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Resumen

La Ingeniería de Software viene adaptando sus herramientas, métodos y 
técnicas para enfrentar los desafíos de los denominados sistemas de BIG-DATA. En 
particular, el área de verificación formal ha sido señalada como unas de las áreas de 
las que se requiere inmediatas contribuciones. En este trabajo se presentan aspectos 
claves buscando adaptar al lenguaje FVS como un lenguaje de verificación formal 
para BIG DATA. Por un lado se presenta una demostración formal de la correctitud 
del esquema paralelo de FVS. Por otro, se presenta una desafiante validación 
empírica del enfoque propuesto utilizando un protocolo relevante a nivel industrial 
con un balanceador de carga y comparando varias implementaciones.
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Abstract

Software Engineering is trying to adapt its tools, mechanisms and techniques to 
cope with the challenges involved when developing BIG DATA software systems. 
In particular, formal verification in one of the areas that more urgently is required 
to step in. In this work we introduce two crucial aspects aiming to adapt FVS to 
cope with BIG Data requirements. For one side, FVS’s parallel algorithm is proved 
to be sound and correct. For the other side, we developed a compelling empirical 
validation of our approach, employing a communication protocol relevant in the 
industrial world within a context of parallel systems, introducing a load-balancer 
process and comparing several implementations.

Keywords: formal verification; big data; parallel algorithms; model checking.
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1. Introduction

Big DATA systems and applications are incredible present in everyday life. Huge 
amounts of data and information become available every second from diverse sources 
like sensors or Internet of Things (IoT)-based systems. The software Engineering 
Community has been adapting its traditional tools, methods and techniques in order 
to cope with the challenges that BIG DATA systems involve (Hummel, O, et al. 
2018, Kumar, V. D., & Alencar, P. 2016, Laigner, R. et all, 2018, Otero, C. E., & 
Peter, A. 2014, Camilli,M. 2014, Ding, J., Zhang, D., & Hu, X. H. 2016). Formal 
verification of big DATA systems has been pinpointed as one of the main software 
engineering’s areas that more urgently need to be explored and adapted. For 
example, according to the results presented in (Kumar, V. D., & Alencar, P. 2016) only 
two of nearly two hundreds analyzed approaches addressing software engineering 
activities regarding BIG DATA systems deal with the formal verification phase. 

Some approaches tried to expand traditional tools like model checking involving 
techniques as parallel model checking or Cloud-Model checking (Camilli, M.2014). 
However, a prior step in the formal verification road has been somehow neglected, 
which is the way the behavioral properties to be verified in the model checker are 
built and specified (Clarke et.al 2011, Asteasuain, F., Caldeira Rodriguez L., 2020). 
In (Asteasuain, F., Caldeira Rodriguez L, 2020) a parallel tool for formal verification 
of big DATA systems is presented tackling this issue. The tool is based on a 
graphical language called FVS Feather Weight Visual Scenarios (Asteasuain, F., & 
Braberman, V. 2017), a simple and yet powerful and expressive language to denote 
the expected behavior of the system. We now expand and spread the potential 
of that approach by presenting two relevant aspects from the theoretical and 
empiric point of view. From the theoretical perspective we introduce a formal proof 
of correctness of the main parallel algorithm involved in the approach, a process 
which translates FVS graphical scenarios into Büchi automata. From the empirical 
perspective we developed a more complex and thorough evaluation of the case of 
study, introducing a load-balancer process to manage parallel activities. These two 
aspects allow considering FVS as a potential parallel tool for big DATA SYSTEMS. 
It is worth noticing that these aspects represent a first step aiming to adapt 
FVS to BIG DATA requirements. Once this stage is finished, as a second step 
we will apply FVS to formally verify BIG DATA systems per se, a research 
line which is included in our short-term future work. 

The rest of this paper is structured as follows. Section 1.1 mentions some 
observations about the selected case of study. Section 2 briefly presents the FVS 
language, and the parallel algorithm to translate FVS into Büchi automata, a required 
step to employ FVS in formal verification tools like model checkers. Section 3 
presents the proof of correctness of our approach. Section 4 presents the empirical 
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evaluation of our approach. Finally, Sections 5 and 6 end this work by mentioning 
related and future work and the final conclusions.

1.1 On the selected case of study

Our case study is a relevant protocol with a widespread use in the industrial world: 
the MS-NNS protocol, specified in (Asteasuain, F., & Braberman, V. 2017). Although 
it is not directly related to big data systems, the space explored to formally verify the 
system is similar enough to big data systems (Bellettini, C., Camilli, M., Capra, L., 
& Monga, M. 2016). Since space is an important dimension in BIG DATA systems, 
we considered that the analysis and conclusions of the case study are significant for 
an initial step in the FVS’s road to formally validate BIG DATA systems. We aim to 
continue this trip formally verifying a BIG DATA systems in future work. 

2. FVS: Feather Weight Visual Scenarios

In this section we will informally describe the standing features of FVS. The reader 
is referred to (Asteasuain, F., & Braberman, V. 2017) for a formal characterization of the 
language. FVS is a graphical language based on scenarios. Scenarios are partial order 
of events, consisting of points, which are labeled with a logic formula expressing the 
possible events occurring at that point, and arrows connecting them. An arrow between 
two points indicates precedence. For instance, in Figure 1-(a) A-event precedes B-event. 
In Figure 1-b the scenario captures the very next B-event following an A-event, and 
not any other B-event. Events labeling an arrow are interpreted as forbidden events 
between both points. In Figure 1-c A-event precedes B-event such that C-event does 
not occur between them. Finally, FVS features aliasing between points. Scenario in 
1-d indicates that a point labeled with A is also labeled with A ^ B. It is worth noticing 
that A-event is repeated on the labeling of the second point just because of FVS formal 
syntaxes. Aliasing allows the possibility of adding new behavior or renaming existing 
behavior by saying two events are equivalent in terms of behavior.

Figure 1. FVS Basic Features 

We now introduce the concept of FVS rules. A rule consists of a scenario playing 
the role of an antecedent and at least one scenario playing the role of a consequent. 
Graphically, the antecedent is shown in black, and consequents in grey. 
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As an example, we show two FVS rules modeling a testing technique for 
BIG DATA called metamorphic testing (Segura, S., Fraser, G., Sanchez, A. B., 
& Ruiz-Cortés, A. 2016, Ding, J., Zhang, D., & Hu, X. H. 2016) . In few words, 
the technique says that similar inputs should behave equivalently and opposite 
inputs should have opposite results. In this way, simple tests can be generated. The 
FVS rules in Figure 2 show an example in a system analyzing user’s reviews to 
distinguish good reviews from bad reviews. These two metamorphic rules apply to 
good reviews and they specify that if words are replaced with synonyms the review 
should be classified as a good review too. The second rule says that if words are 
replaced with antonyms, then the outcome should change and the review should 
be classified as a bad one. Similar rules could be added for bad reviews. 

word synonym GoodReview
1

1

word antonym badReview
1

1

Figure 2. FVS Rules Example 

2.1 A Parallel Algorithm translating FVS Scenarios into Büchi Automata

This section describes the parallel tableau algorithm which translates FVS 
scenarios into Büchi automata. We first introduce some basic notions. FVS 
scenarios can be defined as morphisms from the antecedent to the consequent. The 
algorithm relies on the notion of situations (Asteasuain, F., & Braberman, V. 2017). 
A situation represents for a given rule possible combinations of partial matches 
from the antecedent to the consequent. Consider the following example in Figure 
3, where a rule with two consequents is shown. There are three partial matches for 
consequent one, and two for consequent two. Therefore, situation η1 consists of 
the three morphisms in the first column ( ) whereas situation η2 consists 
of the two morphisms in the second column ( ).

          

          

   

 

Figure 3. A situation example 
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The sequential algorithm is detailed in (Asteasuain, F., & Braberman, V. 2017). 
Starting from the initial state the automata will try to incrementally ‘‘construct’’ the 
pattern as events, represented by minterms, occur. For every minterm, the algorithm 
computes all possible matchings considering matchings in the antecedent and also 
in each consequent. The set situation(S) symbolically represents all the possible 
combination of partial matches obtained up to that state from the antecedent to 
each consequent.

After a rigorous analysis of it we detected two natural points suitable for 
parallelization: the computation of all the possible antecedents and consequents and 
tagging all the possible matches and checking whether any consequent has been matched 
by the last move. These are tasks that can be easily divided into different nodes to be 
realized and then the main algorithm can continue once every one is finished. The 
parallel pseudo-code for the parallel algorithm is depicted in Algorithm 1.

1. Algorithm Parallel Succ(S : State,m : minterm) : set of states;

2. Precondition : m ∧ obligations(S) is satisfiable;

3. newSits := ∅;

4. PrepareNodes (N1,N2,…,Nk) 

5. istributeAdvancesCalculation((N1,N2,…,Nk),Situations(S)) 

6. JoinNodes((N1,N2,…,Nk), newSits)

7. trapSituation : ∃η ∈ newSits such that the antecedent is matched and non of the 
consequents.

8. PrepareNodes (N1,N2,…,Nk) 

9. DistributeGoalMatches((N1,N2,…,Nk),Situations(S)) 

10. JoinNodes((N1,N2,…,Nk), goalMatched)

11. goalMatched:= (∃j (goalmatched[j])) ∧ (¬trapSituation) 

12. return <newSits,GM,Obligations> such that GM goalMatched ∧ GM = true 
∃j(goalmatched[j]) ∧ Obligations = Obligations(S) 

Algorithm1. Parallel Algorithm’s sketch

Nodes preparation and setup is done in Line 4. Line 5 is in charge of distributing 
the task of obtaining the advances of antecedent and consequents in each situation 
η among the nodes. In Line 6 all the tasks done by the nodes are united and the 
new situations set represented by the variable newSits are obtained. Line 7 analyzes 
whether any successor reaches a trap situation, a situation where the antecedent 
has been matched, but matching for all consequents is known unfeasible. Parallel 
instructions in lines 8 to 11 deal with of goal calculation and verify if any antecedent 
has been satisfied. Finally, line 12 returns the expected output.
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Figure 4 exhibits a simplified version of the automaton obtained using the FVS 
rules in Figure 2 as input.

Figure 4. FVS-based Automaton 

3. Proofs of Correctness of the Parallel Algorithm

In this section we prove that the parallel algorithm shown in Section 2.1 is sound 
and correct. We know that the sequential algorithm is sound and correct (Asteasuain, 
F., & Braberman, V. 2017). That is, that the set of traces satisfying a given rule R is 
equivalent to the language accepted by the automaton B, built by the tableau. More 
formally, we know that traces(R) ≡ L(B). Work in (Asteasuain, F., & Braberman, V. 
2017) also contains a proof of an important lemma called “Traces-States” relating 
the traces of an FVS rule with the states of the automaton. The lemma says that 
for every trace t satisfying R such that t leads to a given state S of B, then t can 
be “matched” (i.e. a morphism exists) with a situation η ∈ S. The “Traces-States” 
lemma plays an important role since it allows going back and forth between traces 
of rules and states of the automaton. 

We now need to prove that traces(R) ≡ L(B) also holds for the parallel version of 
the algorithm. We will achieve this by demonstrating that traces(R) ⊆ L(B) for one 
side and that L(B) ⊆ traces(R) for the other side, following a classic equivalence 
proof for set’s languages. 

Part 1: traces(R) ⊆ L(B): if t ∈ traces(R) → t ∈ L(B). We know that ∀t, t ∈ traces 
(R) , t ⊆ L(B) for the sequential algorithm. Given this, and by the “Traces-States” 
lemma, we know that for every prefix of t, (where prefix is the usual function that 
returns a ordered subset of t: ∀ti, i<=k, where t1,t2,…,tk = t) and a morphism m such 
that ti →

mti+1 ( ti advances to ti+1 by m) there exists a situation η1 ∈ states (B) such that 
η1 →

m η2, where η2 ∈ Succesors(B) for η1. In few words, for every prefix of t if there 
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exists a morphism m that makes t to advance recognizing the rule R, then the resulting 
situation η2 belongs to the next states of B, advancing both the trace and the automaton. 

Given the codification of the parallel algorithm we know there exist a node Ni 
such that Ni calculates the successor of η1 (observe instructions in lines 4 and 5 which 
distribute in N nodes the calculation of the next states, assigning one node for every 
situation). Let Nk (1<=k<=i) be that node. Once node Nk and all the other nodes finish 
their work the join instructions in line 6 of Algorithm 1 simply obtain all the successors 
by a employing the union operation of all the successors obtained by every node. That 
is, ∪i(1<=i<=k) Succ(Ni). Then, given that η2 ∈ Successors (B) for η1 then it can be stated 
that η2 ∈∪i(1<=i<=k) Succ(Ni). More simply, for every prefix of t the successor of t will be 
present in the next state of the automaton. Finally, since t ∈ traces(R) when t finishes 
the automaton will be in a accepting state, concluding that t ⊆ L(B). 

If it is the case that t does not advance for any morphism m, then the algorithm 
guarantees that η1 will belong to the next state of the automaton since they are 
always included by default. This concludes part 1 of the proof. 

 Part 2: L(B) ⊆ traces(R): if t ∈ L(B) → t ∈ traces(R). We know that ∀t, t ∈ L(B) 
→ t ⊆ traces(R) for the sequential algorithm. For every accepting state S of B there 
exist a morphism m, such that m can be matched with a situation η , η ⊆ S , and a 
trace t, t ∈ traces(R). By the “Traces-States” lemma we can affirm that for every trace 
t leading to an accepting state S of B we can find a morphism m relating a situation η 
in S with t. More formally, ∀ t, t ∈ L(B) → ∃ morphism m, such that m can be matched 
with t and also with a situation η, η ∈ Situations(S) where S =AcceptingStates(B).

The codification of the parallel algorithm in lines 8,9 and 10 specifies that 
deciding whether an state is accepting or not is done in parallel where every node 
Ni performs this calculation for every situation ηi . Let Nk be the node that performs 
an advance for t. The join instruction in Line 10 in Algorithm 1 simply merges all 
the results obtained by every node by a employing the union operation of them. 
That is, ∪i(1<=i<=k) Accepting(Ni). Given this, we can conclude that the next state for 
t, calculated by Nk will be included in the next state of the automaton. 

We can then affirm that for every advance of t the next state will be included in 
the automaton. In particular, this holds for all the traces leading t to an accepting 
state S of B (those t ∈ L(B) ). And this is also true for every prefix of t: if ti →

mti+1 
(ti advances to ti+1 by morphism m) then ti+1 is included in the next state of the 
automaton. Since this holds for every ti in t=t1,2,…tk. 1<=i<=k, and given that t 
∈ L(B) (t leads to an accepting state), t will always satisfy R. In other words, if t ∈ 
L(B) then t ∈ traces(R). Note that this is also true for those cases where no advance 
is produced, since in those cases all of these situations are included in the next step 
by default. This concludes part 2 of the proof. 

Given that traces(R) ⊆ L(B) and that L(B) ⊆ traces(R) then traces(R) ≡L(B), 
which was what we aim to prove. 
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4 .Empirical Validation 

We implemented three different implementations for the parallel algorithm 
delineated in Algorithm 1. In the first one we simply use Java threads. The others 
two version handle two parallel libraries for Java: Open MPI (Vega-Gisbert, O., 
Roman, J. E., & Squyres, J. M. 2016) and MPJ Express (Shafi, A., Carpenter, B., 
& Baker, M. 2009).

We employed as case of study the verification of the MS-NNS protocol 
specified in (Asteasuain, F., & Braberman, V. 2017). This protocol was introduced 
as a lightweight option to provide authenticated and confidential communication 
between a server and a client over a TCP connection protocol. 

We took the initial empirical validation in (Asteasuain, F., & Rodriguez Caldeira 
L. 2020) one step further considering more clients and a load-balancer process, 
therefore making the case of study more complex. We considered from 32 to 512 
clients together with an environment where the available nodes were not enough to 
assign one node for every situation or “for the goal matched calculation”. This was 
resolved in two ways: by simulating parallelism through the concurrency provided 
by the underlying operating systems and by introducing an extra process playing the 
role of a “load-balancer”. This process basically assigns as many tasks as nodes are 
available and the rest of the tasks are assigned later as soon as a node become available. 

We compared both flavors: with and without the load-balancer process in all of 
the versions (threads, OpenMPI and MPJ Express), together with the sequential 
version. We considered 32 clients, 64 clients, 128 clients, 256 clients and 512 clients. 
The results are shown in Table 1, where the advantages of introducing parallelism 
are clearly seen. It can also be noted from Table 1 that not using the load balancer 
is better than using it in the first case, caused since the overhead that the load-
balancer imposes outcomes the benefits it provides. However, as the number of 
clients’ increases this situation is turned around. Regarding the parallel libraries, the 
MPJ Express implementation is slightly better than the Open MPI implementation.

# Clients Sequential Threads 
with LB

MPJ 
with 
LB

Open 
MPI 
with LB

Threads 
without 
LB

MPJ 
without 
LB

Open MPI 
without 
LB

32 1364 sec 280 sec 103 sec 112 sec 200 sec 91 sec 96 sec

64 >10 mins 330 sec 107 sec 115 sec 343 sec 112 sec 120 sec

128 >10 mins 407 sec 140 sec 210 sec 413 sec 180 sec 250 sec

256 >15 mins 503 sec 205 sec 290 sec 568 sec 300 sec 310 sec

512 >22 mins 650 sec 330 sec 414 sec 700 sec 430 sec 470 sec

Table 1: Performance Evaluation Results
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Regarding the execution times, it should be noted that the experiments took into 
account not only the execution time of the protocol but also the time to formally 
verify it. These algorithms involve non trivial data and structures manipulation 
obtaining exponential complexity in some cases (Vardi, M. Y. 2001). The size of 
the problem is also important. For the case of study analyzed in this work there 
average size of the automata involved was 1863 states and 7522 transitions. 

As a final conclusion we can observe that the load-balancer process results in a 
valuable asset for the system under analysis. It is worth noticing that in the software 
framework for FVS the load-balancer can be activated (or deactivated) by simply 
clicking in an option tab when setting the environment for the verification phase. 

5. Related and Future Work

Several approaches aim to adapt current formal verification techniques to BIG 
DATA systems. In (Matilli, M. 2014, Bellettini, C., Camilli, M., Capra, L., & 
Monga, M. 2016) an interesting framework for distributed CTL (computation tree 
logic) model checker is presented. We would definitely like to explore in future 
work the combination of this advanced tools with our specification language FVS.

Other approaches like (Boukala, M. C., & Petrucci, L. 2012, Brim, L., Yorav, 
K., & Žídková, J. 2005, Brassesco,M.V. 2017) provide some tools implementing 
different versions of parallel model checking. We believe that a natural continuation 
of this work is to provide the automata build by the parallel tableau as the behavioral 
properties to be checked in any of the mentioned approaches. In a different direction, 
work like (Segura, S., Fraser, G., Sanchez, A. B., & Ruiz-Cortés, A. 2016, Ding, 
J., Zhang, D., & Hu, X. H. 2016) employ metamorphic testing as the alternative to 
validate BIG DATA results. We would like to extend this notion to formally model 
check behavior pursuing the notion of “metamorphic” properties. Our next desired 
step is to apply FVS in a BIG DATA system.

6. Conclusions and Observations

In this work two main aspects are presented making FVS a suitable to formally 
verify BIG DATA systems. For one side, the parallel algorithm is proved to be sound 
and correct. For the other side, we developed a compelling empirical validation, 
employing a communication protocol relevant in the industrial world, introducing 
a load-balancer process and comparing several implementations. 

We are aware there are some limitations in the current status of our approach. 
Fundamentally, we need to explore our tool in a BIG DATA system, challenging 
the promising results we have obtained so far. 
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