
08332 Abstracts Collection

Distributed Veri�cation and Grid Computing

� Dagstuhl Seminar �

Henri E. Bal1, Lubos Brim2 and Martin Leucker3

1 Vrije Universiteit Amsterdam, NL
bal@cs.vu.nl

2 Masaryk University, CZ
brim@fi.muni.cz

3 TU München, DE
leucker@in.tum.de

Abstract. From 08/10/2008 to 08/14/2008 the Dagstuhl Seminar 08332
�Distributed Veri�cation and Grid Computing� was held in the Interna-
tional Conference and Research Center (IBFI), Schloss Dagstuhl. During
the seminar, several participants presented their current research, and
ongoing work and open problems were discussed. Abstracts of the pre-
sentations given during the seminar as well as abstracts of seminar results
and ideas are put together in this paper. The �rst section describes the
seminar topics and goals in general. Links to extended abstracts or full
papers are provided, if available.

Keywords. Parallel Model Checking, Grid Computing, Veri�cation

08332 Executive Summary � Distributed Veri�cation and
Grid Computing

The Dagstuhl Seminar on Distributed Veri�cation and Grid Computing

took place from 10.08.2008 to 14.08.2008 and brought together two groups of
researchers to discuss their recent work and recent trends related to parallel
veri�cation of large scale computer systems on large scale grids. In total, 29
experts from 12 countries attended the seminar.

Joint work of: Bal, Henri E.; Brim, Lubos; Leucker, Martin

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2008/1632

Dagstuhl Seminar Proceedings 08332
Distributed Veri�cation and Grid Computing
http://drops.dagstuhl.de/opus/volltexte/2008/1633

http://drops.dagstuhl.de/opus/volltexte/2008/1632

2 Henri E. Bal, Lubos Brim and Martin Leucker

Large-scale parallel computing on grids

Henri E. Bal (Vrije Universiteit Amsterdam)

Computational grids are interesting platforms for solving large-scale computa-
tional problems, because they consist of many (geographically distributed) re-
sources. Thus far, grids have mainly been used for high-throughput computing on
independent (or trivially parallel) jobs. However, advances in grid software (pro-
gramming environments, schedulers) and optical networking technology make it
more and more feasible to use grids for solving challenging large-scale problems.

The talk will �rst give a brief introduction to grid infrastructures, using
the Dutch DAS-3 Computer Science grid as example. DAS-3 has a �exible and
recon�gurable 40 Gb/s optical network called StarPlane between its �ve clusters
and a 10 Gb/s dedicated optical link to the French Grid'5000 system. From a
parallel programming point of view, grids like DAS-3 are characterized by a
high-latency/high-bandwidth network and a hierarchical structure.

Next, the talk will discuss how algorithms and applications can be optimized
to run in such an environment. It focusses on search applications like retrograde
analysis, which, much like model checkers, analyze huge search spaces. As a case
study, we have implemented an application that solves the game of Awari, which
has 900 billion di�erent states. Several optimizations were needed to obtain high
performance on DAS-3/StarPlane. Next, the talk discusses promising prelim-
inary results of running the DiVineE model checker on the wide-area DAS-3
system. These early results indicate that there are clear similarities in commu-
nication behaviour and performance between this model checker and Awari.

The last part of the talk will discuss research on programming environments
that will make it easier to develop parallel applications for grids. Grid program-
mers often have to use low-level programming interfaces that change frequently,
and they have to deal with heterogeneity, connectivity problems, security is-
sues, and dynamically changing execution environments. The Ibis project aims
to drastically simplify the whole programming and deployment process of high-
performance grid applications. The philosophy of Ibis is that grid applications
should be developed on a local workstation and simply be launched from there.
Ibis uses middleware-independent Application Programming Interfaces with dif-
ferent abstraction levels, ranging from low-level message passing to high-level
divide-and-conquer parallelism and group communication.

E�cient Large-Scale Model Checking

Henri E. Bal (Vrije Universiteit Amsterdam)

Model checking is a popular technique to systematically and automatically verify
system properties. Unfortunately, the well-known state explosion problem often
limits the extent to which it can be applied to realistic speci�cations, due to
the huge resulting memory requirements. Distributed memory model checkers

Distributed Veri�cation and Grid Computing 3

exist, but have thus far only been evaluated on small-scale clusters, with mixed
results. We examine one well-known distributed model checker in detail, and
show how a number of additional optimizations in its runtime system enable it
to e�ciently check very demanding problem instances on a large-scale, multi-core
compute cluster. We analyze the impact of the distributed algorithms employed,
the problem instance characteristics and network overhead. Finally, we show
that the model checker can even obtain good performance in a high-bandwidth
computational grid environment.

Joint work of: Verstoep, Kees; Bal, Henri; Barnat, Jiri; Brim, Lubos

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2008/1630

State Space Generation for µCRL: data structures and
reusability.

Stefan Blom (University of Twente)

Besides the distributed state space generator for µCRL, there are two experi-
mental ones: a batch scheduler based on-disk generator and a decision diagram
based symbolic generator. (The latter is not distributed.) We will brie�y intro-
duce these three state space generators.

Subsequently, we will focus on the data structures and protocols used for
communication and storage. Also, we will present the APIs of the reusable parts.

Where the Lions Gone?

Lubos Brim (Masaryk University), Martin Leucker (TU München)

In this introductionary talk paper we summarize fundamentals of parallel algo-
rithms for enumerative and symbolic model checking of properties formulated in
linear time temporal logic (LTL) as well as a fragments of the modal mu-calculus
which naturally subsumes the branching time logics, like CTL (computation tree
logic).

Keywords: Parallel model-checking

Parallel Symbolic Algorithms: A Challenge

Gianfranco Ciardo (Univ. of California - Riverside)

We discuss sequential state-space generation �rst, both explicit and symbolic
(decision-diagram based). Explicit state-space generation is easier to distribute
or parallelize, and we discuss the general framework to do so.

http://drops.dagstuhl.de/opus/volltexte/2008/1630

4 Henri E. Bal, Lubos Brim and Martin Leucker

Symbolic state-space generation is instead much harder to parallelize.
We focus on the saturation algorithm, which is by far better than traditional

symbolic generation based on breadth-�rst search, but seems to be inherently
sequential. We give a distributed implementation of saturation, which achieves
excellent memory load balance, but provides no speedup at all.

Then, we discuss a speculative approach to improve this situation. However,
the challenge to improve saturation implementations for a distributed environ-
ment remains an open problem, especially if we aim at a good scalability with
respect to execution time.

Keywords: Parallel or distributed state space generation

Inspect, ISP, and FIB: Tools for Dynamic Veri�cation and
Analysis of Concurrent Programs

Ganesh Gopalakrishnan (University of Utah)

We present ongoing work on practical methods for formally verifying message
passing and thread programs. These programs are typically written in libraries
such as MPI and PThreads. Since creating a formal model of programs in these
notations is di�cult, we opt for a dynamic veri�cation approach in which API
calls of MPI or PThreads made from a C program are intercepted by a special
scheduler we include. For PThread program veri�cation, we have a dedicated
tool called Inspect whose scheduler implements a version of Dynamic Partial
Order reduction, originally proposed by Flanagan and Godefroid. Our imple-
mentation includes numerous new ideas including state delta based partial de-
termination of visited states, and specialized algorithms for race detection. For
MPI program veri�cation, we have a dedicated tool called ISP whose scheduler
implements a new dynamic partial order reduction algorithm called Partial Or-
der reduction avoiding Elusive interleavings (POE). The ISP tool is also able to
determine whether MPI barriers used in a program are Functionally Irrelevant
Barriers (FIB) or not. When a barrier is determined to be a FIB, it can be
removed without changing the communication behavior of the overall MPI pro-
gram. These works have appeared in a number of recent venues, and details may
be found from our website http://www.cs.utah.edu/formal_veri�cation. The au-
thors thank Rajeev Thakur of Argonne and William Gropp of UIUC for their
feedback and encouragement.

Keywords: MPI, PThreads, Dynamic Veri�cation, Formal Veri�cation, Dy-
namic Partial Order Reduction

Joint work of: Yu Yang; Sarvani Vakkalanka; Subodh Sharma; Anh Vo; Michael
DeLisi; Ganesh Gopalakrishnan; Robert M. Kirby

Full Paper:
http://www.cs.utah.edu/formal_veri�cation

http://www.cs.utah.edu/formal_verification

Distributed Veri�cation and Grid Computing 5

See also: http://www.cs.utah.edu/formal_veri�cation

Real-Time Online Interactive Applications: Challenges and
Prospects on the Grid

Sergei Gorlatch (Universität Münster)

Real-Time Online Interactive Applications (ROIA) contain such highly dynamic
and commercially important applications as online computer games and e-learning
based on simulation. We describe the speci�c problems of ROIA and present
some approaches to their e�cient implementation using Grid Computing.

Demonstration of the mCRL2 toolset.

Jan Friso Groote (Eindhoven Univ. of Technology)

We demonstrate the mCRL2 toolset that is capable of modelling and analysing
complex communicating systems. Typical examples of these are distributed al-
gorithms and communication protocols. However, modelling of communication
is also applied in the design of embedded systems (containing lots of embedded
controllers) and factory automation (where passing a product is also modelled
as passing a message).

Of course grid computers are huge message passing systems that can certainly
bene�t from these modelling techniques.

The mCRL2 language and tools originated in 1990 when a Common Repre-
sentation Language (CRL) was being developed as an intermediate between high
level behavioural speci�cation languages (such as SDL, Chill, LOTOS, PSF) and
tools. The language CRL was so complex that it was decided to make a micro
version of it, micro-CRL, or µCRL. For this language theory, proof methodolo-
gies and tools have been constructed. A good description of it can be found in
W. Fokkink. Modelling Distributed Systems. Springer-Verlag. 2007.

In approximately 2002 it was decided that µCRL needed a successor, called
mCRL2. In nature both languages are the same, but mCRL2 has much more
convenient built in data-types that makes the language more suitable for speci-
�cation and analysis of complex systems.

By using an overly simple example (the alternating bit protocol) it is shown
how the mCRL2 speci�cation looks like, how states spaces are generated, reduced
and visualized. It has been shown how modal formulas look like, and how these
can veri�ed using the toolset.

The mCRL2 speci�cation language has been used to analyse and design a
whole plethora of systems, including controllers to steer cars, pace makers, large
volume copiers, tv-controllers, component place machines, robots, etc. We gen-
erally �nd that designs that are made via thoroughly analysed models are of a
substantial higher quality.

6 Henri E. Bal, Lubos Brim and Martin Leucker

Tools, documentation and show cases can be found on www.mcrl2.org.
The tools are distributed under the BOOST license, that permits free, un-

limited use.

Keywords: Behavioural speci�cation, tools, mCRL2

Full Paper:
http://www.mcrl2.org

Approaches to Distributing Bounded Model Checking

Keijo Heljanko; Wieringa, Siert; Niemenmaa, Matti (Helsinki Univ. of Technol-
ogy)

Bounded model checking is a symbolic model checking method that employs
e�cient propositional satis�ability solvers to do symbolic model checking. In the
talk we �rst describe the bounded model checking approach in general.

We then discuss ongoing research into di�erent approaches for distributing
bounded model checking. Our main focus is on an algorithm of Rintanen to solve
arti�cial intelligence planning problems faster in the sequential setting by solving
planning instances of di�erent bounds in parallel in an interleaved fashion. We
experiment with simulated variants of the approach in the distributed setting
and �nd new variants of the approach that look promising and suitable for direct
distributed implementation.

Keywords: Bounded model checking, SAT, distributed ver�cation

Computing in the Mist: Writing Applications for Unknown
Machines

Thilo Kielmann (Vrije Universiteit Amsterdam)

The landscape of computer architecture is changing dramatically.
Computer processors are no longer getting faster. Instead, we have to use

several processors in parallel for future performance improvements.
This means that every computer, from mobile phones, via graphics proces-

sors, PC's, clusters, up to grids, clouds, and large data centers are becoming
parallel environments.

What does this mean for application development? Obviously, sequential code
will hardly be able to exploit near future machines. Not so obviously, neither will
traditional parallel code.

In this presentation, I will brie�y sketch processor architectures available
today and expected soon, and will argue for virtualization, portability, scalability
and fault-tolerance as the key ingredients for programming environments we will
need from now on.

http://www.mcrl2.org

Distributed Veri�cation and Grid Computing 7

Application speci�c support for grid jobs

Josva Kleist (Nordic DataGrid Facility)

In this talk I will present how the Nordic DataGrid Facility have worked to-
gether with two scienti�c communities on providing support for their speci�c
applications.

The �rst example is targeted to one speci�c application for a quite speci�c
scienti�c area: Carbon dioxide sequestration is one of the hot topics in climate
research at the moment. The NDGF funded CO2 Community Grid project en-
ables CO2 researches to use computational resources in grid in a transparent
and easy manner by providing a simple command-line based environment for
running the simulations, but like the command-line interface they are used to
when executing on their own workstation.

The second is a more general framework: The BioGrid Community Grid
project is an e�ort to establish a Nordic grid infrastructure for bioinformatics,
aiming both to gridify computationally heavy tasks and to coordinate bioinfor-
matic infrastructure e�orts in order to use the Nordic resources more e�ciently.
The widely used bioinformatic software packages BLAST and HMMer have now
been gridi�ed in an optimised way and allowing for multicore support. The fre-
quently used databases UniProtKB and UniRef have been made available on the
distributed and cached storage system within the Nordic grid.

The focus in the talk will not be on the speci�c applications, it will be on
how we have brought the applications to run on grid in such a way that the
communities fell that grids can help them get their research done.

Keywords: Grid, BioInformatics, CO2, parallell

Parallelising symbolic state-space generators: Frustration
and hope

Gerald Lüttgen (University of York)

Due to the irregular nature of the task, e�cient algorithms for symbolic state-
space generation are notoriously hard to parallelise. This talk explores two di�er-
ent strategies for parallelising and implementing one such algorithm, Saturation,
on multi-core PCs: one strategy employs the parallel language Cilk, while the
other uses a thread pool implemented in Pthreads.

I will analyse the underlying parallel overheads, present experimental results
and argue their relevance. The conclusions will give room for both frustration
and hope regarding the parallelisability of symbolic model checkers on shared-
memory architectures.

Keywords: Parallel state-space generation, decision diagrams, multi-core archi-
tectures

8 Henri E. Bal, Lubos Brim and Martin Leucker

Analysis of a quorum consensus protocol

Simona Orzan (TU Eindhoven)

We model in mCRL2 a basic protocol for Read and Write operations on a dis-
tributed replicated database.

Relying on the tool support, we analyze this basic model and design two
extensions of it that tolerate faults. We also show how a model primarily built
for checking correctness, can also be used for getting fast e�ciency evaluations.

Joint work of: Groote, Jan Friso; Orzan, Simona

Distributed Model Checking, @home?

Fernando Schapachnik (University of Buenos Aires)

This short work-in-progress presentation deals with asking the question of whether
it makes sense or not to try an @home approach to timed model checking, where
processing nodes can come and go.

Keywords: Distributed model checking, @home, at home, timed automata,
Zeus, @o�ce

Joint work of: Schapachnik, Fernando; Vaquier, José Ignacio

Veri�cation of MPI-based Computations

Stephen Siegel (University of Delaware)

The Message Passing Interface is a widely-used parallel programming model and
is the e�ective standard for high-performance scienti�c computing. It has also
been used in parallel model checkers, such as DiVinE. In this talk we discuss
the veri�cation problem for MPI-based programs. The MPI is quite large and
the semantics complex. Nevertheless, by restricting to a certain subset of MPI,
the veri�cation problem becomes tractable. Certain constructs outside of this
subset (such as wildcard receives) can lead to a rapid blowup in the number of
states, but MPI-speci�c reduction techniques have led to progress in combating
this state explosion. Specifying correctness is another challenge. One approach
is to use a trusted sequential version of the program as the speci�cation, and use
model checking and symbolic execution techniques to establish the functional
equivalence of the sequential and parallel versions. This approach is supported
in Mpi-Spin, an extension to the model checker Spin for verifying MPI-based
programs.

Keywords: MPI, Spin, model checking, MPI-Spin, symbolic execution

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2008/1631

http://drops.dagstuhl.de/opus/volltexte/2008/1631

Distributed Veri�cation and Grid Computing 9

GXP�a minimalist's user-level tool for distributed
computing

Kenijro Taura (University of Tokyo)

GXP is a parallel shell that is speci�cally designed as an infrastructure to support
parallel computing on large-scale distributed resources (Grid). Its speci�c design
goals include: (1) make installation almost e�ortless, (2) coordinate resources
accessed via heterogeneous protocols (SSH, SGE, TORQUE, etc.) and provide
a uniform interface to these resources, and (3) make deployment of parallel
programs on a large number of nodes fast and easy, and (4) provide a simple
work�ow engine via parallel make. These features are integrated to a command
line similar to parallel shells. In this talk I show how its design is and must be
di�erent from other similar tools.

Keywords: Parallel shell, distributed shell, parallel work�ow

How to Survive Developing Multi-Core Algorithms?

Michael Weber (University of Twente)

We describe a parallel algorithm for solving parity games, with applications in,
e.g., modal mu-calculus model checking with arbitrary alternations, and (branch-
ing) bisimulation checking. The algorithm is representative for a larger class of
algorithm which perform �xpoint computations, (graph-based) value propaga-
tion, etc.

The algorithm presented here is designed for parallel shared-memory architec-
tures. We will highlight some of the issues encountered during the development,
which complicate reasoning about the correctness of the actual implementation.

Keywords: Parity games, parallel, multi-core, shared memory, lock-free, wait-
free

(Parallel) Transient Solution Methods for Transition Class
Models

Verena Wolf (EPFL - Lausanne)

Transition class models represent well-structured continuous-time Markov chains
with a state space of possibly in�nite size. Their numerical analysis is in many
cases computationally expensive or even infeasible, especially for transient mea-
sures.

10 Henri E. Bal, Lubos Brim and Martin Leucker

We introduce the sliding window method, which computes an approximate
solution of the CME by performing a sequence of local analysis steps. In each
step, only a manageable subset of states is considered, representing a �window�
in the state space. In subsequent steps, the window follows the direction in
which the probability mass moves until the time period of interest has elapsed.
We construct the window based on a deterministic approximation of the future
behavior of the system, where we estimate upper and lower bounds on the state
variables. We present a parallel version of our approach, where the window is split
into smaller parts. Each such part de�nes the initial conditions of a subproblem,
which is passed to a worker thread. For a given time step, each worker computes
transient measures of a subsystem. The master combines all solutions of the
workers and distributes the problem of the next iteration step in the same way.

This approach allows to analyse transition class models with state spaces
of arbitrary size, which occur in various application domains such as systems
biology.

Keywords: Biological Networks - Stochastic Modeling - Markov Chains - Struc-
tured Model Representation - Numerical Analysis

A Typical Veri�cation Challenge for the GRID

Jaco van de Pol (University of Twente)

A typical veri�cation challenge for the GRID community is presented. The con-
crete challenge is to implement a simple recursive algorithm for �nding the
strongly connected components in a graph. The graph is typically stored in
the collective memory of a number of computers, so a distributed algorithm is
necessary.

The implementation should be e�cient and scalable, and separate synchro-
nization and implementation details from the purely algorithmic aspects. In the
end, a framework is envisaged for distributed algorithms on very large graphs.
This would be useful to explore various alternative algorithmic choices.

A more detailed description of the challange is part of the proceedings of this
seminar.

Keywords: Strongly connected components, distributed algorithms, breadth
�rst search

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1629

Full Paper:
http://dx.doi.org/10.1016/j.entcs.2008.02.001

http://drops.dagstuhl.de/opus/volltexte/2008/1629
http://dx.doi.org/10.1016/j.entcs.2008.02.001

	08332 Abstracts Collection Distributed Verification and Grid Computing --- Dagstuhl Seminar ---
	 Henri E. Bal, Lubos Brim and Martin Leucker

