) must arise via §5.4.2.2(C Gd)

from an edge (γ → Q̂,DQ1)
1,γ,{hu}∪HQ̂−→ (Q̂,DQ1) where DQ1 |= γ. Thus,

λ = γ, v′ = v[{hu} ∪HQ̂ := 0], η′ = η, D′Q1 = DQ1 and Q̂′1 = Q̂.

By §4.3 rule (Gu 1) there is a bCANdle transition

(γ → unclk(Q̂), age(η, v), DQ1)
γ−→ (unclk(Q̂), age(η, v), DQ1) which

provides the required corresponding bCANdle transition.

7. (Q̂i, DQi)i=1...m is a single term (Q̂11; Q̂12, DQ1). A timed transition λ

from ((Q̂11; Q̂12, DQ1), η, v) can arise in one of two ways.

(a) ((Q̂11; Q̂12, DQ1), η, v)
λ−→ ((Q̂′11; Q̂12, D

′
Q1), η, v

′) arising from an

edge (Q̂11; Q̂12, DQ1)
ζ,λ,H−→ (Q̂′11; Q̂12, D

′
Q1) derived by rule (C Seq

1) of §5.4.2.2 from an edge (Q̂11, DQ1)
ζ,λ,H−→ (Q̂′11, D

′
Q1) where Q̂′11

is not
√

.

Thus, v |= ζ and v′ = v[H := 0] |= I(Q̂′11; Q̂12); so, v′ |= I(Q̂′11)

and there is a timed transition

((Q̂11, DQ1), η, v)
λ−→ ((Q̂′11, D

′
Q1), η, v

′).

By induction hypothesis, there is a bCANdle transition corre-

sponding to this under the bisimulation:

(age(Q̂11, v), age(η, v), DQ1)
λ−→ (Q′′, age(η, v), D′Q1) where for

some Q̂′′11 ' Q̂′11, ((Q̂′′11, D
′
Q1), η, v

′)
(5.5)7−→ (age(Q̂′′11, v

′), age(η, v′), D′Q1)

with age(η, v) = age(η, v′) and Q′′ ' age(Q̂′′11, v
′).

§4.3 rule (Seq 1) implies a transition

(age(Q̂11; Q̂12, v), age(η, v), DQ1)
λ−→ (Q′′; unclk(Q̂12), age(η, v), D′Q1)

(remember age(Q̂11; Q̂12, v) = age(Q̂11, v); unclk(Q̂12)) from which

the induction can be established.
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(b) ((Q̂11; Q̂12, DQ1), η, v)
λ−→ ((Q̂12, D

′
Q1), η, v

′) arising from an edge

(Q̂11; Q̂12, DQ1)
ζ,λ,H∪HQ̂12−→ (Q̂12, D

′
Q1) derived by rule (C Seq 2) of

§5.4.2.2 from an edge (Q̂11, DQ1)
ζ,λ,H−→ (

√
, D′Q1).

Thus, v |= ζ and v′ = v[H ∪ HQ̂12
:= 0] |= I(Q̂12); so there

is a timed transition ((Q̂11, DQ1), η, v)
λ−→ ((

√
, D′Q1), η, v

′). The

rest of this part of the argument from the induction hypothesis is

similar to the previous part, but using §4.3 rule (Seq 2) in lieu of

(Seq 1).

8. (Q̂i, DQi)i=1...m is a single term (Q̂11[> Q̂12, DQ1). A timed transition

λ from ((Q̂11[> Q̂12, DQ1), η, v) can arise in one of three ways.

(a) ((Q̂11[> Q̂12, DQ1), η, v)
λ−→ ((Q̂′11[> Q̂12, D

′
Q1), η, v

′) arising from

an edge (Q̂11[> Q̂12, DQ1)
ζ,λ,H−→ (Q̂′11[> Q̂12, D

′
Q1) derived by rule

(C Int 1) of §5.4.2.2 from an edge (Q̂11, DQ1)
ζ,λ,H−→ (Q̂′11, D

′
Q1)

where Q̂′11 is not
√

.

Thus, v |= ζ and v′ = v[H := 0] |= I(Q̂′11[> Q̂12); so, v′ |= I(Q̂′11)

and there is a timed transition

((Q̂11, DQ1), η, v)
λ−→ ((Q̂′11, D

′
Q1), η, v

′).

By induction hypothesis, there is a bCANdle transition corre-

sponding to this under the bisimulation:

(age(Q̂11, v), age(η, v), DQ1)
λ−→ (Q′′, age(η, v), D′Q1) where for

some Q̂′′11 ' Q̂′11, ((Q̂′′11, D
′
Q1), η, v

′)
(5.5)7−→ (age(Q̂′′11, v

′), age(η, v′), D′Q1)

with age(η, v) = age(η, v′) and Q′′ ' age(Q̂′′11, v
′).

§4.3 rule (Int 1) implies a transition

(age(Q̂11[> Q̂12, v), age(η, v), DQ1)
λ−→ (Q′′[> age(Q̂12, v), age(η, v), D′Q1)

(remember age(Q̂11[> Q̂12, v) = age(Q̂11, v)[> age(Q̂12, v)) from

which the induction can be established.

(b) ((Q̂11[> Q̂12, DQ1), η, v)
λ−→ ((

√
, D′Q1), η, v

′) arising from an edge

(Q̂11[> Q̂12, DQ1)
ζ,λ,H−→ (

√
, D′Q1) derived by rule (C Int 2) of §5.4.2.2

from an edge (Q̂11, DQ1)
ζ,λ,H−→ (

√
, D′Q1).

Thus, v |= ζ and v′ = v[H := 0]; there is a timed transition
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((Q̂11, DQ1), η, v)
λ−→ ((

√
, D′Q1), η, v

′). The rest of this part of

the argument from induction hypothesis is similar to the previous

part, but using §4.3 rule (Int 2) in lieu of (Int 1).

(c) ((Q̂11[> Q̂12, DQ1), η, v)
λ−→ ((Q̂′12, D

′
Q1), η, v

′) arising from an

edge (Q̂11[> Q̂12, DQ1)
ζ,λ,H−→ (Q̂′12, D

′
Q1) derived by rule (C Int 3)

of §5.4.2.2 from an edge (Q̂12, DQ1)
ζ,λ,H−→ (Q̂′12, D

′
Q1).

Thus, v |= ζ and v′ = v[H := 0] |= I(Q̂′12); so there is a timed

transition ((Q̂12, DQ1), η, v)
λ−→ ((Q̂′12, D

′
Q1), η, v

′). The rest of

this part of the argument from induction hypothesis is similar to

the previous part, using §4.3 rule (Int 3).

9. (Q̂i, DQi)i=1...m is a single term (Q̂11 + Q̂12, DQ1). A timed transition λ

from ((Q̂11 + Q̂12, DQ1), η, v) must arise either as

(a) ((Q̂11+Q̂12, DQ1), η, v)
λ−→ ((Q̂′11, D

′
Q1), η, v

′) arising from an edge

(Q̂11 + Q̂12, DQ1)
ζ,λ,H−→ (Q̂′11, D

′
Q1) derived by rule §5.4.2.2 (C Ch

1) from an edge (Q̂11, DQ1)
ζ,λ,H−→ (Q̂′11, D

′
Q1). This is similar to the

previous two groups of cases.

(b) ((Q̂11+Q̂12, DQ1), η, v)
λ−→ ((Q̂′12, D

′
Q1), η, v

′) arising from an edge

(Q̂11 + Q̂12, DQ1)
ζ,λ,H−→ (Q̂′12, D

′
Q1) derived by rule §5.4.2.2 (C Ch

2) from an edge (Q̂12, DQ1)
ζ,λ,H−→ (Q̂′12, D

′
Q1). This is symmetrical

to the previous case.

10. (Q̂i, DQi)i=1...m is a single term (recX.Q̂,DQ1).

((recX.Q̂,DQ1), η, v)
λ−→ ((Q̂′, D′Q1), η, v

′) must arise from an edge

(recX.Q̂,DQ1)
ζ,λ,H−→ (Q̂′, D′Q1) derived by rule §5.4.2.2 (C Rec) from

an edge (Q̂[recX.Q̂/X], DQ1)
ζ,λ,H−→ (Q̂′, D′Q1). We have v |= ζ and

v′ = v[H := 0] |= I(Q̂′, D′Q1), and hence a timed transition

((Q̂[recX.Q̂/X], DQ1), η, v)
λ−→ ((Q̂′, D′Q1), η, v

′).

By induction hypothesis there is a bCANdle transition

(age(Q̂[recX.Q̂/X], v), age(η, v), DQ1)
λ−→ (Q′′, age(η, v), D′Q1) where

for some Q̂′′ ' Q̂′, ((Q̂′′, D′Q1), η, v
′)

(5.5)7−→ (age(Q̂′′, v′), age(η, v′), D′Q1)

with age(η, v) = age(η, v′) and Q′′ ' age(Q̂′′, v′).
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§4.3 rule (Rec) implies a bCANdle transition

(age(recX.Q̂, v), age(η, v), DQ1)
λ−→ (Q′′, age(η, v), D′Q1) which, be-

cause (age(recX.Q̂, v) ≡ (age(Q̂[recX.Q̂/X], v), establishes the induc-

tion.

11. (Q̂i, DQi)i=1...m is a pair (Q̂i, DQi)i=1,2 of parallel process terms and

((Q̂i, DQi)i=1,2, η, v)
λ−→ (Q̂′i, D

′
Qi)i=1,2, η

′, v′) is a discrete transition on

one of the precess terms.

(a) λ arises from an edge

(Q̂1, DQ1)
ζ,λ,H−→ (Q̂′1, D

′
Q1) and Q̂′1 is not

√
but Q̂′2 ≡ Q̂2. Then,

v |= ζ and v′ = v[H := 0] |= I(Q̂′1, D
′
Q1)∧I(Q̂′2, D

′
Q2)∧

∧
k∈K I(ηk).

In this case the required (age(Q̂1, v)|age(Q̂2, v), age(η, v), DQ1 t
DQ2)

λ−→ (age(Q̂′1, v
′)|age(Q̂′2, v

′), age(η′, v′), D′Q1 tD′Q2) may be

inferred from

(age(Q̂1, v), age(η, v), DQ1)
λ−→ (age(Q̂′1, v

′), age(η′, v′), D′Q1) us-

ing §4.3 rule (Par 1).

(b) λ arises from an edge

(Q̂1, DQ1)
ζ,λ,H−→ (

√
, D′Q1). The reasoning is similar to the previous

case, but uses §4.3 rule (Par 2).

(c) λ arises from an edge

(Q̂2, DQ2)
ζ,λ,H−→ (Q̂′2, D

′
Q2). The two cases (whether or not Q̂′2 is

√
) are symmetrical with the previous two cases and employ §4.3

rules (Par 3), (Par 4).

(d) Cases in which (Q̂i, DQi)i=1...m is several parallel process terms

generalise on these cases in a natural way.
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Appendix C

CANGen Generated Code for a

CAN Channel

process Channel(const int l, const int u, const int L, const int U,

urgent chan & nMsg_000_000, urgent chan & nMsg_000_001,

urgent chan & nMsg_000_002, urgent chan & nMsg_000_003,

urgent chan & nMsg_001_000, urgent chan & nMsg_001_001,

urgent chan & nMsg_001_002, urgent chan & nMsg_001_003,

urgent chan & nMsg_002_000, urgent chan & nMsg_002_001,

urgent chan & nMsg_002_002, urgent chan & nMsg_002_003,

broadcast chan & dMsg_000_000, broadcast chan & dMsg_000_001,

broadcast chan & dMsg_000_002, broadcast chan & dMsg_000_003,

broadcast chan & dMsg_001_000, broadcast chan & dMsg_001_001,

broadcast chan & dMsg_001_002, broadcast chan & dMsg_001_003,

broadcast chan & dMsg_002_000, broadcast chan & dMsg_002_001,

broadcast chan & dMsg_002_002, broadcast chan & dMsg_002_003) {

clock h;

int[0,3] ip;

int[0,3] vp;

int[-1,3] Q[3];

state

Init, Free,

M2S_000_000, M2S_000_001, M2S_000_002, M2S_000_003, M2S_001_000,

M2S_001_001, M2S_001_002, M2S_001_003, M2S_002_000, M2S_002_001,

M2S_002_002, M2S_002_003,

243
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PreAcc_000_000, PreAcc_000_001, PreAcc_000_002, PreAcc_000_003,

PreAcc_001_000, PreAcc_001_001, PreAcc_001_002, PreAcc_001_003,

PreAcc_002_000, PreAcc_002_001, PreAcc_002_002, PreAcc_002_003,

Acc_000_000, Acc_000_001, Acc_000_002, Acc_000_003, Acc_001_000,

Acc_001_001, Acc_001_002, Acc_001_003, Acc_002_000, Acc_002_001,

Acc_002_002, Acc_002_003,

PostAcc_000_000, PostAcc_000_001, PostAcc_000_002, PostAcc_000_003,

PostAcc_001_000, PostAcc_001_001, PostAcc_001_002, PostAcc_001_003,

PostAcc_002_000, PostAcc_002_001, PostAcc_002_002, PostAcc_002_003,

PreAcc{h<=u}, Acc, PostAcc{h<=U},

PostChk_000, PostChk_001, PostChk_002;

commit

Init,

M2S_000_000, M2S_000_001, M2S_000_002, M2S_000_003, M2S_001_000,

M2S_001_001, M2S_001_002, M2S_001_003, M2S_002_000, M2S_002_001,

M2S_002_002, M2S_002_003,

PreAcc_000_000, PreAcc_000_001, PreAcc_000_002, PreAcc_000_003,

PreAcc_001_000, PreAcc_001_001, PreAcc_001_002, PreAcc_001_003,

PreAcc_002_000, PreAcc_002_001, PreAcc_002_002, PreAcc_002_003,

Acc_000_000, Acc_000_001, Acc_000_002, Acc_000_003, Acc_001_000,

Acc_001_001, Acc_001_002, Acc_001_003, Acc_002_000, Acc_002_001,

Acc_002_002, Acc_002_003,

PostAcc_000_000, PostAcc_000_001, PostAcc_000_002, PostAcc_000_003,

PostAcc_001_000, PostAcc_001_001, PostAcc_001_002, PostAcc_001_003,

PostAcc_002_000, PostAcc_002_001, PostAcc_002_002, PostAcc_002_003,

PostChk_000, PostChk_001, PostChk_002;

urgent

Acc;

init

Init;

trans

Init -> Init {

guard ip < 3;

assign Q[ip] = -1, ip++, h = 0;

},

Init -> Free { guard ip == 3; assign h = 0; },

Free -> M2S_000_000 { sync nMsg_000_000?; },

Free -> M2S_000_001 { sync nMsg_000_001?; },
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Free -> M2S_000_002 { sync nMsg_000_002?; },

Free -> M2S_000_003 { sync nMsg_000_003?; },

Free -> M2S_001_000 { sync nMsg_001_000?; },

Free -> M2S_001_001 { sync nMsg_001_001?; },

Free -> M2S_001_002 { sync nMsg_001_002?; },

Free -> M2S_001_003 { sync nMsg_001_003?; },

Free -> M2S_002_000 { sync nMsg_002_000?; },

Free -> M2S_002_001 { sync nMsg_002_001?; },

Free -> M2S_002_002 { sync nMsg_002_002?; },

Free -> M2S_002_003 { sync nMsg_002_003?; },

M2S_000_000 -> PreAcc { assign ip=0, vp=0, h = 0; },

M2S_000_001 -> PreAcc { assign ip=0, vp=1, h = 0; },

M2S_000_002 -> PreAcc { assign ip=0, vp=2, h = 0; },

M2S_000_003 -> PreAcc { assign ip=0, vp=3, h = 0; },

M2S_001_000 -> PreAcc { assign ip=1, vp=0, h = 0; },

M2S_001_001 -> PreAcc { assign ip=1, vp=1, h = 0; },

M2S_001_002 -> PreAcc { assign ip=1, vp=2, h = 0; },

M2S_001_003 -> PreAcc { assign ip=1, vp=3, h = 0; },

M2S_002_000 -> PreAcc { assign ip=2, vp=0, h = 0; },

M2S_002_001 -> PreAcc { assign ip=2, vp=1, h = 0; },

M2S_002_002 -> PreAcc { assign ip=2, vp=2, h = 0; },

M2S_002_003 -> PreAcc { assign ip=2, vp=3, h = 0; },

PreAcc -> PreAcc_000_000 { sync nMsg_000_000?; },

PreAcc -> PreAcc_000_001 { sync nMsg_000_001?; },

PreAcc -> PreAcc_000_002 { sync nMsg_000_002?; },

PreAcc -> PreAcc_000_003 { sync nMsg_000_003?; },

PreAcc -> PreAcc_001_000 { sync nMsg_001_000?; },

PreAcc -> PreAcc_001_001 { sync nMsg_001_001?; },

PreAcc -> PreAcc_001_002 { sync nMsg_001_002?; },

PreAcc -> PreAcc_001_003 { sync nMsg_001_003?; },

PreAcc -> PreAcc_002_000 { sync nMsg_002_000?; },

PreAcc -> PreAcc_002_001 { sync nMsg_002_001?; },

PreAcc -> PreAcc_002_002 { sync nMsg_002_002?; },

PreAcc -> PreAcc_002_003 { sync nMsg_002_003?; },

PreAcc_000_000 -> PreAcc { assign Q[0] = 0; },

PreAcc_000_001 -> PreAcc { assign Q[0] = 1; },

PreAcc_000_002 -> PreAcc { assign Q[0] = 2; },

PreAcc_000_003 -> PreAcc { assign Q[0] = 3; },



246APPENDIX C. CANGEN GENERATED CODE FOR A CAN CHANNEL

PreAcc_001_000 -> PreAcc { assign Q[1] = 0; },

PreAcc_001_001 -> PreAcc { assign Q[1] = 1; },

PreAcc_001_002 -> PreAcc { assign Q[1] = 2; },

PreAcc_001_003 -> PreAcc { assign Q[1] = 3; },

PreAcc_002_000 -> PreAcc { assign Q[2] = 0; },

PreAcc_002_001 -> PreAcc { assign Q[2] = 1; },

PreAcc_002_002 -> PreAcc { assign Q[2] = 2; },

PreAcc_002_003 -> PreAcc { assign Q[2] = 3; },

PreAcc -> Acc { guard h >= l; assign h = 0; },

Acc -> Acc_000_000 { guard ip == 0 && vp == 0; },

Acc -> Acc_000_001 { guard ip == 0 && vp == 1; },

Acc -> Acc_000_002 { guard ip == 0 && vp == 2; },

Acc -> Acc_000_003 { guard ip == 0 && vp == 3; },

Acc -> Acc_001_000 { guard ip == 1 && vp == 0; },

Acc -> Acc_001_001 { guard ip == 1 && vp == 1; },

Acc -> Acc_001_002 { guard ip == 1 && vp == 2; },

Acc -> Acc_001_003 { guard ip == 1 && vp == 3; },

Acc -> Acc_002_000 { guard ip == 2 && vp == 0; },

Acc -> Acc_002_001 { guard ip == 2 && vp == 1; },

Acc -> Acc_002_002 { guard ip == 2 && vp == 2; },

Acc -> Acc_002_003 { guard ip == 2 && vp == 3; },

Acc_000_000 -> PostAcc {sync dMsg_000_000!; },

Acc_000_001 -> PostAcc {sync dMsg_000_001!; },

Acc_000_002 -> PostAcc {sync dMsg_000_002!; },

Acc_000_003 -> PostAcc {sync dMsg_000_003!; },

Acc_001_000 -> PostAcc {sync dMsg_001_000!; },

Acc_001_001 -> PostAcc {sync dMsg_001_001!; },

Acc_001_002 -> PostAcc {sync dMsg_001_002!; },

Acc_001_003 -> PostAcc {sync dMsg_001_003!; },

Acc_002_000 -> PostAcc {sync dMsg_002_000!; },

Acc_002_001 -> PostAcc {sync dMsg_002_001!; },

Acc_002_002 -> PostAcc {sync dMsg_002_002!; },

Acc_002_003 -> PostAcc {sync dMsg_002_003!; },

PostAcc -> PostAcc_000_000 { sync nMsg_000_000?; },

PostAcc -> PostAcc_000_001 { sync nMsg_000_001?; },

PostAcc -> PostAcc_000_002 { sync nMsg_000_002?; },

PostAcc -> PostAcc_000_003 { sync nMsg_000_003?; },
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PostAcc -> PostAcc_001_000 { sync nMsg_001_000?; },

PostAcc -> PostAcc_001_001 { sync nMsg_001_001?; },

PostAcc -> PostAcc_001_002 { sync nMsg_001_002?; },

PostAcc -> PostAcc_001_003 { sync nMsg_001_003?; },

PostAcc -> PostAcc_002_000 { sync nMsg_002_000?; },

PostAcc -> PostAcc_002_001 { sync nMsg_002_001?; },

PostAcc -> PostAcc_002_002 { sync nMsg_002_002?; },

PostAcc -> PostAcc_002_003 { sync nMsg_002_003?; },

PostAcc_000_000 -> PostAcc { assign Q[0] = 0; },

PostAcc_000_001 -> PostAcc { assign Q[0] = 1; },

PostAcc_000_002 -> PostAcc { assign Q[0] = 2; },

PostAcc_000_003 -> PostAcc { assign Q[0] = 3; },

PostAcc_001_000 -> PostAcc { assign Q[1] = 0; },

PostAcc_001_001 -> PostAcc { assign Q[1] = 1; },

PostAcc_001_002 -> PostAcc { assign Q[1] = 2; },

PostAcc_001_003 -> PostAcc { assign Q[1] = 3; },

PostAcc_002_000 -> PostAcc { assign Q[2] = 0; },

PostAcc_002_001 -> PostAcc { assign Q[2] = 1; },

PostAcc_002_002 -> PostAcc { assign Q[2] = 2; },

PostAcc_002_003 -> PostAcc { assign Q[2] = 3; },

PostAcc -> PostChk_000 { guard h >= L; },

PostChk_000 -> PostChk_001 {guard Q[0] == -1;},

PostChk_001 -> PostChk_002 {guard Q[1] == -1;},

PostChk_002 -> Free {guard Q[2] == -1;},

PostChk_000 -> M2S_000_000 {guard Q[0] == 0; assign Q[0] = -1;},

PostChk_000 -> M2S_000_001 {guard Q[0] == 1; assign Q[0] = -1;},

PostChk_000 -> M2S_000_002 {guard Q[0] == 2; assign Q[0] = -1;},

PostChk_000 -> M2S_000_003 {guard Q[0] == 3; assign Q[0] = -1;},

PostChk_001 -> M2S_001_000 {guard Q[1] == 0; assign Q[1] = -1;},

PostChk_001 -> M2S_001_001 {guard Q[1] == 1; assign Q[1] = -1;},

PostChk_001 -> M2S_001_002 {guard Q[1] == 2; assign Q[1] = -1;},

PostChk_001 -> M2S_001_003 {guard Q[1] == 3; assign Q[1] = -1;},

PostChk_002 -> M2S_002_000 {guard Q[2] == 0; assign Q[2] = -1;},

PostChk_002 -> M2S_002_001 {guard Q[2] == 1; assign Q[2] = -1;},

PostChk_002 -> M2S_002_002 {guard Q[2] == 2; assign Q[2] = -1;},

PostChk_002 -> M2S_002_003 {guard Q[2] == 3; assign Q[2] = -1;};

}
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Appendix D

Using CANGen

D.1 Usage

java CANGen <input file>

or java -jar CANGen.jar <input file>

or CANGen <input file>

D.2 Input Syntax

The first 3 lines should be

#numTypes ... [the number of message types to be supported]

#numVals ... [the number of message payload values to be supported]

#channel .,.,.,. [the four channel parameters in a comma-separated list]

After this, there are instances of each of the following (in no

particular order); there may be more than one instance and there

should be at least one of (b - e) -

(a) the directive

#fanoutTypes

on a line by itself.

This generates the process template for fanning an urgent

synchronisation out over all types. There need only be one

instance of this. The template signature is
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process FanoutTypes(urgent chan & syn,

urgent chan & syn000, urgent chan & syn001, urgent chan & syn002 ...)

(b) the directive

#globals

on a line by itself, followed by lines consisting of valid Uppaal

global variable declarations

(c) the directive

#processes

on a line by itself, followed by lines consisting of valid Uppaal

process (template) definitions

(d) the directive

#procInstances

on a line by itself, followed by lines consisting of valid Uppaal

process instantiations

(e) the directive

#sysDef

on a line by itself, followed by a valid Uppaal system definition

There will normally be only one of (e) although there may be multiple

instances of (b-d).

Apart from these directives, CANGen input is ordinary UPPAAL .xta

sources, but there are two special syntactic construct for multiplying

elements (channel, variable declarations, locations, edges,...) over

message types and message payload values:

FORType(t) ... token|t|... ROF

FORVal(v) ... token|v|... ROF

CANGen expands FORType(t) ... token|t|... ROF into a comma or semicolon

-separated list ... token000 ... , token001 ... , token002 ...

and so on up to (m-1). Every instance of |t| is replaced by a sequence

number 000, 001, ... up to (m-1); all other tokens are replicated

without substitution.
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There may be several occurrences of |t| within the construct - i.e.,

between FORType(t) and ROF. A metavariable other than t may be used

but it has to match the one in FORType(.). A construct may stretch over

several lines.

UPPAAL syntax sometimes requires the multiple instances to be separated

by commas and sometimes by semicolons. CAN does whichever is suggested

by the context to be appropriate -- admittedly this is something of a

kludge.

Similarly, CANGen expands FORVal(v) ... token|v|... ROF into a comma or

semicolon-separated list ... token000 ... , token001 ... , token002 ...

and so on up to (n-1). Every instance of |v| is replaced by a sequence

number 000, 001, ... up to (n-1); all other tokens are replicated

without substitution.

The two constructs may be nested inside each other, for instance,

FORType(t) FORVal(v) ... token|t|_|v| ... tokenB|t| ROF ROF

replicates m X n times:

... token000_000 ... tokenB000, ... token000_001 ... tokenB000,

..... ,

... token001_000 ... tokenB001, ... token001_001 ... tokenB001,

..... and so on.

D.3 Example

D.3.1 Input File

This is the input file for the UPPAAL system used in §6.2 to show the no-

free-variables CAN channel model weakly bisimilar to the original model, in

the case m = 3 n = 4.

#numTypes 3

#numVals 4

#channel 15, 25, 10, 15
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#processes

process Sender(FORtype(t)FORval(v) urgent chan & nMsg|t|_|v|

ROFROF) {

state Init, FORtype(t)FORval(v) S|t|_|v| ROFROF;

init Init;

trans

FORtype(t)FORval(v)

Init -> S|t|_|v| { },

S|t|_|v| -> Init {

sync nMsg;

} ROFROF;

}

process Receiver(FORtype(t)FORval(v) broadcast chan & dMsg|t|_|v|

ROFROF) {

state Init, FORtype(t)FORval(v) R|t|_|v| ROFROF;

init Init;

trans

FORtype(t)FORval(v)

Init -> S|t|_|v| {

sync dMsg;

},

S|t|_|v| -> Init { } ROFROF;

}

#procInstances

sender = Sender(FORtype(t)FORval(k)newMsg_|t|_|k| ROFROF);

receiver = Receiver(FORtype(t)FORval(k)dlvrMsg_|t|_|k| ROFROF);

#sysDef

system channel, sender, receiver;

D.3.2 Generated UPPAAL Code

This is the code generated from the input file above for the UPPAAL sys-

tem used in §6.2 to show the no-free-variables CAN channel model weakly

bisimilar to the original model, in the case m = 3 n = 4.
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const int NUMTYPES = 3;

const int NUMVALS = 4;

urgent chan

nMsg_000_000, nMsg_000_001, nMsg_000_002, nMsg_000_003,

nMsg_001_000, nMsg_001_001, nMsg_001_002, nMsg_001_003,

nMsg_002_000, nMsg_002_001, nMsg_002_002, nMsg_002_003;

broadcast chan

dMsg_000_000, dMsg_000_001, dMsg_000_002, dMsg_000_003,

dMsg_001_000, dMsg_001_001, dMsg_001_002, dMsg_001_003,

dMsg_002_000, dMsg_002_001, dMsg_002_002, dMsg_002_003;

process Channel(const int l, const int u,

const int L, const int U,

......This code is exactly as in appendix C.....

process Sender(

urgent chan & nMsg000_000 , urgent chan & nMsg000_001 ,

urgent chan & nMsg000_002 , urgent chan & nMsg000_003 ,

urgent chan & nMsg001_000 , urgent chan & nMsg001_001 ,

urgent chan & nMsg001_002 , urgent chan & nMsg001_003 ,

urgent chan & nMsg002_000 , urgent chan & nMsg002_001 ,

urgent chan & nMsg002_002 , urgent chan & nMsg002_003 ) {

state Init, S000_000 , S000_001 , S000_002 , S000_003 ,

S001_000 , S001_001 , S001_002 , S001_003 , S002_000 ,

S002_001 , S002_002 , S002_003 ;

init Init;

trans

Init -> S000_000 { },

S000_000 -> Init {

sync nMsg;

} ,

Init -> S000_001 { },

S000_001 -> Init {

sync nMsg;

} ,
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Init -> S000_002 { },

S000_002 -> Init {

sync nMsg;

} ,

.....abridged........

Init -> S002_003 { },

S002_003 -> Init {

sync nMsg;

} ;

}

process Receiver(

broadcast chan & dMsg000_000 , broadcast chan & dMsg000_001 ,

broadcast chan & dMsg000_002 , broadcast chan & dMsg000_003 ,

broadcast chan & dMsg001_000 , broadcast chan & dMsg001_001 ,

broadcast chan & dMsg001_002 , broadcast chan & dMsg001_003 ,

broadcast chan & dMsg002_000 , broadcast chan & dMsg002_001 ,

broadcast chan & dMsg002_002 , broadcast chan & dMsg002_003 ) {

state Init, R000_000 , R000_001 , R000_002 , R000_003 ,

R001_000 , R001_001 , R001_002 , R001_003 , R002_000 ,

R002_001 , R002_002 , R002_003 ;

init Init;

trans

Init -> S000_000 {

sync dMsg;

},

S000_000 -> Init { } ,

Init -> S000_001 {

sync dMsg;

},

S000_001 -> Init { } ,

Init -> S000_002 {

sync dMsg;

},

.....abridged........

Init -> S002_003 {



D.3. EXAMPLE 255

sync dMsg;

},

S002_003 -> Init { } ;

}

channel = Channel(15, 25, 10, 15,

nMsg_000_000, nMsg_000_001, nMsg_000_002, nMsg_000_003,

nMsg_001_000, nMsg_001_001, nMsg_001_002, nMsg_001_003,

nMsg_002_000, nMsg_002_001, nMsg_002_002, nMsg_002_003,

dMsg_000_000, dMsg_000_001, dMsg_000_002, dMsg_000_003,

dMsg_001_000, dMsg_001_001, dMsg_001_002, dMsg_001_003,

dMsg_002_000, dMsg_002_001, dMsg_002_002, dMsg_002_003);

sender = Sender(newMsg_000_000 , newMsg_000_001 ,

newMsg_000_002 , newMsg_000_003 , newMsg_001_000,

newMsg_001_001 , newMsg_001_002 , newMsg_001_003,

newMsg_002_000 , newMsg_002_001 , newMsg_002_002,

newMsg_002_003 );

receiver = Receiver(dlvrMsg_000_000 , dlvrMsg_000_001,

dlvrMsg_000_002 , dlvrMsg_000_003 , dlvrMsg_001_000 ,

dlvrMsg_001_001 , dlvrMsg_001_002 , dlvrMsg_001_003 ,

dlvrMsg_002_000 , dlvrMsg_002_001 , dlvrMsg_002_002 ,

dlvrMsg_002_003 );

system channel, sender, receiver;
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Appendix E

A First Example – source

E.1 System with a single sensor

#numTypes 3

#numVals 40

#channel 15, 25, 10, 15

#processes

process PlantSensor(int p,

broadcast chan & swOff, broadcast chan & swOn, broadcast chan & rq,

FORval(k) urgent chan &rdg|k|ROF) {

clock g, h;

bool on;

int[0,50] v;

state ini, p1{h <= p}, rqstd, FORval(k)val|k|ROF;

urgent ini, rqstd, FORval(k)val|k|ROF;

init ini;

trans

ini -> p1 {

assign g = 0, h = 0, v = NUMVALS/2, on = false;

},

p1 -> p1 {

sync swOn?;
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assign on = true;

},

p1 -> p1 {

sync swOff?;

assign on = false;

},

p1 -> p1 {

guard h >= p/2 && on;

assign v ++, h = 0;

},

p1 -> p1 {

guard h >= p/2 && !on;

assign v --, h = 0;

},

p1 -> rqstd {

sync rq?;

},

rqstd -> rqstd {

sync swOn?;

assign on = true;

},

rqstd -> rqstd {

sync swOff?;

assign on = false;

},

FORval(k)

rqstd -> val|k| {

guard v == |k|;

},

val|k| -> val|k| {

sync swOn?;

assign on = true;

},

val|k| -> val|k| {

sync swOff?;

assign on = false;

},

val|k| -> p1 {

sync rdg|k|!;

}ROF;
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}

process Controller(int hi, int lo, int dly, int dly2,

urgent chan & swOff, urgent chan & swOn, urgent chan & rq,

FORval(k) broadcast chan &rdg|k|ROF) {

clock g, h;

int[0,50] n, vAv;

state

ini, rqstVal{h<=dly}, rqstd, getVals{h<=dly2},

sndOn{h<=dly2}, sndOff{h<=dly2},

FORval(k)got|k|ROF;

urgent ini, rqstd,

FORval(k)got|k|ROF;

init ini;

trans

ini -> rqstVal {

assign vAv = 0, g = 0, h=0;

},

rqstVal -> rqstd {

guard h >= dly;

assign h = 0;

},

rqstd -> getVals {

sync rq!;

assign h=0;

},

FORval(k)

getVals -> got|k| {

sync rdg|k|?;

assign vAv = |k|;

},

got|k| -> rqstVal {

guard vAv <= hi && vAv >= lo;

assign h = 0;

},

got|k| -> sndOff {

guard vAv > hi;

assign h = 0;
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},

got|k| -> sndOn {

guard vAv < lo;

assign h = 0;

}ROF,

sndOn -> rqstVal {

sync swOn!;

assign h = 0;

},

sndOff -> rqstVal {

sync swOff!;

assign h = 0;

},

getVals -> getVals {

guard h >= dly2;

assign h=0;

};

}

#procInstances

plantSensor = PlantSensor(2000, dMsg_001_000, dMsg_001_001,

dMsg_002_000, FORval(k)nMsg_000_|k| ROF);

controller = Controller(21, 19, 5, 5, nMsg_001_000, nMsg_001_001,

nMsg_002_000, FORval(k)dMsg_000_|k| ROF);

#sysDef

system channel, plantSensor, controller;

E.2 System which averages two sensors

This is identical to the 1-sensor version (globals, network specification, con-

troller process, sensor process signature, process instantiation, system spec-

ification) except for the definition of the sensor process, which now carries

two sensed variables and averages them:

process PlantSensor(int p,

urgent chan & swOff, urgent chan & swOn, urgent chan & rq,
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FORval(k) urgent chan &rdg|k|ROF) {

clock g, h;

bool on;

int[0,50] v1, v2;

state ini, p1{h <= p}, rqstd, FORval(k)val|k|ROF;

urgent ini, rqstd, FORval(k)val|k|ROF;

init ini;

trans

ini -> p1 {

assign g = 0, h = 0, v1 = NUMVALS/2, v2 = NUMVALS/2,

on = false;

},

p1 -> p1 {

sync swOn?;

assign on = true;

},

p1 -> p1 {

sync swOff?;

assign on = false;

},

p1 -> p1 {

guard h >= p/2 && on;

assign v1 ++, h = 0;

},

p1 -> p1 {

guard h >= p/2 && on;

assign v2 ++, h = 0;

},

p1 -> p1 {

guard h >= p/2 && !on;

assign v1 --, h = 0;

},

p1 -> p1 {

guard h >= p/2 && !on;

assign v2 --, h = 0;

},

p1 -> rqstd {

sync rq?;



262 APPENDIX E. A FIRST EXAMPLE – SOURCE

},

rqstd -> rqstd {

sync swOn?;

assign on = true;

},

rqstd -> rqstd {

sync swOff?;

assign on = false;

},

FORval(k)

rqstd -> val|k| {

guard (v1+v2)/2 == |k|;

},

val|k| -> val|k| {

sync swOn?;

assign on = true;

},

val|k| -> val|k| {

sync swOff?;

assign on = false;

},

val|k| -> p1 {

sync rdg|k|!;

}ROF;

}
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Using Assume-Guarantee –

sources

F.1 The concrete system model

#numTypes 3

#numVals 40

#channel 15, 25, 10, 15

#processes

process PlantSensor(int p, int in,

broadcast chan & swOff, broadcast chan & swOn,

broadcast chan & rq,

FORval(k) urgent chan &rdg|k|ROF) {

clock g, h;

bool on;

int[0,50] v;

state ini, p1{h <= p}, rqstd, FORval(k)val|k|ROF;

urgent ini, rqstd, FORval(k)val|k|ROF;

init ini;

trans

ini -> p1 {
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assign g = 0, h = 0, v = NUMVALS/2, on = false;

},

p1 -> p1 {

sync swOn?;

assign on = true, g = 0;

},

p1 -> p1 {

sync swOff?;

assign on = false, g = 0;

},

p1 -> p1 {

guard h >= p/2 && on && g > in;

assign v ++, h = 0;

},

p1 -> p1 {

guard h >= p/2 && !on && g > in;

assign v --, h = 0;

},

p1 -> p1 {

guard h >= p/2 && g <= in;

assign h = 0;

},

p1 -> rqstd {

sync rq?;

},

rqstd -> rqstd {

sync swOn?;

assign on = true, g = 0;

},

rqstd -> rqstd {

sync swOff?;

assign on = false, g = 0;

},

FORval(k)

rqstd -> val|k| {

guard v == |k|;

},

val|k| -> val|k| {

sync swOn?;

assign on = true, g = 0;

},
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val|k| -> val|k| {

sync swOff?;

assign on = false, g = 0;

},

val|k| -> p1 {

sync rdg|k|!;

}ROF;

}

process Controller(int hi, int lo, int e, int dly, int dly2,

int inert, urgent chan & swOff, urgent chan & swOn,

urgent chan & rq, FORval(k) broadcast chan &rdg|k|ROF) {

clock g, h;

int[0,50] vAv;

state

ini, rqstVal{h<=dly}, rqstd, getVals,

sndOn, sndOff,

FORval(k)got|k|{h<=dly2}ROF;

urgent ini;

init ini;

trans

ini -> rqstVal {

assign vAv = NUMVALS/2, h=0, g=0;

},

rqstVal -> rqstd {

guard h >= dly;

assign h = 0;

},

rqstd -> getVals {

sync rq!;

assign h=0;

},

FORval(k)

getVals -> got|k| {

sync rdg|k|?;

assign vAv = |k|, h = 0;

},
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got|k| -> rqstVal {

guard (vAv <= hi && vAv >= lo) || (g <= inert

&& (vAv <= hi+e && vAv >= lo-e));

assign h = 0;

},

got|k| -> sndOff {

guard (vAv > hi && g > inert) || vAv > hi+e;

assign h = 0;

},

got|k| -> sndOn {

guard (vAv < lo && g > inert) || vAv < lo-e;

assign h = 0;

}ROF,

sndOn -> rqstVal {

sync swOn!;

assign h = 0, g = 0;

},

sndOff -> rqstVal {

sync swOff!;

assign h = 0, g = 0;

};

}

#procInstances

plantSensor = PlantSensor(10000, 50, dMsg_001_000, dMsg_001_001,

dMsg_002_000, FORval(k)nMsg_000_|k| ROF);

controller = Controller(21, 19, 2, 5, 5, 100, nMsg_001_000,

nMsg_001_001, nMsg_002_000, FORval(k)dMsg_000_|k| ROF);

#sysDef

system channel, plantSensor, controller;

F.2 The abstraction

................

process PlantSensor(int p,

broadcast chan & swOff, broadcast chan & swOn,
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broadcast chan & rq,

FORval(k) urgent chan &rdg|k|ROF) {

clock h;

bool on;

int[0,50] v;

state ini, p1{h <= p}, rqstd, FORval(k)val|k|ROF;

urgent ini, rqstd, FORval(k)val|k|ROF;

init ini;

trans

ini -> p1 {

assign h = 0, v = NUMVALS/2, on = false;

},

p1 -> p1 {

sync swOn?;

assign on = true;

},

p1 -> p1 {

sync swOff?;

assign on = false;

},

p1 -> p1 {

guard h >= p/2 && on;

assign v ++, h = 0;

},

p1 -> p1 {

guard h >= p/2 && !on;

assign v --, h = 0;

},

p1 -> p1 {

guard h >= p/2;

assign h = 0;

},

p1 -> rqstd {

sync rq?;

},

rqstd -> rqstd {

sync swOn?;

assign on = true;
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},

rqstd -> rqstd {

sync swOff?;

assign on = false;

},

FORval(k)

rqstd -> val|k| {

guard v == |k|;

},

val|k| -> val|k| {

sync swOn?;

assign on = true;

},

val|k| -> val|k| {

sync swOff?;

assign on = false;

},

val|k| -> p1 {

sync rdg|k|!;

}ROF;

}

process Controller(int hi, int lo, int e, int dly, int dly2,

urgent chan & swOff, urgent chan & swOn, urgent chan & rq,

FORval(k) broadcast chan &rdg|k|ROF) {

clock h;

int[0,50] vAv;

state

ini, rqstVal{h<=dly}, rqstd, getVals,

sndOn, sndOff,

FORval(k)got|k|{h<=dly2}ROF;

urgent ini;

init ini;

trans

ini -> rqstVal {

assign vAv = NUMVALS/2, h=0;

},
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rqstVal -> rqstd {

guard h >= dly;

assign h = 0;

},

rqstd -> getVals {

sync rq!;

assign h=0;

},

FORval(k)

getVals -> got|k| {

sync rdg|k|?;

assign vAv = |k|, h = 0;

},

got|k| -> rqstVal {

guard vAv <= hi+e && vAv >= lo-e;

assign h = 0;

},

got|k| -> sndOff {

guard vAv > hi;

assign h = 0;

},

got|k| -> sndOn {

guard vAv < lo;

assign h = 0;

}ROF,

sndOn -> rqstVal {

sync swOn!;

assign h = 0;

},

sndOff -> rqstVal {

sync swOff!;

assign h = 0;

};

}

#procInstances

plantSensor = PlantSensor(10000, dMsg_001_000, dMsg_001_001,

dMsg_002_000, FORval(k)nMsg_000_|k| ROF);

controller = Controller(21, 19, 2, 5, 5, nMsg_001_000,

nMsg_001_001, nMsg_002_000, FORval(k)dMsg_000_|k| ROF);



270 APPENDIX F. USING ASSUME-GUARANTEE – SOURCES

#sysDef

system channel, plantSensor, controller;


