
2014 79

José Ignacio Requeno Jarabo

Formal methods applied to
the analysis of

phylogenies: Phylogenetic
model checking

Departamento

Director/es

Informática e Ingeniería de Sistemas

Colom Piazuelo, José Manuel

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/289976849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Departamento

Director/es

José Ignacio Requeno Jarabo

FORMAL METHODS APPLIED TO THE
ANALYSIS OF PHYLOGENIES:

PHYLOGENETIC MODEL CHECKING

Director/es

Informática e Ingeniería de Sistemas

Colom Piazuelo, José Manuel

Tesis Doctoral

Autor

2014

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Departamento

Director/es

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Tesis Doctoral

Formal methods applied to the
analysis of phylogenies:

Phylogenetic Model Checking

Autor: José Ignacio Requeno

Director: José Manuel Colom
Departamento de Informática de Ingenieŕıa de Sistemas

EINA, Universidad de Zaragoza

We are all ignorant, but not all ignore the same things

— Albert Einstein

Agradecimientos

Me gustaŕıa recordar que esta traveśıa no habŕıa llegado a buen puerto sin la
colaboración de diversos factores. En primer lugar, tienen un hueco importante
en mi memoria las dos becas de investigación (I3A [171-03] y DGA [B117/10])
y proyectos de investigación del Ministerio ([TIN2008-06582-C03-02] y [TIN2011-
27479-C04-01]) que han financiado todos estos años de esfuerzo. En segundo lugar,
pero no por ello menos importante, las relaciones socio-personales también han
influido de manera especial. Como es de rigor en estos casos, hago una mención
particular a la familia, al director de tesis, a los amigos y compañeros del labo-
ratorio de becarios que han créıdo en mı́ y en esta tesis desde el principio, y me
han apoyado en los momentos de dificultad. Como esta enumeración personal sue-
le degenerar en una lista interminable de nombres, fuente de celos, peleas y riñas
cariñosas sobre el orden de aparición y quién ha colaborado más en desarrollo de
los acontecimientos, he optado por cortar por lo sano y evitar envidias. Por ello, a
<nombre>[A-Za-z]+<\nombre> en particular, y a todo el resto de héroes anóni-
mos en general, os agradezco que hayais estado ah́ı ayudándome y guiándome en
los momentos de debilidad. ¡Gracias!

iii

v

Resumen

Los árboles filogenéticos son abstracciones útiles para modelar y caracterizar
la evolución de un conjunto de especies o poblaciones respecto del tiempo. La
proposición, verificación y generalización de hipótesis sobre un árbol filogenético
inferido juegan un papel importante en el estudio y comprensión de las relaciones
evolutivas. Actualmente, uno de los principales objetivos cient́ıficos es extraer o
descubrir los mensajes biológicos impĺıcitos y las propiedades estructurales subya-
centes en la filogenia. Por ejemplo, la integración de información genética en una
filogenia ayuda al descubrimiento de genes conservados en todo o parte del árbol,
la identificación de posiciones covariantes en el ADN o la estimación de las fechas
de divergencia entre especies según la velocidad en la variación de su sequencia
genética. Consecuentemente, los árboles ayudan a comprender el mecanismo que
gobierna la deriva evolutiva.

Hoy en d́ıa, el amplio espectro de métodos y herramientas heterogéneas para el
análisis de filogenias enturbia y dificulta su utilización, además del fuerte acopla-
miento entre la especificación de propiedades y los algoritmos utilizados para su
evaluación (principalmente scripts ad hoc). Este problema constituye el punto de
arranque de esta tesis en la que se propone como solución la posibilidad de intro-
ducir un entorno formal de verificación de hipótesis que, de manera automática y
modular, estudie la veracidad de dichas propiedades definidas en un lenguaje ge-
nérico e independiente (en una lógica formal asociada) sobre uno de los múltiples
softwares preparados para ello.

La contribución principal de la tesis es la propuesta de un marco formal para
la descripción, verificación y manipulación de relaciones causales entre especies de
forma independiente del código utilizado para su valoración. Para ello, se explo-
ran las caracteŕısticas de las técnicas de model checking, un paradigma en el que
una especificación (propiedad) se formula en términos de una lógica temporal y
se verifica su cumplimiento con respecto de una implementación representada me-
diante un modelo discreto definido como un sistema de transiciones. Se ha aplicado
satisfactoriamente en la industria para el modelado de sistemas y su verificación,
emergiendo del ámbito de las ciencias de la computación. En esta tesis se consi-
derará model checking como una técnica formal, genérica y automática que, dado
un modelo finito de estados de un sistema y una propiedad, sistemáticamente
comprueba si dicha propiedad se satisface para un estado dado del modelo. Este
proceso de verificación se realiza en tres fases: a) el modelado del sistema y las pro-
piedades con un lenguaje descriptivo adecuado, b) la ejecución de la verificación
(comprobando la validez de la propiedad con un software de model checking), y c)
el análisis de los resultados (estudiando los contraejemplos si la propiedad falla).

Las principales ventajas y aportaciones del estudio de propiedades filogenéticas
con este enfoque son que: a) se pueden considerar diferentes filogenias, b) se pueden

vi

especificar propiedades complejas como la composición lógica de las demás, y c) el
refinamiento de propiedades inválidas (aśı como el descubrimiento de otras nuevas)
puede llevarse a cabo mediante la explotación de los contraejemplos.

Los métodos formales presentados aqúı ofrecen un marco integrado para la
verificación de propiedades filogenéticas utilizando un razonamiento simbólico y
abstracto. Además, la introducción de las lógicas temporales añade independen-
cia y modularidad a la definición de especificaciones biológicas con respecto a la
formalización del modelo (filogenia): la misma propiedad puede ser exportada y
evaluada en otras filogenias fácilmente. Por otra parte, la especificación con lógicas
temporales es transparente a la tecnoloǵıa subyacente de la herramienta genérica
de model checking. Incluso, permite la reutilización del software existente de ve-
rificación, ahorrando costes de implementación y aprovechando la experiencia y
tecnoloǵıas actuales.

Desde el punto de vista conceptual, a lo largo de esta tesis se desarrollan los
puentes entre los términos biológicos que intentamos comprobar sobre una filoge-
nia, junto con su especificación, interpretación y metodoloǵıa de uso en el ámbito
de model checking y las lógicas formales. El ámbito de aplicación abarca desde
las propiedades topológicas o de secuencia clásicas (p.ej., la detección de clados o
subárboles en función de polimorfismos comunes en las secuencias), hasta el estu-
dio de relaciones cuantitativas y probabilistas más complejas (p.ej., la distribución
de enfermedades endémicas en función de las regiones del árbol o la puntuación
de filogenias con máxima verosimilitud). Dadas las caracteŕısticas especiales del
análisis de filogenias (principalmente su tamaño y la cantidad de datos etiqueta-
dos en las poblaciones), ha sido necesario adaptar la estrategia clásica de análisis y
ajustar partes de las herramientas actuales para obtener rendimientos razonables.

Otro de los pilares esenciales de esta tesis es la utilización, en la mayor medida
posible, de las herramientas existentes de model checking. Dichas herramientas se
han desarrollado profusamente en los últimos 20 años en el contexto de “computer
engineering” e “ingenieria del software” y cuentan con una amplia trayectoria acu-
mulando experiencia y productos probados. Ejemplos paradigmáticos de esto son
herramientas como NuSMV, de libre difusión, o SPIN, que incluso cuenta con un
congreso dedicado que ha celebrado 21 ediciones hasta la fecha. La razón de adop-
tar esta estrategia es la de aprovechar toda esta experiencia previa y desarrollos
consolidados en beneficio de lo que consideramos un nuevo domino de aplicación
como es el análisis filogenético, incorporando a este dominio herramientas genéri-
cas, generales y consolidadas que permiten la rápida adopción de la metodoloǵıa.
Esta tesis se propugna como sustitución de la metodoloǵıa actual, que resulta
más vertical, heterogénea y dispersa en cuanto a las habilidades requeridas en los
filogenetistas para sus nuevas propuestas de análisis.

Se pondrá en evidencia en la tesis que las caracteŕısticas especiales de este do-

vii

minio, sobre todo las dimensiones de la información asociada a los nodos del árbol,
requieren ciertas adaptaciones de estas herramientas. Dichas modificaciones no se
refieren tanto a lo que es el kernel de la herramientas, que siguen siendo los mismos
model checkers que existen hoy en dia, como a la organización de los workflows
para la verificación de una propiedad. En este sentido, en esta tesis se analizarán
dos estrategias fundamentales: a) la distribución de la carga de trabajo mediante
diferentes estrategias de particionado del modelo entre réplicas coordinadas del
mismo model checker básico, y b) la incorporación de sistemas de información que
almacenen los datos fuera de la memoria principal para acelerar los procesos de
verificación.

Las propuestas de la tesis están contrastadas por la comunidad cient́ıfica me-
diante la siguientes publicaciones en conferencias y revistas internacionales. La
introducción de model checking como entorno formal para analizar propiedades
biológicas ha llevado a la publicación de nuestro primer art́ıculo de congreso [26].
En [138], desarrollamos la verificación de hipótesis filogenéticas sobre un árbol de
ejemplo construido a partir de las relaciones impuestas por un conjunto de pro-
téınas codificadas por el ADN mitocondrial humano (ADNmt). En ese ejemplo,
usamos una herramienta automática y genérica de model checking. El art́ıculo de
revista [143] resume lo básico de los art́ıculos de congreso previos y extiende la
aplicación de lógicas temporales a propiedades filogenéticas no consideradas has-
ta ahora. Los art́ıculos citados aqúı engloban los contenidos presentados en las
Parte I–II de la tesis.

El enorme tamaño de los árboles y la considerable cantidad de información
asociada a los estados (p.ej., la cadena de ADN) obligan a la introducción de
adaptaciones especiales en las herramientas de model checking para mantener un
rendimiento razonable en la verificación de propiedades y aliviar también el proble-
ma de la explosión de estados. El art́ıculo de congreso [139] presenta las ventajas
de rebanar el ADN asociado a los estados, la partición de la filogenia en pequeños
subárboles y su distribución entre varias máquinas. Además, la idea original del
model checking rebanado se complementa con la inclusión de una base de datos
externa para el almacenamiento de secuencias. El art́ıculo de revista [140] reúne las
nociones introducidas en [139] junto con la implementación y resultados prelimi-
nares presentados [141]. Este tema se corresponde con lo presentado en la Parte III
de la tesis.

Para terminar, la tesis reaprovecha las extensiones de las lógicas temporales
con tiempo expĺıcito y probabilidades a fin de manipular e interrogar al árbol so-
bre información cuantitativa. El art́ıculo de congreso [142] ejemplifica la necesidad
de introducir probabilidades y tiempo discreto para el análisis filogenético de un
fenotipo real, en este caso, el ratio de distribución de la intolerancia a la lactosa
entre diversas poblaciones arraigadas en las hojas de la filogenia. Esto se corres-

viii

ponde con el Caṕıtulo 14, que queda englobado dentro de las Partes IV–V. Las
Partes IV–V completan los conceptos presentados en ese art́ıculo de conferencia
hacia otros dominios de aplicación, como la puntuación de árboles, y tiempo conti-
nuo. La introducción de parámetros en las hipótesis filogenéticas se plantea como
trabajo futuro.

La propuesta metodológica realizada en esta tesis es completamente original,
no existiendo ningún precedente al trabajo aqúı presentado dentro del campo de la
filogenia. En ese sentido, consideramos que hay una labor experimental a realizar
junto a la comunidad de filogenetistas que permita recoger experiencias de uso, mé-
todos de trabajo, y propiedades relevantes que permitan adaptar las metodoloǵıas
aqúı propuestas al entorno final para el que están pensadas.

Contents

Contents IX

List of Figures XIII

List of Tables XV

I Introduction and Formal Definition of the Framework 1

1 Introduction 3
1.1. Biological Context: Phylogenies and Phylogenetic Analysis 3
1.2. Formal Verification Techniques: A Guided Tour 5
1.3. Related Work . 7
1.4. Objectives of this PhD Thesis . 10
1.5. Organization and List of Publications 13

2 Bridging Worlds:
Phylogenetics and Model Checking 15
2.1. Introduction . 15
2.2. Evolution as a Transition System 16
2.3. Temporal Logic as a Specification Language 19
2.4. Model Checking as an Inference Framework 21

3 Conclusions 25
3.1. Foundations of this Thesis . 25
3.2. Hypothesis: Phylogenetic Trees versus Phylogenetic Networks . . . 28

II Phylogenetic Properties:
A Logic for Qualitative Logical Properties 31

4 A Temporal Logic for Phylogenetic Analysis 35

ix

x CONTENTS

4.1. Introduction . 35
4.2. Tree Properties . 36
4.3. Sequence Properties . 40
4.4. A Combination of Tree and Sequence Properties 45

5 Tools and Experiments 47
5.1. Introduction . 47
5.2. Model Checking Tools . 48
5.3. Codification of Branching-time Phylogenies 50
5.4. Performance Results for Monolithic Verification of Phylogenetic

Properties . 51

6 Conclusions 59

III Model Checking Adapted to the Phylogenetic Con-
text: Introducing Concurrency and Solving some
Bottlenecks 61

7 Sliced and Distributed Model Checking 65
7.1. Introduction . 65
7.2. Model Checking Algorithms . 66
7.3. Distributed Model Checking . 67
7.4. Model Checking Using Databases 76

8 Workflow 79
8.1. Introduction . 79
8.2. Description . 80
8.3. Experimental Results . 82

9 Conclusions 85

IVQuantitative Extensions in the Analysis of Phyloge-
nies: Generalities and Introduction of Time 87

10 Introducing Time, Probabilities and Quantification on Phylo-
genetic Properties 89
10.1. Introduction . 89
10.2. Towards a Classification of Quantitative Properties Arising in Phy-

logeny . 92

CONTENTS xi

10.3. Extending the Labels of the Phylogenetic Tree and the Results of
Model Checking . 94

10.4. Quantitative Properties in Phylogenetics 97
10.5. Conclusions . 98

11 Timed Transition Systems and Logics 101
11.1. Introduction . 101
11.2. Timed Logic and Structure . 104
11.3. Algorithm for Timed Model Checking 108
11.4. Conclusions . 111

12 Computing Distances Between Symbolic Objects 113
12.1. Introduction . 113
12.2. Returning Time Distances as Output of the Model Checking Pro-

cedure . 114
12.3. Conclusions . 118

13 Conclusions 119

V Quantitative Extensions of Kripke Structures and
Logics for the Analysis of Phylogenies: Approaching
to Probabilistic Properties 121

14 Discrete Time Probabilistic Transition Systems and Logics 125
14.1. Introduction . 125
14.2. Discrete time Probabilistic Logic and Structure 126
14.3. Algorithm for PCTL Model Checking 129
14.4. Model Checking Tools and Experimentation 130
14.5. Conclusions . 132

15 Continuous Time Probabilistic Transition Systems and Logics 137
15.1. Introduction . 137
15.2. Models of DNA Evolution . 138
15.3. Maximum Likelihood Estimation 140
15.4. Continuous time Probabilistic Logic and Structure 142
15.5. Algorithm for CSLTA Model Checking 146
15.6. Model Checking Tools and Experimentation 148
15.7. Conclusions . 155

16 Conclusions 157

xii CONTENTS

VI Conclusions and Further Remarks 159

17 Conclusions 161

18 Future Work: Parametric Temporal Logic 165
18.1. Introduction . 165
18.2. Parameters in boolean model checking 166
18.3. Parameters in timed model checking 167
18.4. Parameters in probabilistic model checking 167

Bibliography 169

List of Figures

2.1. Translation from a phylogenetic tree to a Kripke structure. 19

2.2. Evaluation of temporal logic operators. 21

4.1. Boxed nodes indicate the states where the corresponding property is
held. 40

5.1. Boxed nodes indicate the states where the corresponding property is
held. 50

5.2. Mapping of the phylogenetic tree of Figure 2.1 in SMV. 55

5.3. (a) Time is linear with respect to set size and (b) quadratic with respect
to sequence length. 56

5.4. Counterexample of a back mutation property. 57

7.1. Distributed verification of EXφ through the parallel execution of φ in
the direct subtrees. 70

7.2. Time required in NuSMV for the initialization of a phylogenetic tree
with GenBank identifiers in the nodes. 71

7.3. Memory required in NuSMV for the initialization of a phylogenetic tree
with GenBank identifiers in the nodes. 72

7.4. Division of the original Kripke structure into two slices. 74

8.1. Workflow diagram with the alignment, phylogenetic tree and properties
as input. 82

10.1. Phylogenetic tree for the Hominoidea. 91

10.2. Phylogenetic tree labeled with quantitative information. 96

11.1. Phylogenetic tree and its transition system labeled with time intervals
in the branches and taxon identifiers in the nodes (the DNA sequences
are omitted for readability). 108

12.1. Description of a phylogenetic tree in PRISM syntax. 117

xiii

xiv List of Figures

14.1. Mapping of the phylogenetic tree of Figure 2.1 in PRISM. 134
14.2. Time required for the verification of a set of probabilistic formulas with

respect to the number of tips in the phylogeny. 135

15.1. Model of DNA substitution. 139
15.2. Unfolding of a model of DNA substitution. 140
15.3. Description of the Jukes-Cantor model in PRISM syntax. 149
15.4. Representation in PRISM syntax of the MLE equations for Figure 2.1. 150
15.5. Time required in PRISM for the evaluation of the maximum likelihood

equations in a binary phylogenetic tree. 152
15.6. Time required in PRISMopt for the evaluation of the maximum likeli-

hood equations in a binary phylogenetic tree. 153
15.7. Rewriting of the MLE equations for Figure 2.1. 154
15.8. Time required in PRISM for the computation of the upper bound of

the maximum likelihood value in a binary phylogenetic tree. 155

List of Tables

4.1. (1) Summary of the most important phylogenetic properties (Type T:
tree; S: sequence; Q: quantitative). 41

4.2. (2) Summary of the most important phylogenetic properties (Type T:
tree; S: sequence; Q: quantitative). 42

5.1. List of some available model checkers. 49
5.2. Seconds needed for the creation of the Kripke structure and the storage

of protein sequences. 52
5.3. Megabytes needed for the creation of the Kripke structure and the

storage of protein sequences. 52

10.1. Summary of the most important phylogenetic properties (Type B:
boolean; N: numeric; P: parametric). 99

xv

Part I

Introduction and Formal
Definition of the Framework

Chapter 1

Introduction

“You are to bring into the ark two of all living creatures,
male and female, to keep them alive with you. Two of
every kind of bird, of every kind of animal and of every
kind of creature that moves along the ground will come to
you to be kept alive. You are to take every kind of food that
is to be eaten and store it away as food for you and for
them.” Noah did everything just as God commanded him.

Genesis 6:19-22

1.1. Biological Context: Phylogenies and

Phylogenetic Analysis

The study and exploration of life is, for reasons as evident as they are difficult
to formulate, one of the most deeply rooted constants in human thought. Under-
standing and classification are intimately related, and consequently it should come
as no surprise that the branches of science that concern themselves with biological
classification figure prominently in the history of modern science, from the revolu-
tionary breakthroughs of Linnaeus and Darwin to the newer disciplines that have
evolved in their wake.

Generally, the goal of taxonomy, into which Linnaeus breathed new life in the
18th century [113, 114, 115, 116], is to define and organize populations of organisms
as taxonomic units (taxa) in hierarchies according to shared traits; in the domain
of life, these may correlate in varying degrees to relations of descent. Addition-
ally, systematics is informed by Darwin’s 19th-century defense of common ancestor
[54], by now universally accepted by the scientific community, and therefore seeks
to propose phylogenies that reflect said existent descent relationships. Regardless

3

4 CHAPTER 1. INTRODUCTION

of their finer points, an overwhelming majority of taxonomic and systematics ap-
proaches commonly agree in their basic conception of evolution and classifications
as hierarchical trees, whether their splits represent speciation events (mutations or
sexual reproduction) and groups are founded on relevant attributes.

Phylogenetic trees, or phylogenies for short, continue to be useful abstractions
for modeling and characterizing evolution over time [4]. Biologists consider them as
feasible, traditional and wide-spread approaches of more powerful data structures
such as phylogenetic networks or pedigrees. It is accepted that neither inheritance
is single and infallible, nor descent strictly linear, with sexual reproduction and
horizontal transfers of genetic material blurring this ideal model to some extent.
Yet the lines are clearly visible, and the tree model is perfectly valid for vast
regions of the postulated tree of life, if only we shift our focus from individuals to
populations and beyond [18]. Biologists use phylogenetic trees in many different
ways to solve both scientific and practical problems. For example, they use trees
to make predictions about fossils or poorly-studied species, and to learn about the
evolution of complex features, the order of evolution or the evolution of diversity
[167].

During the last century, systematics and taxonomy have provided a wide range
of methodologies, both theoretical and technical, which have contributed to a bet-
ter understanding of evolution and the building of the tree of life. Among the
former, Hennig’s 20th-century cladistics [89] has proven a solid and durable the-
oretical methodology, aided in recent times by the development of computational
phylogenetics. In addition, the concept of evolutionary distance allows for ex-
ploring tangible numerical relationships between sets of populations or individuals
characterized by biological features such as DNA.

Computer science tools have upgraded the capabilities of biologists for the
tree construction. A great amount of software packages for tree-building guides
the power of computer science towards distance-based [148] (PHYLYP [70]) and
character-based methods [74] (PAUP [161]) or maximum likelihood estimations
[69, 71, 176] (RaXML [155], jModelTest [53]). In particular, the maximum like-
lihood estimations contribute with statistically consistent techniques for inferring
the probability that the phylogeny accommodates a specific evolution drift, pro-
vided by the scientists in terms of DNA substitution models [117]. On these days,
one of the most relevant challenges orbits around the validation of the inferred
tree.

Both disciplines, taxonomy and systematics, make heavy use of empirical data,
with proposition, verification and generalization of hypotheses over the recon-
structed tree playing a central role in their application [130]. Once trees are in-
ferred, the objective is to extract or to discover the implicit biological messages
and structural properties underlying in the phylogeny under inspection. For in-

1.2. FORMAL VERIFICATION TECHNIQUES: A GUIDED TOUR 5

stance, the integration of genetic information in a phylogeny helps to the discovery
of gene conservations, covariations or speciation dates and consequently the com-
prehension of the mechanisms that rule the evolution drift [75]. Nowadays, more
and more applications rely on the existence of a support phylogenetic tree for the
confirmation of biological hypothesis that are valuable for the scientific community.
A small but representative portion of these researches combine phylogenetic trees
(constructed via the mentioned tools using the information of the genome) with
geographical or phenotypical data in order to trace the human migrations or the
distribution of endemic diseases [92, 36]. Sometimes, these biological hypotheses
also use the cladistic information1 for studying the presence of the features in the
state surroundings, i.e., inspecting the temporal locality (e.g., the conservation
and covariation of sequences in zones of a tree [77]). The wide range of hetero-
geneous methods and tools used by biologists for the analysis of phylogenies and
verification tasks recommends the possibility of researching in a generic framework
for heterogeneous hypothesis testing over trees.

This suggests the potential of introducing formal logics for hypothesis verifica-
tion by automatized means and, additionally, the symbolic manipulation of sets
of phylogenetic data characterized by properties defined in these logics. The two
former aspects are based on a) a methodology for a systematic construction of
formal queries about the phylogenetic tree, and b) the availability of a general tool
to answer the questions. The aim of this thesis is to propose a formal framework
for describing, verifying and manipulating causal relationships of species, arranged
as states, irrespective of the final structure (tree or network). The objective is the
utilization of a phylogenetic tree for testing biological hypothesis and, indirectly,
the use of the evaluation results to feedback the phylogeny and increase its quality.
We try to overcome the lack of flexibility of conventional structural models for in-
corporating, combining and reusing evolutive rules at various levels of abstraction.
To this end, we explore the features of model checking, a paradigm stemming from
computer science based on temporal logics which has been successfully applied in
industry for system modeling and verification [85].

1.2. Formal Verification Techniques: A Guided

Tour

Traditionally, the formal methods research community has long advocated that
by verifying a model of a complex system against a set of a priori specified proper-
ties we can gain greater assurance that the system behaves as desired. The process

1Cladistics consists of a biological classification of organisms that are grouped together based
on their unique attributes.

6 CHAPTER 1. INTRODUCTION

of formalization does not give us any absolute guarantees about correctness, but
it greatly increases our understanding of the system often by revealing inconsis-
tencies, ambiguities, and incompletenesses in its design. In case of expensive,
critical or safety systems, checking the system design and implementation against
its model specifications using formal methods provides an enough confidence that
the system won’t crash or malfunction in a dangerous way after its construction.

Formal verification techniques are very familiar in the context of engineering
disciplines: software engineering, protocol engineering, mechanical engineering and
so on. In these fields, in the points related with the computer science, there are
powerful developments and tools to support formal verification. Model checking is
an automated and generic formal verification technique that, given a finite state
model of a system and a formal property, systematically checks whether this prop-
erty holds for (a given state in) that model. The model checking process consists
of three phases: modeling both the system and properties with appropriate de-
scription languages, running the verification (checking the property validity with
a model checking software) and analyzing the results (studying counterexamples
if the property fails).

Bearing in mind that “any verification using model-based techniques is only as
good as the model of the system”, one of the most interesting strengths of model
checking is the fact that “it is a potential push-button technology” because its use
“requires neither a high degree of user interaction nor a high degree of expertise”
[13]. Besides, there already exists a pool of generic and powerful software tools for
the automated verification of properties [85]. They facilitate the decoupling of the
verification process from the definition of properties and they mask the underlying
implementation technology as well. In fact, this is an important quality that
avoids the coding of particular verification algorithms and promotes the reuse and
adaptation of tools with a long trajectory and community support.

The application of model checking techniques assumes that a system is ab-
stracted by a set of discrete reachable states plus the transitions that allow the
movement from one state to another. The objective is to place an intuitive abstrac-
tion for characterizing phylogenetic trees as transition systems, as well as specifying
biological properties using temporal formulas, which capture the temporal nature
of the phylogenetic tree. Implicitly, the speciation and mutation events along a
path embed the notion of time. Occasionally, these temporal restrictions do not
match with a chronological time but with a virtual clock that counts the number
of transitions between states.

Evolutionary systems are very different in their structure and features from the
abstractions of prototypes that are typically modeled for verification in industrial
environments. One important difference between phylogenies and artificial systems
designed by state-transition models is that we cannot arbitrarily change or modify

1.3. RELATED WORK 7

the phylogenetic structure according to our desire irrespective of the available
information of the species (mainly the restrictions placed by the relation of their
genomic sequences). The genome and the set of specifications that we evaluate over
the tree report meaningful data that favor the continuous update and refinement
of the tree topology.

Therefore the model checking approach that we propose for the context of
phylogeny considers a phylogenetic tree as a model of a particular system endowing
an evolutionary process in which biological properties expressed with formal logics
can be verified. That is, a property is considered as a claim over the tree and
then the verification determines the truth value for this claim. The evaluation
of biological specifications validate, nullify or refine the phylogeny as a plausible
model of the evolution.

Finally, the term of model checking from formal methods in computer science
is often confused with the classic concept of validation in the field of phylogenetic
analysis. In the biological context, validation focuses on determining the goodness
of fit of a phylogenetic tree with respect to a DNA substitution model that hy-
pothetically drives the evolution (see Section 15.2–15.3). Phylogenetists conceive
the phylogenetic tree as a trace resulting from the long-term simulation of one of
these mutation models, and then they score the fitness of the phylogeny accord-
ingly. The misunderstood around the term model checking is probably motivated
by the fact that DNA substitution models are commonly referred to as phyloge-
netic models (understood as a model that generates a phylogeny as output), while
for us the phylogeny is considered as our model of the evolution over which we val-
idate biological hypothesis and, incrementally, use the provided feedback to refine
and update the tree. In fact, these two apparently contradictory concepts, model
checking and tree validation, are complementary ideas. As we will see in further
chapters, the application of formal methods in computer science for the tree val-
idation (i.e., score the tree structure with respect to a DNA mutation model) is
only a portion of all the potential of model checking techniques presented in this
thesis. We will show how this validation can be integrated in and also be carried
out by means of the proposed model checking techniques.

1.3. Related Work

The main significance of this thesis is in introducing the model testing frame-
work to phylogenetics and possibly other computational biology communities. The
importation of model checking techniques for the analysis of phylogenies is a con-
ceptual and technological novelty that hasn’t been introduced in this field before.
Here, we present a whole different set of techniques to the computational phylo-
genetics community. Model checking offers a generic and formal framework for

8 CHAPTER 1. INTRODUCTION

evaluating phylogenetic properties. The wide range of heterogeneous methods and
tools used by biologists for the analysis of phylogenies and verification tasks rec-
ommends the possibility of researching in a generic framework for heterogeneous
hypothesis testing over trees: we try to offer uniformity.

Commonly, the study of phylogenetic relations starts with the DNA sequencing
of the taxa, a process that is not completely free of errors [14, 10] and may disrupt
the final result. Evolution causes differences in the DNA length between species
[81, 82], even anomalous insertions/deletions (indels) of particular nucleic bases
inside populations [133]. Thus, the alignment of genomes becomes necessary for
a correct comparison of compatible DNA zones among individuals. Tools such as
Clustalw [162] or Muscle [62] fill this gap, preparing the data for the reconstruction
of phylogenetic trees. Nowadays, the construction of phylogenies is a key problem.
Current phylogenetic inference methods comprise distances [148] (PHYLYP [70]),
maximum parsimony [74] (PAUP [161]), maximum likelihood [69] (RaXML [155],
jModelTest [53]) or Bayesian techniques [175] (MrBayes [147]), each one assess-
ing the similarity of sequences with a complementary perspective and up-to-date
computer software. Closely related taxa in the phylogeny are supposed to share a
common structure and characters in the genome.

However after the inference of the tree, the phylogenetic analysis is carried
out by disparate tools. Ape [67] and Arlequin [68] are R packages that help to
the manipulation of phylogenies and apply statistical tests for genetics analysis in
inter or intra-populations. For instance, BEAST [61] uses a Bayesian analysis of
molecular sequences “for testing evolutionary hypotheses without conditioning on
a single tree topology”, but it is mainly limited to the estimation of the divergence
dates and molecular substitution models. The study of comparative data (variation
and distribution of characters, consensus trees, branch lengths, . . .) is solved by
Mesquite [120] or TNT [80]. In addition, adapted libraries for python such as
Pycogent [105] includes functionalities for analyzing the correlation of nucleic bases
and aminoacids in the sequences.

Beyond the mentioned software, the lack of generic tools for a true hypothesis
testing involves the application of a separated statistical analysis for the set of
DNA sequences and, subsequently, the interpretation over a phylogenetic tree. The
process consists of the inspection of the tree topology and how the characters are
arranged over there. A clear example of this is the search for correlated positions
and compensations in the DNA, a study that employs a background phylogeny for
discriminating noisy and true relations [77]. The general problem is not constrained
to this peculiar example, but can be extended to the definition of complex relations
between tree states and characters. Common questions in phylogeny are concerned
about, for instance, the detection of reversions (back mutations) along a path, the
extraction of the last common ancestor having a certain base shared by a set

1.3. RELATED WORK 9

of leaves, the aggregation of species in subtrees (clades) based on characteristic
nucleotides, and even the detection of spurious or intruders in those clades. The
verification of sound properties or the presence of anomalous patterns of nucleotic
placement supposes a quality measure that warns about DNA sequencing errors
or inconsistencies in the phylogenetic inference process.

Similarly, recent studies in phylogeography conjecture about human migrations
[76, 36, 101, 166] (sometimes caused by the colonization with army invaders [179])
and its consequences in the language evolution [37, 29, 95], distribution of chronic
and endemic diseases [57, 51, 129], and phenotypic adaptations (Tibetan people
[19, 20, 25, 177], lactose [160, 163, 97, 92] and alcohol tolerance [72, 178]). Nor-
mally, these genetic modifications are motivated by environmental (temperature,
oxygen) or cultural factors (milk-based diet, alcohol exposure) and they define
haplotypes and populations as well.

The introduction of the model checking framework for hypothesis verification
aims to avoid the necessity of coding ad hoc scripts (BioPerl [153], BioPython [49])
for particular investigations composing information of different areas. Neverthe-
less, the developments of model checking as a framework for learning phylogenetic
properties have not been fully translated to the world of biology; or at least, many
things must still to be done. Model checking has not been introduced in the context
of phylogenetic analysis yet. Exclusively in computational biology, model checking
has been applied to fields in which (mostly) quantitative properties over temporal
data are analyzed [16]. Cellular and molecular interaction networks [128], includ-
ing cell cycle kinetics [145], are the main areas of application, but problems as
varied as the prediction of protein folding dynamics have been considered [107].
Further extensions involves the study of probabilistic relations in signaling path-
way regulation [123], biological pathways [103, 104] or cell energy reactions [73].
Notice that temporal logics embedding the concept of evolutionary distance under
the notion of time in phylogenetic trees have already been proposed in biological
system modeling [56]. The existence of temporal logics capable of handling explicit
time and probabilities enlarges the type and complexity of phylogenetic properties
that the framework will process.

However, memory usage arises as a major limiting factor in the analysis of
complex systems. Often, it is in association with vast state spaces, and therefore
with long execution times. In this regard, the conventional monolithic techniques
conceived for improving the performance in industrial model checking applications
fail to manipulate the phylogenetic tree in an efficient way due to the inherent
features of the biological data, mainly the huge ratio of labels per state (i.e., DNA
sequence). This problem persists in spite of the many methods which have been
devised to scale model checking procedures. Of these, symbolic model checking is
perhaps the most widespread [99, 85]. There exist several general-purpose memory

10 CHAPTER 1. INTRODUCTION

techniques that can be applied to alleviate the problem of memory footprint, such
as abstractions, partial reductions and symmetries (for a review, see e.g. [63, 31]).

Current efforts in this area revolve around two main topics. Firstly, compo-
sitional reasoning [47], itself a classic approach based on the verification of local
properties associated to each of a collection of “components” (e.g., codons and
genes in the context of biological sequences), proceeding incrementally to infer
global properties of the system through a bottom-up strategy. Chief in importance
among these techniques is the assume-guarantee paradigm [135], which operates
by establishing a collection of assumptions about the environment of a component
and verifying the latter subject to the former. Alternative approaches are exempli-
fied by [78], where they focus the trouble from the point of view of temporal logic
formula decomposition. However, all these methods are ineffective when applied
automatically in isolation to tightly coupled systems made up from highly inter-
dependent components [48]. Only a few theoretical works have been published in
relation to the complexity and advantages of compositional model checking over
these simple structures [39].

Secondly, we have methods that exploit the explosive availability of multicore
(shared-memory) computers [96], fast interconnection networks [165] or MapRe-
duce in clusters [22]. Generally, these operate by partitioning the system as defined
by the Kripke structure and distributing the chunks among available computing
units (both storage of the partial Kripke structure and computation of satisfiability
of logic formulas [84, 30]). These would be applicable here, yet by themselves they
are ineffective, as they address the size of the structure in number of states and
not the complexity of each state, which is the other limiting factor in phylogenetic
model checking. An approximation to this last group of methods is considered
in Section 7.3. The adaptation and optimization of model checking techniques
for large systems to the domain of phylogenetic analysis constitutes our second
contribution.

1.4. Objectives of this PhD Thesis

The aim of this thesis is the introduction of formal methods techniques as
an unifying formalism that permits the phylogeneticist to focus their efforts on
phylogenetic analysis instead of focusing on implementation issues concerned with
particular algorithms or tools. The symbolic manipulation of phylogenies and
phylogenetic properties, represented in terms of temporal logics, helps with the
extraction of meaningful biological information. The formalism is flexible enough
to consider different kind of data structures and evolutionary models. It also rep-
resents an opportunity to handle the increasing complexity of the structural prop-
erties required by biologists, e.g. the detection of potentially deleterious mutations

1.4. OBJECTIVES OF THIS PHD THESIS 11

or conserved regions in a clade. Moreover, the idea of hypothesis verification works
in a closed-loop, helping the phylogeneticist to refine or discover properties using
counterexamples obtained from unfulfilled properties. To this end, the introduction
of model checking techniques is summarized under three different perspectives:

1. First of all, our goal is to separate the implementation (software tools) from
the analysis of a phylogeny, denoted with a set of properties the user desires
to check. The objective is to develop a different kind of phylogenetic analysis.
Inside a model checking framework, the analysis and study of properties is
realized independently of the software tool that makes the particular compu-
tations. That is, the model checker tool is a generic package that interprets
the specification of a system and automatically realizes the computations to
carry out the analysis. Then, the biologists can concentrate their activity
in the specification and interpretation of the results. In addition, the model
and specifications are usually defined as separated input files for the model
checking tool, allowing the verification of the same properties over multiple
trees and the interpretation of different results or behaviors.

This is a very instrumental reason, and it sometimes presents a conflict be-
tween generality and efficiency. Nevertheless, there are many developments
inside the formal verification domain that are transparent to the application
domain and that can be translated to the context of phylogeny. Therefore,
there is no need to return to the path that the computer scientists already
visited before. For example, the research and implementation of methods for
the distribution of computations in order to speed up the performance, or
the extraction of efficient representations and symbolic manipulation of the
information. The use of experienced software with up-to-date technologies
and a good community support such as NuSMV [45] facilitates the study of
phylogenetic properties. Our objective is to take advantage of these tools and
adapt them to the domain of phylogenetics if necessary, instead of coding a
completely new software or focusing on particular algorithms.

On the other hand, current packages for phylogenetic analysis such as
Mesquite [120], ape [67] or Pycogent [105] are becoming really complex with
thousands of code lines. They are difficult to maintain, even when they in-
clude specific and adapted algorithms for this field. The attractiveness of
model checking comes from the fact that it is completely automatic, generic
and independent of the model and specifications (i.e., the learning curve for
a user is very gentle).

2. The second cornerstone of our approach is the introduction of the symbolic
manipulation of biological objects used to reason inside the world of phy-
logeny. In this sense, the introduction of formal definitions through logical

12 CHAPTER 1. INTRODUCTION

formulas, interpreted over the phylogenetic tree, allows to characterize sets
that are not explicitly enumerated. These sets of objects are symbolically
managed and it is possible to define specific calculus to manipulate them.

In a complex world with many levels of abstraction, such as the phylogeny,
the ability to systematically manipulate components or objects represented
in a symbolic way constitutes a key advantage. This requires some abstrac-
tion tool allowing reasoning with the right objects at each level, removing
unnecessary details for the searched results. For example if we are trying to
work in the field of cladistics, then one of the right objects to reason with is
the set of clades. Hence, we need to have a symbolic representation of these
objects and a calculus to reason with them.

3. Last but not least, we propose model checking for studying complex systems
with single or multiple phylogenetic trees as input. Our objective is to obtain
and to organize the information contained in these structural-logical models.
Here we try to extract properties of a phylogeny, combine them, compare the
results among trees and split the properties into smaller meaningful ones. In
other words, we need an algebra to manipulate properties symbolically. This
is a difference with respect to the classical verification framework, which
restricts the analysis to the verification if a property is satisfied or not. We
propose a classification of phylogenetic properties and a methodology for the
specification of these hypothesis using temporal logics.

In addition, our phylogenetic model is initially represented by a phylogenetic
tree labeled with the genome of each taxon, but the states of the phylogeny
can be also enriched with extra information complementary to that obtained
from the DNA sequences or the output results obtained from the evaluation
of previous properties, for example, with phenotypic information. Therefore,
the model checking techniques work with properties that can be interpreted
over different models (phylogenetic trees) or over phylogenies that maintains
the structure but the information content is changed. We also work with
models that include probabilities (Markov chains). Modifying the behavior
of the logics and data structures, we can work in the future with phylogenetic
networks or pedigrees as well.

To sum up, this approach allows the specification of properties in temporal logic
in an unambiguous and mathematically strict way. Hence, biologists can formalize
consensus definitions for controversial phylogenetic terms, mainly in quantitative
analysis. The definition and analysis of a new phylogenetic property doesn’t need
the implementation of any new algorithm, which reduces the risk of coding errors
and simplifies the software cycle of life. The same property can be exported to
and tested in different models (phylogenetic trees) with minor changes, fixing them

1.5. ORGANIZATION AND LIST OF PUBLICATIONS 13

for phylogenetic networks if necessary. It also offers counterexamples in case of a
model fails to satisfy a property serving as indispensable for the debugging.

The previous arguments correspond to the conceptual advantages of model
checking beyond the computational efficiency. In fact, we try to demonstrate
that our contribution consists of the adaptation of the model checking framework
as an unifying formalism to realize many different tasks under the same generic
formal description languages and tools, offering the possibility to create different
abstraction levels throughout the symbolic creation and management of objects.

The work introduced in the first theoretical sections is completed with a sec-
ond part oriented to the usability and competitiveness of our approach. We have
evaluated the performance of existing model checking tools in the field of phylo-
genetics. Due to the particularities of the biological context and the huge volume
of data they have to manipulate, we have discovered that most of the software
packages suffer from slowness. Then, we are forced to design, adapt, propose and
implement new solutions for increasing the efficiency of our methodology in phylo-
genetics. Finally, the formalism is enriched with time and probabilities for model
checking.

1.5. Organization and List of Publications

The contents presented in this thesis is supported by several publications in
international conferences and journals. The introduction of model checking as a
formal framework for analyzing biological properties led us to our first seminal pa-
per [26]. In [138], we develop the verification of a particular phylogenetic example
with proteins coded by human mitochondrial DNA (mtDNA). There, we used a
generic and automated model checking tool. The journal paper [143] summarizes
the basics of previous papers and extends the operational of temporal logics to
new phylogenetic properties unconsidered until now.

Due to the peculiarities of the phylogenetic analysis (i.e., mainly huge trees with
a considerable amount of information in the states, such as the DNA), the model
checking tools need to be optimized in order to keep a reasonable performance
and ease the state explosion problem. The paper [139] presents the advantages
of slicing the DNA strings associated to the states, and the partition of the phy-
logeny into small subtrees. Besides, the original idea of sliced model checking is
complemented with the addition of an external database for storing the sequences.
The journal paper [140] gathers the notions introduced in [139] together with the
implementation and preliminary results of [141].

At the end, the thesis extends the standard temporal logics with explicit time
and probabilities so as to manipulate and interrogate the tree with quantitative

14 CHAPTER 1. INTRODUCTION

information. The paper [142] exemplifies the necessity of introducing probabilities
and discrete time for the phylogenetic analysis of a real phenotype.

Therefore, the thesis is arranged in six parts. Following this introduction,
Part I summarizes the essentials of phylogenetics and model checking. It explains
the roots which bridge model checking and phylogenetic analysis: phylogenies as
logical models, phylogenetic specifications as temporal logic formulas, and auto-
mated system verification via model checking tools. Later, Part II describes the
logical specification of non-trivial structural properties of cladistic classification
and sequence composition. It also details the key steps for implementing phy-
logenetic trees and biological properties within the scope of a Symbolic Model
Verifier (SMV) tool in order to obtain both feasibility and performance criteria
for our approach. Part III considers different compatible optimizations for scaling
the framework for bigger systems, mainly the introduction of tree partitions, state
slicing and external databases. A workflow describes the interconnection and co-
operation of the modules implementing the mentioned techniques. Next, the logic
and structures presented in Part II are extended for quantitative purposes (explicit
time and probabilities) in Part IV–V. With a set of real examples, we motivate the
interest of inserting explicit clocks and likelihoods in phylogenies. Finally, Part VI
gathers the conclusions drawn from this research and outlines the future work.
We highlight that the introduction of parameters in models and specifications al-
lows the symbolic manipulation of relations, converging to a potential automatic
discovery of properties and model exploration.

Chapter 2

Bridging Worlds:
Phylogenetics and Model
Checking

The fact is, what we’re doing could be construed as, forgive
me sir, collaboration with the enemy. Perhaps even as
treasonable activity. . . Must we work so well. Must we build
them a better bridge than they could have built for
themselves?

— Maj. Clipton, The Bridge on the River Kwai

2.1. Introduction

Transition systems are considered powerful formal models for the study of
concurrent systems [13, Definition 2.1]. They are machines composed of a set of
(probably) infinite states labeled with information describing the system behavior
at that point, and a set transitions among them. Formally, a state transition
system is a pair (S,R) where S is a set of states and R ⊆ S × S is a binary
relation (transitions) over S. Given a model of a system and a suitable logic to
reason about its behavior over time, it is possible to achieve automated, exhaustive
verification of properties of interest. In this section we show that phylogenies can
be understood and represented by such models.

Phylogenetics and model checking can be bridged after reflecting on some con-
siderations about the processes of modeling and specification. We begin by iden-
tifying the foundations of evolution with those of transition systems and continue

15

16 CHAPTER 2. BRIDGING WORLDS

with the study of their temporal nature and their logical formulation. We conclude
with an overview of verification under the model checking paradigm.

2.2. Evolution as a Transition System

At the highest level of abstraction, phylogenies postulate partial models of the
evolution history of sets of living organisms. They can be represented as directed
graphs, though phylogenetic trees are widespread representations and they suffice
for most common purposes; phylogenetic trees will be adopted in this thesis.

Rooted labeled trees offer a realistic model of aggregated evolution, in which
each vertex represents an inferred state of the evolution characterized by a pop-
ulation of related individuals who mate among themselves and are denoted by a
common, compatible heritage (e.g., biological sequences such as DNA) or other
information such as their attributes (e.g., morphological and physiological data).
The vertex are arranged along the paths of the tree according to a evolutive pro-
cess. The methodology presented here is extensible to other domains (trees or
networks) and phylogenies annotated with different kind of information. Although
phylogenetic trees don’t match exactly with a gene tree [131, 132, 119], we start
focusing on trees built from genes and genomic alignments for simplicity.

Transformative events that modify heritable information give rise to new states
which are reflected in oriented parent-child edges in the graph. Transitions are
comparable to “instantaneous” speciation events or mutations. Note that neither
explicit time nor the ordering of child states are part of the model, which is con-
sistent with the descent semantics of the tree. In this context, time is implicitly
represented as a relation order that indicates the direction of the evolution drift
caused by the speciation events.

Definition 1 (Rooted Labeled Tree). Let Σ be a finite alphabet and l a natural
number. A phylogenetic tree over Σl is a tuple P = (T, r,D), where:

T = (V,E) is a tree graph,

r ∈ V is its root, and

D : V → Σl is a dictionary function that labels each vertex with its associated
taxon information, mainly the genome sequence.

Gene trees are typically built from finite sets of words of uniform length result-
ing from alignment algorithms. These words, which commonly represent present-
time taxa, are required to be in bijective correspondence with the set of leaves of
the trees. The inclusion of extinct species, which are improbably direct ancestors
of extant taxa, are also located in terminal nodes. Ancient DNA sequences far

2.2. EVOLUTION AS A TRANSITION SYSTEM 17

before 100, 000 years are unusual in the phylogeny due to its deterioration, but
they can be inferred for the internal nodes of the tree using maximum parsimony
for the direct common ancestors.

Restrictions can be added or removed to adjust the phylogeny as needed (i.e.,
including horizontal transference, sexual reproduction or multiple roots for phylo-
genetic networks), but in any case the nature of trees as reactive systems should
become clear by now. They are composed of independent states of evolution that
interact indefinitely with their environment. One of the most prominent features is
their state, i.e., their hereditary information or a suitable portion thereof. Conse-
quently, it is possible to naturally effect modeling and verification of evolutionary
systems, and to this end data structures for the representation of transition sys-
tems become a very attractive solution. A Kripke structure provides a graph-based
data arrangement that represents the behavior of the system and provides semantic
information for querying properties in temporal logics [122].

Definition 2 (Kripke Structure). Let AP be a set of atomic propositions, i.e.,
boolean predicates that describe the observable properties of a state. A Kripke
structure over AP is a finite transition system represented by a tuple M =
(S, S0, R, L,AP), where:

S is a finite set of states,

S0 ⊆ S is the set of initial states,

R ⊆ S × S is a total transition relation between states, i.e., for every state
si ∈ S, there exists sj ∈ S such that (si, sj) ∈ R, and

L : S → 2AP is the labeling function that associates each state with the subset
of atomic propositions that are true of it.

A Kripke structure models a system that is capable of an infinite number of
behaviors or paths, infinite sequences of successive states π = s0s1s2 . . . such that
s0 ∈ S0 and (si, si+1) ∈ R, i ∈ N. The set of possible executions (paths) in a
structure can be unfolded into its computation tree1.

Here we focus on Kripke structures that represent a certain tree as a (hopefully
real) computation of the evolutionary process, or rather the set of computations
that result in the hypothesized patterns of evolution. Relations between states
and atomic propositions, and between tree branches and state transitions, are of
utmost in importance, and raise some interesting issues that need to be addressed:

1A computation tree is a rooted tree-like structure in which the future is not determined by
the current node and, therefore, there are many different paths reachable from this state.

18 CHAPTER 2. BRIDGING WORLDS

Ideally, the state of an evolution process is uniquely identified by its biological
information. Sequences also determine the atomic propositions that form
the basis of logical properties: the presence of a certain alphabet symbol
at a given position. If separate vertices of the tree must share a sequence,
their states can be enriched with auxiliary properties to preserve the unique
identity of each.

Once a one-to-one correspondence between tree vertices and states has been
established, it remains to resolve the identification of branches as state tran-
sitions. Transitions are comparable to “instantaneous” speciation events.

In sum, trees are essentially a present-time, local, tentative snapshot in the
execution of a potentially infinite evolution system. In order to translate
trees to the infinite-path semantics of Kripke structures, we need to add
self-loops to terminal vertices so as to deadlock their states.

At this point, we can define a suitable branching-time structure for phylogenetic
trees for the interpretation of temporal logic formulas which express properties in
them. The most common state formula determines whether the present state is
associated with a sequence seq = σ1σ2 . . . σl ∈ Σl (or possibly a partial sequence
or a set of sequences). Sequences will be manipulated symbolically, as will sets, as
the aggregation of their parts. In logical terms:

seq ≡
∧l
i=1seq [i] = σi (2.1)

These expressions related with the DNA compose the basic set of atomic propo-
sitions (AP) that are tagged to the states, that is, AP = {seq [i] = σ|σ ∈ Σ, i ≤ l}.
The set of AP accepts the inclusion of new information apart from the genome.

Definition 3 (Branching-time Phylogeny). A tree (per Definition 1) P = (T, r,D)
is univocally defined by the Kripke structure M = (V, {r} , R, L), where:

R is the transition relation composed of the set of tree edges (directed from
r) plus self-loops on the leaves: R = E ∪ {(v, v) : @ (v, w) ∈ E ∧ v, w ∈ V }
with v 6= w.

L is the standard labeling function defined by AP , under which a state v
mapped to D (v) = seq with seq = σ1σ2 . . . σl satisfies the family of properties
seq [i] = σi, 1 ≤ i ≤ l, plus a unique state identifier in the case of several
states sharing the same atomic propositions.

Roughly speaking, we can say that the Kripke structure reflects the parent-
child relations in the original phylogenetic tree representing the evolution process.
Self-loops in terminal nodes allow for infinite computation paths in the original

2.3. TEMPORAL LOGIC AS A SPECIFICATION LANGUAGE 19

Figure 2.1: Translation from a phylogenetic tree to a Kripke structure.

phylogenetic tree. The labeling of states with atomic propositions in the transition
system helps in the identification of nodes during the verification process. Thanks
to the codification explained, the detection of a particular instance of a DNA
sequence is translated to the selection of states satisfying a set of logical equalities
with the form seq [i] = σi, 1 ≤ i ≤ l. In this way, we can manipulate sequences
symbolically. In case of collision, a explicit definition of state identifiers ensures
uniqueness. The set of atomic propositions has to be able to represent distinct
populations that share a common sequence distinguished as different states.

Figure 2.1 illustrates this translation process from a (phylogenetic) rooted la-
beled tree (Definition 1) to a Kripke structure (Definition 2). It should be em-
phasized that our proposal can be used in future works for other phylogenetic
structures such as phylogenetic networks [52] by reformulating Definitions 1–3 as
required. Although they are more generic and powerful representations of the
evolution process, the complexity for interpreting and manipulating specifications
in temporal logic in a phylogenetic network places this data structure out of our
scope in this thesis.

2.3. Temporal Logic as a Specification

Language

Temporal logics are formal systems that allow the representation and manip-
ulation of logical propositions qualified in terms of time [134, 122, 46, 63, 13]. In

20 CHAPTER 2. BRIDGING WORLDS

the context of transition systems, they are used to define properties on sequences
of transitions between states of a system through a convenient abstraction of it (in
the present case, a specific kind of Kripke structure). For example, properties may
express whether it is possible that one particular type of state may be reached at
a particular point or whether a certain property will always hold.

Temporal logics can be classified according to how they treat sequences of
events: whereas linear-time logics (LTL) [134] deal with individual paths π =
s0s1s2 . . ., branching-time logics take into account the set of possible progressions
from each state, hence reasoning globally about the computation tree. Computa-
tional Tree Logic (CTL) [46], a versatile exponent of the latter, has been widely
adopted by the model checking community. Phylogenies represent evolutionary
processes that are mainly branching in nature due to the (hypothetically indepen-
dent) speciation events over the time. Branching-time logics in general, and CTL
in particular, are remarkably well suited to the description of phylogenies because
the structure of phylogenetic trees matches with the topology of a computation
tree and CTL provides a set of operators for inspecting and manipulating those
paths. We propose Phylogenetic Tree Logic (PTL) as a temporal logic close to
CTL for the specification of evolutionary processes.

PTL reinterprets the quantifiers of first-order logic as path quantifiers, express-
ing the fulfillment of a property throughout all computation paths (A), or at least
one computation path (E). These two must be immediately qualified by one of five
temporal operators, of which three express the satisfaction of a property eventually
in time (F), at all times (G), or in the next state (X); and two are conditional
constructs in which a precedent is verified until a consequent comes into force (U),
or until and including the moment when it does, if it does (R). A complete gram-
mar and semantics of PTL formulas can be defined from a minimal and complete
subset of logical operators (see Figure 2.2).

Definition 4 (Phylogenetic Tree Logic). A temporal logic formula φ is defined by
the following grammar, where p ∈ AP :

φ ::= true | p | ¬φ | φ ∨ φ | EX (φ) | EG (φ) | E [φUφ] (2.2)

The formulas are checked against a structure M considering all paths π from a
certain state s0. Notice that M, s0 � φ means that s0 satisfies φ. The semantics
of well-formed formulas is as follows (let π = s0s1s2 . . .):

M, s0 � p⇔ p ∈ L (s0),

M, s0 � ¬φ⇔M, s0 2 φ,

M, s0 � φ ∨ ψ ⇔M, s0 � φ or M, s0 � ψ,

2.4. MODEL CHECKING AS AN INFERENCE FRAMEWORK 21

Figure 2.2: Evaluation of temporal logic operators.

M, s0 � EX (φ)⇔ ∃π : M, s1 � φ,

M, s0 � EG (φ)⇔ ∃π : M, si � φ, ∀i ∈ N, i ≥ 0,

M, s0 � E [φUψ]⇔ ∃π, i ∈ N : M, si � ψ and M, sj � φ, 0 ≤ j < i.

The previous language is extensible with additional temporal logic operators
that are calculated in terms of the previous ones:

φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ)

A(ψ) ≡ ¬E(¬ψ)

F(ψ) ≡ [trueUψ]

[ψ1Rψ2] ≡ ¬ [¬ψ1U¬ψ2]

A CTL formula φ represents a property that may be verified at certain states
in the computation tree. In this context, a system M satisfies φ iff its initial state
(phylogenetic root) does: M, s0 |= φ. We can extend the previous formula to a set
of initial states:

∧
s0∈S0

M, s0 |= φ.
A logic thus defined permits the formal expression of generic properties on

evolving biological sequences in a form that is mathematically strict and compact,
and their eventual automated verification without any additional programming
involved. It can be used to verify hypotheses or desirable properties as well as to
find out where in a phylogeny, if at all, such statements are true.

2.4. Model Checking as an Inference

Framework

The operating principle behind model checking is simple: it is the execution of
verification software in a computer to check the correctness of a system, given a

22 CHAPTER 2. BRIDGING WORLDS

model of the system and a specification of its requirements, both provided by the
user. In the event of failure to comply with the specification, the software outputs
the scenarios which invalidate the property as counterexamples. Nevertheless, the
state space explosion problem prevents the verification even for small systems, for
which symbolic manipulation of systems and formulas are required [33]. The model
checking technique is, thus, only limited by the complexity and expressiveness of
the selected logic.

Most importantly, the use of model checking techniques is completely trans-
parent to the system under verification, as they are domain and interpretation
independent. This means that phylogeneticists can shift their efforts from imple-
mentation issues to logical modeling (establishing required or desirable properties
before model checking) and results analysis (observing the success or failure of the
process and ascertaining its significance after model checking). The main goal of
introducing model checking in the field of phylogeny is the evaluation and inference
of biological properties using the tree.

The feedback provided by the inquiry of hypothesis in the phylogeny helps to
refine our knowledge about the evolution and, indirectly, update the phylogenetic
structure. Particularly, the counterexamples are useful if the evaluation results are
aberrant with those that are expected in the scientific community. For example,
we can inspect tree regions that are supposed (by biological reasons) to keep an
invariant portion of DNA. If we find a falsification in the conservation of this
pattern, it rises an alert of DNA sequencing or phylogenetic reconstruction errors
(for more details, see Section 4.3).

Going into greater detail, the key step of the verification process consists of
the generation of a satisfiable set (i.e., the set of states of a Kripke structure
for which a property holds). The algorithms of model checking are based on set
theory. The definition and manipulation of sets is done symbolically in terms of a
temporal logic. The evaluation process starts with the input of a set of initial states
characterized by a formula in temporal logic and a reachability relation provided
by the Kripke structure. The model checking algorithm computes reachable states
from/to that set in an iterative and symbolic way until a greatest (least) fixed point
is reached [63]. We arrive to a greatest (least) fixed point when the model checking
algorithm cannot update the result set. The counterexamples are obtained by
tracing back the appropriate path over the complementary set.

Take the following example. Our aim is the selection of a path whose nodes
conserve the genome in the first position of the DNA string, for instance, seq[1] =
A. In temporal logic notation, we try to solve M, s0 � EG(seq[1] = A), with s0 the
root of the phylogeny. For homogeneity, we suppose that the common ancestors
have an inferred DNA. The greatest fixed point algorithm starts considering all
the states of the Kripke structure, and, next, restricts the set to those nodes

2.4. MODEL CHECKING AS AN INFERENCE FRAMEWORK 23

where seq[1] = A holds. The procedure reduces repeatedly the set of states: in
each iteration, the set is limited to the elements that satisfy seq[1] = A and that,
according to the reachability relation of the phylogeny, can be reached by the nodes
obtained in the previous step. The algorithm finishes when it cannot update the
result set anymore. The property is true if the greatest fixed point algorithm
incorporates the root s0 in the result set. The least fixed point operates inversely,
increasing the set in each operation.

Summarizing, there is a direct correspondence between resolving boolean for-
mulas of temporal logic and manipulating sets of states. In fact, a temporal logic
formula characterizes the states of the tree satisfying the imposed relations. The
states of the tree are coded with the same variables used in the atomic propositions,
and, therefore, the model checking algorithms can manipulate sets symbolically by
means of temporal formulas.

Chapter 3

Conclusions

“Assume a spherical cow of uniform density.”

—

3.1. Foundations of this Thesis

Phylogenies are useful structures for testing biological hypothesis. Nonetheless,
the data on which trees are based is usually noisy, mainly for trees with exclusively
genomic information [14, 10]. First of all, the DNA and protein sequencing in the
laboratory, though highly automatized and accurate in recent ages, are not com-
pletely exempt of errors whose unfaithful signal propagates to further steps of
phylogenetic analysis. In addition, ancestral DNA is barely stable and its de-
graded conservation prevents its use far beyond 100, 000 years, which limits the
application of genomics to present-time taxa arranged in the tips of the phylogeny.
Nevertheless, some methods offer an estimated value of the DNA for the internal
nodes and draw the edge length proportional to the time (for instance, parsimony
[74]).

Secondly, the large computational cost of aligning sequences and inferring the
true phylogenetic tree with current software tools restricts the input to only a few
simultaneous genes or characters per phylogeny instead of the complete genome.
This fact amplifies the bias and distortions the complete image of the evolution
drift in the DNA. Even, different methodologies for tree reconstruction provide
candidates with sound background and same theoretical consistency but that are
dissimilar to each other [159].

Hence, it is almost impossible to ensure with great certitude if the current
phylogeny corresponds to the true tree of life because of the ambiguous, incomplete
or partial information the scientist work with. Although the phylogenetic trees

25

26 CHAPTER 3. CONCLUSIONS

obtained from single genes are useful for specific studies, a reliable phylogeny of
species must solve theses biases using consensus trees, phylogenetic comparative
methods and a compendium of information collected from disjoint research areas
(e.g., animal migration or phenotype data) in order to enrich the tree model.

Therefore, there isn’t a single phylogenetic tree but a summary of possible
trees that are continuously revised and refined every time we gain a better com-
prehension of the evolution: the phylogeny is not a static model of the evolution.
This fact leads to the periodic appearance of heterogeneous tools and methods for
building trees or evaluating properties over them, which complicates the analysis
of phylogenies. As demonstrated in the related work, the lack of generic tools for a
true hypothesis testing involves the application of a separated statistical analysis
for the set of DNA sequences and, subsequently, the interpretation over a phy-
logenetic tree. For more complex problems like phylogeography, the necessity of
specific implementations and scripts is real.

In any case, the phylogenetic tree is still an acceptable model for characterizing
the evolution process, which is captured by the states of a hypothetical transi-
tion system reflecting a specific step of the speciation process, and the transitions
themselves, which describe mutations and reproduction events. The introduction
of model checking techniques alleviates the problem of verifying multiple prop-
erties over trees. Model checking is an automated generic verification technique
that, given a finite state model of a system and a formal property, systematically
checks whether this property holds for (a given state in) that model or returns a
counterexample if it is invalid. Making the corresponding associations, we have
built a bridge between two such apparently removed worlds as phylogenetics and
formal verification using model checking techniques. To this end, a phylogenetic
tree needs to be reinterpreted as a transition system in order to assimilate it to
the Kripke structure used by model checking techniques.

The use of sound and strict temporal logics adds formalism to the definition
and verification of properties over those structures, as well as the classification of
phylogenetic hypothesis according to the type of information they work with. It
also facilitates the introduction of generic and automatic model checking tools,
which decouple the specification and test of models and properties from the par-
ticular implementation language. In addition, the existence of good tools with
a robust historical background and community support avoids the coding of al-
gorithms de novo: the adaption of model checking tools to phylogenetic analysis
revolves around the modification and customization of specific traits. The modu-
larity (separation of the model from the specifications) simplifies the exportation
and inspection of properties in other phylogenies and the application of partial
results.

The inquiry of phylogenetic properties allows the discovery of new information.

3.1. FOUNDATIONS OF THIS THESIS 27

Probably, they alert with counterexamples that report erroneous relations in the
phylogeny. The result of testing phylogenetic properties expressed in temporal
logics may confirm or refute biological hypothesis about the speciation drift, which
assesses the tree quality with respect to different criteria. For example, rootedness
is an important factor in practice and should not be taken for granted, even for
simple phylogenetic trees. An overwhelming majority of phylogeny reconstruction
methods, including all those in common use, produce as their results undirected
trees, which lack a distinct root unless ascertained by external means, e.g. by using
outroots.

To this end, model checking is useful as a method to locate the root and
discriminate among several potential candidates. Given a set of properties, model
checking will consist of detecting the set of potential roots that verify them. That
is, consider a property to verify on an unrooted phylogeny. For instance, we want
to inspect the roots whose mean distance to the leaves is over a certain threshold,
i.e., is the tree balanced if we take that node as root? (see Chapter 12.2). It is
possible to determine the set of nodes which can be the root of the tree according
to that property by attempting to verify the property taking each of the nodes
of the tree as its root. This involves the symbolic manipulation of sets of states
by means of the propositions they satisfy. The total cost of verification is linear
with respect to the number of potential roots, which nonetheless is composed of
completely independent problems (though they may have subproblems in common,
etc.). This can be parallelized with perfect speed up.

Each property in a collection restricts the possible locations of the root to a
subset of the nodes of the tree. We may conclude that a node is consistent with the
rootedness of the tree under all those properties if it is acceptable as a root for each
and every one of the properties. The number and type of properties validated over
the tree gives a way to judge the strength of the root under consideration. The
feedback returned by the model checking process helps to update the phylogenetic
structure.

In spite of the mentioned advantages for defining and evaluating phylogenetic
hypothesis, the model checking techniques has never been introduced in the do-
main of phylogenetics yet. They are mainly employed for industrial domains and
particular operations. Model checking is barely introduced in computational biol-
ogy, where it has been applied to fields in which (mostly) quantitative properties
over temporal data are analyzed. This fact contrasts with the principal limita-
tions of phylogenetic analysis. The goals of introducing model checking techniques
in phylogenetics have been a) the presentation of a formal framework for the in-
vestigation of biological hypothesis that solves the lack of independence between
specification and verification, and b) the use of generic and powerful tools for the
validation of those properties and the symbolic manipulation of states instead of

28 CHAPTER 3. CONCLUSIONS

the codification of new software.

As final remarks, temporal logics assume a well-defined flow of time, and thus
are dependent on an oriented graph. Kripke structures are oriented by definition,
i.e., there exists a initial state at least. Branching-time temporal logics define prop-
erties over the computation tree of a Kripke structure. A rooted phylogenetic tree
matches with the notion of a computation tree because the speciation events are
similar to the transitions and the taxa correspond to the states of the computation
tree. In case of unrooted phylogenies, it is necessary to either adapt a temporal
logic to accept uncertainty in the flow of time, or the model checking algorithm.
Clearly, the Kripke structure needs to be generalized. In any case, it is possible
to overcome this problem by defining a partial orientation in regions where the
evolution flow is obviously known.

In sum, the phylogenetic tree is still a feasible and useful model over which we
inspect biological hypothesis despite the limitations and drawbacks it has. The
inherent hierarchy of the data structure allows the adaptation and optimization
of the model checking techniques to this domain. Besides, the use of a phylogeny
as a model of the evolution contrasts with the use of DNA substitution models,
which are considered as the default models for analyzing the principles operating
behind the macro evolution process. More complex and refined data structures
like phylogenetic netwoks can be considered in the future.

3.2. Hypothesis: Phylogenetic Trees versus

Phylogenetic Networks

As well as phylogenetic trees, other structures such as phylogenetic networks are
suitable for phylogenetic analysis because they represent a generalization over trees
[52]. In particular, they exhibit an extra level of abstraction for modeling evolution
based on the inclusion of potential multiple roots, horizontal transferences, sexual
reproduction and the existence of cycles.

In fact, the inclusion of cycles in the phylogenetic network is an useful idea.
This involves the addition of new semantic information to the phylogeny. For ex-
ample, a phylogenetic network can be understood as a compact representation of
a set of phylogenetic trees where branches and nodes overlap in the same structure
[172]. Thus, the verification process focuses not only on the validity of the logi-
cal proposition but the detection of trees in which they hold. The identification
of which nodes belong to each tree is easily solved by defining the membership
with a explicit variable in every node. This feature represents an efficient way of
processing several trees together.

Cycles in a phylogenetic network could also stand for the horizontal transference

3.2. PHYLOGENETIC TREES VERSUS PHYLOGENETIC NETWORKS 29

of fragments of sequences (genes) between individuals of simple organisms like
bacteria, while they would represent sexual reproduction for the rest of animals
and plants. In this case, there would be only one phylogeny under study but the
complexity of the verification process would be increased due to the explosion of
paths.

As the notion of cycles is already included in the definition of Kripke structures,
and both phylogenetic interpretations of cycles are compatible with the semantics
of temporal logic, phylogenetic networks are also feasible in the context of model
checking. Relevant phylogenetic properties expressed in temporal logics can be
imported to phylogenetic networks with fairly minor changes.

Then, phylogenetic networks are more powerful and expressive. However, we
maintain the use of phylogenetic trees in the rest of this dissertation for simplicity
and compatibility with previous studies: phylogenetic trees continue to be useful
and widespread abstractions of the evolution over time. This thesis places the
essentials for the introduction of the verification process of phylogenetic properties
using model checking, and therefore trees suffices for the first steps. Besides, a
tree-like structure simplifies the use and adaptation of model checking. In any
case, we desire to remark that the work developed here is flexible enough for the
extension of phylogenetic analysis to other data structures in the future, such as
networks.

Part II

Phylogenetic Properties:
A Logic for Qualitative Logical

Properties

The inspection of properties over a phylogeny needs the adoption of a temporal
logic capable of capturing the essence of these biological hypothesis. The specifi-
cation of phylogenetic properties with temporal logic is presented here for the first
time. The existence of coalescence, conservation or covariation of sequences, gene
inversions, reversions and a complete set of mutation patterns can be analyzed with
a basic temporal logic operating over the paths of the tree. They allow the study
of the topological structure, obtaining meaningful information about the peculiar
nucleic arrangements and aggregations over the tree, and possibly examining the
phylogenetic quality by recognizing anomalous characteristics. The first chapter of
this part is dedicated to classify the kind of properties that can be represented with
a branching-time temporal logic and illustrate the methodology for its definition.

By default, we organize the properties in three families depending on the phy-
logenetic information they require: a) topological or tree properties, that need the
structural information of the phylogeny, b) sequence or state properties, that work
with the sequences attached to the nodes, or c) a combination of both. For each
case, we proceed incrementally with a modular composition and specification of
subproperties in order to show every step of the design.

Subsequently, the next step faces the verification of those phylogenetic prop-
erties over a specific model checking tool. There, we show how to translate the
phylogenetic tree into the syntax of a generic software and code the specifications
accordingly. In case of failure to accomplish the property, a counterexample is
returned by the tool. We use an example to clarify the interpretation of the coun-
terexample output. Finally, the performance results demonstrate the feasibility of
our approach over human mitochondrial DNA data and sketches future work.

33

Chapter 4

A Temporal Logic for
Phylogenetic Analysis

No, no, you’re not thinking; you’re just being logical.

— Niels Bohr

4.1. Introduction

This chapter describes a methodology to specify biological properties of phy-
logenies employing the previous logical framework. Syntactically, a non-trivial
property can be broken down into simpler, meaningful ones, and synthesized from
these. The benefits of such logical decompositions are twofold: first, they simplify
formalization and favor readability; second, modular properties can be reused in
complex constructs, and variations on a formula can be produced by local adjust-
ments.

The main idea is to apply formulas in temporal logic to extend the aptitudes of
current phylogenetic analysis tools and cover the increasing necessities of biologist
for the verification of hypothesis (see Section 1.3). These tasks include the detec-
tion of common ancestors, monophyletic clades [64], reversions (back mutation)
[65, 1], and probably extend the hypothesis testing with quantitative information
for the study of speciation rates (extinction and diversification) and mutation rates
in DNA substitution models [117, 53].

Four classes of queries can be identified: global, topological or tree properties,
in which the structure of the phylogeny itself is placed under scrutiny and rela-
tions between taxa inspected; local or sequence properties, where compositional se-
quence features take center stage, possibly aided by the placement of constraints;
a combination of both, where the tree topology and the sequence alignment are

35

36 CHAPTER 4. TEMPORAL LOGIC

simultaneously required; and quantitative properties, that extends the preceding
properties with explicit time and probabilities. In the following sections we de-
scribe the relevant properties of each group and exemplify their formal modeling
(quantitative properties are studied apart in Part IV–V). Table 4.1 summarizes
relevant phylogenetic properties according to the classification introduced.

4.2. Tree Properties

Tree properties are mainly of a cladistic nature, asking about the organization
of the phylogenetic tree in compatible regions and the biological characteristics
that are satisfied in them [89]. One of the most frequent basic queries is whether
a set of extant organisms S under study constitutes a monophyletic group or clade
in a phylogeny. That is, does the phylogenetic tree contain a subtree that has
exactly those organisms as its leaves? Formally, the PTL formula over the Kripke
structure will be true if there exists somewhere in the tree a reachable state (EF)
which is the root of the group S, and thus: a) everything that has to be in, is in;
and b) everything that has to be out, is out (there are no outsiders, or conversely,
only insiders can be found inside):

clade (S) ≡ EF (in (S) ∧ out (S)) (4.1)

The inclusion rule states that for each unique sequence s of the set S (and-logic∧
) there is a path that finds it as its leaf; the exclusion rule demands that all paths

end in a leaf from the same set. Within infinite computations, leaves are found
either through a terminal boolean variable or through the pattern F AG (s), since
by construction whole uniform computation subtrees can only be found precisely
as a consequence of leaf states:

in (S) ≡
∧
s∈SEF AG (s) (4.2)

out (S) ≡ AF AG
(∨

s∈Ss
)

(4.3)

As noted, individual properties in isolation have useful semantics in their own
right. Here, in (S) is satisfied by all containing clades, and out (S) by all strict
subclades. In particular, the roots (non-terminal nodes) satisfying in (S) define
the group of common ancestors (CA):

CA(S) ≡ ¬terminal ∧ in(S) (4.4)

By default, the set of taxa, and consequently their sequences, are located in the
tips. However, if the phylogeny is extended with both ancestral and leaf sequences,
the structure of the clade property remains unaltered. Only the inclusion and

4.2. TREE PROPERTIES 37

exclusion rules need to be tuned, so that target sequences must be found anywhere
in the subtree, and the whole subtree is free from intruders, respectively:

in′ (S) ≡
∧
s∈SEF (s) (4.5)

out′ (S) ≡ AG
(∨

s∈Ss
)

(4.6)

In this example, the temporal formula in (S) ∧ out (S) also describes a char-
acteristic function that symbolically defines the set of organisms belonging to the
clade by the intersection of states satisfying the inclusion and exclusion properties.
In contrast, the evaluation clade(S) returns a boolean value that tells whether the
initial state of the Kripke structure satisfies the phylogenetic property. Thus, we
emphasize the two aspects of temporal logics: as a symbolic representation for
manipulating sets, and as a boolean function.

A more challenging question in phylogenetics is whether, given a phylogenetic
tree and a partition of its leaves (which arises from the application of a sequence
classification scheme), the latter constitutes a haplogroup classification in the tree.
Haplogroups are aggregations of related haplotypes. An haplotype is a set of states
of the phylogenetic tree that are identifiable by characteristic polymorphisms (i.e.,
point mutations that act as genetic markers). Thus, they define genetic populations
and usually mark these geographically as well [168]. Their study is focused on the
non-recombining regions of the genome, in particular mitochondrial DNA, where
the original cladistic notation for haplogroups originated [144].

Essentially, a haplogroup together with the set of populations (child hap-
logroups) that have sprung from it over time must form a clade. In other words,
a haplogroup is a nested clade: its members occupy all the leaves of a subtree,
except possibly a number of sub-subtrees, which are completely devoid of mem-
bers and themselves have a nested clade structure. A phylogeny is an acceptable
classification if every part has a haplogroup-like structure:

classifier (S1, S2, . . . , Sh) ≡
∧h
i=1haplogroup (Si) (4.7)

Checking this property is trivial if the relations between parent and child hap-
logroups are known, symbolically by means not of a formula, but of a function
children (S). The function children (S) may be extended to determine whether a
suitable set of child haplogroups exists:

haplogroup′ (S) ≡ clade (S ∪ children (S)) (4.8)

However, it is often interesting to allow for flexibility in the haplogroup place-
ment in the ongoing study, the refinement of coarse haplogroups and the explo-
ration of alternative hypotheses. Whereas Equation 4.8 may be extended to de-
termine whether a suitable set of child haplogroups exists, it suffices to check the

38 CHAPTER 4. TEMPORAL LOGIC

local haplogroup-like quality of each individual part without resort to any addi-
tional information beyond the composition of the target part.

Formally, haplogroup-likeness is a relaxation of clade (S) through its local struc-
ture. While the inclusion rule is preserved, as is the general search for the root of
the haplogroup, the exclusion rule is replaced by the nested clade property. Thus,
all paths eventually reach a point (AU) where they either arrive at a member sub-
clade or at the root of a foreign clade, always through ancestral nodes ascribed to
the haplogroup in question (for this, a membership function hi must be provided
for each Si):

haplogroup (S, h) ≡ EF (in (S) ∧ nested (S, h)) (4.9)

nested (S, h) ≡ A [hU out (S) ∨ nesting (S)] (4.10)

nesting (S) ≡ AF AG
(
¬
∨
s∈Ss

)
(4.11)

Notice that nesting (S) is the opposite of out (S). Obviously, terminal hap-
logroups (i.e., clades) are accepted by the formula. In cladistic terms, a local
haplogroup-like structure corresponds to the concept of polyphyletic group. In
this case, ancestral membership information becomes necessary because the leaf
content of the polyphyletic group is indistinguishable from the paraphyletic group.

Nevertheless, the assumption that ancestral members of a haplogroup satisfy its
defining properties is certainly reasonable. As before, the incorporation of ances-
tral taxa derives a related family of properties which allow a more comprehensive
evaluation of the process of evolution.

Thus, the concept of clade, paraphyly and polyphyly, can be redefined using
ancestral membership information by means of the most recent common ancestor
(MRCA)1, which is a restriction of the common ancestor set:

MRCA(S) ≡ CA(S) ∧ ¬EX(CA(S)) (4.12)

For example, the new reformulation of the clade property means that all the
members of the monophyletic group share the same closest common ancestor and
the resulting set is free of intruders:

clade(S) ≡ MRCA(S) ∧ out′ (S) (4.13)

Polyphyly encompasses a set of elements that share similar traits derived by
convergent evolution or reversions. In addition, a polyphyletic group is a “group
whose members’ last common ancestor is not a member of the group” [64]. The
set nodes of the phylogenetic tree that validate the following formula form a poly-
phyletic group:

1In gene genealogy, coalescent theory tries to trace back all alleles of a gene shared by all
members of a population to a single ancestral copy, i.e., the MRCA [94].

4.2. TREE PROPERTIES 39

polyphyletic(S) ≡ MRCA(S) /∈ S (4.14)

The paraphyletic group is a recursive specialization of the clade property. It
consists of “all the descendants of a hypothetical closest common ancestor minus
one or more monophyletic groups” [64]. The detection of nested clades must be
done explicitly with a previous declaration of the internal clades that we want to
exclude from the paraphyletic group. That is, all the elements of S should be
arranged into subgroups that define up to h disjoint clades and every node of the
set S must belong to one of them. Thus, a paraphyletic group is formed from
the closest common ancestor plus a selection of clades. The verification of the
following formula gives the paraphyletic root:

paraphyletic(S, S1, . . . , Sh) ≡ MRCA(S) ∧ (4.15)

disjoint(S, S1, . . . , Sh) ∧ AG(
∨h
i=1clade(Si))

Further topological-related properties of phylogenetic trees are described in [64].
In particular, synapomorphies, symplesiomorphies and autopomorphies focus on
the depth of the paths with derived traits while apomorphies, plesimorphies and
homomorphisms (non homology) are interested in the point of divergence of derived
and ancestral traits in the hierarchy of evolution (Figure 5.1). In the picture, dark
dots represent derived characters and white nodes represent the ancestral ones.

A taxonomy of important biological properties is summarized in Table 4.1, to-
gether with their temporal logic formulas. The notation seqs is a compact represen-
tation for specifying the sequence associated to the node s, denoted as M, s � seq.
In some cases (i.e., apomorphies or synapomorphies) we need to expand the PTL
logic to include the past operator X−1, that means the previous (parent) node
of the current state. The extension of temporal logics with past operators has
already been described in the literature [112]. The CTL path quantifier of X−1 is
not necessary because the phylogenetic trees has a unique ancestor. In the case of
phylogenetic networks, A and E path quantifiers shall be considered.

Finally, distance(S) is a distance metric that estimates the evolutionary di-
vergence of a set of species. Although not strictly necessary, the definition of
topological properties in phylogeny are simplified using distances. Properties such
as parallel and convergent evolution, that are clearly distinguishable if the informa-
tion about the traits of internal nodes is available, are complex to differentiate when
the phylogeny lacks of this internal information. Two independent lineages whose
leaves are similar with respect to a particular trait describe a parallel evolution if
the ancestors considered are also similar, and convergent if they are not [118, 180].
Nevertheless, all organisms share a common ancestor more or less recently, and
the selection of these ancestors at different deeps may change the consideration of

40 CHAPTER 4. TEMPORAL LOGIC

Figure 4.1: Boxed nodes indicate the states where the corresponding property is
held.

the lineages as parallel or convergent [11]. Hence, these definitions of parallel and
convergent evolution pose the next question: how far back shall we to look in the
evolutionary time? The introduction of time constraints in the logical definition
of phylogenetic properties nuances the concept of parallel and convergent evolu-
tion. The definition of more quantitative properties with time and probabilities is
explained in Part IV–IV.

4.3. Sequence Properties

In general, sequence properties are based on state formulas, i.e., those that
are evaluated within a node and without resort to temporal operators. Usually,
they are composed of simple PTL patterns whose application scope is restricted to
the surrounding nodes or the entire phylogeny. Such types of state formulas will
be called patterns(p). They offer a powerful descriptive formalism for formulating
general restrictions without the limitations of ad hoc approaches. Often, these
properties may be used not necessarily to forbid patterns, but as queries and alerts
to signal unusual, possibly anomalous behavior, and mark it for further study.
Their infraction can be interpreted as either the discovery of a evolutive novelty
(advantageous or not), or spurious errors caused by diverse factors (sequencing
fails, incongruousness in the phylogenetic inference method).

4.3. SEQUENCE PROPERTIES 41
T

y
p

e
N

am
e

R
ef

P
T

L
F

or
m

u
la

T
C

A
S
ec

t.
4.

2
C

A
(S

)
≡
¬t

er
m

in
al
∧

in
(S

)

T
M

R
C

A
S
ec

t.
4.

2
M

R
C

A
(S

)
≡

C
A

(S
)
∧
¬E

X
(C
A

(S
))

T
M

on
op

h
y
ly

[6
4]

cl
a
d
e(
S

)
≡

M
R

C
A

(S
)
∧
ou
t′

(S
)

T
P

ol
y
p
h
y
ly

[6
4]

po
ly
ph
y
le
ti
c(
S

)
≡

M
R

C
A

(S
)
/∈
S

T
P

ar
ap

h
y
ly

[6
4]

pa
ra

ph
yl

et
ic

(S
,S

1
,.
..
,S

h
)
≡

M
R

C
A

(S
)

∧
A

G
(∨ h i=

1
cl
a
d
e(
S
i)

)

∧
d
is
jo
in
t(
S
,S

1
,.
..
,S

h
)

T
H

om
ol

og
y

[6
4]

ho
m

ol
og

y
(S
,c
ol

)
≡
∃σ
∈

Σ
,
∀s
∈
S

(s
eq
s
[c
ol

]
=
σ

)
∧

(seq M
R
C
A

(S
)[
co
l]

=
σ
)

T
H

om
op

la
sy

[6
4]

ho
m

op
la

sy
(S
,c
ol

)
≡
¬h

om
ol

og
y

(S
,c
ol

)

T
P

ar
al

le
l

E
vo

lu
ti

on
[6

4]
pa

ra
ll

el
(S
,c
ol

)
≡

ho
m

op
la

sy
(S
,c
ol

)
∧

di
st

an
ce

(S
)
≤

th
re

sh
ol

d

T
C

on
ve

rg
en

t
E

vo
lu

ti
on

[6
4]

co
n

ve
rg

en
t(
S
,c
ol

)
≡

ho
m

op
la

sy
(S
,c
ol

)
∧

di
st

an
ce

(S
)
>

th
re

sh
ol

d

T
A

p
om

or
p
h
y

[6
4]

ap
om

or
ph

y
(S
,c
ol

)
≡
∃σ
∈

Σ
,
∀s
∈
S

(s
eq
s
[c
ol

]
=
σ

)
∧

(s
eq

X
−
1
s
[c
ol

]
6=
σ

)
T

P
le

si
om

or
p
h
y

[6
4]

pl
es

io
m

or
ph

y
(S
,c
ol

)
≡
¬a

po
m

or
ph

y
(S
,c
ol

)

T
S
y
n
ap

om
or

p
h
y

[6
4]

sy
n

ap
om

or
ph

y
(S
,c
ol

)
≡

ho
m

ol
og

y
(S
,c
ol

)
∧

(seq X
−
1
M
R
C
A

(S
)[
co
l]
6=
σ
)

T
S
y
m

p
le

si
om

or
p
h
y

[6
4]

sy
m

pl
es

io
m

or
ph

y
(S
,c
ol

)
≡

ho
m

ol
og

y
(S
,c
ol

)
∧

¬s
yn

ap
om

or
ph

y
(S
,c
ol

)

T
ab

le
4.

1:
(1

)
S
u
m

m
ar

y
of

th
e

m
os

t
im

p
or

ta
n
t

p
h
y
lo

ge
n
et

ic
p
ro

p
er

ti
es

(T
y
p

e
T

:
tr

ee
;

S
:

se
q
u
en

ce
;

Q
:

q
u
an

ti
ta

ti
ve

).

42 CHAPTER 4. TEMPORAL LOGIC
T

A
u
tap

om
orp

h
y

[64]
au

tapom
orphy

(s,col)
≡
∃
σ
∈

Σ
,

(seq
s [col]

=
σ

)
∧

(seq
X
−
1
s [col]6=

σ
)∧

term
in

al(s)
S

C
ovariation

[26]
cov

a
ria

tion
(i,j)≡

E
F

A
G

(seq[i]
=
σ
i →

seq[j]
=
σ
j)

S
C

on
servation

[26]
con

serv
a
tion

(i,j)≡
E

F
A

G
(seq[i,...,j]

=
σ
i ...σ

j)

T&
S

B
ack

M
u
tation

S
ect.

4.4

detectB
M
≡
∀
j
∈
{1,l}

,
A

G
(¬

hasB
M

(j))

hasB
M

(col)
≡
∃
σ
∈

Σ
,

(seq[col]
=
σ

)

∧
E

F
(seq[col]6=

σ
∧

E
F

(seq[col]
=
σ

))

T&
S

M
u
ltip

le
N

u
cleotid

e
P

oly
m

orp
h
ism

S
ect.

4.4

detectM
N

P
≡

∀
j
∈
{1,l−

1},
A

G
(¬

startsM
N

P
(j))

startsM
N

P
(col)

≡
∃
σ
,τ,υ

∈
Σ
,

(seq
[col−

1]
=
σ

)

∧
(seq

[col]
=
τ
)

∧
(seq

[col
+

1]
=
υ

)

∧
E

X
[(seq

[col−
1]6=

σ
)

∧
(seq

[col]6=
τ
)

∧
(seq

[col
+

1]6=
υ

)]

Q
D

istan
ce

a
P

art
IV

–V
distan

ce
(d
,ev

en
t)≡

A
F
≤
deven

t

T
ab

le
4.2:

(2)
S
u
m

m
ary

of
th

e
m

ost
im

p
ortan

t
p
h
y
logen

etic
p
rop

erties
(T

y
p

e
T

:
tree;

S
:

seq
u
en

ce;
Q

:
q
u
an

titative).

aF
or

th
e

sy
n
ta

x
of

th
e

q
u
a
n
titative

fo
rm

u
la

,
see

S
ectio

n
1
1
.2

4.3. SEQUENCE PROPERTIES 43

As a common understanding, closely related members share analogous genomes,
satisfying identical patterns and properties. For example, the preservation of bio-
chemical properties is essential for maintaining the stability of the resulting protein
and the viability of an organism, placing important constrains to the evolution [86].
The amino acids conform the raw material of the protein, and consequently they de-
termine the three-dimensional structure and singularities of the molecule. Proteins
develop crucial functions in living organisms. The modification of a nucleic base,
and indirectly its associated amino acid, may bring a recalibration in the molec-
ular morphology which damages its functionality and propagates the instability
to a chain of biological reactions [50, 173]. Therefore, natural selection favors the
persistence of the molecular structure limiting the mutations to compatible amino
acids. The existence of synonymous substitutions2 provides some flexibility to the
change of nucleic bases, but in any case the conservation of biochemical properties
and sequences reaffirms the use of patterns.

When a nucleic modification inevitably changes the protein morphology or al-
ters the biochemical equilibrium, the effects in the organism are unpredictable.
In the worst case, the mutation becomes lethal and punishes the survival of the
individual. In the best situation, it is ubiquitous or a new evolutionary advantage
arises at the conclusion of this process. In an intermediate context, a single muta-
tion occasionally triggers a group of (intra or inter-gene) changes that neutralize
the consequences of the original modification in a short period of time. In other
words, they try to compensate the attributes of the new amino acid in order to
maintain the biochemical equilibrium. This character coevolution is often cap-
tured in the vicinity of the phylogeny [77]. The number and degree of pattern
violations (nucleotide and biochemical conservation, protein shape) together with
their circumstances assists to the discernment of the repercussions caused by the
mutation.

According to the previous comments, patterns represents global correctness
constraints that are supposed to hold across the whole phylogeny. They can be
categorized as follows:

Conservation is modeled as a restriction on the symbols that can occur at a
given position in a sequence. Commonly, the pattern will codify a unidimen-
sional boolean table that classifies each symbol as permissible or impermissi-
ble. However, it is possible to define general families of compatible elements,
not bounded to specific positions, and restrict their usage to exactly one of
these positions, among other extensions.

Covariation imposes a relation of dependence between two (or more) posi-
tions in a sequence. It can be represented as a bidimensional boolean table

2Codons that transcript the same amino acid

44 CHAPTER 4. TEMPORAL LOGIC

which states, for each symbol in the first column, the set of symbols that may
appear in the second column. Typically, for the property to be meaningful,
associations between symbols will be sparse.

A combination of both.

A global pattern thus defined is easily verified by extending it over the compu-
tation tree:

global (p) ≡ AG (p) (4.16)

Exceptions to the aforementioned properties may in fact indicate suspicious or
potentially deleterious mutations, which are of great interest in applied phyloge-
netic studies [129]. Furthermore, known or suspected mutations of this kind can
be explicitly modeled as patterns and their positioning in a phylogeny assessed. In
particular, those affecting important metabolic functions are expected to prevent
or hinder the reproduction of the organism, and consequently should be confined
in or near terminal leaves.

Just as some mutations may ordinarily be forbidden altogether as global pat-
terns, observed and feasible deleterious mutations may be permitted subject to
certain restrictions. Specifically, it may be demanded that, if a hazardous pattern
appears, it has no offspring, i.e., it is a leaf in the phylogeny; or, to provide some
flexibility, it may be allowed that all descendants, if any, are reached in at most k
steps (AXk):

terminal (p) ≡ AG (p→ leaf) (4.17)

terminal (p, k) ≡ AG
(
p→ AXk (leaf)

)
(4.18)

In this case, leaves (self-loops in the Kripke structure) must be detected without
reference to any particular sequence. This is easily achieved by performing an
equality comparison between the valuations of AP of the target state and all its
successors:

leaf ≡
∧
p∈APp↔ AX (p) (4.19)

This last example is representative of properties that perform conditional ex-
plorations of the phylogeny. Lineage-specific verification represents a further step
forward, where patterns would be used to define the sets of states of interest.
Notice that pattern-based checking of haplogroup classifications falls within this
category. Single nucleotide polimorfisms (SNP’s) define genetic markers that dif-
ferentiate members of the same biological specie.

4.4. A COMBINATION OF TREE AND SEQUENCE PROPERTIES 45

4.4. A Combination of Tree and Sequence

Properties

Some properties do not fit exclusively into one of the previous classifications but
are a mix of complex sequence and tree properties. At first sight, it is reasonable
to consider relatively simple properties based on a tree topology and an associated
sequence alignment, exemplified by the following real properties. Suppose for now
that the alignment comprises a number of cladistic characters indexed 1 through l,
sequences seq are words of length l over an alphabet Σ, and seq[i] = σ (seq[i] 6= σ)
means that σ ∈ Σ appears (not) in position i in a state sequence (recall the AP
definition in Definition 3). For readability and compactness in these examples, we
will refer to the atomic propositions seq[i] = σ (seq[i] 6= σ) of a state sequence
as σi (σi). In the case of finite domains, such as the set of DNA sequences, the
evaluation of logical quantifiers ∀ and ∃ can be substituted by multiple instances
of boolean formulas connected by the

∧
and

∨
operators.

Consider the following example. It determines whether a given tree is free of
back mutations, which we abbreviate BM (equivalently, it detects those points in
the tree where back mutations occur, if any).

detectBM ≡
∧l
j=1AG (¬hasBM (j)) (4.20)

hasBM (col) ≡
∨
σ∈Σ

σcol ∧ EF (σcol ∧ EF (σcol)) (4.21)

In these two formulas we present a non-trivial modeling example of a cladistic
property with a heavy use of sequence data. The goal is to detect back mutations
in the tree, which may be encouraged by the recovery of an ancestral phenotype
or a random walk in a low selection pressure zone in the DNA [65, 1]. To this
end, we need to formalize the concept of back mutation: given a node in the tree
(which itself defines a subtree) and an alphabet Σ, there is a back mutation in
that subtree involving a position of the alignment, say j, if at some point in some
descending path from the node we find in position j a different symbol (σj) than
that found in the root of the subtree (σj), and if at some point in the subtree
hanging from that intermediate the symbol from the root reoccurs. The formula
hasBM (col) models this condition by nesting EF operators (a node satisfies a
property which eventually some other descendant does not satisfy, but is fulfilled
once again at some point in the future) and repeating the check for every symbol
that may occur in the node. Finally, the global formula detectBM iterates the
check over the positions of the alignment and extends it to all tree nodes.

The second example detects a different family of complex mutations: those
which affect groups of consecutive positions, a pattern of particular relevance to

46 CHAPTER 4. TEMPORAL LOGIC

protein-coding regions. We dub this multiple nucleotide polymorphism (MNP), as
opposed to SNP.

detectMNP ≡
∧l−1
j=1 AG (¬startsMNP (j)) (4.22)

startsMNP (col) ≡
∨
σ,τ,υ∈Σ (σcol−1 ∧ τcol ∧ υcol+1 ∧ (4.23)

EX (σcol−1 ∧ τ col ∧ υcol+1))

where for brevity the special treatment required when col = 1 has been omitted.
In this case, σ, τ and υ are characters of the state sequence seq in positions col ,
col − 1 and col + 1 respectively. The property startsMNP can be extended to
accept these characters as input parameters. It is clear that any verification of
properties from the alignment (e.g., covariation) can be fulfilled in the phylogeny.

Generally speaking, haplogroups are defined as clades whose members
share a common mutation denoted by a SNP or MNP. The parametrization
startsMNP (col , σ, τ, υ) will work as the membership function hi defined in Equa-
tion 4.9–4.11 as it will label the clade root (MRCA) which has the nucleotides
σ, τ , υ around the position col . Given a set of clades and a known MNP, the
detection of the most likely haplogroup will consist of the selection of the root
with the greatest subtree satisfying the detectMNP property. Next, we must check
the conservation of the MNP for all the populations inside the clade so that no
spurious or external haplogroups (startsMNP) corrupt the current subtree. Using
model checking packages, a fixed point algorithm will symbolically compute the
set of states satisfying startsMNP for each candidate of column and characters.
The objective for the haplogroup fitness is the selection of the ancestor with the
maximum group of descendants verifying the property. Other related biological
properties would have different maximization (minimization) purposes.

Chapter 5

Tools and Experiments

-“Alright,” said Deep Thought. “The Answer to the Great
Question...”
-“Yes...!”
-“Of Life, the Universe and Everything...” said Deep
Thought.
-“Yes...!”
-“Is...” said Deep Thought, and paused.
-“Yes...!”
-“Is...”
-“Yes...!!!...?”
-“Forty-two,” answered Deep Thought, with infinite majesty
and calm.
-“Forty-two!” yelled Loonquawl. “Is that all you’ve got to
show for seven and a half million years’ work?”
-“I checked it very thoroughly,” said the computer, “and
that quite definitely is the answer. I think the problem, to
be quite honest with you, is that you’ve never actually
known what the question is.”

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy

5.1. Introduction

The use of model checking techniques is domain-independent: given a phyloge-
netic tree and a specification of its biological properties, the verification software
automatically checks the correctness of the system. In the event of failure to com-
ply with the specification, the software outputs the scenarios which infringe the
property as counterexamples.

47

48 CHAPTER 5. TOOLS AND EXPERIMENTS

This chapter starts introducing a list of model checking tools adapted for dif-
ferent temporal logics. It also describes the implementation of the branching-time
phylogenetic tree (Definition 3) into a model checking verification tool and evalu-
ates its performance using phylogenetic properties. More in detail, we evaluate a
set of back mutation properties over a real data set with the NuSMV tool [45]. In
future sections and chapters we will also use the model checking software PRISM
[124]. Although there exist multiple model checking tools as explained in Sec-
tion 5.2, NuSMV and PRISM suffice for our requirements.

5.2. Model Checking Tools

The consideration of the different types of temporal logics involves the imple-
mentation of a pool of model checker packages for supporting them (see Table 5.1).
With respect to stochastic and quantitative temporal logics, PRISM is a model
checker adapted for “formal modeling and analysis of systems that exhibit random
or probabilistic behavior” [124]. In addition, PRISM has been successfully applied
in a nearby application domain such as biological pathways [103, 123, 104, 73]. It
seems suitable for the statistical analysis and quantitative evaluation of properties
(e.g., mutations).

UPPAAL is a commercial software package that offers “an integrated tool envi-
ronment for modeling, validation and verification of real time systems modeled as
networks of timed automata” [21] . This feature can be exploited in biology so as
to provide an explicit definition of evolution clocks. Furthermore, NuSMV [45], a
powerful tool for verifying CTL formulas, includes quantitative extensions related
to the computation of paths with maximum (minimum) lengths between sets of
nodes satisfying a property. It also includes a simple database manager for reusing
the results of previous properties. In addition, the classic LTL open source model
checker SPIN offers a framework that can be tuned as desired [93]. Sliced model
checking presented in Section 7.3 can be coded over these two packages [139, 143].

In conjunction with the previous logics, on-the-fly model checking improves
performance by exploring the state space on demand [24]. One of the best model
checkers in this field is PROD [169]. Moreover, multicore and network-oriented
tools such as DiViNe [15] (for LTL), Murphy [126] or PVeStA [5] (stochastic) are
available in order to speed up efficiency.

Finally, TLQSolver is a model checker that manages CTL queries and allows the
mining of properties that match a specific pattern [40]. The definition of patterns
helps to select sets of nodes of the phylogenetic tree satisfying an abstract relation
in a similar way to an SQL query. These result sets can then be analyzed in order
to extract the differences among them.

5.2. MODEL CHECKING TOOLS 49

N
am

e
M

ai
n

fe
at

u
re

P
ro

p
er

ti
es

L
an

gu
ag

e
P

la
tf

or
m

N
u
S
M

V
[4

5]
O

p
en

S
ou

rc
e

L
T

L
,

C
T

L
,

R
T

C
T

L
,

P
S
L

W
in

d
ow

s,
U

n
ix

,
M

ac
O

S

P
R

O
D

[1
69

]
O

n
-t

h
e-

fl
y

M
o
d
el

C
h
ec

ke
r

C
T

L
L

in
u
x

S
P

IN
[9

3]
G

en
er

ic
M

o
d
el

C
h
ec

ke
r

L
T

L
W

in
d
ow

s,
U

n
ix

D
iV

iN
e

T
o
ol

[1
5]

D
is

tr
ib

u
te

d
M

u
lt

ic
or

e
M

o
d
el

C
h
ec

ke
r

L
T

L
U

n
ix

E
d
d
y

M
u
rp

h
i

[1
27

]
D

is
tr

ib
u
te

d
M

u
lt

ic
or

e
M

o
d
el

C
h
ec

ke
r

A
ss

er
ti

on
s

U
n
ix

P
V

eS
ta

[5
]

S
ta

ti
st

ic
al

P
ar

al
le

l
&

M
u
lt

ic
or

e
M

o
d
el

C
h
ec

ke
r

P
C

T
L

W
in

d
ow

s,
L

in
u
x
,

M
ac

O
S

P
R

IS
M

[1
24

]
P

ro
b
ab

il
is

ti
c

&
Q

u
an

ti
ta

ti
ve

L
og

ic
s

P
C

T
L

,
C

S
L

,
L
T

L
,

P
C

T
L

*

W
in

d
ow

s,
L

in
u
x
,

M
ac

O
S

U
P

P
A

A
L

[2
1]

C
om

m
er

ci
al

S
of

tw
ar

e
fo

r
R

ea
l

T
im

e
S
y
st

em
s

T
C

T
L

W
in

d
ow

s,
L

in
u
x

T
L

Q
S
ol

ve
r

[4
0]

T
em

p
or

al
L

og
ic

Q
u
er

y
C

h
ec

ke
r

fo
r

M
in

in
g

P
ro

p
er

ti
es

Q
u
er

y
C

T
L

L
in

u
x

T
ab

le
5.

1:
L

is
t

of
so

m
e

av
ai

la
b
le

m
o
d
el

ch
ec

ke
rs

.

50 CHAPTER 5. TOOLS AND EXPERIMENTS

Figure 5.1: Boxed nodes indicate the states where the corresponding property is
held.

5.3. Codification of Branching-time Phylogenies

We have used two different kind of model checkers for the implementation of
the branching-time phylogenetic tree. First of all, NuSMV [45], a well-known
model checking software tool compatible with Cadence SMV [125, 138], is used
for the evaluation of qualitative properties defined in temporal logic. Secondly,
PRISM [124] is used for the evaluation of quantitative and probabilistic properties
in Part IV–V. They are both freely available and they support the implementation
of the whole spectrum of biological properties defined in Table 4.1.

A description of the Kripke structure and the atomic propositions in the
NuSMV syntax must be provided by the user as the input for the model checker.
To this end, we precompute the sequence alignment and a phylogenetic tree. The
translation from the phylogenetic tree to the NuSMV syntax has been performed
automatically by a BioPerl script [153]. The script can be upgraded in order to
include extra features such as the generation of multiple instances of phylogenetic
trees, bootstrapping and so on. The inclusion of vector constructs, macros and a
rich support for various logics operators in the NuSMV syntax facilitates a compact
characterization of DNA and protein sequences as strings of characters.

Figure 5.2 shows the implementation of the branching-time phylogenetic tree
of Figure 2.1 in SMV code. The main module describes the topology of the evo-
lutionary tree, where the names of the tree nodes (taxa) are defined symbolically

5.4. PERFORMANCE RESULTS 51

(X, . . . , S), and id variables label the states. In this case, only the DNA string is
defined but extra information could be considered in future works. The init and
next clauses are used to mark the root of the tree and the successors of a given
state. The second part of the description consists of a function returning the DNA
string associated to each node.

Usually, model checking packages store the previous description of the tran-
sition system in an Ordered Reduced Binary Decision Diagram (ORBDD) [33].
These data structures are efficient graph representations for characterizing and
manipulating sets or relations using boolean functions. Internally, each state of
the Kripke structure is characterized by a set of atomic propositions showing the
DNA associated to that state (i.e., the taxon sequence seqiσ ≡ (seq[i] = σ)). Every
atomic proposition can be expressed with a boolean variable indicating whether
or not the character σ is present in the ith position of the DNA sequence. Thus,
those combinations that make true a boolean function f(seq1A, seq1C , . . . , seqlT)
will identify the DNA sequences with length l belonging to the phylogenetic tree.

This feature provides an easy scheme for the manipulation of sets in a symbolic
way because a string can be identified by means of a logical expression. It should
be noted that the verification of a phylogenetic formula is intimately related to the
identification and manipulation of sets satisfying a boolean function characterized
in temporal logic. In fact, the last step of the verification process often consists of
checking that the initial state (the tree root) belongs to the result set. However,
the ordering of the boolean variables in the representation of the characteristic
function has a high influence in the data structure and it determines the size
(number of nodes) of the diagram. In the next section, we verify phylogenetic
properties using the description depicted in Figure 5.2 as input data. We aim to
discover the performance trends and analyze the impact of the variable ordering.

5.4. Performance Results for Monolithic

Verification of Phylogenetic Properties

The performance evaluation of our system has been measured with human
protein alignments retrieved from GenBank [23]. In particular, we selected genes
of respiratory complex I encoded in mitochondrial DNA (mtDNA). We have chosen
them because they are biologically interesting and varied in length, which makes
them suitable for a complete performance analysis. This data set includes ND5,
one of the biggest genes in mtDNA. Thus, the experimental results will define
approximate upper bounds which can be used as a sound reference for mtDNA
experiments. All tests have been run on a scientific workstation Intel Core 2 Duo
E6750 @ 2.66 GHz, 8 GB RAM and Linux. Notice that the NuSMV uses a single

52 CHAPTER 5. TOOLS AND EXPERIMENTS

core.
We start analyzing the time and memory usage for the construction of the phy-

logenetic Kripke structure labeled with protein sequences. Table 5.2 and Table 5.3
show the time and memory consumption with respect to the sequence length and
alignment size.

Alignment Size
750 1000 1250 1500 1750 2000

ND4L (98) 13.5 27.6 46.0 67.4 89.6 124.7
ND3 (115) 7.0 31.4 53.6 78.1 105.7 142.8
ND6 (174) 18.1 26.3 71.6 123.2 160.8 205.9
ND1 (318) 8.8 13.2 84.2 203.3 246.7 371.6
ND2 (347) 10.8 13.9 75.8 217.5 322.5 420.0
ND4 (459) 14.2 22.4 29.4 191.3 417.4 499.0
ND5 (603) 19.0 92.1 106.8 314.9 518.5 728.8

Table 5.2: Seconds needed for the creation of the Kripke structure and the storage
of protein sequences.

Alignment Size
750 1000 1250 1500 1750 2000

ND4L (98) 102 123 146 170 194 211
ND3 (115) 111 135 161 193 218 244
ND6 (174) 161 199 233 267 300 351
ND1 (318) 275 349 409 472 533 595
ND2 (347) 307 388 454 520 586 679
ND4 (459) 423 512 598 712 798 890
ND5 (603) 568 682 823 940 1054 1168

Table 5.3: Megabytes needed for the creation of the Kripke structure and the
storage of protein sequences.

The time increases quadratically with the number of sequences and linearly
with the gene length, except for some erratic behavior due to the use of BDD
diagrams (Figure 5.3). On the other hand, the memory usage increases sublinearly
with the number of sequences and the gene length, which is very encouraging
from a computational point of view. It is possible that these moderate trends
are partly due to the use of highly conserved genes and closely related sequences.
Nevertheless, the huge amount of time and memory required for the worst case
indicates that the codification of data should be optimized.

5.4. PERFORMANCE RESULTS 53

The time required for the verification of a single temporal logic formula is
extremely variable, as it depends on the complexity, the model checker search
strategy (e.g., depth or breadth first search) and the occurrence of interruptions
caused by counterexamples. In this example, we have tested the detection of back
mutations (Equation 4.20) for the first 98 positions of the protein alignment. We
have verified the equation for five different aminoacids, reaching a total of 490
evaluations. The time required for the initialization and evaluation of the batch
of properties in NuSMV raises to 1729.33 seconds in ND5 (2000 tips).

The study and verification of structural properties only requires the topological
information of the tree. Then, the DNA labels can be omitted from the associated
Kripke structure, which leads to a resource-saving representation in the model
checking tool. For example, the initialization of a binary phylogenetic tree with
2000 tips and no DNA tags consumes 19.2 megabytes and 4 seconds in NuSMV.

As well as the execution of properties in batch mode, NuSMV supports the
addition of new phylogenetic properties via the command line in an interactive
way. This feature simplifies the initialization phase and avoids multiple loads of
the phylogenetic tree. NuSMV also includes a toy database manager for reusing
the results of previous properties.

Figure 5.4 illustrates a counterexample returned by NuSMV when detecting a
false property in the specifications. The trace corresponds to the result obtained
for the evaluation of one of the previous back mutation properties for the first
position of the DNA alignment. That is:

AG !(dna[1] = A & EF (dna[1] != A & EF dna[1] = A))

The use of the complementary expression AG¬(x) instead of the original ver-
sion EF(x) ≡ ¬AG¬(x) guarantees that the returned counterexample will match
with one of the possibly multiple back mutations of the tree. The counterexample
starts with a path emerging from the root (inode0) that finds a change to the nu-
cleotide C in one of its direct descendants (inode3)1. Later, the verification process
continues with the following state, a leaf that is associated to the taxon HQ286323.
Finally, the model checker tool finds that the path reverts the nucleotide in that
specie and it becomes again an A. The reversion located in that taxon can be
caused by multiple biological factors. For example, a plausible origin of this back
mutation is a combination of genomic changes in HQ286323 that makes unstable
the DNA molecule if dna[1] doesn’t come back to A (see Section 4.3). The eval-
uation of complementary specifications over the phylogeny may discard erroneous
justifications and increment the overall knowledge about the constraints in the
sequences.

1The notation inode is referred to the internal nodes of the tree.

54 CHAPTER 5. TOOLS AND EXPERIMENTS

These last results are only particular examples of verification, but they offer an
insight into temporal costs and memory requirements for future experiments. It
seems that the sequence length will be the main bottleneck if we straightforwardly
apply our framework to bigger (e.g., nuclear) genes and phylogenies. Although
these preliminary results might be discouraging in terms of efficiency, some tech-
niques such as the exportation of DNA to external databases [143], and sliced [139]
or distributed model checking [127, 15, 5] can be applied to relieve the memory
constriction, fade out the initialization time and scale up the system. We empha-
size that the implementation of these solutions is not completely optimized yet for
this field, but the first performance tests suggest an acceptable trend in efficiency
and scalability for the verification of boolean properties. Future optimizations will
review all these aspects.

5.4. PERFORMANCE RESULTS 55

MODULE main

VAR

/* States that represent taxa in the phylogenetic tree */

taxon: {X,Y,Z,R,S};

/* Function labelling with DNA the current node */

sequence: process dna_taxon(taxon);

ASSIGN

init(taxon) := X; /* Tree root */

next(taxon) := /* Successors of each node */

case

/* Nodes Y and Z are the successors of X */

taxon=X: {Y, Z};

/* Nodes R and S are the successors of Y */

taxon=Y: {R, S};

/* Self-loops in leaf nodes */

TRUE: taxon;

esac;

MODULE dna_taxon(taxon)

/* Definition of the array of characters and the DNA alphabet */

dna: array 1..3 of {-,A,C,G,T}

ASSIGN

/* DNA for the tree root */

init(dna[1]) := A;

init(dna[2]) := A;

init(dna[3]) := G;

/* DNA for the rest of taxa */

next(dna[1]) :=

case

taxon=Y: A;

taxon=Z: G;

taxon=R: A;

taxon=S: A;

TRUE: A;

esac;

....

next(dna[3]) :=

case

taxon=Y: G;

taxon=Z: G;

taxon=R: T;

taxon=S: G;

TRUE: G;

esac;

FAIRNESS

running

-- SPEC EF AG dna[1] = A

Figure 5.2: Mapping of the phylogenetic tree of Figure 2.1 in SMV.

56 CHAPTER 5. TOOLS AND EXPERIMENTS

Figure 5.3: (a) Time is linear with respect to set size and (b) quadratic with
respect to sequence length.

5.4. PERFORMANCE RESULTS 57

*** This is NuSMV 2.5.4 (compiled on Fri May 4

*** 09:46:59 UTC 2012)

*** Enabled addons are: compass

*** For more information on NuSMV see <http://nusmv.fbk.eu>

*** or email to <nusmv-users@list.fbk.eu>.

*** Please report bugs to <nusmv-users@fbk.eu>

*** Copyright (c) 2010, Fondazione Bruno Kessler

*** This version of NuSMV is linked to the CUDD library

*** version 2.4.1

*** Copyright (c) 1995-2004, Regents of the University of

*** Colorado

-- specification AG !(dna[1] = A & EF (dna[1] != A

& EF dna[1] = A)) IN sequence is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

taxon = inode0

sequence.dna[1] = A

...

-> State: 1.2 <-

taxon = inode3

sequence.dna[1] = C

-> State: 1.3 <-

taxon = HQ286323

-> State: 1.4 <-

sequence.dna[1] = A

...

Figure 5.4: Counterexample of a back mutation property.

Chapter 6

Conclusions

Logic will get you from A to B. Imagination will take you
everywhere.

— Albert Einstein

After the initial motivation and the introduction of the technical and concep-
tual basis in Part I, the next step consists of the specification and evaluation of
phylogenetic properties. In the first chapter of this part, we have presented a clas-
sification of common phylogenetic properties according to the information they
inspect. In particular, we have detected three kind of formulas: a) topological or
tree properties, that need the structural information of the phylogeny, b) sequence
or state properties, that work with the sequences attached to the nodes, or c) a
combination of both. Moreover, we give a brief tutorial showing how to proceed
methodologically for the incremental building and composition of specifications
for each family. A taxonomy of important biological properties is summarized in
Table 4.1, together with their temporal logic formulas. The inclusion of explicit
time distances in certain properties motivates the addition of quantitative features
in future sections.

The second chapter of this part is devoted to the experimentation. We start
with the state of the art of model checking tools and the selection of the best
one that fits for our requirements (mainly, the support of branching-time temporal
logics such as CTL). To this end, we select NuSMV although others such as PRISM
are suitable for future studies in Part IV–V. We continue with the modeling of
the phylogeny and the specification of properties in NuSMV syntax. During the
experimentation, we have evaluated formulas that search for back mutations in the
tree.

We have seen that the initialization phase (creation of the associated Kripke
structure) is much costlier than the verification process of a single formula. The
experimental results show that the initialization time increases quadratically with

59

60 CHAPTER 6. CONCLUSIONS

the alignment size and linearly with the sequence length. Additionally, mem-
ory consumption is sublinear in both cases. Despite the resources needed for
model checking, it is still competitive thanks to the symbolic manipulation of huge
amounts of data.

The data set used there consists of proteins coded by genes from the mtDNA
genome, which are substantially smaller than those from nuclear DNA. As the tem-
poral cost increases mostly with respect to the sequence length, the phylogenetic
analysis of large genes and genomes becomes the major bottleneck. Thus, scaling
the model checking verification process both in time and memory is one of our
research priorities for the next parts. The difficulty of implementing a completely
new and adapted software, the existence of few (but good and powerful) model
checking tools such as NuSMV or PRISM, and the availability of its source code
favors the reuse and customization of current tools instead of concerning with new
implementations.

Part III

Model Checking Adapted to the
Phylogenetic Context:

Introducing Concurrency and
Solving some Bottlenecks

From all the human genome, approximately the 99.9995% belongs to nuclear
DNA whilst the remaining 0.0005% corresponds to the mitochondrial DNA used
for the experimentation in Section 5.4. The cells of some salamanders may contain
up to 40 times more DNA than those of humans [83]. Conversely, the number of
available records in GenBank is currently doubling approximately every 35 months
[23]. Hence, the extension and scalability of model checking for bigger alignments
and phylogenies represents a dramatic question.

Here, we try to solve all these problems by applying an strategy of divide and
conquer. This part contains two chapters. The first one is devoted to the pre-
sentation of technical and algorithmic solutions for the problem of model checking
with large genomes. This includes the use of external databases for storing the
sequences and the distribution of model checking computations. Instead of saving
the complete genome as atomic propositions on the phylogenetic tree, the states
are labeled with pointers to the database, leading to a light memory-consuming
version of the Kripke structure.

Additionally, distributed model checking is divided in two subsections, explain-
ing both the structural partitioning of the tree and the slicing of the states with
DNA as feasible options for scaling the system. These solutions are compatible
and they can be applied together. The structural partitioning of the tree attacks
the problem by grouping the nodes in chunks and sending the partial data struc-
ture and specifications to computational units. Conversely, the slicing of the states
maintains the Kripke structure but generates multiple copies of the original tree,
each one with a portion of the DNA.

After this, the second chapter faces the implementation of all these techniques
and integrates them inside a workflow. We evaluate a set of back mutation proper-
ties over a real phylogeny with thousands of nodes, increasing the complexity with
respect to previous experiments. The experimentation results show the feasibility
of our approach, showing competitive time and memory requirements.

63

Chapter 7

Sliced and Distributed Model
Checking

Nothing is particularly hard if you divide it into small jobs.

— Henry Ford

7.1. Introduction

As a prominent advantage, model checking allows us to uncouple software tools
from the definition of properties and it also hides the underlying implementation
technology. Besides, these properties can be exported and evaluated in other
structures (i.e., trees or networks) so as to compare the results and define met-
rics. Nevertheless, the performance is penalized when scaling the system for large
phylogenies and alignments (Section 5.4). The underlying problem of standard
model checking is the great amount of phylogenetic data it has to deal with: the
information associated to each node of the tree is strongly related to the DNA
sequence of the specie (up to millions of nucleotides). Currently, close to 2 × 106

species have been cataloged [110], but genomes exhibit an enormous range of sizes
and complexity, with Homo sapiens ranking at 3× 109 base pairs.

In order to cope with this problem, two strategies are presented here. The first
one consists of partitioning the graph structure into a set of subgraphs, each one
representing a subproblem of verification so as to speed up the computation time
and distribute the memory consumption. Two subtactics are considered depending
on the division method: the partition of the tree into subtrees, each one managed
by a different model checker (Section 7.3); or the slicing of the tree, each slice
containing a copy of the original tree but only a portion of the DNA sequence
(Section 7.3). The generic techniques based on distributed model checking were

65

66 CHAPTER 7. SLICED AND DISTRIBUTED MODEL CHECKING

presented in [31], but the inherent acyclicness and structure of trees facilitates the
introduction of new simplifications and adaptations that has been barely developed
in the community yet. We also present the novelty of sliced model checking as an
adaptation to the context of phylogenetics.

The second strategy is based on uncoupling the DNA information of the phy-
logenetic tree and exporting the alignment to an external tool specialized in the
management of large information systems, for example, a database (Section 7.4).
This leads to a light tree structure labeled with pointers to the elements of the
database that can be efficiently manipulated by current model checking tools. The
database strategy is firstly introduced here for the domain of phylogenetic model
checking.

In this chapter, we explain the best of the two worlds. We integrate these
methodologies (distribution and databases) and show that a combination of both
strategies allows us to work with real phylogenies. The introduction of all these
methodologies need the presentation of the sequential model checking algorithms
for the contextualization.

7.2. Model Checking Algorithms

Current model checking tools load the model and the temporal logic formulas,
evaluate them and compute a counterexample if so required [63, 13]. It is possible
to reuse known properties and even results, if these are available. Evaluation
results may discover new meaningful information that will be reused in subsequent
refinements of the phylogenetic tree.

Verification of temporal formulas is formalized under the framework of set the-
ory; we follow this convention throughout the section. In fact, the traditional model
checking algorithm is usually presented as a recursive function which computes the
set of states satisfying a CTL formula in a Kripke structure (Algorithm 1).

In order to evaluate the temporal operators EG (ψ) and E [ψ1Uψ2], the great-
est and least fixed points are computed, respectively. Both fixed point sets can
be obtained as the result of a breadth-first search (Algorithm 2). In particu-
lar, the call fixedpoint (M,Sat (M,ψ) , ∅, S) produces the greatest fixed point, and
fixedpoint (M,Sat (M,ψ2) , Sat (M,ψ1) , ∅) produces the least fixed point.

The time complexity of verifying a CTL formula φ against a Kripke structure is
linear in |φ| and the size of the Kripke structure, with |S| the number of states, |R|
the number of transitions and |φ| the number of logical connectives and temporal
operators of the formula [63, 149]. More generally, the complexity is Θ((|S|+ |R|)∗
|φ|). The decomposition of a specification for the verification of the integral parts
favors the distribution of the computations in next generation algorithms.

7.3. DISTRIBUTED MODEL CHECKING 67

Algorithm 1 Algorithm Sat (M,φ)

Require: M = (S, S0, R, L,AP) is a Kripke structure
Require: φ is a CTL formula
Ensure: A subset of states of S that satisfies φ

if φ ≡ > then return S {Set of states from the Kripke structure M}
else if φ ≡ p ∈ AP return {s : p ∈ L (s)}
else if φ ≡ ¬ψ return S \ Sat (M,ψ)
else if φ ≡ ψ1 ∨ ψ2 return Sat (M,ψ1) ∪ Sat (M,ψ2)
else if φ ≡ EX (ψ) return {s : (s, s′) ∈ R, s′ ∈ Sat (M,ψ)}
else if φ ≡ EG (ψ) return fixedpoint (M,Sat (M,ψ) , ∅, S)
else if φ ≡ E [ψ1Uψ2] return fixedpoint (M,Sat (M,ψ2) , Sat (M,ψ1) , ∅)
end if

Algorithm 2 Algorithm fixedpoint (M,Sat (M,φ) , Sat (M,ψ) , Init)

Require: M = (S, S0, R, L,AP) is a Kripke structure
Require: Sat (M,ψ) and Init are the sets of initial states (returned by calls to
Sat algorithm) and Sat (M,φ) is the set of final states

Ensure: A set of states that represents paths going from Init (or Sat (M,ψ)) to
Sat (M,φ)
New ← Init
repeat

Old ← New
New ← Sat (M,ψ) ∪ (Sat (M,φ) ∩ {s : (s, s′) ∈ R, s′ ∈ Old})

until New = Old
return New

7.3. Distributed Model Checking

State of the Art

Sometimes, the storage in local memory of the phylogenetic model together
with the atomic propositions (both initial and new discovered properties) leads to
a memory bottleneck in the model checker tool. It appears when characterizing
taxa from phylogenetic trees as states in Kripke structures, that is, when labeling
states of the transition system with long DNA or protein sequences (Section 5.4).
In addition, the characterization of properties with temporal logics produce large
sets of atomic propositions to be verified sparsely.

Thus, memory usage arises as a major limiting factor in the analysis of com-
plex systems, often in association with vast state spaces, and therefore with long
execution times. In this regard, the conventional monolithic techniques conceived

68 CHAPTER 7. SLICED AND DISTRIBUTED MODEL CHECKING

for improving the performance in industrial model checking applications fail to
manipulate the phylogenetic tree in an efficient way due to the inherent features of
the biological data, mainly the huge ratio of labels per state (i.e., DNA sequence).
This problem persists in spite of the many methods which have been devised to
scale model checking procedures. Of these, symbolic model checking is perhaps
the most widespread [99, 85]. There exist several general-purpose memory tech-
niques that can be applied to alleviate the problem of memory footprint, such as
abstractions, partial reductions and symmetries (for a review, see e.g. [63, 31]).

Current efforts in this area revolve around two main topics. Firstly, compo-
sitional reasoning [47], itself a classic approach based on the verification of local
properties associated to each of a collection of “components” (e.g., codons and
genes in the context of biological sequences), proceeding incrementally to infer
global properties of the system through a bottom-up strategy. Chief in importance
among these techniques is the assume-guarantee paradigm [135], which operates
by establishing a collection of assumptions about the environment of a component
and verifying the latter subject to the former. Alternative approaches are exempli-
fied by [78], where they focus the trouble from the point of view of temporal logic
formula decomposition. However, all these methods are ineffective when applied
automatically in isolation to tightly coupled systems made up from highly inter-
dependent components [48]. Only a few theoretical works have been published in
relation to the complexity and advantages of compositional model checking over
these simple structures [39].

Secondly, we have methods that exploit the explosive availability of multicore
(shared-memory) computers [96], fast interconnection networks [165] or MapRe-
duce in clusters [22]. Generally, these operate by partitioning the system as defined
by the Kripke structure and distributing the chunks among available computing
units (both storage of the partial Kripke structure and computation of satisfiability
of logic formulas [84, 30]). These would be applicable here, yet by themselves they
are ineffective, as they address the size of the structure in number of states and
not the complexity of each state, which is the other limiting factor in phylogenetic
model checking. An approximation to this last group of methods is considered
in this section, but adapting them to the special context of trees. We also give
the notions of sliced model checking, an innovation that focuses on the complexity
of the atomic propositions for the tree states and complements the partition and
distribution of the phylogenetic tree in subtrees.

Alternatively, another strategy for phylogenetic model checking would consist
of uncoupling atomic propositions from each state of the transition system and a)
distribute them among several instances of a model checker tool (Section 7.3), or
b) store the atomic propositions in an external database (Section 7.4).

7.3. DISTRIBUTED MODEL CHECKING 69

Structural Partitioning of the Kripke Structure

Model checking based on distributed Kripke structures attempts to improve the
performance by partitioning the graph into smaller subgraphs and disseminating
the chunks among available computing units (both the storage of the partial Kripke
structure and the computation of sets satisfying logic formulas [30]). These meth-
ods attack the size of the structure (number of states) and not the complexity of
each state, which is the other limiting factor in phylogenetic model checking. The
complexity of the states will be solved by sliced model checking, but the division
of the Kripke structure in subgraphs is still valid here.

Recently, model checking over tree-like data structures is gaining interest. Some
application papers motivate the benefits of CTL model checking in tree-like data
structures such as XML [2]. In the context of distributed model checking, the
advantages of model checking over trees is more evident: the verification and com-
munication process between chunks is simplified due to the inherent acyclicness
of trees with respect to more generic data structures. However, only a few theo-
retical works have been published in relation to the complexity and advantages of
compositional model checking over these simple structures [39].

Here, our contribution consists of showing how the division in subtrees (or
clades) can guide the distribution and parallel computation of verifications in tree-
like Kripke structures. For each division of a balanced binary tree, the state space
is reduced by half and only an interface node is added for the communication with
each subtree. Given the tree root, s0, we verify the property for each of the direct
subtrees and operate with the boolean results according to the logical quantifiers.
In the case of a generic formula φ written in CTL, the equivalence is supported by
the following recursive expansion law of the path operators (EX, EG, E U) [13]:

M, s0 |= EXφ ≡
∨

si∈successors(s0)

Mi, si |= φ

M, s0 |= EGφ ≡M0, s0 |= φ ∧

 ∨
si∈successors(s0)

Mi, si |= EGφ



M, s0 |= E(φ1Uφ2) ≡M0, s0 |= φ2 ∨

(M0, s0 |= φ1 ∧

 ∨
si∈successors(s0)

Mi, si |= E(φ1Uφ2)

)

where M is the original tree with root s0. Mi is the subtree with root si ∈
successors(s0). The degenerated tree M0 only needs the node s0. The formula

70 CHAPTER 7. SLICED AND DISTRIBUTED MODEL CHECKING

Figure 7.1: Distributed verification of EXφ through the parallel execution of φ in
the direct subtrees.

can be unfolded indefinitely by means of EX. In this case, the set of successors
si defines a border at a certain depth of the original tree: we must ensure that φ
holds in s0, in the subtree rooted by si and in a path between s0 and si. The root
si acts as an interface node for the communication process during the composition
of the partial results. Figure 7.1 illustrates this technique.

The number and size of the subtrees, and the appearance of short circuits
during the composition of results will determine the performance of this approach.
The detection of clades with conserved regions or characteristic SNP’s are the kind
of properties that benefit of this approach.

The implementation of the model checker is also important. For example,
Figure 7.2 represents the time needed for the initialization of the NuSMV model
checker given a phylogenetic tree labeled with simple identifiers (GenBank ac-
cession numbers [23]) that act as pointers to the records of a potential external
database. If the tree is balanced, the initialization and verification of the subtrees
is faster than the original one as the trend is quadratic with respect to the tree
size. Furthermore, the memory consumption is linear with the number of nodes
as depicted in Figure 7.3.

The decomposition of the phylogenetic formula drives the division of the tree
in autonomous modules that can be evaluated concurrently in parallel machines
or sequentially in a single computer, as long as they store the partial results for
synthesizing the answer to the initial hypothesis. The quadratic trend in the ini-
tialization of NuSMV makes also profitable the sequential evaluation of a property
in two subtrees (for balanced binary trees) rather than in the complete phylogeny,
which shows connections with compositional model checking [47]. Due to the
or-like logic for the evaluation of the property in the subtrees, all the counterex-
amples generated are needed as partial solutions for the integration of the overall
explanation.

7.3. DISTRIBUTED MODEL CHECKING 71

y = 8E‐07x2,0141

R² = 0,9987

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

10

20

30

40

50

60

70

80

Number of leaves

S
e
c
o
n
d
s

Figure 7.2: Time required in NuSMV for the initialization of a phylogenetic tree
with GenBank identifiers in the nodes.

Thus, the distribution of the original state space in subgraphs is relevant for
optimizing the analysis of phylogenies when the limiting factor is the number of
leaves. The structure of the tree and a simple manipulation of the temporal logic
formula grants the extraction of a valuable speed up with minor modifications of
the model checking process. The technique proposed here is supplementary to the
application of the state slicing of the Kripke structure introduced in the following
paragraphs.

Slicing the States of the Kripke Structure

Phylogenetic model checking usually associates a complete DNA sequence per
node (specie) of the tree. Sometimes the storage in local memory of the phy-
logenetic model together with the atomic propositions leads to a high memory
consumption in the model checker tool. In order to solve it, the state slicing (also
called sliced model checking) focuses on the state complexity of the Kripke struc-
ture by creating several copies of the original phylogenetic tree and verifying the
subproperties in parallel, each slice labeled with a partial substring of the DNA.
The slices may correspond to genes, codons or any entity with significance in the
genome that motivates the local storage of near characters.

In the best case, the state slicing presented in this section can be efficiently

72 CHAPTER 7. SLICED AND DISTRIBUTED MODEL CHECKING

y = 0,0043x + 10,64
R² = 0,9988

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5

10

15

20

25

30

35

40

45

50

Number of leaves

M
e
g
a
b
y
t
e
s

Figure 7.3: Memory required in NuSMV for the initialization of a phylogenetic
tree with GenBank identifiers in the nodes.

applied to the verification of completely autonomous properties such as the detec-
tion of back mutations (Equation 4.20). Each slice verifies a subformula referred
to a part of the DNA sequence, that is the only information stored in each state of
the slice. These verifications can be done independently and so a computational
speed up proportional to the number of slices can be obtained. That is, given an
alignment of length l, each sequence is distributed in l independent slices where∨
col∈{1...l}M, s0 |= BM (col, σ) are verified asynchronously.

But the state slicing method can be applied into more intricate properties.
Take into consideration the techniques of amino acid coevolution (Section 4.3).
They have been recently used for the prediction of the three-dimensional structure
and interrelations in the chain of proteins of the mitochondria respiratory path-
way, which is essential for the cellular respiration and photosynthesis [173]. An
intuitive cut of the mtDNA for that example matches with the genes coding those
proteins. The inter-dependence correlation of amino acids from separate proteins
has provided crucial indirect evidences about the connections among molecules.
In fact, these signs may detect potential binding regions that work as interface
zones between proteins and that are susceptible to any minimal change. Hence,
the study of these regions requires the access to the gene information stored in
disperse slices. Apart from the analysis of the character correlation in the align-
ment, the entanglement of the evolutionary drift for different inferred gene trees

7.3. DISTRIBUTED MODEL CHECKING 73

should also show strong coevolution signs. The combination of topological (tree)
and sequence properties gives rise to Section 4.4.

Coming back to the definition of the Kripke structure, it is common for the
AP set of a system to encode a heterogeneous collection of properties, whose
correlations can be arbitrary in both strength and complexity. Traditionally we
focus on DNA, but the AP set is originally unstructured in the sense that different
types of labels may be considered. Thus, the “normalization” of properties and
variables along the graph turns out to be a critical issue.

Definition 5 (Homogeneous Kripke Structure). Let Σ be an alphabet. An homo-
geneous Kripke structure M = (S, S0, R, L,AP) over AP is a Kripke structure
where,

AP =
⋃l
i=1APi is the set of atomic propositions,

APi = {seq[i] = σ | σ ∈ Σ} with seq an array of variables with type Σ,

L : S → AP1 × . . .× APl , where L(s) = (seq[1] = σ1, . . . , seq[l] = σl).

In Definition 3, the labeling function L tags each state of the Kripke structure
with a unique tuple composed of several atomic propositions. Additionally, an
extension to multiple labels per state (L : S → 2AP) can be considered. Note that
the Cartesian product in the labeling function involves an implicit “and” operator;
that is, the label states that a temporal formula is valid on the current state iff it
asserts [(seq[1] = σ1) ∧ . . . ∧ (seq[l] = σl)]. Multilabels would be or-like though.

In opposition to traditional distributed model checking algorithms, which di-
vide the system into disjoint Kripke substructures, we present a new slicing crite-
rion. The notion of AP normalization in a homogeneous Kripke structure moti-
vates the definition of a projection (reading) function that takes (cuts) a subset of
the variables from the AP structure of state labels.

Definition 6 (Projection Function). A projection function with subindex i ∈
{1, . . . , l} over AP selects a subset of elements such that:

proji : AP → APi with i ≥ 1 such that proji(seq) = (seq[i] = σ).

projI : AP → APi1 × . . . × APim such that projI(seq) = (seq[i1] =
σi1 , . . . , seq[im] = σim) is a projection function with a set of indices I =
{i1, i2, . . . , im}, m ≤ l

The projection operator allows to slice the nodes of the Kripke structure instead
of splitting the graph into regions. We obtain several lighter copies of the original
one, where each slice of AP represents some characteristics of the initial system.
Figure 7.4 describes graphically the concept of slicing. In conjunction, the set of
slices works as a distributed repository of sequences.

74 CHAPTER 7. SLICED AND DISTRIBUTED MODEL CHECKING

Figure 7.4: Division of the original Kripke structure into two slices.

Definition 7 (Sliced Kripke Structure). Let {Ii | 1 ≤ i ≤ n, Ii ⊆ I} be a partition
of the set of indices I = {1, . . . , l}. We say that M = (S, S0, R, L,AP) can be
obtained from the composition of n Kripke structures, named slices of M , each
one defined as:

Mi = (S, S0, R, Li, Ti), ∀i ∈ {1, . . . , n}, with Ti =
⋃
j∈Ii APj and

Li(s) = projIi(seq), ∀s ∈ S with L(s) = seq, where

L(s) = L1(s) · L2(s) · . . . · Ln(s), ∀s ∈ S, with “·” the operator function that
concatenates tuples.

Consider a generic phylogenetic property φ(p1, p2, . . . , pl) as input to the model
checking tool, with pi ∈ APi = {seq[i] = σ |σ ∈ Σ} an atomic proposition that asks

7.3. DISTRIBUTED MODEL CHECKING 75

for the tree nodes having the nucleotide σ in the ith position of the DNA sequence.
The classic model checking algorithm parses the formula and starts verifying the
inner subformulas first. In the derivation tree of the CTL grammar for the given
formula, we reach a propositional operator at some point of the recursion (boxed
lines in Algorithm 3).

The verification of formulas with propositional operators, such as ψ1∨ψ2, begins
with the computation of the satisfiability sets Sat(M,ψj), j = {1, 2}. These sets
allow us to distribute the computation in parallel, as long as we compose the partial
results with a synchronized union. The support of ψj is ‖ψj‖ = {pi ∈ APi | pi or
¬pi appears in ψj}. The verification of ψj is mapped to a remote model checking
tool that has a copy of the phylogenetic tree labeled with the slice TI =

⋃
i∈I APi,

with I ⊆ {1 . . . l} a set of index, l = length(DNA) and AP =
⋃l
i=1APi in

this case. The remote model checker also executes Algorithm 3 but with the set
of atomic propositions belonging to ‖ψj‖ ⊆ TIj . In order to obtain a perfect
distribution,

⋂
j={1,2} ‖ψj‖ = ∅. The notation par(TIj , Sat(M,ψj)) means that

Sat(M,ψj) is computed in parallel in the remote model checker TIj associated to
the slice containing ‖ψj‖. LTI is the labeling function of the states of that slice.
The computation of the CTL paths is denoted with the fixed point algorithms
µZ/υZ. The number of parallel instances of the model checking algorithm is
determined by the granularity in the slice of the AP set, but only one of those
(i.e., the “coordinator”) receives the full phylogenetic property as input.

Algorithm 3 Algorithm Sat (M,φ)

Require: M = (S, S0, R, L,AP) is a Kripke structure
Require: φ(p1, p2, . . . , pl) is a CTL formula
Ensure: A subset of states of S that satisfies φ

if φ ≡ > return S {Set of states from the Kripke structure M}
else if φ ≡ pi ∈ AP return par(TI , {s : pi ∈ LTI (s)}) with i ∈ I
else if φ ≡ ¬ψ return S \ par(TI , Sat(M,ψ))

else if φ ≡ ψ1 ∨ ψ2 return par(TI1 , Sat(M,ψ1)) ∪ par(RI2 , Sat(M,ψ2))

else if φ ≡ EX (ψ) return {s : (s, s′) ∈ R, s′ ∈ Sat (M,ψ)}
else if φ ≡ EG (ψ) return υZ. (Sat (M,ψ) ∩ EX (Z))
else if φ ≡ E [ψ1Uψ2] return

µZ.(par(TI1 , Sat(M,ψ1)) ∪ par(TI2 , Sat(M,ψ2)) ∩EX (Z))

end if

By now, we consider the access to the atomic propositions transparent to the
underlying technology. However, we must advance that this is usually the most
time-consuming part during the experimentations in Chapter 8. This fact moti-

76 CHAPTER 7. SLICED AND DISTRIBUTED MODEL CHECKING

vates the introduction of information systems optimized for the management of
huge amounts of phylogenetic data in the next section.

Finally, the size of the slices depends on the target DNA regions we desire to
analyze (i.e., single nucleotides, genes, chromosomes, . . .), the kind of properties
we want to verify and the hardware requirements we have. A high number of slices
will provide of a better level of parallelism and low hardware requirements (CPU,
memory), but it will be limited by the potential appearance of bottlenecks during
the composition of results. The detection of back mutations is a degenerated ex-
ample of this case as it only needs a tree labeled with a single nucleotide. More
intricate properties such as the detection of base correlations in a respiratory path-
way advices the introduction of sliced model checking for analyzing each protein
gene in isolation.

7.4. Model Checking Using Databases

The second step of our approach consists of uncoupling the atomic propositions
from the model checker. The use of external databases as a repository of biological
sequences alleviates the memory explosion problem when the local storage of trees
with partial DNA is not enough. Moreover, the database manager simplifies the
interface to the DNA data because it usually allows concurrent queries and it
hides the internal synchronization and data structures. In a general sense, trees
are labeled with pointers to DNA sequences stored in an external server.

As the AP set is now structured as consequence of Section 7.3, the atomic
propositions can be purely mapped into a relational database. For example, a
generic sequence seq = σ1σ2 . . . σl is composed of a set of elements seq[i] = σi
(in terms of AP notation) whose σi value is univocally assigned to the associated
column seq[i] in a relational table. The DNA alignment is stored in a single
relational table with a row per sequence. Each row has two important fields: an
identifier (i.e., the GenBank accession [23]) plus the plain string of nucleotides.

In fact, the tables of relational databases can be seen as matrices that we can
slice by row (number of taxa) or by column (dividing the DNA in substrings) in case
of the atomic propositions were stored in separated columns. These (sub)tables
would be stored or replicated in separated hard discs, servers or cluster of nodes
so as to allow parallel access to the DNA data and to improve the communica-
tion bandwidth between the database and the model checker. In addition, recent
versions of SQL servers support multicore CPU’s, which improves the time re-
sponse when attacking the server with several queries. This approach allows to
scale in memory and speeds up the system. A centralized database is source of
bottlenecks during the concurrent access of multiple model checker clients: dis-

7.4. MODEL CHECKING USING DATABASES 77

tributed database managers can be used in order to optimize the performance of
the transactions.

Then, an external database manager is required for the storage of the AP set.
In this way, the model checker algorithm will reduce the memory consumption
by only saving a set of references (pointers) to the atomic propositions of each
state plus a boolean variable with the truth value of the current proposition. In
a hybrid system that combines slicing techniques and databases, the evaluation
of a CTL formula consists of translating the last recursion call (the computation
of the result set {s ∈ S | p ∈ L(s)} in Algorithm 3) into a database transaction
that gets the array (s[1] = σ1, s[2] = σ2, . . . , s[l] = σl) from the appropriate record
of the relational table. Each character σi of a sequence can be stored in up to
a independent column of the relational table: atoms of the type (s[i] = σi) are
potentially read in concurrency and the tuple is rebuilt as an “intersection” set
(logical conjunction) of partial results. The projection function (Definition 6) is
identifiable to the selection of a column subset. The slicing of the alignment is
relegated to the vertical or horizontal partition of the database relational table.

Algorithm 4 is an adaptation of Algorithm 3 where par(database, ·) is a parallel
query to the database asking for the set of id’s satisfying the atomic propositions
(in case of the database front-end accepts multiple queries simultaneously). It
substitutes the message par(TI , ·) requesting the data to the rest of slices in Algo-
rithm 3. Thanks to the centralization of the sequences in an external repository,
the parallel evaluations par(TI , ·) are replaced by par(·) for the rest of situations,
which can be executed in a multicore CPU using threads. Therefore, Algorithm 4
requires a shared memory machine for its execution and not a pool of sliced model
checking workers.

Algorithm 4 Algorithm Sat (M,φ)

Require: M = (S, S0, R, L,AP) is a Kripke structure
Require: φ(p1, p2, . . . , pl) is a CTL formula
Ensure: A subset of states of S that satisfies φ

if φ ≡ > return S {Set of states from the Kripke structure M}
else if φ ≡ pi ∈ AP return par(database, {s : pi ∈ LRI

(s)}) with i ∈ I
else if φ ≡ ¬ψ return S \ par(Sat(M,ψ))

else if φ ≡ ψ1 ∨ ψ2 return par(Sat(M,ψ1)) ∪ par(Sat(M,ψ2))

else if φ ≡ EX (ψ) return {s : (s, s′) ∈ R, s′ ∈ Sat (M,ψ)}
else if φ ≡ EG (ψ) return υZ. (Sat (M,ψ) ∩ EX (Z))
else if φ ≡ E [ψ1Uψ2] return

µZ.(par(Sat(M,ψ1)) ∪ par(Sat(M,ψ2)) ∩EX (Z))

end if

78 CHAPTER 7. SLICED AND DISTRIBUTED MODEL CHECKING

Finally, relational databases can execute internally the model checking algo-
rithms for the evaluation of CTL formulas. Procedural language extensions for
SQL such as PL-SQL support this possibility [151]. The main advantage is that
they avoid the exportation of DNA data from the database to a model checking tool
and the associated bandwidth bottleneck. The lack of symbolic data structures
that are habitual in model checking tools such as ORBDDs [33] is resolved by the
manipulation of the data with the inherent adaptations for databases. An evalua-
tion of SQL model checkers for phylogenetic data will comprise our future work. As
far as we know, this is a novel approach because model checking was mainly used
for verifying database correctness [43] and querying temporal databases [60, 44],
but databases has never been used as an external repository. Furthermore, rela-
tional databases cannot only store phylogenetic data, but also partial verification
results or counterexamples.

Chapter 8

Workflow

The White Rabbit put on his spectacles.
“Where shall I begin, please your Majesty?” he asked.
“Begin at the beginning,” the King said gravely, “and go on
till you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

8.1. Introduction

In this chapter, we describe the implementation of the different methods pre-
sented previously. We compose them in a workflow by integrating the modules
encapsulating each technique. Here, we detail the internal characteristics of our
framework as well as the performance results with large phylogenetic data. The
combination of all these optimizations facilitate the efficient management of big
phylogenies by current model checking tools. In particular, we develop an hybrid
system: we code a multi-threading version of Algorithm 4 and use an external
database for saving the sequences. To this end, we modify the model checker
NuSMV and send queries to a MySQL server.

This part is thus divided in three points. Firstly, Section 8.2 draws a panoramic
overview of the pipeline, details every component and how they are connected
through its interface. Next, Section 8.3 gives brief notions about the experimental
results and performance of model checking with these new approximations. We
search for the presence of back mutations over ZARAMIT [27] (a real phyloge-
netic tree) and evaluate the temporal costs. Finally, Chapter 9 summarizes the
conclusions of this part and suggests the future work.

79

80 CHAPTER 8. WORKFLOW

8.2. Description

Figure 8.1 represents a graphical description of our workflow. The central
core of our approach is the model checker package NuSMV v2.5.4 [45], which is
a well-known public software. It is surrounded by a set of modules and tools
that accommodate the phylogenetic data for each step of the verification. The
system also counts with an external MySQL server v5.5.24-7 for saving the atomic
propositions (i.e., the DNA alignment).

The use of databases simplifies the coding of the sliced model checking algo-
rithms. Here, we present an hybrid system where the new sliced model checking
algorithms are highly coupled with the database (Algorithm 4). The sliced model
checking algorithms are implemented in two steps. First of all, an external script
analyzes the specification of the phylogenetic properties that the system must
evaluate, and subsequently accesses in parallel to the atomic propositions (DNA
sequences) stored in the database. After the extraction of the GenBank identifiers
satisfying those AP , these sets are converted into the internal data representation
of NuSMV (i.e., ORBDDs). Finally, a multi-threading version of Algorithm 4 col-
lects the results and compounds the CTL paths for evaluating the truth of the
property.

In sum, our framework is thus divided in three important modules. First of all,
the loader consists of a BioPython script that creates and initializes the relational
database with the DNA sequences. It is executed only once during the initialization
phase for loading the sequences into the database. The database habitually remains
constant for the rest of the verification process, but it can be updated periodically
with the addition of new aligned strings. By default, we use BioSQL, a shared
database schema for storing sequences in SQL servers that is supported by several
script languages [121].

Secondly, the property transformer is a BioPython script that pre-processes the
phylogenetic formulas and rewrite them in terms of GenBank identifiers. Every
time the user asks for the states satisfying a pattern seq[i] = σ in the DNA, the
script retrieves the set of identifiers of those species that satisfy the formula in the
database. This script translates the phylogenetic properties expressed in terms of
sequences and nucleotides into phylogenetic properties written in terms of taxon
identifiers. For example, the following formula reinterprets the back mutation
property (Equation 4.20):

BM ≡ (id ∈ seqiσ) ∧ EF [id /∈ seqiσ ∧ EF (id ∈ seqiσ)] (8.1)

where id is the identifier of the state reached by each temporal operator EF
(at the beginning, id corresponds to the identifier of the initial state). The set
seqiσ = {id1, . . . , idn} contains the identifiers of the set of states satisfying the

8.2. DESCRIPTION 81

property seq[i] = σ in the external database. The states of the phylogenetic tree
are labeled with these identifiers.

The script is optimized for sending concurrent queries to the database in order
to take advantage of current multicore servers, each question demanding the set
of identifiers satisfying seq[i] = σ. As result, it outputs an specification file with
the original phylogenetic properties expressed in terms of GenBank identifiers. In
addition, it generates a set of auxiliary files corresponding to the projections of
the formula in the sliced model checking methodology. These auxiliary files, one
per seq[i] = σ, store the set of identifiers seqiσ satisfying an atomic proposition of
the original formula.

Next, the NuSMV transformer is a BioPerl script that translates the phylo-
genetic tree into the NuSMV syntax (Section 5.3) and labels the states with the
associated identifiers of the database. The script is easily extended in order to
divide automatically the original tree in multiple subtrees as a part of the imple-
mentation of partitioned model checking, but the transformation of the equations
together with the composition of counterexamples and results has to be realized
manually at the moment. The subtrees can be stored either in separated NuSMV
model files in order to evaluate the specifications in concurrency; or in individ-
ual modules inside the same file for a sequential evaluation and composition of
the results. The cost in time/memory increases fast with the size of the tree and
therefore a sequential evaluation of the specifications in the subtrees also becomes
profitable in terms of improving the efficiency. The CTL parser in NuSMV may
assist to the unfolding of the temporal logic formulas according to the explanation
in Section 7.3.

Once the phylogenetic tree is translated into the model checker syntax and
the properties are translated and projected according to the slicing criterion, the
workflow starts the verification process. To this end, a set of independent instances
of NuSMV are launched. Each one works with a copy of the Kripke structure and a
DNA projection, that is, the auxiliary files generated by the property transformer.
Their mission consists of converting the set of identifiers of seq[i] = σ stored in the
auxiliary files into the internal notation of NuSMV (an ORBDD). At the end of
the process, a multi-threading version of the model checker collects the ORBDDs
for the atomic propositions and reconstructs the CTL paths. The final speed up
depends on the distribution and the number of formulas and slices. The results
of the verification process offer an important feedback for the refinement of the
original tree and the biological assumptions.

82 CHAPTER 8. WORKFLOW

Figure 8.1: Workflow diagram with the alignment, phylogenetic tree and properties
as input.

8.3. Experimental Results

The data set of our experimentation comprises the ZARAMIT tree [27], which
has been reconstructed from 7390 aligned sequences of Human mitochondrial DNA
with 16, 569 base pairs. In total, the number of internal plus terminal nodes is
14512. Thanks to the integration with databases, the memory consumption of
the model checker is reduced: the representation of the ZARAMIT tree consumes
around 50 MB. Besides a light consumption of memory requirements, the use
of references to an external database reduces the initialization time of NuSMV.
Figure 7.2 shows that our architecture outperforms previous works in [138]: we
spend less time and memory resources for the initialization of the model checking
tool with the ZARAMIT tree than for the initialization of a protein tree with 2000
tips and sequences of 500 aminoacids. Taking advantage of these optimizations,
we have employed the ZARAMIT tree for the evaluation of 25 back mutations
formulas using our framework.

From the point of view of performance, the database is the most important
point of our workflow because it connects the model checker with the DNA se-
quences. The database server runs in a desktop workstation (AMD Opteron
@3GHz, 4GB RAM, Debian Linux). Due to the alignment size (around 350 MB
for 7390 leafs plus ancestors) and the hardware available, we work with a single

8.3. EXPERIMENTAL RESULTS 83

instance of MySQL server. The database loader spends less than 2 minutes for
inserting the alignment in the database at the initialization point, but it remains
constant for all the verifications. The retrieval of atomic propositions from the
database lasts 7.2s for 25 concurrent SQL queries (44.6s if we serialize them).
Each SQL query asks for the set of identifiers associated to the DNA in each one
of the 25 back mutation properties.

A second desktop workstation (Intel Core 2 Duo E6750 @ 2.66GHz, 8GB RAM,
Debian Linux) is devoted to the execution of the rest of the workflow. This com-
prises the translation of the phylogeny into the NuSMV syntax (NuSMV trans-
former), the conversion of the GenBank identifiers to the internal data structure
of NuSMV (auxiliary files of the property transformer) and the execution of the
multi-threading algorithm that accomplishes the evaluation. By now, the back
mutation properties are evaluated over the whole phylogeny. The application of
partitioned Kripke structures (i.e., the verification of the back mutation property
independently for each direct subtree of the phylogeny) will divide the time by
more than a factor of 2 for binary trees.

However, we have detected that the internal representation of the Kripke struc-
ture in NuSMV penalizes the access and manipulation of big sets during the model
checking process. Given a set of GenBank identifiers whose DNA sequences satisfy
the atomic propositions seq[i] = σ, the time required for the extraction of the tree
states with those id and their exportation to a temporal ORBDD file raises up to
1m20s for each auxiliary file of the property transformer. Nevertheless, this latency
can be alleviated because the exportation of every set of GenBank identifiers to a
ORBDD file is executed in parallel. Conversely, the integration of partial results
(read of a ORBDD file) and the computation of CTL paths for the verification of
a back mutation property only lasts 1m 2s for the multi-threading algorithm. All
these temporal costs embeds the initialization time of NuSMV for the ZARAMIT
tree (around 57s).

In sum, the initialization costs of NuSMV raises up to 55s-1m for phylogenetic
trees with thousands of species and nodes labeled with references to the database.
Besides, the framework offers a competent performance for evaluating phylogenetic
specifications, such as the detection of back mutations. The first step, the extrac-
tion of big sets of states satisfying a simple atomic proposition, lasts around 1m27s
(SQL query + exportation to a ORBDD). The extraction of multiple atomic propo-
sition can be effectuated in parallel, with the number of cores the only limitation to
this part. Later, the integration of the ORBDD results and the computation of the
CTL paths takes 1m2s, leading to 2m30s for a complete verification of a single back
mutation property. The parallel evaluation of the back mutation property in the
direct subtrees of ZARAMIT will reduce the verification time by more than a half.
Longer unexplored phylogenetic properties can take advantage of multi-threading

84 CHAPTER 8. WORKFLOW

as the CTL verification cost depends of the formula length [13].

Chapter 9

Conclusions

The only place success comes before work is in the
dictionary.

— Vince Lombardi

The use of monolithic model checking for the verification of huge phylogenetic
data is unfeasible because of the high requirements in time and memory. The aim
of this part has been to illustrate two different group of approaches for the memory
scalability problem in model checking with phylogenetic data. Firstly, this part
presented a couple of fully distributed approaches to model checking based on
“state slicing” and “graph partition” techniques.

Assuming that the biological data (atomic propositions) can be fragmented
into minimal meaningful blocks that fit into the model checker local memory, each
thread (or remote task) executes the verification process over one slice (projection)
from the original data while sharing a common Kripke structure skeleton. Then,
the final result will be composed from the partial results. The computation of sets
of states satisfying a certain atomic proposition (owning a portion of DNA), is one
of the most time consuming parts. Hence, the global performance of our system
benefits of this approach. Due to the emerging abundance of multicore computers,
we introduced algorithms for shared-memory architectures, although they can be
intuitively adapted for computer networks as well.

Additionally, the inherent acyclicness of trees facilitates the implementation,
synchronization and composition of the verification results using graph partition
techniques. Besides sliced model checking, we show how to distribute subtrees
and take advantage of this data structure for the graph partition. Thanks to
the logical expansion laws, we can verify the same phylogenetic property in each
subtree and compose the results using first order logics. As the initialization time
of the model checker usually depends of the number of nodes (our experimentations

85

86 CHAPTER 9. CONCLUSIONS

with NuSMV shows that this dependence is quadratic), the number and size of the
subtrees of the distribution process has an important impact in the total speed up.

Our second proposal, which is oriented to database techniques, takes advantage
of the separation of the data from the execution flow. The use of an external and
specialized database management system enables scalability in data storage and
the introduction of optimizations during the retrieval of huge amounts of biological
information. The final speed up will depend on the architecture and efficiency
of the specific database management system. We remark that strategies for the
dynamic update of the atomic propositions set should be considered. Furthermore,
relational databases can emulate the model checking algorithms using PL-SQL.

Also, hybrid systems (distributed execution flow plus an external database sys-
tem) combines the advantages of both previous proposals and it offers a promising
framework. The viability (implementation and experimental results) of each one
of these approaches over a real platform was showed in previous chapters.

Finally, the integration of all this approaches helped us to execute the verifica-
tion of properties in a real phylogenetic tree. The execution of model checking in
the ZARAMIT tree has outperformed the results of monolithic model checking in
Section 5.4 [138]. For instance, the initialization time of the model checker raises
up to 1m. The verification of a back mutation property lasts less than 2m30s if we
discount the inevitable initialization cost of NuSMV. Although we use a specific ar-
chitecture and technology, it should be noted that we can consider alternative open
source model checkers like SPIN, standard interprocess communication languages
such as MPI, or clusters of databases. It is also feasible to develop a specialized
model checker to take advantage of the particular properties of phylogenetic model
checking.

Part IV

Quantitative Extensions in the
Analysis of Phylogenies:

Generalities and Introduction of
Time

Chapter 10

Introducing Time, Probabilities
and Quantification on
Phylogenetic Properties

The Doctor: [about the nature of time] People don’t
understand time. It’s not what you think it is.
Sally: Then what is it?
The Doctor: Complicated.
Sally: Tell me.
The Doctor: Very complicated.
Sally: I’m clever, and I’m listening, and don’t patronize me
because people have died and I’m not happy. Tell me.
The Doctor: People assume that time is a strict progression
of cause to effect, but, actually, from a non-linear,
non-subjective viewpoint, it’s more like a big ball of
wibbly-wobbly . . . timey-wimey . . . stuff.

— Doctor Who, Blink (Episode 10, Season 3)

10.1. Introduction

In the preceding chapters we have introduced a formal framework for the anal-
ysis of qualitative properties concerning the discrete process of evolution. That
work has bridged a conceptual link between the model checking framework and
the process of verification of phylogenetic hypothesis. In other words, the phylo-
genetic trees are interpreted as transition systems, the biological specifications are
expressed as formulas of temporal logic, and both of them are introduced as input
in a model checking tool for their validation.

89

90 CHAPTER 10. TIME, PROBABILITIES AND QUANTIFICATION

The boolean properties considered until now are only refereed to the basic
information contained in a phylogenetic tree: a) the main structure of the tree,
and b) the DNA information associated to the nodes (states) of the phylogeny.
These properties, or a combination of both, can be expressed with more or less
effort in a conventional temporal logic such as LTL or CTL, and, thus, we call
these properties qualitative. In Chapter 4 of this thesis, an extensive (although
not exhaustive) table of qualitative phylogenetic properties has been presented and
defined in the context of phylogenetic analysis.

Nonetheless, those standard qualitative logics become insufficient for some
usual practices of phylogenetic analysis since they don’t allow the inclusion of
quantitative information in the specifications and models. The labeling of the
phylogenetic tree sometimes includes extra information beyond the original propo-
sitional information of the states [181, 111]. These numerical annotations of the
tree depends on each particular study, but most of them share common roots like
the inclusion of time and probabilities in the specifications. Take for example
the properties defined in Table 10.1 of Section 10.4, where we have organized the
biological hypothesis according to this criterion.

For instance, one of the more frequent topics is the inspection of the divergence
dates between species or populations [76, 36, 101, 166] (first line, second column of
Table 10.1). In this toy sample, with distance(pongo, homo) > 10 we want to test
if the pongos and homos diverged more than 5 million years ago, i.e., the common
ancestor of both families lived in that epoch (if the branches Hominidae-Homo
and Hominidae-Pongo are symmetric, the aggregated distance in both paths is
10). Taking the ancestral node Hominidae as the initial state for the evaluation of
the following formula, the distance between pongos and homos can be expressed
with CTL-like path operators embedding the explicit time:

EF≤5(Pongo) ∧ EF≤5(Homo) (10.1)

Obviously, these kind of questions cannot be resolved with standard CTL
queries because of the lack of explicit temporal information in the phylogenies
considered until now. Figure 10.1 clearly illustrates this situation: the internal
branches of the tree are not proportional to the flow of time. The phylogeny
and the logical operators should be updated for considering explicit time (either
discrete or continuous).

Thus, this property requires the addition of time to the branches. The inclu-
sion of temporal distances is also necessary for the conjecture and discovery of
dates marking the migratory movements or their consequences in other hypothe-
sis: the separation of the genome in lineages and ethnic groups (Tibetan people
[19, 20, 25, 177]), the apparition of chronic and endemic diseases [57, 51, 129] or
phenotypic adaptations (lactose [160, 163, 97, 92] and alcohol tolerance [72, 178]).

10.1. INTRODUCTION 91

Figure 10.1: Phylogenetic tree for the Hominoidea.

The incorporation of CTL path operators with temporal bounds allows the lo-
calization of ancestors whose descendants are placed at a certain distance and
are labeled with one of the mentioned tags (see Section 11.2 for a more detailed
example and notation). Traditionally, the phylogenetists solve the problem of com-
puting distances with an ad hoc script that adds the weights of a path in a enriched
tree with time. The insertion of explicit time in the CTL path operators avoids
the codification of these specific scripts and maintains all the advantages of model
checking exposed in this thesis. The new model checking algorithms will embed
the extraction and addition of distances through the traversing of the states in the
phylogeny.

Besides, the algorithms of qualitative model checking are unable to manipulate
quantitative information in the edges of a transition system or generate an integer
as output result. This is of remarkable interest when we try to extract temporal
information from the tree (e.g., distance(pongo, homo)) instead of testing with
particular values. In general, the new model checking algorithms should focus on
a) the evaluation of properties whose truth value depends on these quantitative
relations; or b) the evaluation of properties whose result is a numerical value
computed using these annotations.

For the first case, the descriptive aptitudes of the logics are extended to han-
dle with the numerical information in the equations. The existing temporal logics
are recycled for this field in order to cover the maximum number of phylogenetic
properties querying about quantitative data. For the second case, the model check-
ing process is modified with respect to the typical verification of a temporal logic
formula: now, it will return a number instead of a boolean value. The model check-
ing algorithms are extended with the capability for evaluating arithmetic functions
over the set of states characterized by a formula of temporal logic. As explained in
Section 2.4, the set of tree states are selected according to the relations imposed
by a temporal logic formula, and they can be considered as objects or entities in

92 CHAPTER 10. TIME, PROBABILITIES AND QUANTIFICATION

a phylogenetic tree. The studies can be enlarged with the introduction of param-
eters in the equations: there exist automatic tools that infer the combination of
propositions and values (quantitatives or not) that make the equations true.

The aim of this chapter is to review the group of non-qualitative phylogenetic
properties and classify them according to a) the kind of information that is tagged
in the tree/specifications for the verification process, and b) the kind of answer
the verification will return (boolean or numerical) as well as the procedure it uses
for its computation. The introduction of quantitative information in phylogenetic
specifications will be motivated by real examples. Looking at these examples, we
will identify the requisites that the future logics should have. The design of such
logics will also pay attention in the main aspects of decidability: many proper-
ties expressed in linear or branching-time logics based on Presburger formulas are
undecidable.

Finally, the last important factor to take into account is the availability of
predefined logics and the associated verification tools covering the proposals pre-
sented here. We will present the current developments of quantitative extensions
in the field of model checking, apply them to the definition of new properties over
phylogenies and provide to the phylogenetists a complementary framework where
they could inspect numerical relations. The enlargement of the semantics of Kripke
structures and the expressiveness of the temporal logics contribute to the definition
and verification of such properties. The expression and evaluation of quantitative
properties involving phylogenetic hypothesis is the main advantage of this chapter.

10.2. Towards a Classification of Quantitative

Properties Arising in Phylogeny

Evolutionary pressure of natural selection affects differently to each taxon be-
cause they are fixed to incomparable environments and ecosystems. Even, genes
concerning disparate traits of the same species mutate with apparently indepen-
dent speed, generating different topologies of gene trees. Moreover, current phy-
logenetic inference methods working with the same input not necessarily obtain
equal output phylogenies [71, 176]. Consequently, evolution is not an homogeneous
process, which is reflected in the variability of regions in genomic alignments and,
indirectly, the trees built from these data [131, 132, 119]. Phylogenies express these
biases through the tree diversity and unbalanced trees (binary or not).

Therefore, the branches that are supported by the majority of the inferred
phylogenies determine the main tree skeleton and the core of the evolution. The
inclusion of probabilistic information in the branches of the tree appears naturally
during the statistical analysis of the phylogeny: probabilities help to the detection

10.2. CLASSIFICATION OF QUANTITATIVE PROPERTIES 93

of the consensus tree [71], i.e., expressing the rate of trees confirming the topology.
The computation of these probabilities in the branches can be carried out by
the model checking tools using the equations of maximum likelihood estimations
(MLE) [69]. To this end, we need to extend the capabilities of the software tools for
evaluating quantitative functions over the set of states selected by the traditional
model checking algorithms: now, they will return a number as output result instead
of a boolean value.

Otherwise, likelihoods also work for inspecting the probability of reaching a
given state of the phylogeny, for example, the probability of reaching a population
with a chronic disease from the root (i.e., the lactose intolerance [160, 92]). For
this case, we introduce explicitly the probability inside the specification of the
property that we are going to evaluate: the result will be a boolean telling whether
the number of states satisfying the temporal logic formula is over a certain ratio
or not. Commonly, it is assumed that every descendant is reached with equal
probability from the root (i.e., every transition is equiprobable).

Additionally, the edges are occasionally enriched with time labels or lengths
for marking the differences in the speciation speed that appear in the nature. A
tree with integer weights in the branches is generated as output of a distance-
based phylogenetic reconstruction method [148], which builds the tree measuring
the number of mismatches between each pair of genomes. Therefore, the inclusion
of temporal labels in a phylogenetic tree inherits the concept of character distances
from the tree inference methods. In fact, the integer tags representing the time in
the edges have a dual meaning: they can be interpreted as the rate of nucleotide
variation between two consecutive genomes of the tree, or the chronological time
of the evolution. Besides, the knowledge of time is useful for learning complex
properties about the evolution and speciation speed, for instance, the estimation
of the temporal point of divergence between species [17], the diaspora of human
populations [76, 36, 101, 166] or army invasions [179].

Hence, a phylogenetic tree can be labeled with many types of tags, quantita-
tive or not: phenotypes such as chronic diseases or endemic features, geolocation
of populations and migrations, and so on. These data are specific for each phyloge-
netic study, but we search for a generic criteria for classifying the addition of new
information. Time and probability are the most common quantitative information
and they are shared by almost every phylogenetic study because of the aforemen-
tioned arguments. Therefore, the modifications of the logic, data structures and
algorithms will be driven by these types of data. In sum, we can organize the
tags as integers (chronological or character distances) or non-integers (probabil-
ities) for this first approach. Apart from the new annotations of the phylogeny,
the quantitative information can also be placed in the result of the model checking
evaluation: instead of returning a boolean, the output is an integer or real number.

94 CHAPTER 10. TIME, PROBABILITIES AND QUANTIFICATION

For compatibility with the annotations of the tree, the quantitative output of the
model checking algorithms can follow the classification of integers (chronological
or character distances) or non-integers (probabilities) as well.

10.3. Extending the Labels of the Phylogenetic

Tree and the Results of Model Checking

So, the inclusion of quantitative information in the phylogenetic analysis can
be boarded at two different levels: either in the definition of properties and the an-
notations of the tree, or in the result returned by the model checking process. If we
focus on the first level, the numerical data inserted into the tree and specifications
can be divided in a) timed or distance information, b) probabilistic information
and c) raw quantitative information. The first two ones are mainly related to
the labeling of the tree branches, while the last one is more general and involves
numerical values and comparisons in the atomic propositions [137].

Take the following example. A phylogenetic tree with advanced annotations
is illustrated by Figure 11.1. It represents a phylogeny whose branches are scaled
proportionally to the time. The subtrees are labeled with probabilities representing
either the statistical support for that clade, or the likelihood of taking that edge
during the speciation. For instance, imagine that the tips represent individuals
from different ethnic groups and the leaves are labeled with their DNA, an identifier
and a boolean indicating if they suffer from a specific illness. Suppose that X and
Y suffer from lactose intolerance, an endemic disease that causes the inability to
digest milk. The rest of members are healthy.

Timed information. The branch lengths are proportional to the mutation
clock pointed by the segment in the legend. Each transition implicates a change
of 0.05 nucleotides (5%) per site and per unit length with respect to the direct
ancestor, and thus, it provides a visual mode for studying the total rate of variation
of the genomic sequences along a segment. In this example, we can inspect the
number of changes between the ancestor of X and Y, and the rest of healthy
individuals: it indirectly tells the estimated date of appearance of the (in)tolerance.
A phylogenetic tree whose branches are proportional to the number of nucleotide
changes is called phylogram, and chronogram if their edges are directly proportional
to the expected evolutionary time. For distinction, the basic phylogenetic trees
whose branches are not scaled with respect to neither time nor character changes
are simply called cladograms. �

Probabilistic information. The red values attached to the internal nodes of
Figure 11.1 indicate the statistical consistency or support of a clade. In brief,
those numbers express the percentage of inferred or bootstrapped phylogenies

10.3. EXTENDING THE LABELS OF THE PHYLOGENETIC TREE 95

whose leaves are arranged forming the same subtree. The ordering of the tips
is irrelevant for the identification of subtrees [18]. An internal node labeled with
1.0 means that the descending taxa are clustered together in every inferred phy-
logeny constructed using the relationships imposed by the sequences. It is possible
to compare phylogenies through the computation of maximum likelihoods estima-
tions [69]. Not only do the probabilities play an important role for the comparison
of trees through the evaluation of the tree coherence, but also they are useful for
showing the prevalence of chronic diseases inside genetic populations. The blue
values indicate the probability of moving from one node to another following that
branch: by default, we assume that every node is equiprobable and the summa-
tion of probabilities for each descendant must be 1.0. Using the blue values in this
example, the probability of reaching an individual with lactose intolerance from
the root is 0.25 (the likelihood of the X-Y subtree is 0.5× 0.5). �

Raw quantitative information. The incorporation of raw quantitative infor-
mation to the atomic propositions of the tree states increases the expressive power
of the system. This quantitative information is essential for describing questions
about biochemical properties related to the sequences, for example, asking the po-
larity, hydrophobia and size of the amino acids in the synthesized protein. The
necessity of including these data was already pointed in Section 4.3 during the
investigation of the conservation and covariation of sequences and their attributes.
The addition, manipulation and comparison of numerical labels is already sup-
ported in the verification process of some current model checking tools, but it is
important to take in mind the complexity of introducing Presburger and Peano
arithmetics. We classify the states with raw quantitative information in a separate
category in order to emphasize the distinction of the labels (genomic characters vs
numerical atomic propositions). �

Apart from the previous concerns that classify the numerical labels of the tree
in three families (timed, probabilistic or raw quantitative information), the need
for the extraction of quantitative results in some phylogenetic analysis is clear:
recall the calculation of distances between populations (pongos and homo) instead
of testing particular values. If we focus on the answer returned by the verification
process rather than the type of tags, the second big classification of phylogenetic
properties is separated in:

Boolean properties, where the result is true when the property is satisfied,
or counterexamples when the property is false;

Numerical properties, where the result is the computation of a number ac-
cording to a function applied over a group of elements, and whose most
prominent exponents are the calculation of (continuous or discrete) time dis-
tances or probabilities; and, finally,

96 CHAPTER 10. TIME, PROBABILITIES AND QUANTIFICATION

Figure 10.2: Phylogenetic tree labeled with quantitative information.

Parametric properties, where the result is an algebraic equation, occasionally
enriched with the set of integers or characters whose values make true the
temporal logic formula. This equation may involve quantitative relations or
genomic sequences.

The study of boolean properties has been already detailed in Chapter 4. Given
an initial state, they compute a set of reachable nodes fulfilling a certain feature.
The application of quantitative functions to inspect the numerical relations over
that set is also important. This quantification is crucial for the computation of
distances (timed or not) between sets of taxa or clades. The distances between
elements are mainly employed for the calculation of topological measures (e.g., tree
depth and balance [130]) and phylogenetic comparative methods (e.g., Robinson-
Foulds [146]). The inclusion of distances in the topological properties presented
in Section 4.2 helps to study, compare and refine the tree structure [158]. These
supplementary metrics are of particular interest in the case of several phylogenies
sharing identical scores under the same inference method [159]. Conversely, the
evaluation of numerical properties may return probabilities too; for instance, dur-
ing the calculation of the statistical support of a tree [69, 71]. We can analyze the
fitness of a set of trees according to all these informations.

Finally, parametric model checking allows the placement of parameters either
in the specifications or in the transitions of the model. The use of parameters
in the specifications helps to the identification of potential valuations that satisfy
a property instead of the manual inspection of the whole state space [38]. The
evaluation of a parametric formula will return a set of instances that confirm the
equation. Some properties such as the detection of back mutations, or the appear-

10.4. QUANTITATIVE PROPERTIES IN PHYLOGENETICS 97

ance of conserved and correlated regions of the DNA, can be expressed in terms
of parameters instead of particular instances of nucleotide characters. Properties
involving the verification of numerical restrictions over time, probabilities or raw
quantitative data are also susceptible to the definition of upper and lower para-
metric bounds in the CTL path operators [32]. In case of the placement of numeric
parameters in the model, the result of the evaluation is a mathematical equation
representing the relations that must be fulfilled by the values.

10.4. Quantitative Properties in Phylogenetics

One of the main results of this chapter is the sorting of the phylogenetic proper-
ties with quantitative requirements. Following the catalog proposed in this section,
the phylogenetic properties are organized in a Cartesian product presented in Ta-
ble 10.1. In the first column, we are centered in properties related with the genome
and its arrangement in the tree. If we focus on properties with a boolean result,
we obtain Table 4.1. In Chapter 4 we detailed the methodology for defining and
evaluating properties of this genre. The use of parameters allows the extraction of
the columns (i,j) and nucleotides (σi, σj) making true the equations. By definition,
the output result of a qualitative formula cannot be a number.

Secondly, the inclusion of explicit time admits the specification of restrictions
such as distance(ape, homo) > 10, where we test if the accumulated weight for
the transitions between these two taxa is over or below 10. As explained previ-
ously, the verification or computation of distances between sets of populations can
be carried out by extended CTL-like formulas that are evaluated over a enriched
phylogeny with temporal information. These new CTL path operators collect the
weight of each branch and test if the accumulated length is over the indicated value
or not (Chapter 11). Conversely, the algorithms of quantitative model checking
are updated for calculating integers (distances) and float numbers as output. The
calculation of distances between symbolic objects is detailed in Chapter 12. Ei-
ther the distance or the symbolic identifier of species in the specifications can be
replaced by a parameter.

Thirdly, we test if the number of states validating a property in the phylogeny
is over or below a certain probabilistic bound. Several types of phylogenetic prop-
erties accept the inclusion of probabilities in their definition. For instance, we can
evaluate sequence properties (e.g., checking the ratio of DNA mutations that ac-
tivate the lactose tolerance in the phylogeny) or tree properties (e.g., checking the
likelihood of generating a particular topology with a DNA substitution model).
Similarly to the calculation of distances, the CTL path operators that are adapted
for probabilities collect the likelihood of each branch and test if the accumulated
probability is over the indicated value or not. Although probabilities are essentials

98 CHAPTER 10. TIME, PROBABILITIES AND QUANTIFICATION

in both types of properties, the calculation of likelihoods differs in each situation
because they use different models: the evaluation of probabilities over the align-
ments requires a phylogeny (model) labeled with likelihoods (Chapter 15), while
the evaluation of the tree support for a certain topology requires a DNA substitu-
tion model (Chapter 14). Some model checking tools such as PRISM [124] have
algorithms that return these float numbers as output of the evaluation.

The parameters introduced in the genome for a sequence property are identical
to the parameters introduced in the first column. The DNA mutation model can
be also left undetermined: in this way, the model checking tool will search for the
best parameter of the DNA model that generates the topology of the tree, but
this field is still unexplored and needs a more detailed study. The model checking
algorithms can be updated for returning the maximum or minimum probability of
satisfying a property.

Finally, the properties with raw quantitative information include arithmetic
comparisons in the atomic propositions. The last column is equal to the first
column in terms of restrictions and expressiveness, with the addition of numbers
as the only novelty in the inequalities and parameters. The type of properties
explained in Section 4.3 (conservation or covariation of biochemical patterns) falls
within this category. The incorporation of quantitative information may increase
the complexity of the associated logics and model checking algorithms.

10.5. Conclusions

The main contribution of this chapter is the identification of the limitations of
phylogenetic model checking for inspecting more complex properties. To this end,
we have detected new quantitative requirements for the analysis of phylogenies.
The phylogenetic properties are classified and organized according to the quan-
titative information they use: principally the time (distance) between states and
probabilities. There exists many more quantitative tags, but these two are the
most representative. The evaluation of hypothesis with this kind of data requires
the extension of the phylogenetic tree with temporal and probabilistic annotations,
a logic with a renovated syntax, and an algorithm considering this knowledge. The
inclusion of quantitative information is not exclusively restricted to the definition
and verification of specifications with explicit time or probabilities: now, the model
checking process may return numerical results as output as well. This last approxi-
mation demands the update of the traditional verification algorithms for managing
and computing specific functions over a sets of states characterized by a temporal
logic formula.

In sum, the next chapters explain the incorporation of time and probabilities
to model checking with intuitive examples. Our goal is the application of existing

10.5. CONCLUSIONS 99

Q
u
al

it
at

iv
e

T
im

e
P

ro
b
ab

il
it

y
R

aw

B
T

ab
le

4.
1

P
h
y
lo

ge
n
et

ic
p
ro

p
er

ti
es

en
-

ri
ch

ed
w

it
h

d
is

ta
n
ce

s:
d
is
ta
n
ce

(p
on
g
o,
h
om

o)
>

10
?

P
ro

b
ab

il
it

ie
s

ov
er

al
ig

n
-

m
en

ts
:

P
r(
co
n
se
rv
a
ti
on

(2
,3
,A

A
))

>
0.

8?
L

ik
el

ih
o
o
d

of
a

tr
ee

to
p

ol
-

og
y

gi
ve

n
a

D
N

A
m

u
ta

ti
on

m
o
d
el

:
P
r(
J
u
k
es

C
a
n
to
r,
to
po
lo
g
y
)

≤
0.

4?

B
io

ch
em

ic
al

p
ro

p
er

-
ti

es
:

E
G

((
si
ze

>
11

0)
∧(
si
ze
<

13
0)

)?

N
—

(I
m

)b
al

an
ce

m
et

ri
cs

M
ax

/m
in

d
is

ta
n
ce

s
b

e-
tw

ee
n

cl
ad

es
,

ro
ot

s
an

d
le

av
es

L
en

gt
h

of
ri

gh
t

an
d

le
ft

p
at

h
s

S
y
m

b
ol

ic
d
is

ta
n
ce

s
(R

ob
in

so
n
-F

ou
ld

s)

M
ax

/m
in

p
ro

b
ab

il
i-

ti
es

ov
er

al
ig

n
m

en
ts

M
ax

/m
in

li
ke

li
h
o
o
d

of
a

tr
ee

to
p

ol
og

y

—

P

i,
j
∈
N

,
σ
i,
σ
j
∈

Σ
,

se
q
∈

Σ
(j
−
i)

:
co
v
a
ri
a
ti
on

(i
,j
,σ

i,
σ
j
)

co
n
se
rv
a
ti
on

(i
,j
,s

eq
)

h
a
sB
M

(i
,σ

i)

P
h
y
lo

ge
n
et

ic
p
ro

p
er

ti
es

en
-

ri
ch

ed
w

it
h

d
is

ta
n
ce

s:
X
∈
N

:
d
is
ta
n
ce

(p
on
g
o,
h
om

o)
>
X

A
,B
∈
sp
ec
ie
s

:
d
is
ta
n
ce

(A
,B

)
>

10

P
ro

b
ab

il
it

ie
s

ov
er

al
ig

n
-

m
en

ts
:

i,
j
∈
N

,
se

q
∈

Σ
(j
−
i)

:
P
r(
co
n
se
rv
a
ti
on

(i
,j
,s

eq
))
>

0.
8

In
fe

rr
in

g
th

e
p
ar

am
et

er
s

of
a

D
N

A
m

u
ta

ti
on

m
o
d
el

fo
r

a
tr

ee
to

p
ol

og
y
:

P
r(
m
od
el
,t
op
ol
og
y
)
≤

0.
4

B
io

ch
em

ic
al

p
ro

p
er

-
ti

es
X
,Y
∈
N

:
E

G
((
si
ze

>
X

)
∧

(s
iz
e
<
Y

))

T
ab

le
10

.1
:

S
u
m

m
ar

y
of

th
e

m
os

t
im

p
or

ta
n
t

p
h
y
lo

ge
n
et

ic
p
ro

p
er

ti
es

(T
y
p

e
B

:
b

o
ol

ea
n
;

N
:

n
u
m

er
ic

;
P

:
p
ar

am
et

ri
c)

.

100 CHAPTER 10. TIME, PROBABILITIES AND QUANTIFICATION

developments in quantitative model checking to the verification of phylogenetic
questions. The structure is arranged as indicated. First of all, Chapter 11 in-
troduces real (continuous) time in the specifications and transition systems. It
presents the syntax and semantics of Timed CTL (TCTL), with an application to
compute temporal distances between objects characterized symbolically in Chap-
ter 12. We continue with the introduction of probabilities that depend either on
discrete (Chapter 14) or continuous time (Chapter 15). To this end, we use previ-
ous investigations in Markov chains and logics such as Probatilisic CTL (PCTL)
of Continuous Stochastic Logic (CSLTA). Finally the application of parametric
model checking is presented as a future work and we finish with the conclusions of
this thesis.

Chapter 11

Timed Transition Systems and
Logics

Marty McFly: Wait a minute, Doc. Ah... Are you telling
me that you built a time machine... out of a DeLorean?
Dr. Emmett Brown: The way I see it, if you’re gonna build
a time machine into a car, why not do it with some style?

Back to the Future

11.1. Introduction

The importance of temporal constraints and distances transcends multiple
aspects of phylogenetic analysis. Phylogenetic reconstruction methods such as
Neighbor-Joining establish their theoretical background in the concept of distance
between each pair of taxa or individuals [148]. Hence, the edges of the inferred tree
are implicitly labeled with distances. Although they are based on nucleotide dis-
tances, which measure the number of differences among sequences of an alignment,
the relation between chronological time and nucleotide distances is known if only
we can approximate the mutation clock (i.e., estimating the number of changes in
the genome per year).

Indeed, a mapping between time and mutations in the transitions of the phy-
logenetic tree returns meaningful information about the number of changes during
the elapsed time of a branch: nucleotide distances can be reformulated in terms
of time intervals. The inclusion of temporal distances in the branches is relevant
for centering the verification of a phylogenetic property to paths with a specific
length in the phylogeny.

101

102 CHAPTER 11. TIMED TRANSITION SYSTEMS AND LOGICS

The presence of time in the branches of the phylogenetic tree is not unusual,
particularly in the studies of migrations in human populations [76, 36, 101, 166] or
army invasions [179]. Although the distances in population trees are expressed in
multiple ways (via the number of mutations between states or with a chronological
scale), the need of collecting these informations inside our framework is essential.
One of our main interests is the verification that the distance between the root
and the rise of a particular mutation falls within a certain threshold.

Moreover, the logical formulas that investigate sequence properties with delete-
rious or compensated mutations are usually focused in the vicinity of a state or the
tree surroundings. A deleterious mutation requires to terminate without offspring
in a small finite number of steps (Equation 4.18). The extreme conditions of low at-
mospheric pressure at high altitude in the Tibetan Plateau and Andean Altiplano
mark the genome and penalize disadvantageous characteristics [19, 25]. Tibetan
women with genetic adaptations that improve the supply and transport of oxygen
has more surviving children [20]. Recent studies approximate the hypothetical
dates of colonization of those areas using an estimated mutation clock, counting
the number of expected mutations per kiloyear (1000 years) with respect to the
most recent common ancestor of the individuals sharing the beneficial genotype
[177].

Another example is portrayed by the woolly mammoths [34]. Woolly mam-
moths include a mutated gene that evolved from a previous version found in the
common ancestor of elephantidae, and that remains almost unaltered in modern
elephants. This mutated gene changes the polarity and structure of the hemoglobin
and modifies how the oxygen binds in that place. The adaptation prevents freezing
the blood and awards the mammoths with an improved oxygen delivery around
the body in cold climates in opposition to their closest warm-climate relatives, the
African and Asian elephants. Knowing the length of this branch of the phylogeny,
it is possible to infer the date of the last glaciation because it supposed a critical
climate event in mammals settled in northern latitudes.

Internally, the acquisition of new functionalities arises by the accommodation
of correlated changes that, in a stable way, regulates the expression of a protein
or updates its morphology and biochemical properties. The detection of corre-
lated and conserved positions in the genome is influenced by the proximity of the
tree states. Short paths whose characters evolve in covariation are less prone to
appear by hazardous mutations but emerge caused by structural or biochemical
restrictions and selection pressure that guide those compensatory changes [41, 77].
Hence, the inclusion of timed bounds in the verification of a covariation hypothesis
(Table 4.1) helps to separate compensated mutations from spontaneous changes.
A similar reasoning can be applied to the study of time and space locality in SNP’s,
conserved sequences, and reversions or back mutations.

11.1. INTRODUCTION 103

In sum, the phylogenetists are interested in evaluating phylogenetic properties
that returns distances as result of the analysis; or properties with the option of
limiting the validity of a formula to a period of time. The use of explicit time in
the branches delimits more precisely the interval of time and the cone of influence
(tree paths) where we aim to check a phylogenetic property. Enriching the states
with ecological information, biochemical properties and three-dimensional images
of the proteins, it is possible to determine the effects of a string of mutations
caused by compensatory and selection-pressure events in the branch of Tibetans
or mammoths. The scrutiny and comparison of the genomical sequences in closely
related species allows the biologist to obtain the principal genetic differences be-
tween them. Finally, the inclusion of time in the branches allows the computation
of distances for the detection of topological properties such as parallel and con-
vergent evolution (Section 4.2). The previous examples reaffirm the obligation of
introducing temporal logics with real time.

Therefore, the questions solved by timed logics and structures in the field of
phylogeny are mainly related to the verification of common phylogenetic properties
enlarged with explicit time distances. The accretion of temporal logics with time
constrains enhances most of the properties defined in temporal logic in Table 4.1.
In brief, the kind of questions that we try to solve in this section can be summarized
as: when (dis)appeared a certain mutation or phenotype? Later, this information
can be associated with cultural, migratory or environmental events.

Thus, this chapter is devoted to the presentation of an existing temporal logic
that includes explicit time in the specifications. The objective is to provide an
extended framework for the definition and evaluation of phylogenetic properties
with quantitative restrictions; in this case, distances. To this end, we enrich the
phylogenetic tree with clock restrictions in the branches and adapt the existing
TCTL (Timed CTL) to the domain of phylogenetics. After this introduction,
Section 11.2 introduces the syntax, data structures and semantics required for the
logic. We exemplify the specification of a phylogenetic property with this new
notation. Next, Section 11.3 shows the algorithms for verifying and managing
properties with explicit time and distances in the specifications.

Finally, Chapter 12 gathers all the concepts presented here and applies TCTL to
solve specific problems, for instance, the inspection of the balance and asymmetries
of trees. More in detail, Chapter 12 works with an extended version of TCTL that
returns temporal distances as result of the evaluation of a formula. Our main
contribution is to show how we apply the notions presented here for the modeling
of phylogenetic properties that need the incorporation of time in the specification
or the computation of distances as output result.

104 CHAPTER 11. TIMED TRANSITION SYSTEMS AND LOGICS

11.2. Timed Logic and Structure

The first step for introducing time is the choice of its domain. A discrete time is
conceptually simple and the operations needed for its manipulation become easier,
while a continuous time is more powerful and expressive. For that reason, we
select a continuous time domain in order to cover the definition of a large number
of phylogenetic properties. Real time logics explicitly introduces the notion of
time in model checking [8]. The inclusion of time constraints is addressed through
heterogeneous ways: from bounded temporal operators syntax in the temporal
logic till references to explicit clock variables in the model. The first notation,
inherited of Timed CTL (TCTL) [6, 7], suffices for our purposes. Such logic allows
bounded temporal operators of the form AF≤5p meaning that inevitably event p
will occur within five time steps, with p the mutation characterizing the Tibetan
trait for example. The evaluation of real time logics needs a refined data structure
that provides timed semantics to the temporal formulas. Many definitions have
already been proposed [90, 13], but an adaptation of the transition system with
timed paths is enough for our objectives.

A Kripke structure (Definition 2) must be modified for managing timed envi-
ronments. Originally, it models a system capable of an infinite number of behaviors
or paths, infinite sequences of successive states π = s0s1s2 . . . such that s0 ∈ S0,
(si, si+1) ∈ R, i ∈ N. The set of possible executions (paths) in that structure can
be unfolded into its computation tree. Now, the paths should be extended with
temporal information. In a discrete time system, the representation of paths keeps
the explicit succession of consecutive states because the distinction of states in
function of their time stamp is clear. However, in dense time, there is always an
infinite number of intermediate states between two temporal points. Thus, a new
description of the path is required in which we map the time to the states. A timed
path is a path π that evolves through the time. The function ρ(π, t) identifies the
state si of the path in which the system is found after t ∈ R time units since the
initial state s0, i.e., ρ(π, 0) = s0.

A complete grammar and semantics of TCTL formulas can be defined from a
minimal subset of logical operators. Note that TCTL has no next (X) operator:
if the time is dense, then there isn’t a successor by definition of real numbers. In
fact, there are infinite real numbers between two time stamps, and probably an
infinite number of states as well.

Definition 8 (Timed Computational Tree Logic). A temporal logic formula φ is
defined by the following grammar where c ∈ R is a time stamp and ∼ stands for
one of the binary relations {<,≤,=,≥, >}:

φ ::= true | p | ¬φ | φ ∨ φ | E [φU∼cφ] |A [φU∼cφ] (11.1)

11.2. TIMED LOGIC AND STRUCTURE 105

The formulas are checked against a transition system modeled with a Kripke
structure M = (S, S0, R, L,AP) over the set of atomic propositions AP . The
verification considers all timed paths π from a certain initial state s0 ∈ S. Notice
that M, s0 � φ means that a path π starting from s0 satisfies φ in c time units. The
semantics of well-formed formulas is as follows (let π = s0s1s2 . . . with ρ(π, t) = sj
the state of the Kripke structure at time t):

M, s0 � p⇔ p ∈ L (s0),

M, s0 � ¬φ⇔M, s0 2 φ,

M, s0 � φ ∨ ψ ⇔M, s0 � φ or M, s0 � ψ,

M, s0 � E [φU∼cψ]⇔ for some t ∼ c, ∃π : M,ρ(π, t) � ψ, and M,ρ(π, t′) � φ
for all 0 ≤ t′ < t.

M, s0 � A [φU∼cψ]⇔ for some t ∼ c, ∀π : M,ρ(π, t) � ψ, and M,ρ(π, t′) �
φ for all 0 ≤ t′ < t.

Timed variants of the modal operators F and G are obtained via U as F∼cφ =
trueU∼cφ and G∼cφ = ¬F∼c¬φ. The representation of F∼c is often a shorthand of
intervals. For instance, F≤c denotes F[0,c] and F>c denotes F(c,∞). The inspection
of properties with time constraints requires a deep knowledge of the phylogeny so
as to approximately estimate the distances between sets of nodes represented with
a temporal formula.

A simplified discrete time logic called Real Time CTL (RTCTL) assumes by
default that each transition of a Kripke structure consumes an unit time tick
[66]. Then, it is possible to verify RTCTL formulas in a Kripke structure without
explicit timed extensions because the logic implicitly adds an unitary weight to each
transition. Nevertheless, TCTL is more flexible and works with a powerful syntax
that requires the definition of a background timed structure. A timed automaton
is the basic data structure that provides the semantics to the verification process.

Definition 9 (Timed Automaton). A timed automaton is represented by a tuple
TA = (S, S0, R, L,AP,C, λ, τ) where:

S is a finite set of states,

S0 ⊆ S is the set of initial states,

R ⊆ S × S is a total transition relation between states, i.e., for every state
si ∈ S, there exists sj ∈ S such that (si, sj) ∈ R,

L : S → 2AP is the labeling function that associates each state with the subset
of atomic propositions that are true of it,

106 CHAPTER 11. TIMED TRANSITION SYSTEMS AND LOGICS

AP is the set of atomic propositions,

C is a finite set of clocks,

λ : R→ 2C indicates the transitions whose clocks are reset, and

τ : R → 2CC(C) is a function labeling each transition with a set of clock
constraints CC = {x ∼ c | x ∈ C ∧ c ∈ N} that restricts the conditions for
firing that edge. The value c is a time stamp of the clock x and ∼ stands for
one of the binary relations {<,≤,=,≥, >}.

The decidability of the model checking problem is not affected if c is a rational:
it can be scaled in order to convert it to a natural. The transitions between states
are instantaneous and several transitions can be fired at the same time instant.
The set of clock restrictions τ indirectly represents the delay spent in a current
node during the execution of the system until the branch conditions are fulfilled.
All the clocks run regularly at the same speed and are initialized to zero. Let
Eval(C) be the set of all the clock assignments to the clocks of C. The notation
ν(x) accesses to the current value of the clock x ∈ C, with ν(x) ∈ R. In other
words, ν is a function that maps clocks with dense time such that ν : C → R.
More generally, ν without parameters represents the valuation of the whole clocks
C.

The transition system associated to a timed automaton corresponds to the
Kripke structure needed for handling the infinite timed paths that the specifications
in TCTL require. The verification of a TCTL formula in a timed automaton is
equivalent to the verification of the same TCTL formula in the transition system
[7, 13]. The timed transition system demanded for the evaluation of a TCTL
formula is defined as:

Definition 10 (Transition System). A transition system TS(TA) associated to a
timed automaton TA = (S, S0, R, L,AP,C, λ, τ) is represented by a Kripke struc-
ture defined by the tuple M = TS(TA) = (S ′, S ′0, R

′, L′, AP ′) where:

S ′ = S × Eval(C) is the set of states,

S ′0 = {〈s0, ν0〉 | s0 ∈ S0 ∧ ν0(x) = 0 for all x ∈ C} is the set of initial states,

R′ ⊆ S ′ × S ′ is a total transition relation between states defined as:

• A discrete transition (〈si, νi〉, 〈sj, νi+1〉) such that ri = (si, sj) ∈ R.
The clocks λ(ri) are reset, i.e., νi+1(x) = 0, ∀x ∈ λ(ri). Besides,
νi+1(x) = νi(x)+ ti+1− ti, ∀x ∈ C \λ(ri) with ti+1 > ti, and ti, ti+1 ∈ R.
The clock valuation νi+1 satisfies a firing condition τ(ri).

11.2. TIMED LOGIC AND STRUCTURE 107

• A delay transition (〈si, νi〉, 〈si, νi+1〉). Only the clocks are updated with
νi+1(x) = νi(x) + ti+1 − ti, with ti+1 > ti, and ti, ti+1 ∈ R. The clock
valuation νi+1 may not satisfy any firing condition τ(ri) yet.

L′(〈s, ν〉) = L(s) ∪ {g ∈ CC(C) | ν � g} is the labeling function, and

AP ′ = AP ∪ CC(C) the set of atomic propositions.

Now, the notation of the infinite paths π is enlarged for considering the po-
tential infinite set of states S ′ (which is caused by the Cartesian product with
the uncountable number of valuations for the real time clocks Eval(C)). Hence,
following the discrete transitions of the transition system, π evolves with the ca-
dence π = 〈s0, ν0〉〈s1, ν1〉〈s2, ν2〉 In this case, the state 〈si, νi〉 changes to
〈sj, νi+1〉 when νi satisfies the enabling condition τ , which indirectly determines
a discretization of the dense-time paths in the timed automaton. Otherwise, the
path π remains unaltered in the same state si while it executes a delay transition,
i.e., π = 〈s0, ν0〉〈s0, ν0 + t1〉〈s0, ν0 + t2〉 . . . with t2 > t1. The function ρ(π, t) is
updated for considering the new type of π, i.e., ρ(π, 0) = 〈s0, ν0〉.

The translation of a branching-time phylogeny to that transition system is
addressed by the extension of Definition 3 with the inclusion of clock restrictions
τ in the set of edges E of the tree. In a phylogeny, these constraints define upper
or lower temporal bounds in the connections between species, probably marking
the interval of time when those taxa diverged. The self-loops in terminal nodes
of the transition relation R′ lead to perpetual siphons (by default, these self-loops
consume 0 ticks of time). Every tree node can be also enlarged with local clock
variables for monitoring the time spent until the next state. Normally, a single
clock representing the chronological time through all the tree will be enough for our
purposes in phylogeny, but we keep the notation of a set of clocks C for generality.

Finally, let’s remember the examples presented in Section 11.1 that motivated
the introduction of temporal logics with explicit time. For instance, we want
to discover the date of divergence of the Tibetan ethnic group with respect to
its closest relative population. In particular, we aim to detect when the genetic
adaptation that favors the habitability in high altitude zones appeared (it marks
the tribe genome as well). To this end, we define a phylogenetic property that
searches for the most recent common ancestor of the Tibetans. The following
TCTL Equation 11.2 with time extensions introduces the notation that we have
presented here. This formula investigates, in the phylogenetic tree of Figure 11.1,
if there exists an internal node (EF) whose terminal leaves are reachable in a
distance less than 3 kiloyears (AF≤3ky) and the individuals they represent possess
the mutations affecting to this new phenotype:

EF AF≤3ky(seq[i] = j) (11.2)

108 CHAPTER 11. TIMED TRANSITION SYSTEMS AND LOGICS

Figure 11.1: Phylogenetic tree and its transition system labeled with time intervals
in the branches and taxon identifiers in the nodes (the DNA sequences are omitted
for readability).

This equation can be exported to other examples such as the study of time
in the woolly mammoth lineage. Hence, TCTL is suitable for the definition of
phylogenetic properties enriched with explicit time distance. The existence of
software tools and model checking algorithms for managing TCTL queries provides
a complete framework for the verification of biological hypothesis. The model
checking algorithms needed for handling TCTL formulas are presented in the next
section.

11.3. Algorithm for Timed Model Checking

The algorithms of model checking are enlarged for taking into consideration
the new temporal information of the transition system. Due to the infinite compu-
tational tree, the model checking process has to do a few simplifications in order
to cope with this complexity. These simplifications are founded on the fact that
certain states of the transition system are indistinguishable by this logic if we focus
exclusively on the time, for example, when the time elapsed in two different states
is the same. The underlying idea is the identification of equivalence classes accord-
ing to compatible temporal constraints. To this end, we define an equivalence of
clocks [7].

Definition 11 (Equivalence of Clock Assignments). Two clock valuations ν, ν ′ ∈
Eval(C) are equivalent (ν ≡ ν ′) if they satisfy the following conditions.

11.3. ALGORITHM FOR TIMED MODEL CHECKING 109

For each x ∈ C, bν(x)c = bν ′(x)c or both ν and ν ′ are greater than cx, with
cx the largest constant of x found in the firing conditions τ and b·c the integer
part of the real number.

For each pair of clocks x, y ∈ C, such that ν(x) ≤ cx and ν(y) ≤ cy, the
fractional parts (fract) of the clocks should:

• fract(ν(x)) ≤ fract(ν(y)) iff fract(ν ′(x)) ≤ fract(ν ′(y)), and

• fract(ν(x)) = 0 iff fract(ν ′(x)) = 0.

The application of this equivalency defines a finite number of clock regions
in the original transition state space. In other words, it groups the infinite set of
states S ′ into a finite set of clusters, each one fulfilling compatible time restrictions:
the clock valuations ν ∈ Eval(C) are organized in equivalent regions (denoted as
Eval(C)/ ≡). The equivalence class of ν is denoted by [ν], i.e., the set of ν ′ that
are equivalent to ν. As a particular case, an end class is the equivalence class
satisfying x > cx for all clocks x. An equivalence class α is a boundary class if for
any ν ∈ α and t ∈ R>0, ν and ν+ t are not equivalent. We must define a successor
function over the clock equivalences in order to capture the transitions between
clock regions [7].

Definition 12 (Successor Region). Given a set of clock regions defined over
Eval(C)/ ≡ according to the equivalence of clock assignments (Definition 11),
the successor of a clock region α is β (succ(α) = β) iff for each clock ν ∈ α there
exists t ∈ R>0 such that ν + t ∈ β and ν + t′ ∈ α ∪ β for all t′ < t.

The state space is reordered in terms of regions defined over the transition
system, classifying the states 〈s, ν〉 in a two dimensional space by proposition φ
and valuation ν. The state region of s′ = 〈s, ν〉, denoted [s′] with s′ ∈ S ′, is
defined by [s′] = 〈s, [ν]〉 = {〈s, ν ′〉 | ν ′ ∈ [ν]}. Any movement among nodes inside
this set doesn’t change the validity of the state proposition, which is only affected
by an inter-region transition. Hence, the clock valuations Eval(C) and the state
labels determine a finite number of equivalence classes that are the basis of the
model checking process. The aim of the algorithm presented in this section is the
execution of the classic CTL model checking algorithm over the regions of this last
finite structure, called Region Transition System (RTS) and that we will define
later. The objective of the following transformations is to translate the problem
of solving a TCTL equation to the standard problem of solving a CTL formula.

The process of verifying a formula φ is divided into five big steps, which can
be summarized in pseudo code as explained in Algorithm 5 [13]. In brief, it starts
transforming a TCTL formula φ into a CTL equation φ′ by deleting the timed

110 CHAPTER 11. TIMED TRANSITION SYSTEMS AND LOGICS

Algorithm 5 Algorithm Sat (M,φ)

Require: TA = (S, S0, R, L,AP,C, λ, τ) is a timed automaton
Require: φ is a TCTL formula
Ensure: TA � φ

Transformation of φ into φ′ by the elimination of timed restrictions ∼ c of
the formula, for example, in ψ1U∼cψ2

Migration of the timed restrictions ∼ c to a state condition with z an
external clock, for example, in φ′ = ψ1U(ψ2 ∧ (z ∼ c))

Determination of the equivalence classes under ≡∗

Construction of the region transition system M=RTS(TA,φ) equivalent to
the timed automaton TA

Application of the CTL model checking algorithm Sat (M,φ′) to check
M, 〈s, [ν]〉 � φ′

restrictions ∼ c. The temporal information must be reincorporated to the verifica-
tion process in the second step. To this end, we introduce an extra clock z /∈ C to
the model and specifications for tracking the time elapsed in traversing the regions
of the region transition system. The clock z is initialized to 0, it is never reset along
the path and it is updated consistently with the other clocks. Next, the formulas
are rewritten in terms of state conditions with z instead of temporal restrictions
over the path operators. The states of the RTS are labeled with atomic proposi-
tions representing the clock constraints that are fulfilled in that state. Later, we
calculate the equivalence classes according to ≡∗. The equivalence class ≡∗ is an
extension of ≡ that includes the set of clocks C∗ = C ∪ {z}. Finally, we construct
the region transition system associated to the timed automaton TA and formula
φ, and we apply the algorithms of CTL.

A region transition System RTS(TA,φ) is a transition system whose nodes are
clustered by time and by property according to the restrictions they satisfy. It
depends implicitly of the formula φ that we try to verify: its maximal constants
∼ c are of relevance to the clock equivalence only. In case the region transition
system does not depend on (the maximal constants occurring in) φ, we simply
write RTS(TA). The RTS is defined as:

Definition 13 (Region Transition System). Given a TCTL formula φ, the region
transition system RTS = (S∗, S∗0 , R

∗, L∗, AP ∗) is an enhanced transition system
TS = (S ′, S ′0, R

′, L′, AP ′) from a timed automaton TA = (S, S0, R, L,AP,C, λ, τ)

11.4. CONCLUSIONS 111

where:

S∗ = S ′/ ≡ is a finite set of states obtained by the equivalence classes of
Eval(C) and S,

S∗0 = {[s′] | s′ ∈ S ′0} is the set of initial states,

R∗ ⊆ S∗ × S∗ is a total transition relation between states defined as:

• A discrete transition (〈si, α〉, 〈sj, α′〉) such that α is an equivalence class
and ri = (si, sj) ∈ R. The equivalence class α is not a boundary class.
The equivalence class α′ is the equivalence class α with some clock that
are reset. The clocks λ(ri) are reset, i.e., ν(x) = 0, ∀x ∈ λ(ri) and
∀ν ∈ α. The clock valuation ν satisfies a firing condition τ(ri).

• A delay transition (〈si, α〉, 〈si, succ(α)〉) where α is not an end class.

L∗(〈s, [ν]〉) = L(s) ∪ {g ∈ AP ∗\AP | [ν] � g} is the labeling function.

AP ∗ = AP ∪CC(C)∪CC(φ) with CC(C) the clock constraints of the timed
automaton TA and CC(φ) the clock constraints introduced by the formula φ.

Therefore, the verification of a TCTL formula φ in a timed automaton TA is
reduced to the verification of a CTL formula φ′ in RTS(TA,φ). Once the region
transition system is obtained, a CTL-like model checking algorithm is applied.
Thus, the complexity of verifying a TCTL formula φ against a timed automaton
TA is linear in |φ| and (|S| + |R|), with |φ| the number of logical connectives
and temporal operators of the formula, and |S| and |R| the number of states and
transitions in the region transition system RTS respectively. More generally, the
complexity is Θ((|S|+ |R|) ∗ |φ|).

The commercial software UPPAAL is an example of a model checking tool
that implements these algorithms and it is prepared for managing timed transition
systems and logics. The open source NuSMV and PRISM also include variants
of these logics and systems. In fact, NuSMV assumes that each transition of the
transition system consumes a clock tick. Finally, PRISM implicitly embeds the
notion of time in probabilistic timed automata and Markov chains.

11.4. Conclusions

The main contribution of this chapter has been the study of phylogenetic prop-
erties that need the use of explicit time in the specifications. Firstly, we have
motivated the necessity of this extension with real examples; for instance, the in-
spection of the date of appearance of certain phenotypes in the branches of the

112 CHAPTER 11. TIMED TRANSITION SYSTEMS AND LOGICS

phylogenetic tree such as the peculiar traits of the Tibetan populations or woolly
mammoths. Next, we have collected the requisites for augmenting the model check-
ing framework and managing this new kind of restrictions in the specifications. To
this end, we have introduced TCTL for solving these problems. TCTL is an ex-
isting temporal logic with real time capabilities: it provides a syntax, semantics,
model checking algorithms and tools that fit with our requirements. After the
presentation of the logic, we have shown how to translate a phylogenetic property
to this particular notation. This approach shows the conceptual feasibility of our
proposal for defining hypothesis with temporal restrictions and distances. Finally,
we have presented the algorithms and software tools that can process this kind of
formulas.

The estimated theoretical complexity of verifying this type of specifications is
Θ((|S|+ |R|) ∗ |φ|), with |φ| the number of logical connectives and temporal oper-
ators of the formula, and |S| and |R| the number of states and transitions in the
region transition system RTS associated to the phylogenetic tree respectively. The
experimentation with this framework is delayed to further chapters. In particular,
Chapter 14 and Chapter 15 evaluate phylogenetic properties that mix probabili-
ties with temporal constraints, which poses a more complex, versatile and realistic
framework for the analysis of phylogenies. The time and memory consumption
observed in the experiments over there places an upper bound for the properties
studied here. Following to this chapter, Chapter 12 continues with the analysis of
temporal distances between sets of tree states but from a complementary perspec-
tive: now, the output result of a phylogenetic property is an integer indicating a
distance.

Chapter 12

Computing Distances Between
Symbolic Objects

Time is the longest distance between two places.

— Tennessee Williams, The Glass Menagerie

12.1. Introduction

The result of some phylogenetic properties is not necessarily constrained to a
boolean result. As well as checking the validity of a formula with qualitative model
checking, biologists often need quantitative information as output of an evaluation.
For example, the increasing number of inferred phylogenies and procedures for com-
puting them leads to the necessity of incorporating comparative methods that help
to analyze the structural differences of the trees. These comparative methods are
based on distances between sets of states, the number of movements for converting
one tree in another, or more generic topological measures (tree balance and asym-
metry) involving the calculation of numerical values. In fact, the use of topological
measures allows the comparison of heuristics for building phylogenies as well as
the discrimination of trees violating phylogenetic restrictions [130, 158, 159].

Thus, the calculation of quantitative information is a key question for com-
paring and discarding trees. The identification and selection of the elements over
which we will evaluate an arithmetic function comprises the first step. Here, the
aim of this chapter is twofold. First of all, we focus on the symbolic manipulation
of phylogenetic objects : we try to characterize a particular set of states of the tree
satisfying certain restrictions imposed by a formula of temporal logic.

Later, we show that the model checking framework supports the manipulation
of these objects and the computation of distances among them. Previously in

113

114 CHAPTER 12. DISTANCES BETWEEN SYMBOLIC OBJECTS

this thesis, the analysis of phylogenies with model checking was centered primarily
on the specification and evaluation of boolean hypothesis over the whole tree.
Now, we focus on the characterization of a particular set of tree states satisfying
certain restrictions imposed by a formula of temporal logic. For instance, the set
of nodes of the phylogeny belonging to a clade represents one of these objects. The
computation of the distance between two clades is important for discerning if the
tree is coherent or aberrant with respect to a hypothesis of the phylogenetists.

Obviously, the inclusion of numerical restrictions in the computations requires
the incorporation of quantitative capabilities in current temporal logics and model
checking algorithms. The presentation of the TCTL logic (Chapter 11) provides
a syntax and semantics for the definition and inquiry of properties with explicit
integer values in the specifications. But the distances introduced in the specifi-
cations can also be discovered by the model checking algorithms in some cases.
Following the same classification introduced for the labeling of the branches with
quantitative information, the numerical output of model checking can be grouped
in distance (or temporal) values and probabilities.

In this chapter, we focus exclusively on returning temporal distances between
phylogenetic objects defined symbolically as result of the model checking process.
We show how some common phylogenetic metrics can be formulated with temporal
logics. Alternatively to all the measures involving time and distances, we center
our attention for probabilities in Chapters 14–15. There, we initially study the
truth of a boolean property over a phylogenetic tree with a particular instance of
the probability threshold. Most of the usual model checking tools are also capable
of automatically infer the upper (maximum) and lower (minimum) probability
bounds.

12.2. Returning Time Distances as Output of

the Model Checking Procedure

Firsts extensions of classic model checking algorithms cater for the computation
of quantitative bounds. Normally, they count the maximum or minimum number
of (timed) steps between groups of elements, considered as sets of states charac-
terized by a logical formula [35]. These modifications in the logic result in the
addition of MAX and MIN operators to the repertory of instructions of common
model checkers such as NuSMV, which returns numerical values as output of their
evaluation. Those operators belong to the syntax and semantics of the RTCTL
logic, one of the firsts time extensions to CTL that assumes a weight of one time
step in each branch of the tree.

As root, common ancestors, leaves and clades are easily characterized sym-

12.2. RETURNING TIME DISTANCES 115

bolically with a proper labeling of the states and querying logic (see Chapter 4,
Section 4.2), this feature provides a precise way for the computation of branch
lengths and distances. A clear example of application corresponds to the calcu-
lation of the chronological date of divergence between populations in the Tibetan
Plateau, where each one is characterized by its particular polymorphisms.

Moreover, most tree (im)balance and asymmetry metrics for testing the quality
of a phylogeny use topological distances between the root and subtrees or leaves.
Sometimes, they discriminate the path lengths of left and right descendants (whose
direction is marked when labeling the states of the tree) [136, Table 2]. For in-
stance, the computation of the mean topological distance M from the root to the
leaves is:

M =
1

N
Σi∈LMi

where N =|S| is the number of states in the tree (Kripke structure), L is the
set of leaves and Mi is the topological distance, i.e., the number of intermediate
nodes between the ith leaf and the root. In the particular case of acyclic directed
graphs such as trees, a pair of states are connected with a single path and thus the
MAX/MIN distance between nodes is identical. Any of the next two expressions
in NuSMV will return the same value for the length between the ith leaf and the
root:

COMPUTE NAME Mi := MAX [id=root, id=i]

COMPUTE NAME Mi := MIN [id=root, id=i]

Storing the partial results of each Mi and applying the correspondent addition
to all the elements, we obtain the aforementioned metric. The mean topological
distance is used for the calculation of the statistical variance or in the next metric:

Σi∈LMi/2
Mi

As the range of output values of Mi is well-determined by the number of nodes
of the tree, the balance of the tree is known by the examination of this result.
Additional metrics are defined in terms of maximum distances between the root
and one of the leaves:

Σi∈IZ
−1
i

where I is the set of internal nodes. The Zi values are computed through:

COMPUTE NAME Zi := MAX [(id=root) & !terminal, terminal]

116 CHAPTER 12. DISTANCES BETWEEN SYMBOLIC OBJECTS

The tree states are enriched with boolean variables in order to identify internal
and terminal nodes. Hence, it is patent that distance-based phylogenetic inference
methods can take advantage of this particularities and metrics for the construction
of a tree [176].

The previous approach is motivated by systems modeled with timed automaton
and discrete time logics where the branches are labeled with unit time stamps.
Further extensions should focus on the computation of MAX and MIN paths in
branches tagged with more flexible time stamps or lengths, i.e., continuous time
with t ≥ 1.

In addition, new and more complex quantitative functions can be applied over
the result set characterized by a symbolic function. Powerful quantitative model
checking tools such as PRISM allow us to count the number of states satisfying
a property or relation, the average of a numerical label in those states or the
maximum/minimum value. Supplementary balance metrics may take advantage
of these functions. For example, the metrics involving the count of leaves in left
(lj) and right (rj) subtrees descendant of the ancestor j :

2

(N − 1)(N − 2)
Σj∈I |rj − lj|

PRISM can evaluate the equation using the subsequent steps. Figure 12.1
represents the phylogenetic tree depicted in Figure 2.1 expressed in the notation
of the PRISM model checker. Each state is labeled with an identifier and two
boolean values: the first one tells if it is a leave or internal node, and the second
one tells if the node is the left or right descendant of his parent in case of a binary
tree. The phylogenetic tree is defined backwards: from the leaves to the top, plus
a self-loop in the root. The name of the root is changed to X1 in order to avoid
collisions with the reserved word X (next operator).

The counting of the terminal leaves belonging to the left subtree of the root is
achieved executing the following expressions. The first step returns the identifier
of the left son of the root, and the second step calculates the number of terminal
leaves that has the previous node as its root; i.e, the leaves belonging to the left
subtree. The computation of the number of leaves in the right subtree is symmetric.

"direct_left_son": filter(print, left & P>=1 [X id=X1])

filter(count, P>=1 [F "direct_left_son"], terminal)

Additionally to these metrics, the direct comparison of phylogenetic trees is
a key question. Robinson-Foulds [146] is one of the most common and popular
metrics in comparisons of (un)rooted trees, but there are many more [102]. Another
phylogenetic comparative method called SPR, that calculates the distance of two
trees as the minimal number of moves that transforms one tree into the other, is

12.2. RETURNING TIME DISTANCES 117

// Markov decision process

mdp

const int X1 = 1;

const int Y = 2;

const int Z = 3;

const int R = 4;

const int S = 5;

const int ext = 6;

module BACKWARD_TREE

// Initial state

id: [X1..ext] init ext;

terminal : bool init false;

left : bool init false;

// Root

[trans] id=X1 -> (id’=X1) & (left’=false) & (terminal’=false);

// Internal nodes

[trans] id=Y -> (id’=X1) & (left’=false) & (terminal’=false);

[trans] id=Z -> (id’=X1) & (left’=false) & (terminal’=false);

[trans] id=R -> (id’=Y) & (left’=true) & (terminal’=false);

[trans] id=S -> (id’=Y) & (left’=true) & (terminal’=false);

// Terminal leaves

[trans] id=ext -> (id’=R) & (left’=true) & (terminal’=true);

[trans] id=ext -> (id’=S) & (left’=false) & (terminal’=true);

[trans] id=ext -> (id’=Z) & (left’=false) & (terminal’=true);

endmodule

Figure 12.1: Description of a phylogenetic tree in PRISM syntax.

already implemented using logics in SAT [28]. This fact encourages the feasibility
of computing distances using temporal logics.

The complexity of model checking with quantitative outputs is directly re-
lated to the complexity of CTL model checking because the procedure uses the

118 CHAPTER 12. DISTANCES BETWEEN SYMBOLIC OBJECTS

satisfiability sets obtained by the original model checking algorithms and applies
quantitative functions over them. The complexity of the functions evaluated over
the result set determines the final complexity of the system, while the generation
of that set is proportional to the size of the formula.

12.3. Conclusions

In this chapter, we have emphasized the hidden features of the model checking
framework for selecting and manipulating sets of states symbolically. In particular,
the model checking algorithms are capable of computing numerical values (either
integers or real numbers) as output result: they apply arithmetic functions or
count the accumulated weight in the branches of a path separating sets of states.
Originally, we have focused on the calculation of temporal distances between sets
of states or phylogenetic objects defined in this way, but in future chapters we will
inspect the estimation of probabilities and ratios as well. Our main contribution
has been the application of these techniques for the extraction of phylogenetic
measures, mainly the balance and asymmetry of trees. We have illustrated the
description of the formulas using the notation of temporal logics. The examples
presented here open the possibility of implementing a wide range of phylogenetic
computations.

In sum, model checking is a complete and heterogeneous framework for model-
ing systems, specifying and evaluating phylogenetic hypothesis, and manipulating
symbolically sets of states according to the properties they fulfill.

Chapter 13

Conclusions

A good decision is based on knowledge and not on numbers.

— Plato

In this part, we have shown the heterogeneity in the specification of hypothesis
and the limitations of boolean temporal logics for expressing properties involving
complex phylogenetic relations or labels. In fact, we have motivated the extension
of model checking to quantitative domains using real examples, mainly for the case
of time and probabilities. After presenting the necessity of this quantification, in
Chapter 10 we have cataloged the properties according to the kind of quantitative
data they will handle. To this end, we have proposed the inclusion of temporal
and probabilistic labels in the branches because of its natural interpretation in
the phylogeny. The complexity of the new temporal logics managing time and
probabilities also constrains the decidability and computational costs.

Next, Chapter 11 develops the concepts and theory for evaluating properties
with dense (real) time in the specifications. There, we have recycled and adapted
an existing temporal logic, called Timed CTL (TCTL), as well as the data struc-
tures and model checking algorithms for manipulating this kind of formulas. More
in detail, we have shown the description of a phylogenetic property using this logic,
the association of a weighted phylogenetic tree to a timed transition system, and
the resolution of these specifications by a model checking algorithm. The study of
probabilities is relegated to Part V.

Finally, the introduction of time and probabilities is not limited to the addition
of labels in the phylogenetic tree or numeric variables in the specifications. The
computation of distances between states of the tree and the calculation of the
statistical support of a phylogeny need the modification of the model checking
algorithms for returning numerical values. The capability of our formal framework
for the symbolic manipulation of states using temporal logic formulas has been an
important factor. For example, Chapter 12 resolves the estimation of topological

119

120 CHAPTER 13. CONCLUSIONS

measures (e.g., tree balance and asymmetry) by applying arithmetic functions
over sets characterized with a particular equation. The evaluation of maximum
likelihood estimations is relegated to Chapter 15.

Part V

Quantitative Extensions of Kripke
Structures and Logics for the

Analysis of Phylogenies:
Approaching to Probabilistic

Properties

Probabilities play an important role for the study of phylogenetic properties.
They are applied in two complementary domains. From the point of view of
the topological coherence, the additional labels of the tree mark the statistical
consistency of the branches. Probabilities tell the number of bootstrapped or
inferred trees that support that specific shape. There exists a range of statistical
methods that compute these support values, which are usually expressed with
percentages between [0, 1]. One of the most common processes for scoring and
comparing trees numerically is based on the computation of maximum likelihoods
estimations [69].

Not only do they play an important role for the comparison of trees through the
evaluation of the tree coherence, but also probabilities are useful for showing the
prevalence of genetic patterns inside populations. Omitting the concrete support
values in the branches of the phylogeny, we can center entirely on the study of
the labels in the tree states. Even assuming that all the branches are generated
with equal probability, the likelihood of finding a particular label (mutation or
phenotype) in a state is not homogeneously distributed in the tree and it will
variate with respect to each section of the phylogeny. Hence, the calculation of
percentages of satisfaction of a property inside a clade or along a path of the
phylogeny enlarges the expressiveness during the verification.

In any case, the necessity of extending the formal framework with probabilities
for both circumstances is evident. Although they share common roots, the opera-
tions needed for the computation of the topological support slightly differ from the
operations needed for the computation of probabilities in reachable states. The
first problem usually evaluates continuous time equations for the elaboration of
maximum likelihood estimations, while the second problem is simplified with the
use of discrete time distances in the paths of the phylogeny. The application do-
main changes with the type of time considered for the computation of probabilities.
That is the main reason why the content of probabilistic model checking is divided
in two sections.

The aim of Chapter 14 is to present the main concepts of probabilistic model
checking with a probability function that depends on the discrete time associated
to the branches and, later, increment the complexity of probabilistic model check-
ing with continuous time in Chapter 15. In particular, the first chapter is devoted
to analyze the variation of a state property in several zones of the tree and com-
pute the probabilities of satisfaction, while the formalism introduced in the second
chapter is applicable to the estimation of maximum likelihoods.

123

Chapter 14

Discrete Time Probabilistic
Transition Systems and Logics

The probability of life originating on Earth is no greater
than the chance that a hurricane, sweeping through a
scrapyard, would have the luck to assemble a Boeing 747.

— Richard Dawkins, The God Delusion

14.1. Introduction

Previously, we have seen that the phylogenies are occasionally enriched with
time labels or weights in the edges. This knowledge is useful for learning complex
properties about the evolution, for instance, the estimation of the temporal point
of divergence between species [17] or the diaspora of human populations [36]. The
extension of the phylogenetic properties in Table 4.1 with time and probabilities
increases the expressivity of biological hypothesis.

Take the following disease as a clarifying example. The lactose intolerance in
adults is a chronic disease caused by the inhibition of the lactase gene after the
breastfeeding and childhood. The inability for processing the milk and its deriva-
tions is not homogeneously distributed in the human population. While in some
African pastoralist groups in North/East Africa and the northern cultures of Eu-
rope their stock breeding tradition and diet motivated an evolutionary adaptation
to digest the milk (> 70% of tolerance), the percentage of acceptation decreases in
the rest of areas and ethnic groups [160, 92]. In addition, the phenotype in Europe
and Africa appeared at a different epoch and the point mutations that regulate
the activation of the lactase persistence are disparate [163, 97]. Some illustrative
questions that we desire to ask to the phylogeny, and that are expressed below,

125

126 CHAPTER 14. DISCRETE TIME AND PROBABILITIES

require the addition of time to the branches of a population tree. The time allows
the estimation of the divergence points between individuals or mutations, while
the probability of the lactose persistence in different zones is calculated through
the study of the distribution of the point mutations that regulate the phenotype.
The questions are:

1. What is the rate of lactase persistence in a population? i.e., do their members
define a characteristic haplogroup? and in that case,

2. Which polymorphism, among the multiple activators and inhibitors of the
lactase gene, is the most frequent over there? and finally,

3. When did this phenotype approximately start to be predominant? i.e., does
this date mark an important event in the diet, culture or migration of that
population?

These questions ask about the time (dates) and probabilities (frequencies/rates)
stored in the branches of the tree. Besides, the deductive process that answers the
queries also needs the manipulation of quantitative information. Thus, we must
introduce a logic, a transition system and a model checking algorithm capable of
expressing and managing these kind of questions. The notion of time introduced
here matches with the concept of evolutionary or chronological clock.

This chapter is organized as follows. After this introduction, Section 14.2
presents the syntax of the discrete time probabilistic logic. Secondly, Section 14.3
introduces the model checking algorithm for PCTL. Next, Section 14.4 focuses
on the existing tools that handle this kind of logic and data structures. Finally,
Section 14.5 draws the conclusions of this chapter.

14.2. Discrete Time Probabilistic Logic and

Structure

In this section we are considering a phylogenetic tree enriched with numerical
information that tells the probability of selecting a branch descending from an
internal node. Therefore, we can answer questions like: what is the probability of
reaching a set of states of the tree from the root? The logic and data structure
defined here settle the basis for future updates and extensions for continuous time
systems in Chapter 15. Stochastic systems generally use Markov chains as the
underlying data structure that provides semantics to the verification process [106].
Discrete time Markov chains capture the essentials of probabilities between states
of the tree and implicitly associates an unit time step to every transition of the
system.

14.2. DISCRETE TIME PROBABILISTIC LOGIC AND STRUCTURE 127

Definition 14 (Discrete time Markov Chain). A discrete time Markov chain is a
finite transition system represented by a tuple M = (S, S0,P, L), where:

S is a finite set of states,

S0 ⊆ S is the set of initial states,

P : S × S → [0, 1] is the transition probability matrix that indicates
the probability of outgoing from state si to a certain state sj satisfying
Σsj∈SP (si, sj) = 1, and

L : S → 2AP is the labeling function that associates each state with the subset
of atomic propositions that are true of it.

A phylogenetic tree is assimilated to a discrete time Markov chain making the
corresponding associations of states to the definition of phylogeny (Definition 3).
The leaves are labeled with the genome information of the population or specie
they represent, plus additional data when necessary. Each branch of the phylogeny
is mapped to an element P(si, si+1) > 0 of the transition probability matrix. This
value gives the probability of making a transition from state si to state si+1 in
one time step. By default, we assume that all the descendants sj of a state si are
equiprobable (P(si, sj) = 1/n with n the number of successors), but this value can
be adjusted. The terminal leaves modeled with self-loops in the Kripke structure
of a branching-time phylogeny are represented in the transition probability matrix
by a single transition going back to the same state with probability 1.

For any set of infinite paths Π starting in the initial state s0, the subset Π(πn)
selects the paths π ∈ Π whose prefix equals to the finite sequence πn = s0s1s2 . . . sn
of length n + 1 states. The set of infinite sequences sharing the prefix πn has
probability Pr(Π(πn)) = PΠ(πn). The probability PΠ(πn) is calculated as the
product of probabilities for each intermediate transition, except for paths with
unitary length in which case n = 0, π0 = s0 and PΠ(π0) = PΠ(s0) = 1:

PΠ(πn) =

{
1 if n = 0
P(s0, s1) ·P(s1, s2) · . . . ·P(sn−1, sn) otherwise

Bayesian model checking methods allow for analyzing stochastic systems [100].
Probabilistic CTL (PCTL) [150, 88, 13] and Continuous Stochastic Logic (CSLTA)
[59] help to formulate conditions on a discrete or continuous time Markov chain,
respectively. The properties are referred to state formulas (φ) or path formulas
(Φ). Besides, they allow enriched queries of temporal formulas such as P∼λ (Φ).
Given an initial state s and a comparison∼∈ {<,≤,=,≥, >}, the operator P∼λ (Φ)
returns true if the probability for a set of paths satisfying Φ is ∼ λ, with λ ∈ [0, 1].

128 CHAPTER 14. DISCRETE TIME AND PROBABILITIES

Definition 15 (Probabilistic Computation Tree Logic). A temporal logic formula
φ is defined by the following grammar with the minimal set of operators, where
p ∈ AP and k ∈ N ∪ {∞}:

φ ::= true | p | ¬φ | φ ∨ φ | P∼λ [Φ] (14.1)

Φ ::= Xφ | [φU≤kφ]

The formulas are checked against a structure M considering all infinite paths
π ∈ Π from a certain state s0. Notice that M, s0 � φ means that s0 satisfies φ.
The semantics of well-formed formulas is as follows (let π = s0s1s2 . . .):

M, s0 � p⇔ p ∈ L (s0),

M, s0 � ¬φ⇔M, s0 2 φ,

M, s0 � φ ∨ ψ ⇔M, s0 � φ or M, s0 � ψ,

M, s0 � P∼λ [Φ]⇔ Prob(M, s0,Φ) ∼ λ,

The calculation of the probability Prob(M, s0,Φ) requires the identification of
the infinite paths π satisfying the path formula M,π � Φ:

M,π � Xφ⇔M, s1 � φ

M, π � [φU≤kψ]⇔ ∃0 ≤ i ≤ k, ∀0 ≤ j ≤ i : (M, si � ψ) ∧ (M, sj � φ)

This set, {π ∈ Π |M,π � Φ}, can be obtained by the union of finitely many
pairwise disjoint subsets Π(πn) by [106, Definition 3], each one characterized by
the finite prefix πn of all infinite sequences of the set. Therefore, Prob(M, s0,Φ) =
Pr{π ∈ Π |M,π � Φ} = ΣπnPr(Π(πn)) computes the probability as the summation
of probabilities in all possible prefixes πn by [106, Theorem 1].

These logics usually support timed transitions in the U operator. The notion
of time in a Markov chain falls within the concept of state distances. Each state
transition of the discrete time Markov chain involves an unit time step. A mapping
between the chronological time and state distances allows the inference of the
evolutionary speed in the branches of the phylogenetic tree. The computation
of time and probabilities are embedded in the model checking algorithm. Timed
variants of the modal operators F and G are obtained via U as F∼cφ = trueU∼cφ
and G∼cφ = ¬F∼c¬φ. Instead of writing intervals explicitly, sometimes they are
abbreviated with inequalities. For example, P≤0.5 [Φ] denotes P[0,0.5] [Φ].

Far beyond the use of discrete or continuous time, the main difference between
PCTL and CSLTA syntax is the substitution of the long-run operator L in PCTL

14.3. ALGORITHM FOR PCTL MODEL CHECKING 129

by a steady-state operator S of CSLTA. These advanced operators are unnecessary
for the phylogenetic problems we are trying to solve, but they could be included
in the future if necessary [106, 13].

By now, we can translate the questions presented in the motivation example
of lactose into the PCTL syntax. In a phylogenetic tree, the tips correspond to
individuals of disjoint populations whose states are tagged with their DNA and
a boolean indicating if they are lactose (in)tolerant. The internal nodes of the
inferred ancestors are labeled with their estimated DNA sequence and lactose
phenotype as well. The following equation asks if there exists an ancestor (P>0)
at distance 3 or above from the initial state (F≥3) that is the root of a population
with lactase persistence over 70% (P≥0.7 [F≥0 lactose tolerant]). The members of
a population, including the leaves and internal nodes, are reached through F≥0.

P>0 [F≥3 (P≥0.7 [F≥0 lactose tolerant])] (14.2)

The outer restriction P>0 [F≥3] corresponds to the question 3 of the motiva-
tion. It searches for an internal node from which the phenotype starts to be
predominant after a certain date since the phylogenetic root. The inner formula
P≥0.7 [F≥0 lactose tolerant] answers the question 1 about the rate of lactase per-
sistence in a population. Finally, the addition of a genetic marker in this place
inside the P≥0.7 equation helps to investigate the relation between a polymorphism
and phenotype (question 2). The evaluation of the formulas needs the algorithm
introduced in the next section.

14.3. Algorithm for PCTL Model Checking

The evaluation of formulas written in PCTL over discrete time Markov chains
drastically differs from the evaluation of formulas written in CSLTA over contin-
uous time Markov chains due to the divergent interpretation of time. This point
clearly arises during the verification process, which adds semantics to the spec-
ified formulas. The model checking algorithms for managing and solving PCTL
or CSLTA formulas in stochastic systems are mainly identical to those of classic
model checking except for the resolution of P∼λ[φ], i.e., the next and until operators
with probability thresholds. In short, the recursive algorithm of model checking
incorporates the new sentence:

Sat(P∼λ [Φ]) = {s ∈ S | Prob(M, s,Φ) ∼ λ}

P∼λ[Xφ] formula. In PCTL, the probability of satisfying the next operator
requires the probabilities of the immediate transitions from s. It is resolved by:

Prob(M, s,Xφ) = Σs′∈Sat(φ)P(s, s′)

130 CHAPTER 14. DISCRETE TIME AND PROBABILITIES

P∼λ[ψU≤kφ] formula. The computation of the probability for the until oper-
ator depends on the value of k. For the case of k ∈ N, then Prob(M, s, ψU≤kφ) is
equal to:


1 if s ∈ Sat(ψ)
0 if k = 0 or s ∈ Sat(¬φ ∧ ¬ψ)
Σs′∈SP(s, s′) · Prob(M, s′, ψU≤k−1φ) otherwise

When k = ∞, the until operator is analogous to the original until operator
of CTL with semantics of infinite paths. That is, Prob(M, s, ψU≤∞φ) can be
rewritten as Prob(M, s, ψUφ) and it equals to:


1 if s ∈ Sat(ψ)
0 if k = 0 or s ∈ Sat(¬φ ∧ ¬ψ)
Σs′∈SP(s, s′) · Prob(M, s′, ψUφ) otherwise

The time complexity of verifying a PCTL formula φ against a discrete time
Markov chain is linear in |φ| and polynomial in size of S, with |φ| the number
of logical connectives and temporal operators of the formula. More generally, the
complexity is

Θ(poly(size(S)) ∗ tmax ∗ |φ|)

where tmax is the maximal step bound of a path subformula ψ1U≤tψ2 of φ, with
tmax = 1 if it doesn’t contain any U subformula.

The evaluation of CSLTA formulas demands the upgrade of Markov chains
structures for providing continuous time semantics. The computation of proba-
bilities is assisted by a partial transformation of the continuous time problem to
a discrete time problem. Hence, the operations realized by the model checking
algorithms for the calculation of probabilities in PCTL are the basis for future
extensions. The time complexity of verifying a PCTL formula also poses a lower
bound to the complexity of analyzing a CSLTA formula. The introduction of these
semantics and complexity are presented in Chapter 15.

14.4. Model Checking Tools and

Experimentation

PRISM [124] is a generic model checking tool capable of handling probabilistic
and timed specifications over Markov chains. Among its basic conceptions, PRISM
checks if the probability of reaching a set of satisfiable states is up or below a

14.4. MODEL CHECKING TOOLS AND EXPERIMENTATION 131

predefined threshold. There exists a considerable diversity of model checking tools
with different performances and qualities [98]. Although the real performance
depends on the particular structure of the model and specifications, PRISM offers
Java portability, a powerful syntax for handling time and probabilities in models
and specifications, and a good scientific community support. Besides, it is open
source, which allows the modification and optimization of its code.

The model checking tool requires two input files for the verification process: a
first file with the description of the model, and a second file with the specification
of the properties. A description of the phylogenetic tree (Kripke structure with
atomic propositions) in PRISM syntax musts be provided by the user as first input
for the model checker. To this end, we precompute a sequence alignment and a
phylogenetic tree. The data set used for this experimentation is synthetic. With
this data set, we try to cover the spectrum of small phylogenies and analyze the
cost of the evaluation of the lactose property over there. We have created random
phylogenetic trees of up to 1000 tips using a Yule backward model [156]. For each
tree size (number of tips), we have generated ten random trees and calculated the
harmonic mean time. The DNA sequences have 50 bases with an homogeneous
distribution of nucleotides.

The PRISM codification of the phylogeny follows the same idea presented for
NuSMV in Section 5.3. Figure 14.1 shows the implementation of the branching-
time phylogenetic tree of Figure 2.1 in PRISM code. The main module describes
the topology of the evolutionary tree, where the names of the tree nodes (taxa) are
defined numerically (1, . . . , 5). PRISM distinguishes between the current state and
the next state using the quotation mark (’). The second part of the description con-
sists of a function returning the DNA string associated to each node, which evolves
in synchronization with the tree skeleton ([id1] tags in PRISM). The translation of
the phylogenetic tree to the PRISM syntax has been performed automatically by a
BioPerl script [153]. The script can be upgraded in order to include extra features
such as the generation of multiple instances of phylogenetic trees, bootstrapping
and so on.

We have evaluated the lactose formulas introduced in the motivation but en-
riched for the detection of polymorphisms in the DNA. The underlying objective
consists of the identification of a correlated evolution between the lactose tolerance
and patterns in the genome. Other studies such as [92] use cultural information
for discovering this coevolution and the influence of a milk-based diet. The utiliza-
tion of phylogenetic comparative methods and regression techniques establishes
the essentials of this approach.

The probability threshold of the internal P≥x [F≥0 seq[i] = j] ranges from x ∈
[0.1, 0.9], with i ∈ [1, 50] the position where we search for the polymorphism and
j a certain nucleotide. Figure 14.2 plots the time required for the computation of

132 CHAPTER 14. DISCRETE TIME AND PROBABILITIES

50 × 9 formulas corresponding to the expansion of i and x for all the columns of
the alignment and probability bounds. All tests have been run on a Intel Core 2
Duo E6750 @ 2.66 GHz with 8 GB RAM and Linux.

PRISM performs well for the verification of the lactose formulas in small phy-
logenies because it follows a polynomial trend in time with respect to the number
of tips. However, it requires the integration of new technologies and solutions to
scale for larger phylogenetic trees and specifications. In fact, we desire to find the
value of x, i and j parameters for which the verification of the equation returns
true. The definition of patterns is a common procedure, which intuitively leads to
parametric model checking [32]. Nonetheless, mining for knowledge without prior
information requires a more or less thorough exploration of the structure, which
can be combinatorial in some or all of its dimensions. Although inherently paral-
lel, the exhaustive inspection of potential solutions involves the test of large sets
of formulas and an intensive use of the topology and information of each state.
The application of parametric model checking for model exploration is a future
extension that will increase the potential of our framework.

Additionally, the phenotype is regulated by several polymorphisms and the
likelihood of finding a certain nucleotide depends on the selected path. For those
reasons, the model checking process demands the introduction of operators that
automatically compute the intolerance rate and the probability of reaching a cer-
tain nucleotide. The calculation of parameters representing probabilistic bounds
in the specifications are already managed by current model checking tools. The
computational capabilities of PRISM grants the inference of maximum (minimum)
probabilities of satisfying a property.

14.5. Conclusions

In this chapter we have motivated the extension for the analysis of phylogenies
via model checking using quantitative information. We have enriched the phylo-
genetic tree with respect to the tree in Chapter 11, where we only use explicit
time. Here, we have also proposed the inclusion of probabilities in the branches
of the tree because of its natural interpretation in the phylogeny as the main nov-
elty. In particular, we have presented a phylogenetic example based on the lactose
(in)tolerance that needs these kind of quantitative information. To this end, we
have introduced an extended logic and data structure adapted for probabilities
and time together with the algorithms and computations for managing them. Our
first goal has been the increase of the logical capabilities for querying about the
date of appearance and degree of distribution of mutations and phenotypes.

Next, we have experimented with synthetic data in order to prove the feasibil-
ity of our approach with existing probabilistic model checking tools. PRISM is a

14.5. CONCLUSIONS 133

generic model checking tool that performs well for small phylogenies in polynomial
time with respect to the number of tips. The tool is independent of the applica-
tion domain: it automatically verifies any proposition expressed with temporal
logic over a model of the system. However, it requires the integration of new tech-
nologies and solutions to scale for larger phylogenies and specifications due to the
particularities of the phylogenetic analysis. The distribution of the Markov chain
structure, the parallelization of the formula verification with the computation of
probabilities, and the integration of PRISM with the atomic propositions stored
in an external database constitutes a further step. Some of these ideas has been
already applied for standard CTL model checking in Chapter 7.

This work opens the door for the review of bigger phylogenies with properties
similar to the lactose persistence. The modularity of our framework allows the
evaluation of hypothesis and the comparison of results for a set of phylogenetic
trees by only changing the tree file (the specification of the property remains
constant).

134 CHAPTER 14. DISCRETE TIME AND PROBABILITIES

// Markow decision process

mdp

// Nucleotids

const int a = 1;

const int c = 2;

const int g = 3;

const int t = 4;

module TREE

// Initial state

id: [1..5] init 1;

// Root successors

[id2] id=1 -> (id’=2);

[id3] id=1 -> (id’=3);

// Left clade successors

[id4] id=2 -> (id’=4);

[id5] id=2 -> (id’=5);

// Self loops

[] id=3 -> (id’=3);

[] id=4 -> (id’=4);

[] id=5 -> (id’=5);

// In case of continious/discrete time markov chains (ctmc/dtmc)

// or probabilistic timed automata (pta), ’x’ and ’y’ will

// indicate probabilities or branch lengths

// [] id=1 -> x:(id’=2)+y:(id’=3);

endmodule

module SEQUENCES

// Root sequence

x1 : [a..t] init a;

x2 : [a..t] init a;

x3 : [a..t] init g;

// Sequences

[id2] true -> (x1’= a)&(x2’= t)&(x3’= g);

[id3] true -> (x1’= g)&(x2’= a)&(x3’= g);

[id4] true -> (x1’= a)&(x2’= t)&(x3’= t);

[id5] true -> (x1’= a)&(x2’= t)&(x3’= g);

endmodule

Figure 14.1: Mapping of the phylogenetic tree of Figure 2.1 in PRISM.

14.5. CONCLUSIONS 135

y = 5E-05x2 + 0,0027x + 1,7312
R² = 0,9999

0

10

20

30

40

50

60

0 200 400 600 800 1000

S
e
c
o
n
d
s

Number of Leaves

Figure 14.2: Time required for the verification of a set of probabilistic formulas
with respect to the number of tips in the phylogeny.

Chapter 15

Continuous Time Probabilistic
Transition Systems and Logics

Those are my principles, and if you don’t like them. . . well,
I have others.

— Groucho Marx

15.1. Introduction

In the preceding Chapter 10 we have introduced some of the common extensions
over the branches of the phylogenetic trees, that is, the labeling of the phylogeny
with time and probability tags. Besides, we have classified the phylogenetic prop-
erties according to these new criteria and the output results that produce their
analysis. Now in this chapter, we dive into the problem of analyzing the statistical
consistency of a phylogeny. More in detail, we study the computation of the sup-
port values that annotate the internal nodes and clades of the tree. This approach
is similar to that presented in Chapter 12, where we computed temporal distances
between sets of elements, but focusing on probabilities.

Here, the objective is to calculate the probability of generating a phylogenetic
structure as the result of a certain model of speciation/extinction [152, 156]. That
is, we evaluate a scoring function over the set of states of the tree. The value of
this probability is essential for guiding the search for the best phylogeny in tree
inference methods. Since no one knows the exact evolutionary process because of
its complexity, the inferred phylogenetic tree with maximum likelihood is selected
as the most representative and reliable evolution tree [69].

The maximum likelihood method is a statistical procedure for scoring the tree
and finding the best topology that describes the phylogenetic relationships of an

137

138 CHAPTER 15. CONTINUOUS TIME AND PROBABILITIES

alignment. It is one of the most important methods for assuring the reliability of a
tree. It takes a phylogeny, an alignment and an explicit model of DNA substitution
as input for the calculation of the maximum likelihood estimations (MLE). This
method uses continuous time functions for the estimation of mutation probabilities,
which motivates the extension of the probabilistic model checking presented in
Chapter 14 with real numbers.

Thus, this chapter revolves around the work with models of DNA evolution for
scoring the trees using maximum likelihood estimations. We show how the model
checking framework can be used for computing probabilities. The first part of this
chapter introduces the concepts and details about the models of DNA evolution
and its use for calculating the likelihood score. Secondly, we detail the equations
for computing the likelihood over phylogenies and comment the main limitations,
drawbacks and simplifications. The third point defines the logic and algorithms
for managing continuous time probabilities in model checking. Finally, the last
section talks about the experimentation phase: it explains the implementation of
the equations in a probabilistic temporal logic, their execution under a stochastic
model checking tool and the analysis of the performance results.

15.2. Models of DNA Evolution

Birth-death Markovian models describe the macroevolution process of specia-
tion [152, 156]. They are usually employed as basis for the generation of initial
random trees fulfilling the particular topologies and properties that are supposed
to appear in correct phylogenies. These trees, or those constructed by maximum
parsimony methods, are later utilized as initial seed for the tree exploration phase
by the evaluation of the maximum likelihood estimations [155].

Otherwise, the genome constitutes nowadays one of the most important traits of
a specie for its study. The models of DNA substitution provide finer details about
the genetic changes operating behind the macroevolution models. A DNA substi-
tution model describes the process from which a sequence of characters switches
into another one. In short, the models of DNA substitution capture how the
genomic information is placed in each state of a tree inferred from a speciation
model.

Often, the phylogenetists identify these DNA substitution models as the main
source of the evolutionary process and then associate the notion of evolution history
to the concept of mutation trace. Hence, the DNA substitution models are com-
monly referred to as phylogenetic models in the bio community: the phylogenies
arise as the result of a spanning simulation of these mutation models embedding
the complex process of speciation1. At this point, it is not surprising that biol-

1The consideration of DNA substitution models as phylogenetic models sometimes causes

15.2. MODELS OF DNA EVOLUTION 139

Figure 15.1: Model of DNA substitution.

ogists use an instance of a DNA substitution model to validate, using MLE, the
tree of life that they obtained from a particular reconstruction method and input
alignment.

In the context of DNA evolution, the phylogenetic tree would indicate the order
of occurrence of the mutations along the history in the speciation process. There-
fore, a given phylogenetic tree will reflect how the substitution model should act,
showing the trace of changes in a long-term run of the model. In other words,
the phylogeny specifies the behavior of the system, understood as the hypothetical
drift of the DNA during the time (Figure 15.2). Thus, a phylogenetic tree, implic-
itly formulated as a succession of transitions and transversions of the nucleotides,
is checked over a DNA substitution model. The validation process returns the
likelihood of emerging that tree from that particular model2.

The evolution drift leading to the substitution of nucleotides in the genome is
usually modeled with a Markov chain (Definition 16, Figure 15.1). Different models
of DNA evolution have been proposed in the literature, though the simplest ones
consider a four state Markov chain with variants in the probabilities of transitions
and transversions among nucleotides [174]. They are usually defined as templates,
indicating with parameters the ratios and relations between bases. By now, there
are highly optimized models for specific purposes (particular genes or organisms)
including the special biochemical features of the nucleotides such as stability or
expressiveness.

confusion with our terminology. Initially in previous chapters, we have identified the concept
of phylogenetic models with the phylogenetic trees over which we can ask questions about the
evolution.

2Transitions involve an interchange of bases of similar shape (purines A↔ G, or pyrimidines
C ↔ T). Transversions are interchanges of purine for pyrimidine bases.

140 CHAPTER 15. CONTINUOUS TIME AND PROBABILITIES

Figure 15.2: Unfolding of a model of DNA substitution.

15.3. Maximum Likelihood Estimation

Maximum likelihood is an optimal criterion that searches for computing the
maximum probability Li (Equation 15.2) of obtaining an specific configuration
of phylogeny for the current model of DNA evolution. This is one of the most
popular methods for guiding the tree reconstruction. The value Li represents the
confidence of a phylogeny with respect to the particular mutation model under
consideration [69]. Due to the uncertainty of the true evolution drift generating
the tree of life, a highest value for this score is supposed to increase the degree
of confidence over the estimated tree: the likelihood values guide the refinement
process. The maximum likelihood estimation works as a metric for comparing the
topology of two (or more) dendrograms built over the same data set.

Given an inferred phylogenetic tree and an input alignment, the computation
of maximum likelihoods returns the probability that a model of DNA substitution
follows the trace imposed by the topology and sequences. Therefore, the selec-
tion of other phylogenies, alignments or alternative models of DNA substitution
modifies the probabilities of the arrangements and returns different scores [117].

The computation of the likelihood score is carried out by the following formu-
las. At position l of a sequence with length n, the probability of changing from
nucleotide i (in state X) to nucleotide j (in state Y) is denoted by the proba-
bility function Pij(dXY). The variable dXY indicates the branch length between
the states X and Y , which is a positive value for each pair of connected states.
The Equation 15.1 corresponds to the overall likelihood for the tree in Figure 2.1.
The probability function Pij(·) depends on the selected DNA mutation model
[69, 42, 170]. This probability function is determined by the model checking tool
by analyzing the transitions of the DNA substitution model that it receives as

15.3. MAXIMUM LIKELIHOOD ESTIMATION 141

input. The expression Z(l) denotes the base of the DNA in taxon Z at position l.
The constant πi is the expected frequency of the base i in the alignment.

Ll = Σi={A,C,G,T}Σj={A,C,G,T} πiPij(dXY)PiZ(l)(dXZ) (15.1)

PjR(l)(dY R)PjS(l)(dY S)

The Equation 15.1 leads to a summation of 4N terms for alphabets with four
nucleotides, and N the number of internal nodes of the tree. It can be factorized
in order to avoid the recalculation of the same subformula multiple times. The
Equation 15.2 rewrites the MLE equation in terms of the likelihood functions of
the left and right subtrees for each internal node:

LlX = Σi={A,C,G,T}L
l
X,i (15.2)

LlX,i = ΣjPij(dXY)LlY,j · ΣkPik(dXZ)LlZ,k (15.3)

Normally, the DNA of present-time taxa in the leaves of the tree has maximum
likelihood (i.e., L1

Y,A = 1). In opposition, the nucleic bases of the internal nodes
are unknown and they shall be inferred with the mentioned formulas. Due to the
uncertainty in the genome of the ancestral states, the estimation of the likelihood
in X at position l implicates the summation of LlX,i for all the possible nucleotides
(Equation 15.2). The evaluation of the likelihood equation at the root node returns
the score LRoot for the whole tree. The likelihood value of a complete genomic
sequence corresponds to the composition of the likelihood values of every position.
Due to the small likelihood values, logarithms over LRoot are regularly used.

LlRoot = Σi={A,C,G,T}πiL
l
Root,i (15.4)

LRoot = Πl=n
l=1L

l
Root,i (15.5)

Nevertheless, the search for the tree with maximum likelihood requires the
evaluation of a considerable number of equations over a great tree space3, which
converts the searching process using scores in an NP-hard problem [71]. Despite
the introduction of LlX,i, the method requires the computation of 4 partial re-
sults for each node. So, heuristics must be introduced in order to gain feasible
solutions. Instead of exploring all the tree space, bootstrapping [91] looks for a
local maximum by injecting small perturbations to a phylogenetic tree in order
to examine the direct surroundings. Another trivial simplification consists of the

3Total number of rooted trees for n ≥ 2 leaves: (2n− 3)!! = (2n−3)!
2n−2(n−2)!

142 CHAPTER 15. CONTINUOUS TIME AND PROBABILITIES

propagation of the local maximum LlX,i instead of the four internal values LlX,i
during the calculation of MLE. Additionally, some of the current inference tools
for MLE estimate an initial phylogeny using a maximum parsimony method [155]
and, later, they may assign a preliminary nucleotide to the internal ancestors of
the phylogenetic tree. The main drawback of these approaches is the extraction
of a local maximum instead of the real solution. The selection of the initial seed
and the intensive sampling method of the tree space determines the quality of the
approximation to the real MLE value for the phylogeny [164].

Finally, the user must select explicitly the DNA mutation model to carry out
the computation of the MLE. Normally, the DNA mutation models only specify
a template for the probability transitions among nucleotides and the particular
valuation of these parameters must be provided. In any case, the parametric
model checking approach presented in Chapter 18 allows the symbolic evaluation
of parameters in temporal logic formulas or models, and even infer the numerical
values that satisfy the resulting relations. In Section 15.6 we show how a model
checking tool can test and compute the fidelity of a given tree according to the
defined substitution model.

15.4. Continuous Time Probabilistic Logic and

Structure

The existence of adapted tools, data structures and probabilistic temporal log-
ics that capture the underlying randomness of the systems allows for inspecting
stochastic properties. Thus, our framework based on formal methods techniques
will also accept the characterization of DNA substitution models as input. The
analysis of these models opens a new perspective that extends the original appli-
cations presented in Chapter 4 to other phylogenetic fields.

Probabilistic model checking combines the expressivity for representing paths
of the tree with temporal logics and the computation of likelihoods associated
to the nucleotide changes. The mathematical equations of MLE for evaluating
the phylogeny are rewritten using probabilistic temporal logics. Later, they are
executed over a continuous time Markov chain corresponding to the DNA mutation
model. Finally, the model checking procedure queries whether the probability of
appearance of a particular mutation (or a set of) in the tree is over or not a
predefined threshold.

Occasionally, it is also possible to let the model checker tool discover this prob-
ability bound. In that case, the output returns a confidence value between [0, 1],
which represents the probability of getting that peculiar arrangement of nucleotides
in the states of the tree for that model of DNA substitution. The score provided

15.4. DENSE TIME PROBABILISTIC LOGIC AND STRUCTURE 143

by the result of the verification process is useful for guiding the refinement of the
phylogenetic tree. For example, our framework can play the role of worker for com-
puting the maximum likelihood or evaluating the tree topology in current inference
algorithms and tools [154, Figure 2]. The script presented in Section 5.3 accepts
extensions for generating multiple bootstraps that feed the iterative refinement
process.

The definition of DNA substitution models requires the extension of Markov
chains with continuous time. Instead of describing explicitly the probability of a
nucleic change from one state to another, the transitions are labeled with rates
delimiting the time spent in that branch.

Definition 16 (Continuous time Markov Chain). A continuous time Markov chain
is a finite transition system represented by a tuple M = (S, S0,R, L), where:

S is a finite set of states,

S0 ⊆ S is the set of initial states,

R ⊆ S × S → R≥0 is the transition rate matrix between states, i.e., for
every pair of states s, s′ ∈ S, a transition occurs only if R(s, s′) > 0, and the
probability of this transition being triggered in t time units equals 1−e−R(s,s′)·t,
and

L : S → 2AP is the labeling function that associates each state with the subset
of atomic propositions that are true of it.

As there exist multiple pair candidates with R(s, s′) > 0 outgoing from state s,
a race condition appears and the selection of the next state determines the history
of events. The transition rate matrix R implicitly defines a transition probability
matrix P that corresponds to the transition probability matrix of an embedded
discrete time Markov chain (emb(M)), and whose values are:

Pemb(M)(s, s
′) =


R(s,s′)
E(s)

if E(s) 6= 0

1 if E(s) = 0 and s = s′

0 otherwise

E(s) is known as the exit rate of state s. It is defined as the summation of every
output transition rate R(s, s′). The value E(s) = 0 means that s is an absorbing
state or siphon:

E(s) = Σs′∈SR(s, s′)

The computation of probabilities is influenced by the paths starting in the
initial state. Following the same notation presented for timed transition automata,

144 CHAPTER 15. CONTINUOUS TIME AND PROBABILITIES

π(t) returns the state si of the path in which the system is found after t ∈ R≥0

time units since the initial state s0, i.e., π(0) = s0. For any set of infinite paths Π
starting in the initial state s0, the subset Π(πn) selects the paths π ∈ Π whose prefix
equals to the finite sequence πn = s0s1s2 . . . sn of length n+1 states. Specially, the
set Π(s0, I0, . . . , In−1, sn) is defined as all the paths from Π(πn) such that πn(t) = si
for all i < n with t ∈ Ii, and Ii the time interval corresponding to that state.

The likelihood value of reaching a state sn is determined by the probability
measure Pr(Π(πn)) = Pr(Π(s0, I0, . . . , In−1, sn)) over all the paths sharing the
prefix πn with πn(0) = s0. For the trivial case over Π(s0), Pr(Π(s0)) = 1. In
general for Π(s0, I0, . . . , In−1, sn, I

′, s′), Pr(Π(s0, I0, . . . , In−1, sn, I
′, s′)) is equal to:

Pr(Π(s0, I0, . . . , In−1, sn)) ·Pemb(M)(sn, s
′) ·
(
e−E(sn)·inf I′ − e−E(sn)·sup I′

)
Starting in s, the probability of arriving to a state s′ of the model at a particular

time instant t is represented by Pt(s, s
′) = Pr{π ∈ Π | π(t) = s′}, with Pt an

exponential matrix indicating the transient probabilities for time t:

Pt = eQ·t = Σ∞i=0

(Q · t)i

i!
and Q the infinitesimal generator matrix of M . The infinitesimal generator

matrix Q is used for the calculation of transient states and it is defined as:

Q(s, s′) =

{
R(s, s′) if s 6= s′

−Σs′′ 6=sR(s, s′′) otherwise

Unfortunately, this method for computing Pt tends to be unstable. The
Jensen’s method (also called uniformisation or randomisation) is an alternative
and more stable standard technique for calculating the probability matrix Pt(s, s

′)
[157].

Once the data structure and probabilistic semantic are defined, the next step
involves the presentation of the syntax for the new temporal logic. The logic
proposed here for working with continuous time Markov chains is CSLTA [59].
In a non-probabilistic temporal logic, it is already possible to query about the
arrangement of the DNA information in the states of the tree (see Section 4.3
and Section 4.4). However, what we look for here is the addition of probability
information to the specifications. To this end, we will be able to investigate the
probability of reaching a certain state of the tree owning a particular mutation.

Definition 17 (Continuous Stochastic Logic). A temporal logic formula φ is de-
fined by the following minimal grammar, where p ∈ AP :

φ ::= true | p | ¬φ | φ ∨ φ | P∼λ [Φ] (15.6)

Φ ::= Xφ | [φUIφ]

15.4. DENSE TIME PROBABILISTIC LOGIC AND STRUCTURE 145

The formulas are checked against a structure M considering all paths π from a
certain state s0. Notice that M, s0 � φ means that s0 satisfies φ. The semantics
of well-formed formulas is as follows (let π = s0s1s2 . . .):

M, s0 � p⇔ p ∈ L (s0),

M, s0 � ¬φ⇔M, s0 2 φ,

M, s0 � φ ∨ ψ ⇔M, s0 � φ or M, s0 � ψ,

M, s0 � P∼λ [Φ]⇔ Prob(M, s0,Φ) ∼ λ,

The calculation of the probability Prob(M, s0,Φ) requires the identification of
the infinite paths π satisfying the path formula M,π � Φ:

M, s0 � Xφ⇔M, s1 � φ

M, s0 � [φUIψ]⇔ for some t ∈ I, ∃π : M,π(t) � ψ, and M,π(t′) � φ for all
0 ≤ t′ < t.

This set, {π ∈ Π |M,π � Φ}, can be obtained by the union of finitely many
pairwise disjoint subsets Π(πn) by [106, Definition 3], each one characterized by
the finite prefix πn of all infinite sequences of the set. Therefore, Prob(M, s0,Φ) =
Pr{π ∈ Π |M,π � Φ} = ΣπnPr(Π(πn)) computes the probability as the summation
of probabilities in all possible prefixes πn by [106, Theorem. 1].

Similarly to TCTL and PCTL, this logic supports timed transitions in the U
operator. Timed variants of the modal operators F and G are obtained via U
as FIφ = true UIφ and GIφ = ¬FI¬φ. Instead of writing probability and time
intervals explicitly, sometimes they are abbreviated with inequalities. For example,
P≤0.5 [Φ] denotes P[0,0.5] [Φ].

By now, we can translate the mutation traces along a phylogenetic tree into
the CSLTA syntax. As a toy example, suppose that the initial state s0 (the root
of the phylogenetic tree) has a sequence with seq[i] = A and there is a direct
successor s1 having a mutation seq[i] = T , with i the position of the sequence.
The equation P≥0.25 [X seq[i] = T] tells whether, according to an specific DNA
substitution model, the change of A by T is over the probability threshold of 25%.
The initial state s0 is embedded for the operator P. For the operator X, the time
elapsed between both nucleotides is implicit and it takes the value of the branch
length.

Following this simple step, the computation of the overall probability of the
phylogenetic tree can be obtained by the concatenation of P∼λ for each mutation
happening along the transitions of a path. The evaluation of the CSLTA formulas
needs the algorithm introduced in the next section. The new model checking
algorithms deal with the computation of time and probabilities.

146 CHAPTER 15. CONTINUOUS TIME AND PROBABILITIES

15.5. Algorithm for CSLTA Model Checking

In the previous section, we have defined CSLTA. With that logic, we can
express the succession of mutations appearing in the phylogenetic tree, that is, the
specification of a trace for a DNA substitution model. The verification process
now consists of returning a numerical value telling the degree of agreement of the
phylogeny with respect to that mutation model.

The model checking algorithm for managing and solving CSLTA formulas in
stochastic systems is mainly identical to those of classic model checking except
for the resolution of P∼λ[φ], i.e., the next and until operators with probability
thresholds. In short, the recursive algorithm of model checking incorporates the
new sentence:

Sat(P∼λ [Φ]) = {s ∈ S | Prob(M, s0,Φ) ∼ λ}
P∼λ[Xφ] formula. In CSLTA, the next operator has no sense as in continuous

time there is not an unique next real number. This operator is included for com-
patibility. It corresponds to the semantics and operations of the associated PCTL
formula for the embedded discrete time Markov chain (Section 14.3).

P∼λ[ψUIφ] formula. The computation of the probability for the until oper-
ator depends on the value of the interval I. Generally, when I = [0,∞], then
Prob(M, s0, ψU[0,∞]φ) = Prob(emb(M), s0, ψU≤∞φ). For the rest of cases, the
interval I is classified as:

I = [0, t] with t ∈ R≥0;

I = [t, t′] with t, t′ ∈ R≥0 and t ≤ t′;

I = [t,∞] with t ∈ R≥0.

For the case of I = [0, t], then Prob(M, s, ψU[0,t]φ) is equal to:


1 if s ∈ Sat(ψ)
0 if k = 0 or

s ∈ Sat(¬φ ∧ ¬ψ)∫ t
0

Σs′∈SPemb(M)(s, s
′) · E(s) · e−E(s)·x · Prob(M, s′, ψ U[0,t−x]φ)dx

otherwise

with E(s) · e−E(s)·x the probability of leaving s at time x. Following a simpler
alternative approach, the probability can be reformulated in terms of transient
probabilities:

Prob(M, s, ψU[0,t]φ) = Σs∈Sat(¬ψ∨φ)
s′∈Sat(φ)

Pt(s, s
′)

15.5. ALGORITHM FOR CSLTA MODEL CHECKING 147

When I = [t, t′], the until operator must consider a) the time t spent in states
satisfying ψ plus b) up to time t′− t required for reaching φ. The first part can be
compared to F[0,t]ψ and the second part corresponds to ψU[0,t′−t]φ:


1 if s ∈ Sat(ψ)
0 if k = 0 or

s ∈ Sat(¬φ ∧ ¬ψ)
Σs∈Sat(¬ψ)
s′∈Sat(ψ)

Pt(s, s
′) · Prob(M, s′, ψU[0,t′−t]φ) otherwise

The last case I = [t,∞] is similar to the previous I = [t, t′] but changing
ψU[0,t′−t]φ by ψUφ due to the infinity. As the until operator is unbounded, it can
be evaluated in the embedded discrete time Markov chain:


1 if s ∈ Sat(ψ)
0 if k = 0 or

s ∈ Sat(¬φ ∧ ¬ψ)
Σs∈Sat(¬ψ)
s′∈Sat(ψ)

Pt(s, s
′) · Prob(emb(M), s′, ψUφ) otherwise

The time complexity of verifying a CSLTA formula φ against a continuous time
Markov chain is linear in |φ| and polynomial in the size of S, with |φ| the number
of logical connectives and temporal operators of the formula. More generally, the
complexity is

Θ(poly(size(S)) ∗ q · tmax ∗ |φ|)

where tmax is the maximal bound of a path subformula ψ1UIψ2 of φ, with
tmax = 1 if it doesn’t contain any U subformula. The parameter q is equal to
q = maxs∈S|Q(s, s)|.

The evaluation of CSLTA formulas demands the upgrade of Markov chains
structures for providing continuous time semantics. The computation of proba-
bilities is assisted by a partial transformation of the continuous time problem to
a discrete time problem. Hence, the operations realized by the model checking
algorithms for the calculation of probabilities in PCTL are the basis for future
extensions. The time complexity of verifying a PCTL formula also poses a lower
bound to the complexity of analyzing a CSLTA formula.

148 CHAPTER 15. CONTINUOUS TIME AND PROBABILITIES

15.6. Model Checking Tools and

Experimentation

PRISM [124] is a generic model checking tool capable of handling probabilistic
and timed specifications over Markov chains. There exists a considerable diversity
of model checking tools with different performances and qualities [98]. Although
the real performance depends on the particular structure of the model and speci-
fications, PRISM offers Java portability, a powerful syntax for handling time and
probabilities in models and specifications, and a good scientific community sup-
port. Besides, it is open source, which allows the modification and optimization
of its code.

The model checking tool requires two input files for the verification process: a
first file with the description of the model, and a second file with the specification
of the properties. Thus, the DNA mutation model and the MLE equations are
stored in separated files. The modularity and independence of the model and
specification allow the evaluation of various trees over the same model of DNA
substitution. Vice versa, the study of the same tree under the scope of various
DNA mutation models is possible by simply maintaining the MLE specification
and changing the model file with the DNA substitution pattern.

Figure 15.3 corresponds to the first file: the model of DNA substitution over
which the phylogenetic tree will be evaluated. By changing the relations in the
ratio of transversions and transitions, the user switches from one mutation model
to another. The computation of the probability is model-dependent, and thus the
user has to select a model a priori. Some of the historic mutation models are
Jukes-Cator (JC), Kimura, Felsenstein or the Generalized time-reversible (GTR)
[53]. For simplicity in this example, we consider the JC model. The substitution
rate nu equals to 1. It expresses the number of ticks needed for the activation of
the transition rather than an explicit probability.

The translation of the MLE equations to the syntax of the stochastic logic
supported by PRISM is exemplified in Figure 15.4. It corresponds to the MLE
equations defining the tree of Figure 2.1. The conversion process is dealt by a
BioPerl script [153]. The unfolding of the MLE equations depends on the structure
of the phylogenetic tree and the DNA sequences placed in its tips. In an indirect
way, these MLE equations represent the specification of the phylogenetic tree over
a DNA substitution model because they depict the trace of mutations from the
root to the leaves.

Among its basic conceptions, PRISM checks if the probability of reaching a
set of satisfiable states is up or below a predefined threshold. Besides indicating
specifications with an explicit threshold, it is also prepared for determining the
MAX and MIN probabilities of satisfying a property in a set of states. Instead of

15.6. MODEL CHECKING TOOLS AND EXPERIMENTATION 149

// Continuous time Markov chain

ctmc

const double e = 2.71828;

const double nu = 1;

// Nucleotids //

const int A = 1;

const int C = 2;

const int G = 3;

const int T = 4;

//JC model

formula pr_ii = nu;

formula pr_ij = nu;

module TREE

x : [A..T] init A;

[] x=A -> pr_ii:(x’=A)+pr_ij:(x’=C)+pr_ij:(x’=G)+pr_ij:(x’=T);

[] x=C -> pr_ij:(x’=A)+pr_ii:(x’=C)+pr_ij:(x’=G)+pr_ij:(x’=T);

[] x=G -> pr_ij:(x’=A)+pr_ij:(x’=C)+pr_ii:(x’=G)+pr_ij:(x’=T);

[] x=T -> pr_ij:(x’=A)+pr_ij:(x’=C)+pr_ij:(x’=G)+pr_ii:(x’=T);

endmodule

Figure 15.3: Description of the Jukes-Cantor model in PRISM syntax.

asking for a particular bound, PRISM includes iterative methods for numerically
calculate probabilities along a path of the tree, which allows us to extend the
output of quantitative model checking from time (Chapter 12) to probabilities.

The operator P=?[F[0,5] x1 = A] of the model checking tool returns the
probability of reaching a nucleotide A in the position x1 of the alignment within
5 time steps in the future. It is equivalent to P=?[F[0,5]seq[1] = A] in CSLTA syn-
tax, but with ? the probability threshold calculated by the model checking tool
instead of a value introduced by the user. Filters in PRISM allow to combine the
aforementioned operator with the specification of the nucleotide value in the initial
state. For example, filter(min, P=? [F[0,5] x1 = A], x1 = C) returns the
minimum probability of P=? considering that the initial state has the sequence x1

= C. If we desire to ensure explicitly that x1 = C holds Until we reach x1 = A,

150 CHAPTER 15. CONTINUOUS TIME AND PROBABILITIES

// Markow decision process

// Notation: L_<id_state>_<seq_position>_<nucleotide>

// p_<nucleotide>

// Root likelihood

"LX": "LX1" * "LX2" * "LX3";

"LX1": pA*"LX1A" + pC*"LX1C" + pG*"LX1G" + pT*"LX1T";

...

// Likelihood for the intermediate node Y

"LY1": "LY1A" + "LY1C" + "LY1G" + "LY1T";

"LY1A": (filter(min, P=? [F[1.5,1.5] x = A], x = A) * "LR1A"

+ ... + filter(min, P=? [F[1.5,1.5] x = T], x = A) * "LR1T")*

(filter(min, P=? [F[1.5,1.5] x = A], x = A) * "LS1A"

+ ... + filter(min, P=? [F[1.5,1.5] x = T], x = A) * "LS1T");

...

"LY1T": (filter(min, P=? [F[1.5,1.5] x = A], x = T) * "LR1A"

+ ... + filter(min, P=? [F[1.5,1.5] x = T], x = T) * "LR1T")*

(filter(min, P=? [F[1.5,1.5] x = A], x = T) * "LS1A"

+ ... + filter(min, P=? [F[1.5,1.5] x = T], x = T) * "LS1T");

// Terminal leaves whose nucleotide is present in the tree.

"LR1A": 1;

"LS1A": 1;

"LZ1G": 1;

...

// Terminal leaves whose nucleotide is not present in the tree.

"LR1C": 0;

"LS1C": 0;

"LZ1A": 0;

...

Figure 15.4: Representation in PRISM syntax of the MLE equations for Figure 2.1.

then we can use filter(min, P=? [(x1 = C) U<=5 (x1 = A)], x1 = C). The
properties can be annotated with names and we use this feature for defining the
partial likelihoods LlX,i. In case of phylogenetic trees with an estimated nucleotide
for the ancestors (such as in the case of maximum parsimony), the intermediate
nodes can be initialized with the value LlX,i = 1 or LlX,i = 0 for reducing the firsts
calculations. The header of the file describes the notation of the variable names.

The execution of Figure 15.4 directly in PRISM leads to an extensive repetition

15.6. MODEL CHECKING TOOLS AND EXPERIMENTATION 151

of the calculations. In spite of the annotation of the properties with names, the
model checking tool does not store the partial results LlX,i in local memory, which
implies a reevaluation of LlX,i every time it is accessed. The inability for caching
these values damages the potential optimization caused by the factorization of the
probabilities Pij(·) in Equations 15.2–15.4 and slows down the system. In a perfect
binary tree, every node requires the inspection of 8 values LlX,i (4 per nucleotide
for each descendant). This fact implicates the access to 8M partial likelihoods
for the whole tree, with M = log2(2N) the maximum depth. In terms of the
number of internal nodes N , PRISM evaluates the likelihoods 8N3 times, which
is greater than the storage of 4(2N) partial likelihoods needed for the complete
phylogeny. This peculiarity, together with the inherent delay introduced by the
Java virtual machine, penalizes the performance in comparison to the specific
systems for computing MLE that are capable of analyzing several trees in seconds
within clusters [155].

Figure 15.5 presents the performance results of the experiments. The data set
used for this experimentation is synthetic. With this data set, we try to cover the
spectrum of small phylogenies and analyze the cost of the evaluation of the MLE
equations over there. We have created random phylogenetic trees of up to 20 tips
using a Yule backward model [156]. For each tree size (number of tips), we have
generated ten random trees and calculated the harmonic mean time. The DNA
sequences have a single base with an homogeneous distribution of nucleotides.
Although subject to a perfect parallelization, the temporal cost for larger strings
can be estimated linearly by multiplying the time by the number of bases. All
tests have been run on a Intel Core 2 Duo E6750 @ 2.66 GHz with 8 GB RAM
and Linux. The factorization of the MLE equations, its adaptation to the context
of the new tool, and the cost of initialization in PRISM are questions that must
be considered for the judgment of the impact.

We have modified PRISM for caching the partial results LlX,i in order to avoid
its recomputation. Besides, the likelihood of the terminal nodes is now stored in
constants (i.e., const LR1A: 1;). Using these simple changes, the model checker
increases the speed effectively but doesn’t fade out the exponential cost yet. Fig-
ure 15.6 presents the performance results of the experiments with the new revision
of PRISM. We have used the same data set and workstation for simplifying the
comparison. The exponential trend increases more slowly. Memory doesn’t pose
a limiting factor because the experiments have been executed with only 4GB as-
signed to the java virtual machine.

The exponential trend observed in the graphics is probably motivated by the
exploration method selected by PRISM for calculating the maximum value of
the probability function Pij(dij), i.e., filter(max, P=? [F=dij (x1 = j)], x1

= i). In this way, PRISM unfolds the DNA mutation model (Figure 15.1) and

152 CHAPTER 15. CONTINUOUS TIME AND PROBABILITIES

y = 0,6413e0,0934x

R² = 0,9391

0 5 10 15 20 25 30 35

0

2

4

6

8

10

12

14

16

18

Number of Leaves

S

e

c

o

n

d

s

Figure 15.5: Time required in PRISM for the evaluation of the maximum likelihood
equations in a binary phylogenetic tree.

generates all possible traces between the nucleotides i and j (Figure 15.2). Then,
PRISM searches for the path with distance Σk=1...ndk = dij that maximizes Pij(dij),
being i, j the initial and final states, and dk the distance between each pair of con-
nected states in a path with n nodes. The combinatorial examination of every
path satisfying the previous restrictions of length, together with the computation
of the path probabilities, leads to the exponential cost for calculating Pij(dij).

In order to take advantage of the peculiar procedure in PRISM for managing
probabilities, we propose an alternative reordering of the MLE equations. Fig-
ure 15.7 shows this rewriting. In this example, exclusively the phylogenetic tips
are attached with an explicit definition of the nucleotides: the bases in the leaves
are the only values that we know with certitude. Hence, the internal nodes are
left undetermined in the specification. In fact, the MLE equations (Equation 15.2)
test the four nucleotide values, while here we let PRISM to automatically discover
the best choice. The constants dxy are the distance between states X and Y, as
explained in Section 15.3. The summation of the distances dxy+dyr works for
marking the length of the path between the root and the leaf R. The estimation
resulting from the evaluation of the formulas in Figure 15.7 places an upper bound
to the real value of MLE. The evaluation of each filter extracts independent paths
with maximum probability, presumably giving rise to a set of disjoint routes whose
only common ancestor is the root. In any case, this set of paths, although depict-

15.6. MODEL CHECKING TOOLS AND EXPERIMENTATION 153

y = 0,4767e0,246x

R² = 0,9841

0 5 10 15 20 25

0

10

20

30

40

50

60

70

Number of Leaves

S

e

c

o

n

d

s

Figure 15.6: Time required in PRISMopt for the evaluation of the maximum like-
lihood equations in a binary phylogenetic tree.

ing a degenerated phylogenetic tree, results in a suitable heuristic for pointing out
the maximum value of MLE.

Figure 15.8 presents the performance results of the experiments. We continue
using the same methodology introduced in previous trials. We have created ran-
dom phylogenetic trees of up to 1000 tips using a Yule backward model [156]. For
each tree size (number of tips), we have generated ten random trees and calculated
the harmonic mean time. The DNA sequences have a single base with an homo-
geneous distribution of nucleotides. Both versions of PRISM (with and without
saving the partial results of named properties) are supposed to perform similarly.
The first consequence of the reordering in the MLE equations is a linear trend in
the temporal cost, plus the capacity of evaluating bigger phylogenies and larger
sequences than before.

Although the tool is not extremely fast for the evaluation of the original MLE
and the time results may be disappointing, the ultimate objective of this thesis has
not been the score of phylogenetic trees using a new technique for computing the
MLE. Our aim has been the definition of a framework for evaluating phylogenetic
properties, in which the MLE is only a small portion of all the potential applica-
tions. The main advantages of our approach are still valid for this new situation.
We emphasize that our main contributions comprise the generality for expressing
any kind of property in a temporal logic, the independence of the model from the

154 CHAPTER 15. CONTINUOUS TIME AND PROBABILITIES

// Markow decision process

// Notation: L_<id_state>_<seq_position>_<nucleotide>

// p_<nucleotide>

// Root likelihood

"LX": "LX1" * "LX2" * "LX3";

"LX1": pA*"LX1A" + pC*"LX1C" + pG*"LX1G" + pT*"LX1T";

// Likelihood of reaching a certain nucleotide in the tips

// starting with a particular nucleotide in the root.

"LX1A": filter(min, P=? [F=(dxy+dyr) x = A], x = A) *

filter(min, P=? [F=(dxy+dys) x = A], x = A) *

filter(min, P=? [F=dxz x = G], x = A);

"LX1C": filter(min, P=? [F=(dxy+dyr) x = A], x = C) *

filter(min, P=? [F=(dxy+dys) x = A], x = C) *

filter(min, P=? [F=dxz x = G], x = C);

"LX1G": filter(min, P=? [F=(dxy+dyr) x = A], x = G) *

filter(min, P=? [F=(dxy+dys) x = A], x = G) *

filter(min, P=? [F=dxz x = G], x = G);

"LX1T": filter(min, P=? [F=(dxy+dyr) x = A], x = T) *

filter(min, P=? [F=(dxy+dys) x = A], x = T) *

filter(min, P=? [F=dxz x = G], x = T);

Figure 15.7: Rewriting of the MLE equations for Figure 2.1.

specifications, the availability of powerful model checking tools adapted for differ-
ent logics, and the encapsulation of the implementation in a model checking tool
that hides and simplifies the access to the underlying technology. The application
of model checking in the context of phylogenetics includes many functionalities such
as the detection of back mutations, conserved sequences and correlated mutations,
SNP’s defining clades, population migrations, endemic diseases or phenotypes and
so on. All these properties can be enriched with time and probabilities as well.

Future optimizations should focus on the implementation of more efficient li-
braries and dynamic programming techniques that solve, or at least ease, the
aforementioned limitations and bottlenecks in PRISM. After enabling the capabil-
ity of storing partial results, the next dilemma revolves around the portability of
languages such as Java or the performance of high optimized codes in C.

15.7. CONCLUSIONS 155

y = 0,0031x + 1,1127
R² = 0,995

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 200 400 600 800 1000 1200

S

e

c

o

n

d

s

Number of Leaves

Figure 15.8: Time required in PRISM for the computation of the upper bound of
the maximum likelihood value in a binary phylogenetic tree.

Finally, the support for constants in the specifications of PRISM, which can
be later instantiated by numerical values during the experimentation, intuitively
brings the notion of parameters. The symbolic manipulation of variables extracts
algebraic expressions, which can be later evaluated over a domain of values for
model exploration. The definition of models and specifications with parameters
allows for an intuitive use of templates and patterns as introduced in Chapter 18.

15.7. Conclusions

In this chapter, we have motivated the extension of model checking to quan-
titative domains, in particular with continuous time. Our objective has been the
extension of probabilities presented in Chapter 14 to continuous domains. Us-
ing continuous time Markov chains and continuous time logics, we can define and
evaluate the same properties of Chapter 14 but with the dense time introduced in
Chapter 11.

In particular, we have studied the models of DNA evolution and evaluated the
equations of maximum likelihood estimations (MLE) over trees, one of the hot
topics in phylogenetics. In this case, the verification process changes with respect
to the methodology presented in previous chapters of this thesis. Now, the model

156 CHAPTER 15. CONTINUOUS TIME AND PROBABILITIES

(described by the Markov chain) is the model of DNA evolution; and the specifica-
tions that we try to validate correspond to the equations of maximum likelihood.
The equations of maximum likelihood depends on the structure and labeling of a
phylogeny, and consequently, the evaluation of these formulas is equivalent to ana-
lyze the match between a hypothetical computation tree generated by the model of
DNA evolution and the input tree that we investigate. The output result is a score
representing the reliability and support of the input tree. This problem is similar
to the computation of distances between symbolic objects (states) presented in
Chapter 12, where the only difference is the domain of the numeric values of the
functions we are working with: reals (probabilities) instead of integers (temporal
distances).

After the presentation of the models of DNA evolution and the method for cal-
culating maximum likelihood estimations over trees, we have introduced the tem-
poral logic and algorithms for managing probabilities and continuous time in the
specifications. Next, we have shown how to translate and evaluate the model and
specifications with this particular notation. We have experimented with synthetic
data in order to prove the feasibility of our approach with existing probabilistic
model checking tools. PRISM is a generic model checking tool that performs expo-
nentially with respect to the number of tips of the phylogeny. We have customized
the tool in order to store the partial computations of the likelihoods and improve
slightly the initial costs (by default, PRISM doesn’t store the local results). Fi-
nally, we have illustrated an heuristic for the calculation of an upper bound of the
likelihood score in linear time with respect to the number of leaves.

This work opens the door for the review of bigger phylogenies with properties
similar to the computation of maximum likelihoods. The modularity of our frame-
work allows the evaluation of hypothesis and the comparison of results for a set of
phylogenetic trees by only changing the tree file (the specification of the property
remains constant).

Chapter 16

Conclusions

I’ve seen things you people wouldn’t believe. Attack ships
on fire off the shoulder of Orion. I watched c-beams glitter
in the dark near the Tannhäuser Gate. All those moments
will be lost in time, like tears in rain. Time to die.

— Roy Batty, Blade Runner

In this part we have motivated the necessity of extending model checking tech-
niques to probabilistic domains using real examples: we travel from explicit time
logics in Chapter 11 to discrete and continuous time logics in Chapter 14–15. For
instance, we have studied the ratio distribution of lactose (in)tolerance in a phy-
logenetic tree or the scoring of a phylogeny with respect to a DNA substitution
model using maximum likelihood estimations. To this end, we have introduced
extended logics and data structures adapted for probabilities and time together
with the algorithms and computations for managing them. Our first goal has been
the increase of the logical capabilities for querying about the date of appearance
and degree of distribution of mutations and phenotypes.

The performance of the experimentations has been dissimilar. We have used
the model checking tool PRISM and the same data set for both cases (the exam-
ple of lactose intolerance and the score of likelihoods). Our data set comprises
synthetic phylogenetic trees and sequences. While the evaluation of the lactose
property using probabilities over discrete time Markov chains (phylogenies) scales
polyniomally, the calculation of likelihoods over continuous time Markov chains
(models of DNA substitution) scales exponentially. For the second situation, we
needed the customization of the model checking tool and the inclusion of heuris-
tics in order to obtain competitive results. More in detail, we introduced local
variables for the storage of partial results to avoid the recalculation of values; and
the extraction of upper bounds of likelihood scores as heuristics.

157

158 CHAPTER 16. CONCLUSIONS

Additionally, the techniques introduced for the optimization of the performance
in classic model checking environments also work for this context [140]. Most of
the investigations related with quantitative information are a prolongation of the
phylogenetic properties analyzed with boolean temporal logics, and consequently
the inconveniences presented there would appear even more dramatically now [143]
(for instance, the consideration of the decidability and computational costs). The
division of the phylogeny in subtrees and the coordinated evaluation of properties
in them potentially increases the overall speed. The use of the transition/rate
probability matrix in stochastic systems simplifies the division of the phylogeny
in subtrees or clusters of nodes. The partition in submatrices facilitates the dis-
tribution of the state space among several computers. The summations in the
computation of probability paths, specially with the U operator, can be executed
in parallel.

Furthermore, the incorporation of external data bases for storing the labeling
of the states is compatible with any kind of atomic propositions, quantitative or
not. The vertical and horizontal partitioning of the database table adds an extra
dimension of parallelism. The slicing of the information associated to each state
directly over the phylogeny may augment the number of nodes during the study,
but it will help to parallel and scale the verification in model checking. In any case,
the difficulty of implementing a completely new software, the existence of few (but
good and powerful) model checking tools such as PRISM, and the availability of
its source code favors the reuse of current tools instead of concerning with new
implementations.

Part VI

Conclusions and Further Remarks

Chapter 17

Conclusions

On a long enough timeline, the survival rate for everyone
drops to zero.

— Chuck Palahniuk, Fight Club

The aim of this thesis has been to build a bridge between two such appar-
ently removed worlds as phylogenetics and formal verification using model check-
ing techniques. A formal framework for describing, verifying and manipulating
causal relationships of states irrespective of the structure (tree or network) has
been proposed. This is founded on three pillars:

The interpretation of a phylogenetic tree as a transition system, where the
structure of the tree is transformed in order to assimilate it to the Kripke
structure used by model checking techniques.

The definition of a suitable temporal logic for the expression of phylogenetic
properties, the semantics of which is based on Kripke structures derived
from phylogenetic trees. The temporal properties inquire about logical or
numerical relations in the tree.

The use of standard model checking techniques and tools for the automated
verification of phylogenetic properties expressed as temporal logic formulas
in phylogenetic trees interpreted as Kripke structures. Nowadays, model
checking is a mature field with well-founded theory supported by generic
and extensively used software tools.

We must emphasize that the notion of the phylogenetic tree as an evolution
process is captured by the states of a transition system, which reflect a specific step
of the speciation process, and the transitions themselves, which describe mutations
and reproduction events. Besides, the codification selected for the DNA sequences

161

162 CHAPTER 17. CONCLUSIONS

as atomic propositions in the states of the Kripke structure allows for the evaluation
of phylogenetic properties and the symbolic manipulation of sets using a suitable
temporal logic.

The principal advantages stemming from the study of phylogenetic properties
with this approach are that different phylogenies can be considered, complex prop-
erties can be specified as the logical composition of others, and the refinement of
unfulfilled properties (as well as the discovery of new ones) can be undertaken by
exploiting the verification results. The formal methods presented here offer an in-
tegrated framework for the verification of phylogenetic properties using a symbolic
and abstract reasoning. In addition, the introduction of temporal logics adds inde-
pendence and modularity to the definition of biological specifications with respect
to the formalization of the model (phylogeny): the same property can be exported
and evaluated in other phylogenies easily. Moreover, the specification with tempo-
ral logics is transparent to the underlying technology of a generic model checking
tool.

In the proposed strategy, the use of existing tools for model checking has been
an initial requirement. This is motivated by the fact that model checking tech-
niques are a consolidated verification technique in these last 20 years, making
available today tools that have been proved, debugged and optimized. In this
sense, we believe that this is the best way of incorporating quickly the methodol-
ogy proposed in this thesis to the world of phylogeny.

Next, we have investigated the feasibility of model checking techniques as a
framework for hypothesis testing and phylogenetic analysis. We have shown how
to translate phylogenetic trees into the syntax of NuSMV and described the per-
formance of the model checker when using real phylogenetic data. We have seen
that the initialization phase (creation of the associated Kripke structure) is much
costlier than the verification process of a single formula. The experimental results
show that the initialization time increases quadratically with the alignment size
and linearly with the sequence length. Additionally, memory consumption is sub-
linear in both cases. Despite the resources needed for model checking, it is still
competitive thanks to the symbolic manipulation of huge amounts of data.

The data set used there consists of proteins coded by genes from the mtDNA
genome, which are substantially smaller than those from nuclear DNA. As the
temporal cost increases mostly with respect to the sequence length, the phyloge-
netic analysis of large genes and genomes becomes the major bottleneck. Thus,
scaling the model checking verification process both in time and memory has been
one of our research priorities. We have already suggested some possible solutions
for these limitations, such as sliced and distributed model checking or the storage
of temporal properties in databases.

Sliced model checking consists of replicating the skeleton of the Kripke struc-

163

ture among several computers or threads, projecting an slice (portion) of the DNA
to each worker, executing the verification in sychronization and finally composing
the partial results. The inherent acyclicness of trees also facilitates the implemen-
tation, synchronization and composition of the verification results using traditional
graph partition techniques (i.e., dividing the tree in subtrees instead of splitting the
genome). The use of an external database management system enables the scal-
ability in data storage and the introduction of optimizations during the retrieval
of huge amounts of biological information. An hybrid system that combines the
advantages of a distributed execution flow plus an external database system offers
a promising framework. The viability (implementation and experimental results)
of each one of these approaches over a real platform was showed in previous sec-
tions. The final speed up depends on the architecture and efficiency of the specific
database management system.

Furthermore, phylogenetic model checking is not limited to qualitative tempo-
ral logics nor to a specific phylogenetic representation. The existence of a wide
range of model checkers and compatible logics (quantitative, statistical or paramet-
ric) enlarges the expressiveness and scope of biological properties. It also ensures
a considerable collection of tools that can be adapted for any specific study of
phylogenetic analysis. In particular, we start our study with the usage of quan-
titative information in the definitions: more in detail, we employ explicit time
(distances) and probabilities. The branches of the phylogeny and the phylogenetic
properties are extended with this new information. The phylogenetic hypothesis
are organized and classified according to the quantitative data they use.

Moreover, we have demonstrated the application of model checking in a real
example for the evaluation of a population hypothesis with explicit time and prob-
abilities. For instance, we have tried to detect the epoch of appearance and distri-
bution impact of certain human diseases or phenotypes in a population tree. The
phylogenetic tree requires an enriched labeling of the states for a correct associa-
tion between phenotypes and genomes. The evaluation of phylogenetic properties
expressing time and probabilities scales polynomially with respect to the size of the
tree. The data set employed (phylogenies of up to 1000 leaves with 50 nucleotides
per taxon) corroborates the viability of our approximation for small-medium size
phylogenetic trees.

Additionally, the Kripke structures and almost every type of temporal logics
support the generalization of a phylogenetic tree as a phylogenetic network with
multiple roots, cycles and horizontal transferences. More powerful data structures
such as Markov chains are also accepted by specialized model checking tools, which
allows for the incorporation of time and probabilities together inside the same
model. The calculation of probabilities depends on the kind of time we are working
with: discrete or real time.

164 CHAPTER 17. CONCLUSIONS

Besides embedding explicit time and probabilities in the model and specifica-
tions, one of our last objectives is the return of numerical values as result of the
model checking process instead of a boolean. To this end, we apply arithmetic
functions over the set of states that are identified symbolically by a temporal logic
formula. Depending on the type of result, the output of the model checking algo-
rithms is classified as integers (representing distances between elements) or a real
numbers (representing probabilities and ratios). In this way, we have illustrated
the translation of phylogenetic measures for calculating the balance and asymme-
try of trees into a specific logic and notation compatible with the model checking
tools. The execution of these specifications returns the temporal distances (or
accumulated weight) through a path of the phylogeny connecting sets of states.

In opposition, the inspection of DNA substitution models, defined as Markov
chains, enables the computation of probabilistic scores for phylogenies using max-
imum likelihood estimations (MLE). The phylogenetic tree is passed to the model
checker as the specification of the DNA substitution model: the phylogeny reflects
the mutation trace along the history of the DNA. The equations of MLE associated
to a phylogeny are the specification of the phylogenetic tree that requires as input
the model checking tool. The efficiency of evaluating the plain MLE equations is
the main pitfall of PRISM due to the technology it uses. To solve this, we have
introduced simple modifications in the code together with an heuristic to approx-
imate the computation of the upper bound of the MLE formulas. In consequence,
we have obtained a framework that is competitive in performance and, in addition,
can easily switch of DNA mutation model or specification (phylogeny) thanks to
the independence of the input files.

We can conclude that our approach to the analysis of phylogenies using model
checking is innovative and encouraging in terms of methodology and efficiency.
This framework and all its adaptations is, at least, a powerful and competitive
approach for the qualitative analysis of mtDNA. Here, we integrate different kind
of phylogenetic analysis under the same scope: we include the specification of a
plethora of qualitative properties (organized according to the type of information
they use), their extensions for discrete and continuous time, the addition of prob-
abilities to the path operators, and finally the computation of numerical values as
output of a model checking tool (both integers/distances and reals/probabilities).
Moreover, we provide a framework that facilitates the symbolic manipulation of
the states of the phylogenetic tree by means of temporal logic formulas. The
optimization of our framework for the evaluation of probabilistic and parametric
properties in larger phylogenies will be the subject of future work.

Chapter 18

Future Work: Parametric
Temporal Logic

The supreme art of war is to subdue the enemy without
fighting.

— Sun Tzu, The Art of War

18.1. Introduction

After the presentation of the conclusions of this thesis, this chapter introduces
a preliminary exploration of a parametric framework for future works beyond this
dissertation. As final remarks, biologists occasionally do not want to verify a
specific hypothesis but let the computer automatically discover new ones. The
definition of patterns is a common procedure for specifying properties, which intu-
itively leads to parametric model checking. This paradigm moves a step forward
the previous model checking framework for quantitative properties. The parame-
ters allow the formalization of patterns that simplify the specification of properties
and help for the model exploration. Ultimately, we want to mine genome-wide,
high-resolution phylogenies. In the examples presented in the previous sections, it
can be appreciated that mining for knowledge without prior information requires
a more or less thorough exploration of the structure, which can be combinatorial
in some or all of its dimensions. The exhaustive inspection of potential solutions
involves the checking of large sets of formulas and an intensive use of the topology
and the information of each state.

For a phylogenetic property, parameters can be placed either in the DNA se-
quence (searching for the mutations activating a phenotype), in the time bound
(searching for the date of appearance of the biological adaptation) or in the prob-

165

166 CHAPTER 18. FUTURE WORK: PARAMETRIC TEMPORAL LOGIC

ability threshold (searching for the distribution of the lactose tolerance in African
populations). Even, parameters can be placed in the branches labeled with time
and probabilities in the phylogenetic tree. The introduction of parameters is not
limited to the specifications, but also they can appear in the model in some cases.
The sections of this chapter are organized according to the type of parameters we
work with: characters, time or probabilities.

18.2. Parameters in Boolean Model Checking

Some theoretical approaches for CTL [38, 12] bridge the transition between
verification and mining. Basically, they define a kind of CTL query with a hole or
parameter, called the placeholder, that acts as a free variable. If the system verifies
the query pattern for any combination of values, the model checking algorithm
returns the set of subformulas that satisfy the placeholder. TLQSolver is a model
checking tool that support this logical extension [12, 79].

Furthermore, the integration of relational algebras with temporal logics opens a
new way for retrieving data from the models. The utilization of current database
systems for storing the definition of a transition system model, and the use of
database front-ends for processing temporal formulas reinterpreted as SQL queries,
offer an intermediate method for obtaining the values satisfying an abstract relation
[151, 140].

Many formulas presented in Table 4.1 will benefit of these technologies for the
inference of boolean values or DNA characters in the equations. The discovery of
columns or nucleotide values for which a sequence is conserved or for which a tree
path presents a back mutation figure among the brightest properties.

A trivial approximation for implementing qualitative parametric model check-
ing over finite domains consists of expanding a parametrized formula into multiple
independent non-parametric equations where the variables are instantiated with
all the possible values of their domain. In the case of finite domains, such as
the family of bases of the DNA or the length of an alignment, the range of the
variables representing the nucleotides and the columns of a sequence is bounded.
This leads into a combinatorial number of equations and a verification process
that, although intensive in computation, is completely parallelizable with tradi-
tional model checking tools due to the inter-independence of the formulas. The
execution of the model checking framework in a high-performance architecture or
cluster is feasible far beyond some synchronization points for the recollection of
the results.

18.3. PARAMETERS IN TIMED MODEL CHECKING 167

18.3. Parameters in Timed Model Checking

The use of parameters is not limited to qualitative model checking (parameters
in genomical sequences), but also the inclusion of quantitative information has
gained an increasing interest. The incorporation of timed or probabilistic bounds in
the relations implicitly generates a set of inequalities and linear equations that are
solvable with linear programming or, at least, can be approximated. Parameters
in Timed CTL (TCTL) has already been studied from a theoretical point of view.
The parameters are introduced for substituting clocks either in the formulas of
temporal logic (a pure parametric timed temporal logic [3, 171]) or in the model
of a timed automaton (a parametrized timed automaton [9]), and in some cases,
in both formulas and model [32]. These variables are used for checking abstract
temporal relations with no particular value of time.

The model checking algorithms for solving a parametric timed temporal for-
mula are polynomial for any fixed number of parameters in the specifications
[3]. Although there are situations in which the result is hard to compute over a
parametrized timed automaton, there exist some cases where the emptiness prob-
lem is still decidable, for example, when the parametrized timed automaton has
a single parametric clock. Nevertheless, the model checking problem becomes un-
decidable with the inclusion of more than three clocks to the model [9] or when
the equality of formulas is allowed in the logic [32]. Moby/DC [58] is a tool for
managing a simplified version of timed parametric model checking.

18.4. Parameters in Probabilistic Model

Checking

Finally, current researches in probabilistic model checking are centered in sys-
tems in which the probabilities associated with the transitions of a model are
also parameters [55, 108]. The studies of parameters in the model are specialized
for discrete time Markov chains, although they oppose in the strategy: in [55]
they represent the path probabilities of unnested operators with regular expres-
sions restricted to the domain of rational numbers, while in [108] they work with
polynomials and real numbers.

The regular expressions of the first case allow to manipulate parameters sym-
bolically through the application of standard model checking algorithms. Particu-
larly for the second approach, the complexity is comparable to a parametric timed
automata: knowing the existence of an instance that satisfies a parametric prob-
abilistic formula is decidable in exponential time with respect to the number of
parameters. Searching for that particular instance of the parameters is generally
unsolvable, but in some cases the valuations can be obtained by posing restrictions

168 CHAPTER 18. FUTURE WORK: PARAMETRIC TEMPORAL LOGIC

to the system, for example, limiting the number of parameters in the polynomials
to two [109].

The questions solved by parametric probabilistic model checking revolves
around a) the search of valuations that maximizes (or minimizes) the probabil-
ity of reaching a certain state, or b) the search of valuations that reach a certain
state with an exact probability. The extraction of such valuations comes from the
resolution of linear equation systems appeared from the concatenation of parame-
ters in the states/transitions of the model.

PARAM [87] is a parametric add-on for PRISM that returns polynomials and
rational functions as output results; it uses models where the transitions are defined
with probabilistic parameters. A clear application domain is the definition of DNA
substitution models: we use a DNA mutation template for scoring trees with MLE
instead of giving particular valuations to the transitions. Probabilistic parameters
in the specifications are already supported by model checking tools such as PRISM.
PRISM helps for the inference of maximum or minimum likelihoods in Markov
chains defined without parameters in the transitions.

Bibliography

[1] Susan M. Adams, Turi E. King, Elena Bosch, and Mark A. Jobling. The case
of the unreliable SNP: Recurrent back-mutation of Y-chromosomal marker
P25 through gene conversion. Forensic Science International, 159(1):14–20,
2006.

[2] Loredana Afanasiev, Massimo Franceschet, Maarten Marx, and Maarten
de Rijke. CTL model checking for processing simple XPath queries. In
Proceedings 11th International Symposium on Temporal Representation and
Reasoning, pages 117–124. IEEE, 2004.

[3] Allen E. Emerson and Richard J. Trefler. Parametric quantitative temporal
reasoning. In Proceedings 14th Annual Symposium on Logic in Computer
Science, pages 336 –343. IEEE, 1999.

[4] Elizabeth S. Allman and John A. Rhodes. Trees, fast and accurate. Science,
327(5971):1334–1335, 2010.

[5] Musab AlTurki and José Meseguer. PVeStA;: A parallel statistical model
checking and quantitative analysis tool. In Andrea Corradini, Bartek Klin,
and Corina Ĉırstea, editors, Proceedings 4th International Conference on
Algebra and Coalgebra in Computer Science, volume 6859 of LNCS, pages
386–392. Springer, Berlin, 2011.

[6] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for real-
time systems. In Proceedings 5th Annual Symposium on Logic in Computer
Science, pages 414 –425. IEEE, 1990.

[7] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense
real-time. Information and Computation, 104(1):2–34, 1993.

[8] Rajeev Alur and Thomas Henzinger. Logics and models of real time: A
survey. In J.W. Bakker, Cornelis Huizing, Willem P. Roever, and Grzegorz
Rozenberg, editors, Proceedings REX Workshop Mook Real-Time: Theory
in Practice, volume 600 of LNCS, pages 74–106. Springer, Berlin, 1992.

169

170 BIBLIOGRAPHY

[9] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-
time reasoning. In Proceedings 25th ACM Annual Symposium on Theory of
Computing, pages 592–601. ACM, 1993.

[10] Jorge Alvarez Jarreta, Elvira Mayordomo, and Eduardo Ruiz Pesini.
PHYSER: An algorithm to detect sequencing errors from phylogenetic infor-
mation. In Miguel P. Rocha, Nicholas Luscombe, Florentino Fdez-Riverola,
and Juan M. Corchado Rodŕıguez, editors, Proceedings 6th International
Conference on Practical Applications of Computational Biology and Bioin-
formatics, volume 154 of Advances in Intelligent and Soft Computing, pages
105–112. Springer, Berlin, 2012.

[11] Jeff Arendt and David Reznick. Convergence and parallelism reconsidered:
What have we learned about the genetics of adaptation? Trends in Ecology
and Evolution, 23(1):26–32, 2008.

[12] Arie Gurfinkel, Marsha Chechik, and Benet Devereux. Temporal logic query
checking: A tool for model exploration. IEEE Transactions on Software
Engineering, 29(10):898–914, 2003.

[13] Christel Baier and Joost-Pieter Katoen. Principles of model checking. The
MIT Press, 2008.

[14] Hans-Jürgen Bandelt, Päivi Lahermo, Martin Richards, and Vincent
Macaulay. Detecting errors in mtDNA data by phylogenetic analysis. Inter-
national Journal of Legal Medicine, 115(2):64–69, 2001.

[15] Jiri Barnat, Lubos Brim, Milan Ceska, and Petr Rockai. DiVinE: Paral-
lel distributed model checker. In Proceedings 9th International Workshop
on Parallel and Distributed Methods in Verification and 2nd International
Workshop on High Performance Computational Systems Biology, pages 4–7.
IEEE, 2010.

[16] Jiri Barnat, Lubos Brim, Adam Krejci, Adam Streck, David Safranek, Mar-
tin Vejnar, and Tomas Vejpustek. On parameter synthesis by parallel model
checking. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 9(3):693–705, 2012.

[17] Timothy G. Barraclough and Sean Nee. Phylogenetics and speciation. Trends
in Ecology and Evolution, 16(7):391–399, 2001.

[18] David Baum. Reading a phylogenetic tree: The meaning of monophyletic
groups. Nature Education, 1(1):190, 2008.

BIBLIOGRAPHY 171

[19] Cynthia M. Beall. Tibetan and Andean patterns of adaptation to high-
altitude hypoxia. Human Biology, 72(1):201–228, 2000.

[20] Cynthia M. Beall, Kijoung Song, Robert C. Elston, and Melvyn C. Goldstein.
Higher offspring survival among Tibetan women with high oxygen satura-
tion genotypes residing at 4,000 m. Proceedings of the National Academy of
Sciences of the United States of America, 101(39):14300–14304, 2004.

[21] Gerd Behrmann, Alexandre David, and Kim Larsen. A tutorial on Uppaal.
In Marco Bernardo and Flavio Corradini, editors, Formal Methods for the
Design of Real-Time Systems, volume 3185 of LNCS, pages 33–35. Springer,
Berlin, 2004.

[22] Carlo Bellettini, Matteo Camilli, Lorenzo Capra, and Mattia Monga. Dis-
tributed CTL model checking in the cloud. arXiv preprint arXiv:1310.6670,
2013.

[23] Dennis A. Benson, Ilene Karsch Mizrachi, Karen Clark, David J. Lipman,
James Ostell, and Eric W. Sayers. GenBank. Nucleic Acids Research,
40(D1):D48–D53, 2012.

[24] Girish Bhat, Rance Cleaveland, and Orna Grumberg. Efficient on-the-fly
model checking for CTL. In Proceedings 10th Annual Symposium on Logic
in Computer Science, pages 388 – 397. IEEE, 1995.

[25] Abigail Bigham, Marc Bauchet, Dalila Pinto, Xianyun Mao, Joshua M.
Akey, Rui Mei, Stephen W. Scherer, Colleen G. Julian, Megan J. Wilson,
David López Herráez, et al. Identifying signatures of natural selection in
Tibetan and Andean populations using dense genome scan data. PLoS Ge-
netics, 6(9):e1001116, 2010.

[26] Roberto Blanco, Gregorio de Miguel Casado, José Ignacio Requeno, and
José Manuel Colom. Temporal logics for phylogenetic analysis via model
checking. In Proceedings IEEE International Workshop on Mining and Man-
agement of Biological and Health Data, pages 152 – 157. IEEE, 2010.

[27] Roberto Blanco, Elvira Mayordomo, Julio Montoya, and Eduardo Ruiz
Pesini. Rebooting the human mitochondrial phylogeny: An automated
and scalable methodology with expert knowledge. BMC Bioinformatics,
12(1):174–186, 2011.

[28] Maria Luisa Bonet and Katherine St John. Efficiently calculating evolu-
tionary tree measures using SAT. In Oliver Kullmann, editor, Proceedings

172 BIBLIOGRAPHY

12th International Conference on Theory and Applications of Satisfiability
Testing, volume 5584 of LNCS, pages 4–17. Springer, Berlin, 2009.

[29] Remco Bouckaert, Philippe Lemey, Michael Dunn, Simon J Greenhill,
Alexander V Alekseyenko, Alexei J Drummond, Russell D Gray, Marc A
Suchard, and Quentin D Atkinson. Mapping the origins and expansion of
the Indo-European language family. Science, 337(6097):957–960, 2012.

[30] Mohand Cherif Boukala and Laure Petrucci. Distributed model-checking
and counterexample search for CTL logic. International Journal of Critical
Computer-Based Systems, 3(1/2):44–59, 2012.

[31] Dragan Bošnački and Stefan Edelkamp. Model checking software: On some
new waves and some evergreens. International Journal on Software Tools
for Technology Transfer, 12(2):89–95, 2010.

[32] Véronique Bruyere and Jean-François Raskin. Real-time model-checking:
Parameters everywhere. In Paritosh K. Pandya and Jaikumar Radhakr-
ishnan, editors, Proceedings 23rd Conference on Foundations of Software
Technology and Theoretical Computer Science, volume 2914 of LNCS, pages
100–111. Springer, Berlin, 2003.

[33] Randal E. Bryant. Graph-based algorithms for Boolean function manipula-
tion. IEEE Transactions on Computers, C-35(8):677–691, 1986.

[34] Kevin L. Campbell, Jason E.E. Roberts, Laura N. Watson, Jörg Stetefeld,
Angela M. Sloan, Anthony V. Signore, Jesse W. Howatt, Jeremy R.H. Tame,
Nadin Rohland, Tong-Jian Shen, et al. Substitutions in woolly mammoth
hemoglobin confer biochemical properties adaptive for cold tolerance. Nature
Genetics, 42(6):536–540, 2010.

[35] Sergio Campos, Edmund M. Clarke, Wilfredo Marrero, Marius Minea, and
Hiromi Hiraishi. Computing quantitative characteristics of finite-state real-
time systems. In Proceedings 15th Real-Time Systems Symposium, pages
266–270. IEEE, 1994.

[36] Luigi Luca Cavalli Sforza and Marcus W. Feldman. The application of molec-
ular genetic approaches to the study of human evolution. Nature Genetics,
33:266–275, 2003.

[37] Luigi Luca Cavalli Sforza, Alberto Piazza, Paolo Menozzi, and Joanna Moun-
tain. Reconstruction of human evolution: Bringing together genetic, archaeo-
logical, and linguistic data. Proceedings of the National Academy of Sciences,
85(16):6002–6006, 1988.

BIBLIOGRAPHY 173

[38] William Chan. Temporal-logic queries. In E. Emerson and Aravinda Sistla,
editors, Proceedings 12th International Conference on Computer Aided Ver-
ification, volume 1855 of LNCS, pages 450–463. Springer, Berlin, 2000.

[39] Krishnendu Chatterjee, Pallab Dasgupta, and P. P. Chakrabarti. Complex-
ity of compositional model checking of computation tree logic on simple
structures. In Arunabha Sen, Nabanita Das, Sajal K. Das, and Bhabani P.
Sinha, editors, Proceedings 6th International Workshop of Distributed Com-
puting, volume 3326 of LNCS, pages 102–113. Springer, Berlin, 2005.

[40] Marsha Chechik and Arie Gurfinkel. TLQSolver: A temporal logic query
checker. In Warren A. Hunt Jr. and Fabio Somenzi, editors, Proceedings
15th International Conference on Computer Aided Verification, volume 2725
of LNCS, pages 210–214. Springer, Berlin, 2003.

[41] Gareth Chelvanayagam, Andreas Eggenschwiler, Lukas Knecht, Gaston H.
Gonnet, and Steven A. Benner. An analysis of simultaneous variation in
protein structures. Protein Engineering, 10(4):307–316, 1997.

[42] Anna Cho. Constructing phylogenetic trees using maximum likelihood. PhD
thesis, Scripps Senior Theses, 2012.

[43] Jan Chomicki and David Toman. Temporal logic in information systems.
Springer, 1998.

[44] Jan Chomicki, David Toman, and Michael H. Böhlen. Querying ATSQL
databases with temporal logic. ACM Transactions on Database Systems,
26(2):145–178, 2001.

[45] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando
Tacchella. NuSMV 2: An opensource tool for symbolic model checking. In
Ed Brinksma and Kim Larsen, editors, Proceedings 14th International Con-
ference on Computer Aided Verification, volume 2404 of LNCS, pages 241–
268. Springer, Berlin, 2002.

[46] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Dexter Kozen,
editor, Proceedings Workshop on Logics of Programs, volume 131 of LNCS,
pages 52–71. Springer, Berlin, 1981.

[47] Edmund M. Clarke, David E. Long, and Kenneth L. McMillan. Composi-
tional model checking. In Proceedings 4th Annual Symposium on Logic in
Computer Science, pages 353–362. IEEE, 1989.

174 BIBLIOGRAPHY

[48] Jamieson M. Cobleigh, George S. Avrunin, and Lori A. Clarke. Breaking
up is hard to do: An evaluation of automated assume-guarantee reasoning.
ACM Transactions on Software Engineering and Methodology, 17(2):7:1–
7:52, 2008.

[49] Peter J. A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman, Cy-
mon J. Cox, Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank
Kauff, Bartek Wilczynski, et al. Biopython: Freely available Python tools
for computational molecular biology and bioinformatics. Bioinformatics,
25(11):1422–1423, 2009.

[50] Francisco M. Codoñer and Mario A. Fares. Why should we care about
molecular coevolution? Evolutionary Bioinformatics Online, 4:29–38, 2008.

[51] Francis S. Collins. What we do and don’t know about’race’,’ethnicity’, genet-
ics and health at the dawn of the genome era. Nature Genetics, 36:S13–S15,
2004.

[52] Daniel H. Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic net-
works: Concepts, algorithms and applications. Cambridge University Press,
2011.

[53] Diego Darriba, Guillermo L Taboada, Ramón Doallo, and David Posada.
jModelTest 2: More models, new heuristics and parallel computing. Nature
Methods, 9(8):772–772, 2012.

[54] Charles Darwin. On the origin of species by means of natural selection, or
the preservation of favoured races in the struggle of life. John Murray, 1859.

[55] Conrado Daws. Symbolic and parametric model checking of discrete-time
Markov chains. In Zhiming Liu and Keijiro Araki, editors, Proceedings 1st
International Colloquium on Theoretical Aspects of Computing, volume 3407
of LNCS, pages 280–294. Springer, Berlin, 2005.

[56] Elisabetta De Maria, François Fages, Aurélien Rizk, and Sylvain Soliman.
Design, optimization and predictions of a coupled model of the cell cycle,
circadian clock, DNA repair system, irinotecan metabolism and exposure
control under temporal logic constraints. Theoretical Computer Science,
412(21):2108–2127, 2011.

[57] US Department of Health. Healthy people 2010. Government Printing Office,
2000.

BIBLIOGRAPHY 175

[58] Henning Dierks and Josef Tapken. Moby/DC–a tool for model-checking
parametric real-time specifications. In Hubert Garavel and John Hatcliff,
editors, Proceedings 9th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, volume 2619 of LNCS, pages
271–277. Springer, Berlin, 2003.

[59] Susanna Donatelli, Serge Haddad, and Jeremy Sproston. Model checking
timed and stochastic properties with CSLTA. IEEE Transactions on Soft-
ware Engineering, 35(2):224–240, 2009.

[60] Agostino Dovier and Elisa Quintarelli. Model-checking based data retrieval.
In Giorgio Ghelli and Gösta Grahne, editors, Proceedings 8th International
Workshop on Database Programming Languages, volume 2397 of LNCS,
pages 62–77. Springer, Berlin, 2002.

[61] Alexei J. Drummond and Andrew Rambaut. BEAST: Bayesian evolutionary
analysis by sampling trees. BMC Evolutionary Biology, 7(1):214–221, 2007.

[62] Robert C. Edgar. MUSCLE: Multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Research, 32(5):1792–1797, 2004.

[63] Orna Grumberg Edmund M. Clarke and Doron A. Peled. Model checking.
The MIT Press, 2000.

[64] Edward O. Wiley and Bruce S. Lieberman. Phylogenetics: The theory and
practice of phylogenetic systematics. Wiley, 1981.

[65] Nathan Ellis, Susan Ciocci, and James German. Back mutation can produce
phenotype reversion in Bloom syndrome somatic cells. Human Genetics,
108(2):167–173, 2001.

[66] E. Allen Emerson, Aloysius K. Mok, A. Prasad Sistla, and Jai Srinivasan.
Quantitative temporal reasoning. In Edmund M. Clarke and Robert P. Kur-
shan, editors, Proceedings 2nd International Workshop on Computer Aided
Verification, volume 531 of LNCS, pages 136–145. Springer, Berlin, 1991.

[67] Emmanuel Paradis. Analysis of phylogenetics and evolution with R (Use R!).
Springer, 2012.

[68] Laurent Excoffier, Guillaume Laval, and Stefan Schneider. Arlequin (version
3.0): An integrated software package for population genetics data analysis.
Evolutionary Bioinformatics Online, 1:47–50, 2005.

[69] Joseph Felsenstein. Evolutionary trees from DNA sequences: A maximum
likelihood approach. Journal of Molecular Evolution, 17(6):368–376, 1981.

176 BIBLIOGRAPHY

[70] Joseph Felsenstein. PHYLIP-phylogeny inference package (version 3.2).
Cladistics, 5:164–166, 1989.

[71] Joseph Felsenstein. Inferring phylogenies. Sinauer, 2003.

[72] D. Fenna, L. Mix, O. Schaefer, and J. A. L. Gilbert. Ethanol metabolism
in various racial groups. Canadian Medical Association Journal, 105(5):472–
475, 1971.

[73] Fernando A. F. Braz, Jader S. Cruz, Alessandra C. Faria Campos, and
Sergio Campos. Probabilistic model checking analysis of Palytoxin effects
on cell energy reactions of the Na+/K+ATPase. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 10(6):1530–1541, 2013.

[74] Walter M. Fitch. Toward defining the course of evolution: Minimum change
for a specific tree topology. Systematic Biology, 20(4):406–416, 1971.

[75] Walter M. Fitch. Uses for evolutionary trees. Philosophical Transactions of
the Royal Society of London. Series B: Biological Sciences, 349(1327):93–102,
1995.

[76] Peter Forster. Ice Ages and the mitochondrial DNA chronology of human
dispersals: A review. Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences, 359(1442):255–264, 2004.

[77] K. Fukami Kobayashi, D. R. Schreiber, and S. A. Benner. Detecting compen-
satory covariation signals in protein evolution using reconstructed ancestral
sequences. Journal of Molecular Biology, 319(3):729–743, 2002.

[78] Dov M. Gabbay and Amir Pnueli. A sound and complete deductive system
for CTL* verification. Logic Journal of IGPL, 16(6):499–536, 2008.

[79] Mihaela Gheorghiu and Arie Gurfinkel. Tlq: A query solver for states. In
Tools and Posters Session at the 14th International Symposium on Formal
Methods, 2006.

[80] Gonzalo Giribet. TNT: Tree analysis using new technology. Systematic
Biology, 54(1):176–178, 2005.

[81] T. Ryan Gregory. Genome size evolution in animals, volume 1, chapter
Chapter 1, pages 4–87. Elsevier, San Diego, CA, 2005.

[82] T. Ryan Gregory. Genome size evolution in plants, volume 1, chapter Chap-
ter 2, pages 89–162. Elsevier, San Diego, CA, 2005.

BIBLIOGRAPHY 177

[83] T Ryan Gregory. Animal genome size database. http://www.genomesize.

com, 2014.

[84] Orna Grumberg, Tamir Heyman, and Assaf Schuster. Distributed sym-
bolic model checking for µ-calculus. In Gérard Berry, Hubert Comon, and
Alain Finkel, editors, Proceedings 13th International Conference on Com-
puter Aided Verification, volume 2102 of LNCS, pages 350–362. Springer,
Berlin, 2001.

[85] Orna Grumberg and Helmut Veith. 25 years of model checking: History,
achievements, perspectives. Springer, 2008.

[86] Jenny Gu and Philip E. Bourne. Structural bioinformatics. Wiley-Blackwell,
2009.

[87] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang.
PARAM: A model checker for parametric Markov models. In Tayssir Touili,
Byron Cook, and Paul Jackson, editors, Proceedings 22nd International Con-
ference on Computer Aided Verification, volume 6174 of LNCS, pages 660–
664. Springer, Berlin, 2010.

[88] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6(5):512–535, 1994.

[89] Willi Hennig. Phylogenetic systematics. University of Illinois Press, 1999.

[90] Thomas A Henzinger, Zohar Manna, and Amir Pnueli. Timed transition
systems. In J.W. Bakker, Cornelis Huizing, Willem P. Roever, and Grzegorz
Rozenberg, editors, Proceedings REX Workshop Mook Real-Time: Theory
in Practice, volume 600 of LNCS, pages 226–251. Springer, Berlin, 1992.

[91] David M. Hillis and James J. Bull. An empirical test of bootstrapping as a
method for assessing confidence in phylogenetic analysis. Systematic Biology,
42(2):182–192, 1993.

[92] Clare Holden and Ruth Mace. Phylogenetic analysis of the evolution of
lactose digestion in adults. Human Biology, 81(5/6):597–619, 2009.

[93] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–295, 1997.

[94] Richard R. Hudson. Gene genealogies and the coalescent process. Oxford
Surveys in Evolutionary Biology, 7(1):1–44, 1990.

http://www.genomesize.com
http://www.genomesize.com

178 BIBLIOGRAPHY

[95] Keith Hunley, Claire Bowern, and Meghan Healy. Rejection of a serial
founder effects model of genetic and linguistic coevolution. Proceedings of
the Royal Society B: Biological Sciences, 279(1736):2281–2288, 2012.

[96] Cornelia Inggs and Howard Barringer. CTL* model checking on a shared-
memory architecture. Formal Methods in System Design, 29(2):135–155,
2006.

[97] Catherine J. E. Ingram, Charlotte A. Mulcare, Yuval Itan, Mark G. Thomas,
and Dallas M. Swallow. Lactose digestion and the evolutionary genetics of
lactase persistence. Human Genetics, 124(6):579–591, 2009.

[98] David N. Jansen, Joost-Pieter Katoen, Marcel Oldenkamp, Mariëlle
Stoelinga, and Ivan Zapreev. How fast and fat is your probabilistic model
checker? an experimental performance comparison. In Karen Yorav, editor,
Proceedings 3rd International Haifa Verification Conference on Hardware
and Software, Verification and Testing, volume 4899 of LNCS, pages 69–85.
Springer, Berlin, 2008.

[99] Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. Mcmillan,
and David L. Dill. Symbolic model checking for sequential circuit verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 13(4):401–424, 1994.

[100] Sumit K. Jha, Edmund M. Clarke, Christopher J. Langmead, Axel Legay,
André Platzer, and Paolo Zuliani. A Bayesian approach to model checking
biological systems. In Pierpaolo Degano and Roberto Gorrieri, editors, Pro-
ceedings 7th International Conference on Computational Methods in Systems
Biology, volume 5688 of LNCS, pages 218–234. Springer, Berlin, 2009.

[101] Mark A. Jobling and Chris Tyler Smith. The human Y chromosome: An
evolutionary marker comes of age. Nature Reviews Genetics, 4(8):598–612,
2003.

[102] Katherine St John. Comparing phylogenetic trees. In EMBO Workshop on
Current Challenges and Problems in Phylogenetics, Cambridge, UK, 2007.
Isaac Newton Institute.

[103] John Heath, Marta Kwiatkowska, Gethin Norman, David. Parker, and Ok-
sana Tymchyshyn. Probabilistic model checking of complex biological path-
ways. In Corrado Priami, editor, Proceedings 4th International Conference
on Computational Methods in Systems Biology, volume 4210 of Lecture Notes
in Bioinformatics, pages 32–47. Springer, Berlin, 2006.

BIBLIOGRAPHY 179

[104] John Heath, Marta Kwiatkowska, Gethin Norman, David Parker, and Ok-
sana Tymchyshyn. Probabilistic model checking of complex biological path-
ways. Theoretical Computer Science, 319(3):239–257, 2008.

[105] Rob Knight, Peter Maxwell, Amanda Birmingham, Jason Carnes, J. Gregory
Caporaso, Brett C. Easton, Michael Eaton, Micah Hamady, Helen Lindsay,
Zongzhi Liu, et al. PyCogent: A toolkit for making sense from sequence.
Genome Biology, 8(8):1–16, 2007.

[106] Marta Kwiatkowska, Gethin Norman, and David Parker. Stochastic model
checking. In Marco Bernardo and Jane Hillston, editors, 7th International
School on Formal Methods for Performance Evaluation, volume 4486 of
LNCS, pages 220–270. Springer, Berlin, 2007.

[107] Christopher James Langmead and Sumit Kumar Jha. Predicting protein
folding kinetics via temporal logic model checking. In Raffaele Giancarlo
and Sridhar Hannenhalli, editors, Proceedings 7th Workshop on Algorithms
in Bioinformatics, volume 4645 of LNCS, pages 252–264. Springer, Berlin,
2007.

[108] Ruggero Lanotte, Andrea Maggiolo Schettini, and Angelo Troina. Decidabil-
ity results for parametric probabilistic transition systems with an application
to security. In Proceedings 2th International Conference on Software Engi-
neering and Formal Methods, pages 114–121. IEEE, 2004.

[109] Ruggero Lanotte, Andrea Maggiolo Schettini, and Angelo Troina. Paramet-
ric probabilistic transition systems for system design and analysis. Formal
Aspects of Computing, 19(1):93–109, 2007.

[110] Guillaume Lecointre and Hervé Le Guyader. The tree of life: A phylogenetic
classification. Harvard University Press, 2006.

[111] Ivica Letunic and Peer Bork. Interactive Tree Of Life (iTOL): An online tool
for phylogenetic tree display and annotation. Bioinformatics, 23(1):127–128,
2007.

[112] Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The glory of the past.
In Rohit Parikh, editor, Proceedings Workshop on Logic of Programs, volume
193 of LNCS, pages 196–218. Springer, Berlin, 1985.

[113] Carl von Linné and Laurentii Salvii. Caroli Linnaei ... Species plantarum,
volume v. 1. Holmiae: Impensis Laurentii Salvii, 1753.

[114] Carl von Linné and Laurentii Salvii. Caroli Linnaei ... Species plantarum,
volume v. 2. Holmiae: Impensis Laurentii Salvii, 1753.

180 BIBLIOGRAPHY

[115] Carl von Linné and Laurentii Salvii. Caroli Linnaei...Systema naturae per
regna tria naturae, volume v.1. Holmiae: Impensis Laurentii Salvii, 1758.

[116] Carl von Linné and Laurentii Salvii. Caroli Linnaei...Systema naturae per
regna tria naturae, volume v.2. Holmiae: Impensis Laurentii Salvii, 1759.

[117] Pietro Lio and Nick Goldman. Models of molecular evolution and phylogeny.
Genome Research, 8(12):1233–1244, 1998.

[118] Mark V. Lomolino, Brett R. Riddle, and James H. Brown. Biogeography.
Sinauer, 2006.

[119] Wayne P. Maddison. Gene trees in species trees. Systematic Biology,
46(3):523–536, 1997.

[120] Wayne P. Maddison and David R. Maddison. Mesquite: A modular system
for evolutionary analysis. Version 2.75, 2011.

[121] Harry Mangalam. The Bio* toolkits - a brief overview. Briefings in Bioin-
formatics, 3(3):296–302, 2002.

[122] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems: Specification. Springer, 1991.

[123] Marta Kwiatkowska, Gethin Norman, and David Parker. Using probabilis-
tic model checking in systems biology. ACM SIGMETRICS Performance
Evaluation Review, 35(4):14–21, 2008.

[124] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Ver-
ification of probabilistic real-time systems. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, Proceedings 23rd International Conference on Com-
puter Aided Verification, volume 6806 of LNCS, pages 585–591. Springer,
Berlin, 2011.

[125] Kenneth L. McMillan. A methodology for hardware verification using compo-
sitional model checking. Science Computational Programming, 37(1–3):279–
309, 2000.

[126] Igor Melatti, Robert Palmer, Geoffrey Sawaya, Yu Yang, Robert Mike Kirby,
and Ganesh Gopalakrishnan. Parallel and distributed model checking in
Eddy. In Antti Valmari, editor, Proceedings 3th International Conference on
Model Checking Software, volume 3925 of LNCS, pages 108–125. Springer,
Berlin, 2006.

BIBLIOGRAPHY 181

[127] Igor Melatti, Robert Palmer, Geoffrey Sawaya, Yu Yang, Robert Mike Kirby,
and Ganesh Gopalakrishnan. Parallel and distributed model checking in
Eddy. International Journal on Software Tools for Technology Transfer,
11(1):13–25, 2009. Springer.

[128] Pedro T. Monteiro, Delphine Ropers, Radu Mateescu, Ana T. Freitas, and
Hidde Jong. Temporal logic patterns for querying dynamic models of cellular
interaction networks. Bioinformatics, 24(16):i227–i233, 2008.

[129] Julio Montoya, Ester López Gallardo, Carmen Dı́ez Sánchez, Manuel J.
López Pérez, and Eduardo Ruiz Pesini. 20 years of human mtDNA pathologic
point mutations: Carefully reading the pathogenicity criteria. Biochimica et
Biophysica Acta, 1787(5):476–483, 2009.

[130] Arne O. Mooers and Stephen B. Heard. Inferring evolutionary process from
phylogenetic tree shape. Quarterly Review of Biology, 72(21):31–54, 1997.

[131] Richard Nichols. Gene trees and species trees are not the same. Trends in
Ecology and Evolution, 16(7):358–364, 2001.

[132] Pekka Pamilo and Masatoshi Nei. Relationships between gene trees and
species trees. Molecular Biology and Evolution, 5(5):568–583, 1988.

[133] John M. Pearce. Minding the gap: Frequency of indels in mtDNA control
region sequence data and influence on population genetic analyses. Molecular
Ecology, 15(2):333–341, 2006.

[134] Amir Pnueli. The temporal logic of programs. In Proceedings 18th Annual
Symposium on Foundations of Computer Science, pages 46–57. IEEE, 1977.

[135] Amir Pnueli. Logics and Models of Concurrent Systems, chapter In transition
from global to modular temporal reasoning about programs, pages 123–144.
Springer, New York, NY, 1985.

[136] Simone Pompei, Vittorio Loreto, and Francesca Tria. Phylogenetic proper-
ties of RNA viruses. PloS One, 7(9):e44849, 2012.

[137] Andrew Rambaut. How to read a phylogenetic tree, 2013.

[138] José Ignacio Requeno, Roberto Blanco, Gregorio de Miguel Casado, and
José Manuel Colom. Phylogenetic analysis using an SMV tool. In Miguel P.
Rocha, Juan M. Corchado Rodr̀ıguez, Florentino Fdez-Riverola, and Alfonso
Valencia, editors, Proceedings 5th International Conference on Practical Ap-
plications of Computational Biology and Bioinformatics, volume 93 of Ad-
vances in Intelligent and Soft Computing, pages 167–174. Springer, Berlin,
2011.

182 BIBLIOGRAPHY

[139] José Ignacio Requeno, Roberto Blanco, Gregorio de Miguel Casado, and
José Manuel Colom. Sliced model checking for phylogenetic analysis. In
Miguel P. Rocha, Nicholas Luscombe, Florentino Fdez-Riverola, and Juan
M. Corchado Rodŕıguez, editors, Proocedings 6th International Conference
on Practical Applications of Computational Biology and Bioinformatics, vol-
ume 154 of Advances in Intelligent and Soft Computing, pages 95–103.
Springer, Berlin, 2012.

[140] José Ignacio Requeno and José Manuel Colom. Model checking software
for phylogenetic trees using distribution and database methods. Journal of
Integrative Bioinformatics, 10(3):229–233, 2013.

[141] José Ignacio Requeno and José Manuel Colom. Speeding up phylogenetic
model checking. In Mohd Saberi Mohamad, Loris Nanni, Miguel P. Rocha,
and Florentino Fdez-Riverola, editors, Proceedings 7th International Confer-
ence on Practical Applications of Computational Biology and Bioinformatics,
volume 222 of Advances in Intelligent Systems and Computing, pages 119–
126. Springer, Berlin, 2013.

[142] José Ignacio Requeno and José Manuel Colom. Timed and probabilistic
model checking over phylogenetic trees. In Miguel P. Rocha et al., edi-
tors, Proceedings 8th International Conference on Practical Applications of
Computational Biology and Bioinformatics, Advances in Intelligent and Soft
Computing. Springer, Berlin, 2014.

[143] José Ignacio Requeno, Gregorio de Miguel Casado, Roberto Blanco, and
José Manuel Colom. Temporal logics for phylogenetic analysis via model
checking. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 10(4):1058–1070, 2013.

[144] Martin B. Richards, Vincent A. Macaulay, Hans-Jürgen Bandelt, and
Bryan C. Sykes. Phylogeography of mitochondrial DNA in western Europe.
Annals of Human Genetics, 62(3):241–260, 1998.

[145] Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman. On a
continuous degree of satisfaction of temporal logic formulae with applications
to systems biology. In Monika Heiner and Adelinde M. Uhrmacher, editors,
Proceedings 6th International Conference on Computational Methods in Sys-
tems Biology, volume 5307 of LNCS, pages 251–268. Springer, Berlin, 2008.

[146] D. F. Robinson and Leslie R. Foulds. Comparison of phylogenetic trees.
Mathematical Biosciences, 53(1):131–147, 1981.

BIBLIOGRAPHY 183

[147] Fredrik Ronquist, Maxim Teslenko, Paul van der Mark, Daniel L. Ayres,
Aaron Darling, Sebastian Höhna, Bret Larget, Liang Liu, Marc A. Suchard,
and John P. Huelsenbeck. MrBayes 3.2: Efficient Bayesian phylogenetic
inference and model choice across a large model space. Systematic Biology,
61(3):539–542, 2012.

[148] Naruya Saitou and Masatoshi Nei. The neighbor-joining method: A new
method for reconstructing phylogenetic trees. Molecular Biology and Evolu-
tion, 4(4):406–425, 1987.

[149] Philippe Schnoebelen. The complexity of temporal logic model checking.
Advances in Modal Logic, 4:393–436, 2002.

[150] Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilis-
tic processes. In Bengt Jonsson and Joachim Parrow, editors, Proceedings
5th International Conference on Concurrency Theory, volume 836 of LNCS,
pages 481–496. Springer, Berlin, 1994.

[151] German Shegalov. CTL model checking in database cloud. Oracle Corpora-
tion.

[152] Tanja Stadler. Evolving trees: Models for speciation and extinction in
phylogenetics. PhD thesis, Zentrum Mathematik, Technische Universität
München, 2008.

[153] Jason E. Stajich, David Block, Kris Boulez, Steven E. Brenner, Stephen A.
Chervitz, Chris Dagdigian, Georg Fuellen, James G. R. Gilbert, Ian Korf,
Hilmar Lapp, et al. The Bioperl toolkit: Perl modules for the life sciences.
Genome Research, 12(10):1611–1618, 2002.

[154] Alexandros P. Stamatakis, Thomas Ludwig, and Harald Meier. The AxML
program family for maximum likelihood-based phylogenetic tree inference.
Concurrency and Computation: Practice and Experience, 16(9):975–988,
2004.

[155] Alexandros P. Stamatakis, Thomas Ludwig, and Harald Meier. RAxML-III:
A fast program for maximum likelihood-based inference of large phylogenetic
trees. Bioinformatics, 21(4):456–463, 2005.

[156] Mike Steel and Andy McKenzie. Properties of phylogenetic trees generated
by Yule-type speciation models. Mathematical Biosciences, 170(1):91–112,
2001.

184 BIBLIOGRAPHY

[157] William J. Stewart. Probability, Markov chains, queues, and simulation: The
mathematical basis of performance modeling. Princeton University Press,
2009.

[158] M. Stich and S. C. Manrubia. Topological properties of phylogenetic trees
in evolutionary models. The European Physical Journal B, 70(4):583–592,
2009.

[159] Seung-Jin Sul, Suzanne Matthews, and Tiffani L. Williams. Using tree di-
versity to compare phylogenetic heuristics. BMC Bioinformatics, 10(Suppl
4):S3, 2009.

[160] Dallas M. Swallow. Genetics of lactase persistence and lactose intolerance.
Annual Review of Genetics, 37(1):197–219, 2003.

[161] David L. Swofford. PAUP*. Phylogenetic analysis using parsimony (* and
other methods). Version 4, 2003.

[162] Julie D. Thompson, Toby Gibson, and Des G. Higgins. Multiple sequence
alignment using ClustalW and ClustalX. Current Protocols in Bioinformat-
ics, 2:2–3, 2002.

[163] Sarah A. Tishkoff, Floyd A. Reed, Alessia Ranciaro, Benjamin F. Voight,
Courtney C. Babbitt, Jesse S. Silverman, Kweli Powell, Holly M. Mortensen,
Jibril B. Hirbo, Maha Osman, et al. Convergent adaptation of human lactase
persistence in Africa and Europe. Nature Genetics, 39(1):31–40, 2006.

[164] Chris Tuffley and Mike Steel. Links between maximum likelihood and maxi-
mum parsimony under a simple model of site substitution. Bulletin of Math-
ematical Biology, 59(3):581–607, 1997.

[165] Ulrich Stern and David L. Dill. Parallelizing the Murϕ verifier. Formal
Methods in System Design, 18(2):117–129, 2001.

[166] Peter A. Underhill and Toomas Kivisild. Use of Y chromosome and mito-
chondrial DNA population structure in tracing human migrations. Annual
Review of Genetics, 41:539–564, 2007.

[167] University of California Museum of Paleontology and the National Center
for Science Education. Understanding Evolution, 2004.

[168] Mannis Van Oven and Manfred Kayser. Updated comprehensive phyloge-
netic tree of global human mitochondrial DNA variation. Human Mutation,
30(2):E386–E394, 2009.

BIBLIOGRAPHY 185

[169] Kimmo Varpaaniemi, Jaakko Halme, Kari Hiekkanen, and Tino Pyssysalo.
PROD reference manual. Technical report, Helsinki University of Technol-
ogy, Digital Systems Laboratory, Espoo, Finland, 1995.

[170] Johann-Wolfgang Wägele. Foundations of phylogenetic systematics. Pfeil,
2005.

[171] Farn Wang. Parametric timing analysis for real-time systems. Information
and Computation, 130(2):131–150, 1996.

[172] Yufeng Wu. Close lower and upper bounds for the minimum reticulate
network of multiple phylogenetic trees. Bioinformatics, 26(12):i140–i148,
2010.

[173] Ming Yang, Yan Ge, Jiayan Wu, Jingfa Xiao, and Jun Yu. Coevolution study
of mitochondria respiratory chain proteins: Toward the understanding of
protein–protein interaction. Journal of Genetics and Genomics, 38(5):201–
207, 2011.

[174] Ziheng Yang. Computational molecular evolution. Oxford University Press,
2006.

[175] Ziheng Yang and Bruce Rannala. Bayesian phylogenetic inference using
DNA sequences: A Markov chain Monte Carlo method. Molecular Biology
and Evolution, 14(7):717–724, 1997.

[176] Ziheng Yang and Bruce Rannala. Molecular phylogenetics: Principles and
practice. Nature Reviews Genetics, 13(5):303–314, 2012.

[177] Xin Yi, Yu Liang, Emilia Huerta Sanchez, Xin Jin, Zha Xi Ping Cuo,
John E Pool, Xun Xu, Hui Jiang, Nicolas Vinckenbosch, Thorfinn Sand
Korneliussen, et al. Sequencing of 50 human exomes reveals adaptation to
high altitude. Science, 329(5987):75–78, 2010.

[178] S.-J. Yin, T.-C. Cheng, C.-P. Chang, Y.-J. Chen, Y.-C. Chao, H.-S. Tang,
T.-M. Chang, and C.-W. Wu. Human stomach alcohol and aldehyde de-
hydrogenases (ALDH): A genetic model proposed for ALDH III isozymes.
Biochemical Genetics, 26(5-6):343–360, 1988.

[179] Tatiana Zerjal, Yali Xue, Giorgio Bertorelle, R. Spencer Wells, Weidong
Bao, Suling Zhu, Raheel Qamar, Qasim Ayub, Aisha Mohyuddin, Songbin
Fu, et al. The genetic legacy of the Mongols. The American Journal of
Human Genetics, 72(3):717–721, 2003.

186 BIBLIOGRAPHY

[180] Jianzhi Zhang and Sudhir Kumar. Detection of convergent and parallel
evolution at the amino acid sequence level. Molecular Biology and Evolution,
14(5):527–536, 1997.

[181] Christian M. Zmasek and Sean R. Eddy. ATV: Display and manipulation of
annotated phylogenetic trees. Bioinformatics, 17(4):383–384, 2001.

