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Abstract Interpretation of Reactive Systems: 
Abstractions Preserving 'VCTL*, 3CTL* and CTL* 

Dennis Dams' Orna Grumberg1 Rob Gerth'§ 

Abstract 

The need for formal verification or systems on one h<lnd, and the advent of comp1ex reactive 
systems on the other, call for the development of automated verification techniques. Model 
checking is one such technique, which has proven quite successful. However, the state explosion 
problem remains thcstuJllbling block ,in m<lny situations. Recent experience indicates that solutions 
arc to he found in the appJicatjpfl of techniques for property preserving abstraction and successive 
approximation of models. However, a coherent basis for these notions is still lacking. 

The theory of Abstract -Intcrprctaljoll offers a framework for the deHnition and justification of 
properly preserving abstradtnns. furthermore, it provides a method for the ctlcctive computation 
of such abstract models directly from the text of a program, thereby avoiding the need for 
interlllediate storage of a full-blown model. Finally. it allows trading precision for speed by 
computing sub-optimal nbstractions; this is formalized in the notion of approximation. 

However, Abstracl.lnterpretat.ioll has traeJitionally been focussed on abstractions that preserve 
safety properties of programs, properties that hold in all slates along every possihle execution 
path. In this raper, we SllOW how it can be extended to the analysis of different kinds of 
reactive properties. To this purpose, we introduce two notions of abstraction of non-deterministic 
systems. One prc~crves VCTL"', lhe fragment of the branching time logic CTL'" which allows only 

universal path quantification. Another preserves 3CTL". the fragment only allowing existential 
path quantificalion. Furthermore we show that a combin'llion of both notions preserves full eTL "'. 

This brings several jJClwerful techniques from Abstract Jnterpretation within the reach of model 
checking, including thc construction of abstract models by symholic execution of programs and 
the llse of approximations to lInd an optimulll between precision and speed. Examples are given 
to illustrate these. 

Keywords: verification, model checking, approximation, simulation 
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1 Introduction 

In the model checking approach [CES86, LP85, QS81] to program verification, a model of the program 
is constructed over which formulac are checked for satisfaction. The model reflects the possible 
behaviours of the program, the formulae express certain required properties of such behaviours. 
Obviously, the size of the modcl is thc limiting factor to the feasibility of the model checking 
approach. In the worst case, it doubles with every extra bit of memory that the program may access. 
This problem is referred to as the state explosion problem. One solution to it is the application of 
abstraction techniques, which aim to abstract the model to a smaller one, in such a way that if some 
property holds for the abstracted model, it also holds for the original modeL 

Such abstraction techniques are formalized in the framework of Abstract Inte1pretation [CC77], 
which was originally conceived as a unifying theory of compile-time (data-flow) analyses. Applica
tions of Abstract Interpretation have traditionally been focussed on the analysis of universal safety 
properties (see [AH87] and [CC92] for an overview and bibliography). A universal property is one 
that holds along all possihle executions of the program. The notion of safety (or: in variance) is used 
relative to an execution and means that a property holds in all states of that execution I. An example 
of a universal safety property is "whenever program ,P reaches location f, the value of x wiIJ be 
positive", which may alternatively be seen as expressing invariance of the predicate "P is not in e or x 
is positive". Such information may for example bc used to perform dead-code detection; to suppress 
certain run-time operations like type-checks, occur-checks (in logic programs), or garbage collection; 
to transform programs (partial evaluation, parallelization); and to verify and debug programs. 

With the advent of renctivc s),stems, interest has broadened to a larger class of properties. Reactive 

systems are systems whose main role is to maintain an ongoing interaction with the environment. rather 
than to produce some final result on termination. Usually, such systems consist of several concurrent 
processes, and display a non-deterministic behaviour. Typical examples are flight reservation systems, 
industrial pJant controllers, embedded systems and operating systems. In the presence of non
determinism, one may he interested to know whether some property holds along SOIne possible 
execution path. Such properties will be cal led existential. An example of an existential safety property 
is "there is a run of P which keeps cycling in location C", indicating for example that there is a danger 
of livelock. Besides safety, another kind of property that is often considered is liveness, meaning 
that something should hold eventually (given an execution). Thus, we have classified properties into 
four kinds by the criteria universal/existential and safetylliveness. A typical combination of universal 
safety and existentialliveness propel1ies is "along every possible execution path, in every state there 
is a possible continuation which will eventually reach a reset state". 

The semantic models and abstraction techniques used in the analysis of universal safety properties 

cannot be used for properties which involve aspects of existentiality and eventuality. The reason 
is that they abstract away from information about the choices that a program encounters during 
execution. The analysis of existentiality and eventuality properties of behaviours, however, requires 
models which, in addjtion to information about single states, also provides the transitions between 
states. For this reason, in model checking reactive systems, transition systems are used to model 
the behaviour of programs. Being directed graphs over program states, such transition systems give 
detailed information about program executions, including the possible choices in every state. Our aim 
is to find notions of abstraction of stich transition systems that preserve certain combined forms of 
universal/existential safetylliveness propel1ies. This means that in order to know that such a property 

lThe notions of universality and safety of a proPClty arc nul always distinguished <is explicitly as we do in this paper. 
The notion that we call "universal safety" is dscwhcn ... often termed just "safety". 
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holds in the original system, it suffices to know that it holds in the abstracted system. 
The different classes of properties may be formalized by expressing them in a formal logic whose 

formulae can be interpreted over transition systems. One such logic, which is commonly used, is 
CTL* (computation tree logic, sec [EHS6]). It contains universal and existential quantification over 
execution paths, as well as temporal operators that express that, along a path, some property will hold 
(a) in the next state, (b) in every state (safety), or (e) in some state (liveness). 

In this paper we investigate different ways to abstract a nondeterministic transition system. We 
present (in Sect. 3) notions of abstraction which preserve universal and existential properties respec
tively, and show how these abstractions may be combined in order to get preservation of full CTL*. 
Then, in Sect. 4, it is shown how these abstractions may be computed directly from a program text 
by "Jifting" the operations of a programming ,language to a domain of data descriptions. This is 
illustrated by an example ill Sect. 5. Sect. 6 defines a notion of approximation which is an ordering on 
abstract systems. It allows the formalization of the idea of approximate computation, which speeds up 
the computation of abstract models at the cost of a less precise result. The coarser the approximations 
made, the fewer will be the number of properties that hold in the abstract model, and hence the fewer 
the number of propel1ies that may be concluded to hold in the original system (note that if a property 
does not hold on the abstracted model, this does not give any clue as to whether it holds on the original 
model or not). Sect. 7 compares ours to related work, and Sect. 8 concludes. 

These results arc not only valuable to the practice of verification, where they may lead to an 
advance of the limits offeasibility of the model checking approach, but also they provide an interesting 
generalization of Abstract Interpretation in the analysis of a more general class of properties than is 
usually considered (namely universal safety properties). 

2 Preliminaries 

2.1 Temp0rHl logic 

We assume given a set Prop of propositions. We choose to define CTL * in its positive normal form, 
i.e., negations on.ly appear in front of propositions. This facilitates the definition of universal and 

existential CTL *. The set ai' atoms is defined by Alom, '" Prop U {''fJ I 'I' E Prop}. 

2.1.1 DEFINITION. The logic CTC is the set of swte formulae given by the following inductive 
definition. 

I. If7} E .. AI.mn, then Z' is <I st,lle forma/a. 

2. If I" and 1/; are state forlllulae, then so ;Ire 'P II if' and 'P V 4;· 

]. Any state formula is also a path formula. 

4. If I" and '1; are pMh forlllulae, then so are <p II if' and I" V if" 

5. Tf'P anel '1) arc path t<){'fJJlllat'. then so are X 'P. <p U «, and <p]l 1'· 

6. If <p is a path formula. then V<p and 3<p are stntc formulae. 

The abbreviationS! rue,pllse and --e are defined as IIslIal. For a path formllla 'P, Prp and G <p abbreviate 
(true U 'P) and (tedse Ii <p) respectively. 

VCTC and 3CTL' (universal and existential CTC) are subset., ofCTL' in which the only allowed 
p;lth quantifiers nre V and :3 respectively. 
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2.2 Transition systems 

CTL * formulae are interpreted over transition systems T ~ (~, 1, Il) where L is a set of states, I <;; ~ 
is a set of initial states, and 1( is a total transition rciation over ~ (Ii is total means V xU 3YEl: ll( x, y). 
A path in T.is an infinite sequence Jr = $081 ... of states slich that for every i E IN, R( si, Si+l). The 
notation 1f'" denotes the suffix of 1f which begins at "n' For., E ~, a (T, $)-path (or s-path when T 
is clear from the context) is a path in T that st'"15 in s. 

We assume a function 11·11 : Atom. --+ P(L) specifying the interpretation of atoms over states. 
Intuitively, IIpll is the set of states where jJ holds. Transition systems thus defined are essentially the 
same as Kripke structures. The only difference is that we have the fllnction 11·11 instead ofa labelling 
function from L to sets of atoms. We require that for every proposition 7' E Prop, IIpll n II ~plI ~ 0. 

2.2.1 DEFINITION. Sarisf"ction of fonnulae is defined inductively as follows. Let p E At.om, s E L 
and 7r a path in T. 

I. " 1= J) itL- E 111'11· 

2. .s 1= 'P 1\ 1/, iff.s 1= 'P and -' 1= 4'. -' I~ 'P V 1/' it!'., 1= 'P or s 1= 4'. 

3. 7r !== i.p, where 1[' = S()8t ... llnd cp is <J stnte fornwhl, itT 80 [::= !.p. 

4. 1f 1= 'P 1\ 4' itf1f I~ 'P and 7r I~ </'. 7r 1= 'P V 1/' if" 1= 'P on 1= 1'· 

5. (a) 1f 1= X'P iff,,' 1= 'P. 

(b) 7f 1= 'P U 1/, iff there ex isiS II E IN slIch that 7f" 1= 4) and Ii" alJ i < n, 7fi 1= 'P. 

(c) 7f 1= 'P V 1/, iff/en all II EliV. if,,' F 'P for all i < n, thell1f n 1= 1/). 

6. s 1= Vip iff till' every .s-p"tiJ ". 7f I~ 'P, ., I~ 3'P iff there exists an s-path " such that" 1= 'P. 

For a set of stares or paths .5', Ihe flotalion S 1= rp abbreviates V.'ES " 1= 'P. When there may be 
conti/sian betweell different systems, we write (T,") 1= 'P to denote that" 1= 'P in T, and similar for 
(T,.5') 1= 'P. T 1= 'P abbreviates (T, 1) 1= 'P. 

These formulae can be used to express a variety of properties of transition systems. Apart from state 
based properties expressed by formulae built from atoms and boolean connectors, properties of paths 
may be expressed through the Ilext-slale operator X, the IIlltil operator U and its dual F (release, see 
below). For example,,, I~ X (p (j tj) cxpre"es Ihat along path", from the next slate on, p will hold 

in all states until we will eventually get to a state where q holds. 7f I~ XXX Jlsays that p holds in the 
third state of iT . " 1= Fp and.,,- 1= Gl' state that I' will hold eventually resp. always along 1f. Note 
that, strictly speaking, path formulae arc not in CTL*: they have to be preceded by V or 3, resulting 
in state forrnulac. 

" F V(;p expresses thaI Jl is true in all states whieh are reachable from s. lf atom l' characterizes 
reset states., then .'3 F ';f(i:JPr means that along every possihle execution path from s, in every state 
there is a possible continuation which will eventually reach a reset state. 

11 is the dual of U ('P Ii 4' ~ ,(~rp U ~4!)) and has the intuitive meaning of "release": ..p must 
be true as long as 'P is titlse, and only if 'P becomes true, 4' may become false afterwards. It has been 
added as the dual of U to cOIllJlensate for the h,et that formulae like '('P U,/)) are not well-formed. 
For the same reason both 1\ and V arc primitive in the logic. 

We fix a transition system C ~ (L, 1, II), called the concrete modeJ. This is the original, large 
model that wc need to abstract in order to be able to verify its CTL * prOpcJ1ies. 
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2.3 Abstract Interpretation 

A transition sytem represents the possible behaviours of a program. For the moment, it is irrelevant 

what a program is. The only thing that matters right now is that there is a function,called interpretation, 
which maps every program to the system that represents its possible behaviours. In other words, the 
interpretation maps programs to their models. Properties of a program may be analysed by studying 

its model. However, the state explosion problem forces us to consider abstractions of this model. It is 
important to realize that sucil abstractions preferably are to be constructed directly from the program, 

and not by first building a full model and then abstracting it. Tile way in which such an abstract model 

is constructed from a program is called nbstmct interpretation. So, an abstract interpretation maps 
programs to abstract models. 

In the rest of this section and in the following scction we concentrate on the definition of abstract 

models and their preservation properties. Then, in Sect. 4, we will touch upon the computation of 
abstract models by abstract interpretation. 

Abstract states The definition of an abstract system A starls by choosing a set u~ of abstract states. 
Intuitively, each abstract state is a description of a number of concrete states. This is formalized by 
a concretiz;ltioI1 function, : u~ ~ 'P(~). For each (I. E aI, ,(a.) is the set of all concrete states 
described by a.. Converse.ly, every set C of concrete states ilas a "best" description nrC); (f is called 

the abstraction fllnction. "Best" means that 0'( C) is the least description of C w.r.!. the approximation 

(or precision) ordering ::< on aI which is defined by 

If ([. :::S a' we say that a' approxi mates a, or that (J. is more precise than (I.'. Usually, these requirements 

are captured by the condition that the pair ((\" 'i) forms a Galois .Insertion from (P(I), <;;) to ("~, ::<). 

2.3.1 DEFINITION. (0,1');5" Galois Insenion hom (P(L), <;;) to ( .. ~,::<) iff 

1. 0' and '"'I ilre total <l/Jd monotonic, 

2. for a/l C E P(~), "Yo(\'( C) 2 C, and 

3. for a/l a E "~, 0'0,( fI) = fl. 

Note that these requirements imply that 0' is sUljective, l' is injective and that there is a top element 

T in "I for which n(I) = T and ,( T) = I. We will usually write (1'( c) for (1'( {c}). For a path 

f' = "0(/.1'" in A,,·(p) = {coe, ···1 coe, .. ' is a path in C and \/, c, E ,(a,)}. 

Different approaches to spcc',fy',ng the relation between abstract and concrete states may be taken. 
One possibility is to define a ~uljccti()n II. : L --'- tiL which Il1UpS every concrete state to its abstraction. 
This is the apprach taken in, among others, [CGL92, Kur89]. Such a function It. induces an equivalence 
relation ~ on the concrete states, defined by c ~ d ¢} "(I;) = 11.( d). The abstract states are then 
representations of the equlvalence classes of rv. If h is a homomorphism, then universal properties 

are preserved from the abstract to the concrete model. See [CGL92] for details. The restriction to 
functional homomorphisms is not necessary, as is demonstrated in [Sif82, Sif83]. There, it is shown 

that a relation (' <;; I X "I, if it is " weak 110J1lOfllOll'iJisJlJ [GiI168] between ~ and aI, guarantees 
preservation of certain properties from ahstract to concrete, and of others from concrete to abstract 



models. Such relational homomorphisms are also known as siml.llntions, a term introduced by Milner, 
originally in the context of deterministic programs [Mil7\]. 

Galois Insertions (0:, I) to specify the relation between abstract and concrete states are more 
general than functions and less general than relations. The reasons for choosing a slightly less general 
formalism than relations are that (I) in the resulting framework we are able to derive in a uniform 
fashion results on the preservation of both universal and existential properties, whereas general 
relations do not always guarantee the existence of abstract models in this case; and (2) restrictions 
have to be imposed on relations anyway when formalizing the notion of optimality of abstract models. 
For a further discussion 011 Ihis see Sect. 7. 

2.4 Relation transformers 

In the next section, we define transition systems over abstract states. The definition of an abstract 
transition relation boi Is clown to lifting the transition relation to sets of states. We use two such liftings. 

2.4.1 DEF1NITION. Let A "nd B be .sets and 1/ <;; A x B. The rel"tions 1/33, ]l\l3 <;; P( A) x P(B) 
are defined ilS follows. 

l!.33 0= {(X, Y) I Y is a minil1w) (w.t:t. <;;) set such th"t 3"EX 311Ey 1l('D, y)} 

1/\13 = {CY, Y) I Y is a minim,,) (w.r:t. <;;) set slIch thatll'Ex 311El, 1/(:1" V)} 

Note that ifR33(X,Y), then II'I = I. An example is given in Fig. I. Let R = {(v, 10), ('D, V), ('D, z)} 
be the relation represented by the thin arrows. Then ({ 11, 'D}, {1IJ}), ({ 11, 'U}, {y}) and ( {1), x}, {z}) 
are in 1/33 (fat solid arrows), but, e.g., not ({II, ,,}, {IIJ, y}). FUl1hermore, we have ( {v, 'D}, {w, y}) 
and ({D,;}'}, {w, .o} ) in 11.\13 (tilt dashed arrows), but not ({v, :I,}, {'(II, y, .o}). 

Figure I: Relation transformers. 

3 Abstract Transition Systems 

Assume given a set "L of abstract states and a Galois Insertion (0')/) which determines its relation 
to the concrete states. We investigate how to define ahstract models in sLlch a way that certain classes 
of fonnulae are preserved hom abstract to concrete model. This means, letting A denote the abstract 
model, that we want the following to hold: 

Ii<PE<l> A 1= 'P =? C F 'P "preservation" (1) 
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where <I> is some subset of CTL *. 

The intention of abstract ing concrete states is to describe them by abstract states. I.e., if a( c) = a, 
then a should "behave like" c. From this point, it is natural to require preservation of formulae on the 
level of individual states: 

If''E<!>,a.Enl: (A,a) 1= 'P =} (C,-y(a» 1= 'P "statewise preservation" (2) 

We take this requirement as the sta!1ing point in defining the abstract model A. Besides ":E, which is 
already given, we need three more ingredients for the definition of such a model: 

1. a function" 11·// specifying the interpretation of atoms over abstract states, 

2. a set "f of abstract initial states, and 

3. an abstract transition relation ",R. 

These points arc considered in the following subsections. 

3.1 Valuation of atoms 

We start with considering <I) = Alom. in requirement (2): we want the truth of atoms to be preserved. 
As atoms are assel1ing something about individual states and not about computations, the requirement 

thus obtained does not concern the definition of the abstract transition relation. In order to satisfy (2), 
we must have for every atol11 1': (A,II.) /= I' =} (C, -y( II» /= ]i. On the other hand, as we intend to 
use the abstract model in order to infer propc'1ies of the concrete model, we would like as many as 
possible formulae to hold in each abstract state. 

3.1.1 DEFINITION. FOfll E AlOin, define 

,,111'11 = {II. E ,,1: 11'(0.) <::; lipll} 

This choice determines the vnluation of atoms ,in anstract states. Namely, the relation F ~ al: x At01n 
is defined as in clause I of Dcf. 2.2.1, where oS now denotes an abstract state and 11·// has to be replaced 
by "Ii·/I. That this choice .is "optimal", in the sense that as many as possible atoms hold in each 
abstract state, is implied by the following lemma. 

3.1.2 LEMMA. For evc,y (I E ,,:E and l' E Alom., (A, a) I=)J ¢} (C, -y( a» 1= p. 

PROOE DircctliOillthc delin;tions of Fe, 11·11 and ,,11,11· o 

Note that if (J. E cvL is slIch that .. ),(0.) conwins concrete states in which p holds and concrete states 

in which '1' holds, then a ~ ,,111'11 but also (/ ~ ,,11'1'11. So, although the rule of the excluded third 
from classical logic holds on the level of interpretation of atomic predicates over abstract states (we 

have either a 1= ]1 or f/ IF p, and similarly for 'I'), this rule does not hold on the level of the logic 
itself: a. IF p does not necessarily imply that (I. 1= '/). 
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3.2 Abstract initial states 

Requirement (2) does not imply (I). The left·hand side in (I), A F 'P, is an abbreviation for 

V"Enl (A, ((.) F 'P. By (2), this implies V'EU{-y(,,)lnEnI) (C, c) F 'P. A sufficient condition for this 
to imply the right-hand side of (I), C F 'P, which is an abbreviation for V'EI (e,e) F 'P, is that 
U{r( ({.) 1 ({. E oI} :2 1. When we have preservation, (I), a property 'P of the concrete model can be 
verified by checking it on the abstract model, i.e., by verifying that A F 'P. Preferably, this condition 
is as weak as possible. That means that the set of abstract initial states has to be as small as possible. 

In general, it is not possible to choose "I such that U {").( ({.) 1 ({. E J} = T. However, it can easily be 

seen that the following choice for ., I yields the smallest set U{r(n) 1 ({. E oT} which still includes T. 

3.2.1 DEFINITION. .J = {a( c) 1 c E 1} 

As argued above, statewise preservation, (2), now implies preservation, (I). The following 

property states something slightly more general, namely that if statewise preservation holds, and 
fUl1hermore some property holds in a superset of the abstract initial states, then it holds in (the initial 

states of) the concrete system. Its proof is straightforward. 

3.2.2 PROPERTY. If V<pE'!'."E"l: (Ao (f.) F 'P =} (C,,(a)) F 'P and J' :2 J, 
then V",E<l> (A, nI') F 'P =} C 1= 'P. 

3.3 Abstract transition relations 

We now investigate the definition of the abstract transition relation: when is there a transition from 
abstract state a to Ii? As we said earlier, the abstract state (/. is intended to be a description of the 
concrete states in ,(/I.). Hence, the possible transitions from n should depend on those possible 

from each of the states in -ie a). Many applications of the framework of Abstract Interpretation are 
developed in a context where both the concrete and the abstract transition relations are deterministic 

(i.e., a transition function fl. In sllch cases, the (unique) abstract successor .J(a) of a would be the 
best description of the successors of the states ill/(a): .,f(a) = o(fh(a.))j2. 

In the current case, we have a non-deterministic concrete transition relation, and the question is 

how this non-determinism is going to be reHected 011 the abstract side. We consider two possible 
points of view. One is to allow ill (/. allnondetcrminisll1 that is present in nny state from ,( a): if a state 

c in,Ca) can make a transition to d, then a can make a transition to the description f'i( d) of d. We call 
this the fi-ee abstraction. The other possibility is to only allow in (/ the nondeterminism that is present 

in al/ states of i( a): 1/. can only make transitions to those states which are the description of sets of 

states which arc successor to every ( in .''!Ca). This we call the constrained abstraction. Formally: 

3.3.1 DEFINITION. 

/. r "if. . (n, II) ¢> ::Jy /1.33Ci(a), Y) II o(Y) = h 

2. "RC(a,h) ¢} 3,· RV3 (J"(a), Y) II (ttY) = {, 

Note that by the requirement of minimality of V (in Det". 2.4.1 of R33 and R"3), it is not in general 

the case that "R.F <;; ,,/l.G We denote A F' = (nE",!, ,,111') and AU = CE, "I, "RC ). As a result of 
these choices, we have the following preservation properties for paths. 

2 rUl1Clions arc extended to St;ts pointwiscly. 
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3.3.2 LEMMA. 

1. Leta E "L, C E ']'(a) "nd" be" (C,c)-p"rh. Theil t/Jere existsnn (AF,a)-pathp such that 
7rE']'(p), 

2. Let a E nL, c E ']'( a) "nd I' be all (A e , a)-path. Theil thcre exists a (C, c)-path 7r in ']'(p). 

PROOF. 

1. Assume 7r == COc]· . with Co == Co Deline (J::::: aOal ... with (/0 = (1. and (/.i = (y(c,:) for £ ~ 1. Because 
(<Y, ')') is a Galois Insertion, we have ')'(1'(Ci)) ;:> {ciL so Ci E ,(ai) for i 2: I. Also, Co E ,(ao). So 
7r E ,(1'). 
Because for all 'I. > 0, I(.(Ci,('1+1), ('i. E '1'((1.;), and (/.i = (\'(C-i) , we have by Def. 3.3.1 of ",RF: 

"RF(a" a'+J)' 

2. Assume p = (loa] ... with ao = a. We show that there exists an infinite sequence 11" = COCI ... of 
states in L such that for all 'j 2:: O. Ci E 1'(ad and H(Ci., Ci.+I). 7r is constructed inductive1y, as follows. 
Let Co = c. Then by definition. Co E 1'«(/0). Now suppose that for some 11- :?: 0, en is given such that 
e" E ,(a,,). Because" [lc ((/", a,,+J), there llluSi bc(by Del'. 3.3.1 of "Jic ) Y such that RV3( ,( an), Y) 
and (l'(Y) = «n+l. By definition of /i,.V3, there exists CI~+! E Y such that R( Cn , Cn+l). Because (0', ,) 
is a Galois Insertion, we have ')'(o(Y)) ] Y. so Cn+J E ,(on+J). 

Thus, 11' is a (C, c)-path and 11' E '((1'). 

o 

3.4 Preservation of \fCTL' and :JCTL' 

Satisfaction over abstract models Having defined abstract models, we can check formulae over 

them. The satisfaction relation [= <:: "L X CTL' is defincd by Dcf. 2.2.1, where [[,11 has to be replaced 

by ,,[[.[[. We then have the following result. 

3.4.1 THEOREM. 

l. For every 'P E VCTL" .41" . 1= Ip co} c 1= 'P. 

2. ForevelY'P E 3CTL*. A C [= 'P co} C [= 'P. 

PROOF. By Property 3.2.2, it sufficcs to prove stHtcwisc preservation in hoth cases. 

]. Let A denote A P . We provc the first itcm by induction on the structure of 'P. So, for state formulae we 
prove that for every stale (I. E u1: 

• (A, a) 1= 'P co} (C, ')'Ia)) 1= 'P 

and for path formulae we prove that for every path p in A 

There arc 6 cases, corresponding [0 those in Del'. 2.1.1. 

("base" case:) 
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I. To PROVE: For every atom pEA/om and every state (/, E ,~~ 

(A, a) Fe II ~ (C, ,(a)) Fe F 
PROOF: Follows directly froJl1 ocr. 3.1.1. 

("step" cases:) 

2-5. The cases that !.p is a conjullction or disjunction of state or path formulae (cases 2 and 5), a 
state formula interpretcd over a path (case 3), or a path formula with principal operator X, U 
or V (case 4), arc straightforward. 

6. To PROVE: H'P is a path formula and 

(ih) forcverypathpinA,(A,p) Fe'P ~ (C,,(pll Fe'P 
then 

for every state a E ,,~, (A,a) Fe \f'P ~ (C,,(a)) Fe \f'P 

PROOF: Let a be a state slieh that (A, a) Fe \f'P. let c E 'Y(a), and consider a (e, c)-path 7<. 

By Lemma 3.3.2. we k now that there exists an (A, a)-path f' such that" E 'Y(p), so, because 
(A, a) Fe \f'P, (A, [I) Fe 'P. By (iil) we have (C,;r) Fe 'P. So (C, 1(0)) Fe \f'P' 

2. Cases 1-5 arc the samc as jll item I, provided that A now denotes AG. Case 6 is a straightforward 
variation of ease 6 under item L: it uses Lemma 3.3.2. 

o 

In PropCl1y 3.2.2 we saw that the sct of abstract initial states may be enlarged without violating 

preservation. Similarly, the following theorem states that it is "safe" to approximate the abstract 
transition relations by taking a superset of the transition relation ("HF or a subset3 of oRc. This result 

will be used in the following section. In order to distinguish these notions of approximation from the 

approximation ordering :-< (which will be extellded to relations in Sect. 6), we will refer to them as 
;;:?-approximation and ~-approxill1ation. 

r c' 3.4.2 THEOREM. Ler/lt 2 aR ',At = CL,j,RI),R2 c;: ,,II, <lndA2 = ("L,J,R.2). 

I. For every I" E \fCTL*, At 1= I" ~ c 1= 1". 

2. For every I" E 3CTL *, A, 1= I" ~ c 1= 1". 

PROOF. By Property 3.2.2, it is sufficient to prove tllat 

1. for every 'P E \fCTL' and every a E ,,~, (AI, (I.) Fe 'P ~ (A"', a) Fe 'P, and 

2. for every 'P E 3CTL' and every a E ,,~, (A"a) Fe 'P ~ (AC,a) Fe 'P. 

Together with Thill. 3.4.1 these imply Thill. 3.4.2. Both items are easily pro veil by induction on the structure of 
!.p. When <p has 'if or .3 as principal operator. tile argulllent is as follows. 

I. Suppose'P = \/<p'. Because HJ ~ <0 .l?/", every p.llh in AI-' is also.1 path in A I. Therefore, if 'P' holds for 
all (AI, a)-paths, it also holds for all (A"', a)-paths. 

2. Suppose <p = 3<p'. BCGlUse R2 ~ "Re , every path in A2 is also a path in A C . Therefore, if r.p' holds for 
some (A21 a)-path, it also holds (Of sOllle (Ac, a)-path. 

o 

3Rcmember however that the transition relation has to remain lotal. 
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3.5 Mixed Abstraction: preservation of CTL* 

When we have a free as well as a constrained abstraction of a system, formulae from both VCTL' and 
3CTL' can be verified. However, the union of VCTL * and 3CTL * is not CTL *. In order to have an 
abstraction which preserves all CTL * formulae, we can combine the free and constrained transition 
relations in one model, which we call mixed abstraction. A similar idea is presented in [KeI94]. 
There, CTL * formulae are interpreted over a pair of abstract models. 

3.5.1 DEFINITION. The mixed abstraction is the system AM = CL, ,J, ,,8M ) where o8 M = o8F U 
waC. A free path is a path with a/l its tnlllsitiollS ill ,,111"; a constrained path is a path with a1/ its 
transitions in nRc. 

The interpretation of CTL' formulae over a mixed abstraction is defined slightly different from 
Def. 2.2.1: clause 6 is replaced by 

6'. "' ~ V'P iff for every hee 8-path IT, IT ~ 'P; s 1= 3'P iff there exists a comtrained 8-path IT such 
that IT ~ 'P. 

In the rest of this paper, we implicitly assume this adapted definition when interpreting formulae 
over mixed abstractions or approxi mat ions thereof (hoth the (2, C;;)-approximations to be introduced 
below as well as the ::!-approximation in Sect. 6). We then have: 

3.5.2 THEOREM. f'"or evelY 'P E CTU. AM ~ 'P =} C 1= 'P. 

PROOF. A combination orthe proofs of I and 2 in Thill. 3.4 . .1. o 

So, mixed abstractions alJow verification of full CTL* while the degree of reduction is determined 
by the choice of the abstract domain and may hence be arbitrarily large. In contrast, reductions w.r.t. 

bisimulation equivalence [MiI71] only allow a limited reduction. These facts may seem contradict
ing, but the reader shoLlld note that by the definition of satisfaction of CTL * formulae over mixed 
abstractions, it is possible that neither cp, nor '<p holds. 

The result ofThm. 3.4.2 is also adapted for mixed abstractions in a straightforward way. Because 
superset- and subset-approx i mations are combined, we speak of (2, C;;)-approximations of mixed 
abstractions. 

3.5.3 THEOREM. LerRI 2,,11".112 C;; "RC a/lelA = ("L,j,il.JUH2). Thenforevery'P E CTL', 

A ~ 'P =} C ~ 'P. 

PROOF. Similar to the prool"ofThm. 3.4.2. o 

4 Computing Abstract Models By Abstract Interpretation 

After having defined abstract models and proven their preservation properties, we now get to the 

topic of how to compute sLlch models directly from a program. We will do this through abstract 
interpretation of the program text. From [CDY94] we extract the following informal definition: 
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An ,lbstract interpretation is a nOI1-standard semantics defined over a domain of data
descriptions, where the fullction. ... .. In:: given corresponding non-standard interpretations. 

The abstract states are then valuations of program variables over the domain of data-descriptions, 
and the abstract transitions are computed by evaluation of the abstract semantic functions over these 
domains. 

In order to f1ll1her develop the theory, we first need to fix a programming language. We use a 
simple language which is based on action systems [BKS83]. A program is a set of actions of the 
form Ci(:f:) ---+ ti(:Ii, :"1;'), where:f: represents the vector of program variables, Ci is a condition on their 
values and t.i specifies a transformation4 of their values into the new vector :c' (i ranges over some 
index set I). Executing an action means evaluating its condition Ci and, if this yields true, updating 
the program variables as specified by the associated transformation Ii. A program is run by repeatedly 
nondetermtnistical1y choosing an action and executing it. We let Vnl denote the set of values that the 
vector :1: may take, and 11',,/ c:: V,,! the set of values that it may have initially. Thus, each Ci is a 
predicate over Val and each ii a relation on Vu/2 . The conditions and transformations will typically 
be specified in terms of more elementary operations over (components of) the values in Val. 

We chose this language because (a) by its simplicity, notably the uniform treatment of data and 
control, it allows for a comprehensive presentation of the following results on abstract interpretation
choosing a more concrete language wouJd needlessly complicate matters, yet, (b) it contains rudimen
tary forms of the common notions of assignment, test and loop, which will help to grasp the idea of 
how to abstractly interpret operations in "real" programming languages. 

4.0..1 DEFINITION. Let P be the program {Ci(:f:) ~ li(:I:, :i:') liE I}. Its concrete model C is defined 
as follows: 

• L = Val, 

• I = IVai, 

• }I, = {(v,'u') E V,,1213iEI Ci(V) A Idv, v')}. 

Next, we assume a set (1 Val of descriptions of sets of values in Val, via a Galois Insertion (0', I)' 
and define two types of non-standard, abstract interpretations of the Ci'S and ti's over" Va.l in such a 
way that ;;2- and c::-approximations (sec Thm. 3.4.2) for the free and constrained models respectively 
of a program may be computed by interpreting the operators in the program correspondingly. 

4.0.2 DEFINITION. For a, bE" Val. 

• ef( a) ¢} J'E"C") Ci(U); 

-i- We could havc rcprcscnwd this transformation a:-; the simultancous assignment:1:' := 1.iU). However. by abstnlcting 
the function f.; it Illay becomc ,I rcl;l1ioll. HL:IlCC wc dL:notc both the concrete and the ahstract transformations in the same 
way. 
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Furthermore, we define the abstract models Ali = ("L, ai, ,,11,1'), AC 

(aL,J,,,RF u JIG) where: 

• J = {Ole) ICE Fal}; 

• "RF = ((a,b) E "Va12
1 jiE1 rna) II If(a,Ii)}; 

• "RG= {(a, b) E "V"P I jiETcf(a) II 1~;(a,li)l· 

The following Jemma expresses that the abstract interpretations given above can be used to compute 
~- and ;;>-approxil11ations. 

4.0.3 LEMMA. "HI';;> "HI" and 

PROOF. Let a) bE" Val. 

1. (a., b) E JIF 

¢} { apply DcI'. 3.3.1 of" TI."', DcI'. 2.4.1 of 11.33 and DcI'. 4.0.1 of R. } 

~}' [Y is a minimal set such that ~"E'("),'''El' [~iEJ [c;(v) II /;(v,1i'lll II o(Y) = bJ 

{::::> { o{Y) = II docs not depend on i, so we may move the ::liE] outside} 

~'Ef ~l' [ Y is a minimal set such that ~"E'yt")"'EY [Ci(V) II l.i(V,1")J II ,,(Y) = bJ 

::::::? { weaken hy distributing the 3 iiEi(a.),lfiEY (lver the first /\ } 

~iE1 ~l' [Y is a minimal set such that ~"E'yta) [eiCv)J II ~"Erta)""E>· [I.;(u, ",)J II n(Y) = bJ 

¢:> {move the 3)' inside) 

~iEl [~"E'Y(a) [<",Cu)J II ~l' [Y is a minimal set such that ~"Er(a)"'El' [l.i(1I, 'i,)J II n(Y) = bJ] 

¢} {apply DcI'. 2.4.1 off.,(v"v)33 and Del'. 4.0.2 of ej( a), Ij(a, b), and "IV} 

(a, b) E" fI.F' 

2. (a, b) E "Hc 

¢} { apply Del'. 4.0.2 of" nc. cf (a) and If (a, b), and DcI'. 2.4.1 of/.;( ')'(1/.), Y) V3 } 

~'E r [1f"El'ta) [c;(iI)] II ~" [Y is a minimal set such that 1f"El'ta ) ~'['Ei' [t,(u, ",)] II n(Y) = b]] 

{::} {\i tJE l'((I) [ciCii)] docs not depend on Y, so we may move the 3y outside} 

~iEl ~l' [Y is a minimal set such that 1f"E)'(") [Cit iI)J II 1f"E)"(a) ~'['El' [I.,(v, ",)] II IT(Y) = b] 

¢::} { Ci.(V) docs not depend 011 Y. so we Illay hring the 3 jiJEy outside the first 1\ } 

3iE .f 3}' [Y is a minimal set slIch that 'ifiE 1'(<l.) :J1iJEy [ciCi!) 1\ lieU, III)] 1\ <.t(Y) = b] 

=> {weaken by moving the :liEl inside, over the other quantifiers} 

~" [Y .is a minimal set such that If''E)(a) ~"El' [~iEJ [(iCU) II t.,CiI, ",)]] II tr(Y) = b] 

¢; { apply DcI'. 4.0.1 of /C, DcI'. 2.4.1 of RV3 and DcI'. 3.3.1 of" IIG } 

(u, b) E" IIc 

o 

The (approximations to) free, constrained and mixed abstractjons thus computed preserve the formulae 
of IfCTL *, 3CTL * and CTL * respectively. 
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4.0.4 COROLLARY . 

. 1. Forevery'P E I/CTL*, AF 1= 'P ~ c 1= 'P. 

2. ForeverY'PE3CTL*, ACI='P ~ CI='P. 

3. For every 'P E CTL *, AM 1= 'P ~ c 1= 'P. 

PROOF. From Thms. 3.4.2, 3.5.3 and Lelllma 4.0.3. o 

If the Ci and Ii are built up from more elementary operations, the abstract interpretations of the Ci 

and I'i can be defined in terms of those, however, it must be seen to that the result of Lemma 4.0.3 is 
maintained. 

The use of abstract interpretation to model check a property 'P for a program P is characterized by 
the following phases. First, an abstract domain" VI/I has to be chosen and for all operation symbols 
occurring in P, abstract interpretations have to be provided. Depending on the property 'P to be 
checked, free and/or constrained interpretations should be given; these have to satisfy Def. 4.0.2. 
Then, the (free, constrained or mixed) abstract model can be constructed by a symbolic evaluation 
of the program over the abstract domain, interpreting the operations according to their abstract 

interpretations. Finally, 'P is model checked over the abstract model. It is important to notice that only 
positive results of this model checking carryover to the concrete model: a negative result A ~ 'P 
docs not imply that A 1= ''P and hence docs not justify the conclusion that C 1= ''P, in spite of the 
fact that ''P is equivalent to a CTL * formula. 

The same idea of constructing an abstract model by abstract interpretation of program operations, 
although based on a diflerent theoretical framework ([LGS+93], see Sect. 7.1 for a comparison). is 
applied to a "real-life" example in [Gra94]. Graf shows in that paper how a distributed cache memory. 
which is in principle an infInite state system because request queues are unbounded. can be verified 
by provjding a finite abstract domain and corresponding abstract operations. 

Although the model checking procedure itself is an automated process, it is not obvious how the 
choice of an appropriate abstract domain with corresponding abstract operations, as well as the proofs 
that these operations satisfy the conditions of Dcf. 4.0.2, can be performed in an automated fashion. 
In [Gra94], the abstract domain has to be provided by the lIser of the method, and the proofs for 
the abstract operators forlll a difficult step in the method. In [DGG93] and [DGD+94], a method is 
developed which aims at fuJi autOl]latioll of these stcps. 

5 Example 

In this section we illustrate the theory 011 a small example. Consider the system consisting of two 
concurrent processes depicted in Fig. 2, which is a parallel variant of the famous 3n + 1 program. 

We chose this example because it is sillall but Ilevertheless displays a nOll-trivial interplay between 
data and control. The properties that we will verify concern cel1ain control aspects that depend on 
the values that the integer variable n takes under the various operations that are performed on it. 
Because the state space is infinite, data-abstraction will be necessary in order to verify aspects of the 

control-flow . .It servcs as an iUustratioll of the fact that abstraction techniqucs bring into reach the 

model checking of systems that cannot be verified through the standard approach. 
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ilOdd n even 

n := nl2 

('(110 cufl 

Figure 2: The dinjng mathematicians. 

The program may he viewed as a protocol controlling the mutually exclusive access to a common 
resource of two concurrent processes, modelling the behaviour of two mathematicians, numbered 0 
and I. They both cycle through an infinite sequence of "think" and "cat" states. The right to enjoy 
a meal in strict solitude is regulated by having them inspect the value of n before eating, letting the 
one go ahcad only if /I has an odd value, and the other only if 1/ is even. Upon exit from the dining 
room, each mathemat.ician has its own procedure for assigning a new value to n. Transitions can only 
be taken when the enabling conditions are satisfied, e.g., mathematician I can only leave the dining 
room if n is divisible by 2. An execution is any infinite sequence of (arbitrarily) interleaved steps of 
both processes which stal1s in a state where both mathematicians are in their thinking state, and n is 
set to some arbitrary positive integer value. We want to verify that along every execution 

• the mathematicians have mutually exclusive access to the dining room, and 

• mathematician J wjll not starve, i.e., when. mathematician 0 is eating, then, eventually, mathe
matician I will get access to the dining room. 

In order to formalize this, \ve first express the program as an action system. As data and control are 
treated uniformly in such systems, we introduce variables Co and .r I, both ranging over {1.hink, ea.t}. 
to encode the effect of "being in a location" 'Ihi'/l./,:; or cal..i. 

Cu = thin/;:. od"( n) _. C,,:= ca/. . .' 

C" = eal. ----; fu:= I.h;nk, '11:= 3 * n + 
t:j = 1.h·':n/;:, c'Oen(n) _ ... (I := ca/. 
C, = ea/., cuen(n) -. f,:= I.hink, n := n/2 

Note that although we translate a concurrent into a sequential system, we do not have to "unfold" the 
inherent non-determinism: the two processes which describe the mathematicians can be recognized 
in the first two lines and last two lines of this program. The state space L of this program is the set 
{l.hinA:, ent.}2 X .hV \ {O} of val lies that the vector (e", C" II) of program variables may assume. The 
initial states are 1 = {(I.hinh, Ii/in/;:, n) In E IN \ {O}}. Its transitions are defined as in Def. 4.0.1, 
using the standard interpretations of the tcsts =, eocn, odd and operations 3*, + I and /2 (the latter 
three are considered as operations on onc- argument, i.e., functional binary relations). 
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The properties to be verified are expressed in CTL* as follows. 

IfG,(Co = eo.l. 1\ Cj = ca/.) 

IfG(eo = eal. -+ IfPC I = cILI.) 

As both formulae are in IfCTL*, we can verify them via a free abstraction. 

(3) 

(4) 

The abstract domain is defined by providing abstractions of the components which comprise the 
concrete domain. We choose to leave the component {thin/,:, eat.J2 the same. Formally, this means 
that we take an abstract domain with two clements whose concretizations are {think} and {eat}, 
however, for readability we just denote these clements by thin/,: and ea/. respectively. To abstract 
IN\ {OJ, we choose an abstract domain in which n may take the values e and 0, describing the even 

and odd positive integers respectively, i.e, /,( e) = {2, 4, 6, ... } and/,(o) = {I, 3, 5 ., .}. To both 
abstract domains, we add a top elemcnt T. The set .,~ of abstract states is now defined as follows. 

,,~= {I.hink, e(I./., Tf X {e,o, T} 

It is easily verified that the concretization function thus defined determines a Galois Insertion (0', /,) 
from P(~) to ,,~. For the abstract initial states we have: 

j = {(t.hink, I.hink, e), (t.hin/;:, l.hinA:, o)} 

Having chosen an ahstract domain, we also have to provide abstract interpretations, over this 
domain, of the operations that appear in the program, along the lines of Def. 4.0.2. The tables (a) 
and (b) in Fig. 3 give the definitions of the free abstract interpretations of the transformations and 

tests on the abstract domain {e, 0, T}. The operations 3*, + I and /2 are considered single symbols. 
For completeness, Fig. :1 (c) gives the table with free abstract interpretations of the tests = thin~: 
and = eat (to be considered single symbols) on the domain {thiIlA:, enl., T}. The tables have to be 
interpreted as indicated by the following examples. The entry Irue in row cvc."F, column e of table (b) 
indicates that evenP(e) holds, i.c. (cL DeL 4.0.2), 3ner(c) even(lI). The entry false in row +IF. 

column (e, e) of table (a) means that +1 F'(e, e) is false, i.e., for any Y such that + 133(')'( e), Y), we 
have n(Y) i' e (see Defs. 4.0.2 and 2.4.1). From these diagrams we see for example that /2F is not 
functional, illustrating that a function may become a relation when abstracted. 

Now we can abstractly interpret the program over this abstract domain, using the interpretations 
given in the tables. We start in the two initial states (l.hi'llk, think, e) and (thinA:, t.hink, 0). Consider 
for example (l.hink, I.hi II./;: , e). According to the tables (b) and (c), the only action from the program 
whose condition C; evaluates to true is the 3rd linc. As a result of the corresponding transformation 

(e l := eu/.), the (only) successor of (t.hink, think, e) is (think, cal., e). Continuing from this state, 
the only action that applies is the 4th linc of the program. From the entries for the operation /2F on 
the value e, we see th<lt the resuJts can be both e and o. Hence. we get free abstract transitions from 
(I.hink, ea.I., e) back to (/.hink, I ":in/,: , e), and also to (thin!.:, I.hin!.:, 0). Such an abstract execution 
yields the abstract model of Fig. 4. We see that ill no state the property Cu = eat 1\ Cj = eat. holds. 

Hence we have established propel1y (3). Furthermore, the only path from the state where eu = ea.t 
reaches CI = cal within 2 steps, so we have also verified property (4). 

111 order to illustrate the use of the constrained abstraction, we consider a small extension to the 
program: we add a third concurrent process which can "restart" the system by setting 11. to value 100. 
This may only be done when both mathematicians arc thinking, otherwise there may be executions 
possible which violate the Illutual exclusion property. To this effect, the following fifth action is added 
to the program: 
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I FREE' II (e e) I (e 0) I (e T) I (0 e) I (0 0) I (0 T) I (T e) I (T 0) I (T T) I , , , , , , , , , 
3." 
+1" 
/2" 

true jillse ./illse fliise true jilise true true false 
false true false true ./illse ./illse true true false 
true trlle false false jillse false true true false 

(a) 

I FREE: II e o T FREE: II/hillk eat I T I 
eDen" true jills£' trlle (= IIlinh:j1' true false true 
odd" fills£' true true (= el/l) I' filis£, true true 

(b) (e) 

Figure 3: Free abstract interpretations of operations (a) and tests (b and c). 

<11,illk. 
'hillk 
0' 

<co/. 
lhinf..:. 
0' 

Figure 4: The free abstract model. 
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fo = thinh:, f, = think -. 11:= lao 

We want to check whether it is always possible to reach a "resta,1" state. Writing restart for 
I.hinko /I think, /I n = 100, this property is expressed in CTL* by: 

(5) 

We extend the abstract domain for'll by the value 100, where I( 100) = {lOa}. Formula (5) being in 
full CTL *, we need a mixed abstraction. Instead of providing the constrained abstract interpretations 
of all tests and operations over all abstract values, Figure 5 only provides those entries which will be 
needed in an abstract execution of the program. Also the tables from Fig. 3 have to be extended in 
order to take into account the new abstract value 100. Being straightforward. these extensions are 

left to the reader. 

CONSTR.: II (e,lOo) I (e,e) I (e,o) I (e, T) I 
II false I false I .f(tlse I true I 

(a) 

CONSTI/.: (0,100) (o,e) (0,0) I (o,T) I 
3* ' 

+1 
(b) 

I CONSTI/.: II (T,100) I (T,e) I (T,o) I (T,T) I 
3*" II false I fillse i,tise I true I 
+ I' II .t'dse I .f(tlse .t,tise I true I 

(cl 

CONSTR.: II 100 I e a T CONSTR.: 11/.hink I eat 

event; trtle true fillse fillse = t.hinh:l' true false 

oddG false fillse true Fllse = ea.lt; false true 

(d) (e) 

T 

true 

true 

Figure 5: Constrained abstract interpretations of operations (a, b, c) and tests (d and e). 

The resulting abstraction is depicted in Fig. 6. Solid arrows denote free transitions, dashed arrows 
represent constrained transitions. Note that it is not in general the case that oRc 'l uHF, as is 

illustrated by the arrow from (think, fal,e) to (thi1l':, thin!.:, T). Property (5) is verified on this 
model by interpreting the universal quantification along the free paths, and the existential quantification 
along the constraincd paths. It can easily be secn that (5) holds, hence, we have established its validity 
in the concrete program. 
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.. fllmTffi restart 
, - "";:: 

Figure 6: The mixed abstract model for the modified program. 

6 Approximations 

So far we have considered abstractions which were ol'til11<1{ in the sense that in the definition of the 
free and the constrained transition relations, the slIccessor of an abstract state is the best description 

of certain scts of concrete states. Th is appears from the fact that these descriptions are obtained by the 
application of (\' in Oct". 3.3.1. In practical applications of Abstract Interpretation, approximations, 
W.r.t. ~,of slich best descriptions arc often taken instead. One reason.is that the computation of optimal 
abstract interpretations may be too complex. Another reason is that even if the abstract interpretation 
is optimal,.it can be cumbersome to actually prove this. The following definition extends the notion 

of approximation (:::, sce Sect. 2.3) to paths and to models5, where also the initial states may be 
approximated. It applies to free, constrained as well as mixed abstractions. In the rest of this paper, 
the term "approximation", unless explicitly stated otherwise, refers to the notion defined here and 

should not be confused with :2- and £:-approximation. 

6.0.1 DEF1NtTtON. Let A = ( .. ,L, J, "H'" U "HC) be a trallSition system where transitions in uRF 
are called free and in ,,1Ic: arc callcd constrained. 

2. A ::: '" A iff (a) and (b)i, A:::" A iff (a) and (b)ii, and A ::: A iff A :::F A and A :::G A: 

(a) for evclY a E 0 r there is al1 (J E 07 such that a ::; (l 

(b) for CVCIY {/. E "L 

I. for evelY hec (.4, ,,) -pat h p there is a hce (.4, a) -path p >:: I' 
ii. for CVCIY cOllstraillcd (A, {/ )-path p there is a cOllstrained (Au, a)-path p :< p. 

We have the following preservation results for approximations. 

5Thc extension of:s to models is 110t a partial order anymore, hut a pre-order. 
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6.0.2 THEOREM. 

1. If A >::." A, then forevelY 'P E IICTL*, 041= 'P '* A 1= 'P. 

2. [fA >::.0 A, thell f'J/"evelY 'P E 3CTL*, 041= 'P '* 041= 'P. 

3. If A >::. A, then for evelY 'P E CTL., A 1= 'P '* A 1= 'P. 

PROOF. We prove 3; the other proofs arc simplifications of this. By condition (a) in Def. 6.0.1, it suffices to 
prove slalcwisc preservatioll. We prove this hy induction on the structure or 'P. The 6 cases correspond to those 
jn Def. 2.].1 of CTL"'. For slate formulae r.p E CTL* we prove thaI 

for every a E ,,1:. (A,a) 1= 'P '* (.'1.0) 1= ~o. 

For pnth formulae iy-'" E CTL"', we prove that 

for every (I. E ,,~and every CA, a)-path fJ and (:4, a)-palh fi such that fJ ::S (5, 

(A, (5) 1= 'P '* (A,I') 1= 'P 

1-5. The cases that 'P is an atom (case I), a conjunction or disjunction of slate or path formulae (cases 2 and 
5), a state formula interpreted over a path (case 3), or a path formula with principal operator .X. U or V 
(case 4), arc straightforward. 

6. To PROVE: If 'P E CTL" is a path formula such Ihilt 

(ih) for every a E "L and every (A. ((}p~lIh I' and (A, a)-path fi such th~l p :::; p, 
(A, (5) 1= 'P '* (A. (I) 1= 'P 

then 

(a) for every a E ,,1:, (,4,0) 1= 'if'P '* (A, a) 1= 'if'P ' and 

(b) for every a E ,,1:, (A, a) 1= 3'P '* (A, a) 1= 3'P 

PROOF: 

(0) Let a E ,,1: be a statc slleh that (A, a) 1= 'if'P. Let f' he a free (A, a)-path. By Dcf. 6.0.1 of 
approximation, there exists a frec (A, a)-path [5 slieh that f' :-: [5. So, because (A, 0) 1= 'if<p, 
(A, (5) 1= 'P. By (ih), this implies (A, p) 1= 'P So, (.4. a) 1= 'if'P. 

(b) Let (1. E ,.,.L be a state sLlch that (.4, 0-) F- :lip. So there exists a constrained (.4 , a)-path (i such that 
(7C (i) 1= i.p. By Del'. 6.0. ( orapproxilllatioll. this implies that there exists a constrained (.4, a)-path 

f! sllch that I' :-: [5. Jly (ih). this implies (A, (') 1= 'P. So, (A, a) 1= 3<p. 

o 

6.0.3 COROLLARY. 

/. !fA >::.';' AI'", thcll forevelYI" E IICTU, 041= 'P '* c 1= 'P. 

2. [f A >::.0 04°. then f(,,' evelY 'P E 3CTL', A 1= 'P =;- C 1= 'P. 

3. [f A >::. AM, thell f(,r cvelY 'P E CTL', A 1= 'P '* c 1= 'P. 
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PROOF. From 111m. 6.0.2 and Thms. 3.4.1 and 3.5.2. o 

6.1 Computing approximlltions 

Approximations to models may also be computed by abstract interpretation of a program. In this 
case, the abstract interpretations of conditions and transformations do not have to be optimal. Here. 
we will illustrate such approximation for the transformation operators (l.i). It can easily be extended 
for the conditions (c;) as well. 

6.1.1 DEFINITION. The definition of approximation is extended to abstract interpretations of the 
tran'tformation operators, ns foIlaws. For abstract operationl) 1., t E (l Val X (\ Val, 

I~I. ¢} 1i".b.bE"F,,/ [,(a,bl*3b':b7(a,/,1] A [7(a,/')*3b:,f,I(n,b)] 

Such approximate free and constrained intclpretmions tr ~ II" and If ~ I.y (for all i E J) induce 

the abstnlct mode/sAr' = C.L,cJ".HF').Ac = ("L"J,,,HC).'lIldAM = CL,J,,,RFU,,RC). 
where: 

• "L = ,_, Val; 

.• ,J = {u(e) ICE Val]; 

• "liP = {(n, b) E "Voi" I 3iEl ,{(al A tn(/.,I>)] 

• "RC = {(II., I> 1 E ,Yoi" I 3iEl c~': «(I) A I~: (0.,")] 

6.1.2 LEMMA. I. AI" ~::iF. 2. A(.' ~ AC:. and .1. AM ~ AM, 

PROOF. 

I. Let (/. E ,,,.L We have to prove Ihal for every (,"4';;, a)-path p there exists an (AF, a.)-path p such that 
p ~ p. 

Let fI::: a(lla2'" he an (AP'~ a)-path. We show that for any a ~ (/., there is an (AF, «}path p such that 

p ~ p. (In particular, this implies that there is an (AI', a)-pathp such that I' ~ p.) Let a ~ a.. We show 

that lhcrcexisls aJ ~ (/.J such that" R.F (a, ad. We have" R.l·~( (/., (1.1)' By Der. 4.0.2 of o-RF, thisequivales 
::liE! [c{"(a) 1\ t{(a, ad]· l3ccausc u ~ (I., we have (:;(a) => (ICa) and also t['Ca, al) => tICa, at) 

(sec Del'. 4.0.2 of ct' and '-f"' and Dcl". 2.4.1 01" .33), SO :liEf [ct' Ca) 1\ I·r Ca, (/.[ )]. By Dct". 6.1.1 of tf, 
there exists I/.J ~ (1.[ sllch Ihal 3iE1 [c/,,(u) /\ II (I/., (7d]' i.e., "RF((i, aJ)' This argument may be applied 

inductively (cL the proof oj" Lelllilla 3.3.2) to construct the (AP, a)-path fi::: aa]U2' . " 

2. Let (/. E ,,1:. We have to prove that for every (Ae, a)-path 7i there exists an (Ac, a)-path p such that 
p ~ p. 
Let p ::: (Ia] (/.2' •. be an (A(:, a)-path. We show that for any a/ ::::: 0, there is an (AC, a')-path p such 

that p :S p. Let (/.' :S (I.. We show tilat there exists (/.~ ::::: (I[ such that " nc (a', aD, We have "R.G( a, 0.,), 
By DeL 6 .. 1.1 of" He and If', there exists a~' :S (/.[ sHch that ::liE1 [cf (n) 1\ if ((I., (l.~')], Because a' :S a, 

fiRclJlcmbcr that such "orcr~ltions" arc hinilry relations. 
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we have cf (a.) ~ cf (a'), and also there must be some a~ j (/.~' such that If (a', aD (see Def. 4.0.2 of 

cf and t·f and DeL 2.4.1 or ,\>'3), So 3iU [cf (a') A t.f (a.', aDJ. i.e., ,:TiP (a', aD. and, by transitivity of 
:5, a~ :S al. This argulllcnlmay be applied inductively (eL the proof of Lemma 3.3.2) to construct the 

(Ae ') th - " , ,n -pa P-(1·(l.j(f.2" 

3. From 1 and 2. 

o 

So, we can compute approximations to the abstract models by choosing non-optimal abstract 
interpretations T; of operations in the program. As an example, consider the dining mathematicians 
again (without the "restart" extension). Take optimal free abstract interpretations of all operations but 
3*, for which we take the following approximation: 3*1"(0: T) = (rue and 3*F(o,e) = 3*F(o,o) = 
false. Furthermore, takc ({.hinl;:, {.hink, T) as the abstract initial state. This gives the free abstraction 
of Fig. 7, from which still variolls propcI1ies may be deduced, such as the fact that at least one 
mathematician will keep engaged in a cycle of thinking and cating. 

Figure 7: An approximation to thc free abstraction. 

7 Related Work 

Property preserving abstractjons of rel.lctive systcms have heen the topic of intensive research lately. 
The results can be classified according to the type of scmantics that is considered and the class of 
properties to be preserved. For example, [Di189, Kur89] focus on trace (linear time) semantics and 
universal safety and liveness properties. More reccntly, [CGL92, GL93] consider branching time 
semantics and preservation afboth VCTL' as weJJ as CTL*. In those two papers, the relation between 
concrete and abstract model is defined by means of a homomorphism. [CGL92] also indicates how 
abstract models may be computed by ahstract interprctations of the operations in a program. However, 
their notion of approximation is based on the subsetordering on abstract transition relations (cf. our 
Thm. 3.4.2, item I); they do not have the approx imation relation :S which allows non-optimal abstract 
interpretations of individual operations. Also, preservation of existential properties is only possible 
via abstractions which are bisimilar to the concretc model, thus only allowing for relatively small 
reductions in the size of models. 
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In automata theory, propel1y preserving homomorphisms provide a classical method to construct 
language preserving reductions of automata. In [MiI7J], Milner introduced the term simulation 
to denote a homomorphism between deterministic systems. Since then, it has been re-adapted to 
nondeterministic transition systems and has bccome popular in the areas of program refinement and 
verification. We recall the definition of simulation. Juxtaposition of relations denotes composition as 
usual. 

7.0.1 DEFINITION. A relation!, C; Ex uE is a simulation (from C to A) iff p-tR C; uHp-t. C 
simulates A iff there exists a simulation ti'OIJ1 C to A. 

In [LGS+93], the preservation results for simulations are generalized for the case of the /I.-calculus. 
Loiseaux et lit. show in that paper that if C simulates A, then properties expressed in the universal 
p.-calculus (01",) are preserved from..4 to C, and existential properties (OL,,) are preserved from C 
to A. Again, preservation of the full/I.-calculus is only shown for bisimilar abstractions. 

The framework of Galois 'Insertions, which forms a special case of these simulations, has the 
advantage that the distinction between the notions of abstraction and approximation renders the 
approach closer to the original approach to Abstract Interpretation [CC77, CC79] and allows a better 
control of the precision of abstractions. This point is flll1her discussed below. 

A recent paper by Kelb, [KeI94], also discusses the preservation of universal and existential/l
calculus properties within the framework of Abstract Interpretation. As in [LGS+93], the relation 
between abstract and concrete systems is defined through simulations. In addition, Kelb shows how 
formulae from the full p.-calculus may he verified hy comb'",ing two types of abstractions through a 
so-called tfuth-rai lure-colJlJect ion. 

7.1 Precision 

It can be shown that C simulates AI' and that AC simulates C. So, the notion of simulation is a 
generaUzation of that of a Galois Insertion (conversely, not every simulation determines a Galois 
Insertion). However, we will show that once optimality is taken into account, the situation changes 
and the Galois Insertion framework is the more general. We foclis on the free abstraction. 

Tn the sequel we need the following dcflnition. 

7. LI DEFINITION. Let A and B be scls and II C; /1 X II. The lil.nction" !,OSIR : P( A) -c. P( B) and 
pre/.! : P(IJ) --7 P(A) are dcfincd as ",/lows. 

posln(X) = (i' E 13 I 'l"E.\' RIa., i,)}. 

preR(Y) = {a. E A 1'lbEl 11(0, i>)}. 

Let 7>1'''R denote the dual o{preI!, i.e .. pl'en(Y) = pre,!(Y) (overlining denotes complement here). 

In [LGS+93], it is shown that the existence of a simulation f' from C to A is equivalent to the 
existence of a Galois Connection7 ('-P, if') from (P(E), C;) to (peL), c;). More precisely, they show 
the following . 

• If p is a simulation, then (pOSII." PTe!') is a Galois Connection from (P(E), C;) to (peE), C;) 
and 

post ,o/Jre,,07'""1rf:~ I C /Jre I' f- ,1. ,- - <t.l 
(6) 

(0 denotes function composition). 

7 A Galois Connection is a gcncrali1',atioJl 01':1 Galois Inscnion where r.po4-' is required to be r;; id rather than = £d. 



p 

d. _ 

c A 

Figure 8: Abstraction with states of comparable precision . 

• Conversely, if (<p,4') is a Galois Connection from (P(L), c:) to (P(aL), c:) for which 
<popre/lo4' c: pre"n, then there exists a simulation I' c: L X oL such that <p = postp and 
4) = 1'1'Cp ' 

This alternative characterization, (6), of simulation is claimed to be useful to compute the abstract 
relation all, when C, oL and p are given. Requirement (6) has many solutions oR, of which the 
minimal ones are interesting from the point of view of propel1y preservation. Namely, the smaller is 
oR, the greater the number of propel1 ies that hold in A. When f' is total, then prep c: prep, and taking 

'.' R such that 

(7) 

is claimed to define an "interesting" ahstraction. However, this is not always an optimal choice, as 
illustrated by the following example. 

7.1.2 EXAMPLE. Consider the system8 C and A depicted in Fig. 8, The problem is to choose an 
optimal "H.-successor of (/. such that (,-Inc: "Rp-I, or, equivalently, (6) above is satisfied, If we 
take pre"R such that (7) holds. then both J, I and J,2 become 8l1CCeSSors of (/.. This is not an optimal 
choice, since taking only [,1 would suffice in order to satisfy (6). 

In order to avoid such "bad" abstractions, Loiseaux el 01. propose a condition under which (7) yields 
an optimal abstract relation. OptimaLity of "R in this case means that the resulting abstract system 

is bisimilar to any other abstract system A' = C,L, ,,11.') with ,,11.' a minimal solution of (6). This 
condition is 

(8) 

Expressed in words, it says that if two concrete states share a description, then they share all 
descriptions. It is easy to sec that the generality of simulations over Galois Insertions, namely the 
possibilhy to have several optimal but mutually incomparable abstractions of a set of concrete states. 
is eliminated by this condition. In fact, requircmcnt (8) implies that it is useless to have a p which 
is not functional. This is expressed in the following lemma (which can be found in [LGS+93]). It 
implies that whenever cpo. and cpa' (a =I (/') for some c-i.e, Ii is not fUllctional-then a and a' are 
bisimilar. Consequently, one of {/. and a' should be removed from A. as the goal of abstraction is to 
produce minimal abstract systems after all. 
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7.1.3 LEMMA. If p is total. oil defined by (7), ilnd f'(,-l p = p, then pp-I is a bisimulation on A. 

PROOF. We have to show that pp-l and (pp-J)-l arc simulations 011 A. Because (pp-I)-l == pp-l, it 

suffices to show that pp-l is a simulalion, i.e. (hy DeL 7.0.1). Ihal (pp-l)-l"R <; .R(pp-l)-I, i.e., 
1'-1 p oR <; oR p-lp (*). Because DcL (7) is cquiva1cnllo aR = p-l Rp (sec [LGS+93]), (*) is equivalent 
to (I-I pp-I Hp ~ p- J Hpp-I p. Because pp-I p = (J and therefore also p-l pp-l == p-l, this is equivalent to 

p-l Rp <; 1'-1 Hp, which is Irue. 0 

So, if one wants to be able to distinguish optimul abstractions frol11 approximations, then assump
tion (8) has to be made, in which case the framework of [LGS+93j becomes less general because, 

under the reasonable assumption that the abstract system docs not contain bisimilar states, it forces p 

to be functional. 
Consider Fig. 8 again. In our framework, the simulation relation p induces the following Galois 

Insertion on sets of states: for any fl. E "L, ')'( a) = wept {a}) and for any C C;; L, o( C) = 1\ {a I 
')'(a) = C}, where 1\ denotes the meet operation corresponding to the ordering:s (the existence of 
a Galois Insertion guarantees that this meet exists). Taking oR. to be 011.1' as specified by Oef. 3.3.1 
(item J) yields ill as the only successor of a, as desired. 

8 Conclusions 

We have presented a generalization of the framework of Ahstract Interpretation extending it to the 
analysis of reactive properties. This generalization consists in allowing the next-state relation of a 

non-deterministic transition system to be abstracted to a relation, and not a function as is common 
practice. This allows us to verify, via the abstraction, not only universal properties-expressing 

that something holds along all possible executions-, but also existential propcrties-expressing the 
existence of paths satisfying some propel1y. F1II1hermore, both safety as well as liveness properties 

are preserved. Two possible ways to ahstract a transition relation were presented, differing in the 
way they abstract from the choice points occurring in a non-deterministic system. The free abstract 
relation ,,11.1' yields an abstract model which llIay be used to verify propel1ies in VCTL* (universal 
CTL * propeI1ies). The constrnincd abstraction "He results in a model for which existential properties 

are preserved: 3CTL *. By combining the two abstract transition relations within one model, which 
we called the mixed abstraction. it is furthermore possible to verify full CTL* while obtaining better 

reductions than is the case with minimization based on bisimulation. The price that has to be payed 

is that there will be formulae which do not hold in the abstraction, and neither do their negations. 

We have chosen CTL * instead of the more expressive II.-calculus because of its better readability. 
However, the presented results generalize to the It.-calculus as well. 

We showed that, after fixing the abstract domain (the set of abstract states), both the free and the 

constrained abstract models can be constructed directly from the text of a program, thereby avoiding 
the intermediate construction of the full concrete model. This construction is possible by associating 
non-standard, ab.~tr<lct interpretations with the operators in a programming language which allows their 
evaluation ovcr descriptions of data. To this purpose, we chose a simple programming Janguage and 

defined free and constrained abstract interpretations of its tcsts and operations. The abstract transition 

relations thus computed, .,111" and "HC', were shown to be 2- and C;;-approximations respectively to 

the tree and constrained relations "HI" and "Rc (Lemma 4.0.3), keeping up the preservation results. 

It was illustrated by an example that this technique can be applied to verify properties of systems with 
an infinite state space. 
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The human interaction required in this approach consists in providing abstract' interpretations of 
elementary operations over data descriptions. The notion of approximation, formalized as an ordering 
:0 on the abstract domain, and not to be confused with the;2- and ~-approximations mentioned above, 
offers a degree of freedom herein. By providing approximations to the abstract interpretations, the 
user may simplify the task without loosing the preservation resuits. Furthermore, such approximations 
can accelerate the computation of abstract models, be it at the risk of obtaining a model that does not 
contain enough information in order to verify the property. 

Finally, we compared our approach to related work on property preserving abstractions. The main 
conclusion is that, once the notion of precision is taken into account, Galois Insertions are a more 
general means to relate concrete to abstract states than homomorphisms or simulation relations. 

Further work In the light of the quest for fully automated verification methods, two points remain 
open problems: the choice of an abstract domain that is appropriate to allow verification of the 
properties of interest, and the computation of abstract interpretations of operations over such a domain. 

We are currently investigating these problems; see the papers [DGG93] and [DGD+94]. Other, rather 
preliminary ideas point in the direction of using theorem provers and algebraic manipulation tools. 
Although the problem is undecidable in general, there may well be interesting subclasses that can be 
decided efficiently. 

Acknowledgements We thank Susanne Graf for many interesting and stimulating discussions, and 
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References 

[AH87] 

[BKS83] 

[CC77] 

S. Abramsky and C. Hankin, editors. Abstract Interpretation o{Declarative Languages. 
Ellis Horwood, 1987. 

R.J.R. Back and R. Kurki-Suonio. Decentralization of process nets with centralized 
control. In 2nd ACM SJGACT-SIGOPS Symp. on PoDC, pages 131-142. ACM, 1983. 

P. COllsot and R. Cousot. Abstract interpretation: A unified lattice model for static 
analysis of programs by construction or approximation of flxpoints. In Proceedings 4th 
ACM Symp. Principles Prog. Lang., pages 238-252, Los Angeles, California, 1977. 

[CC79] P. Cousot and R. COllSOt. Systematic design of program analysis frameworks. In Pro
ceedings 6th ACM Symp. Principles Prog. Lang., pages 269-282, San Antonio, Texas, 
1979. 

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing 
approaches to abstract interpretation. In Proceedings of the Conference on Program
ming Language Implementation and Logic Programming (PLILP'92). pages 269-295. 
Springer-Verlag, August 1992. Lecture Notes in Computer Science 631. 

[CDY94] M.Codish, D. Dams,and E. Yardeni. Bottom-up abstract interpretation oflogic programs. 
]ourllill of Theoretical Complller Science, 1 (124):93-125, February 1994. 

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state con
current systems lIsjng tClllporallogic specifications. ACM Tmt1.'wctiol1s on Programming 
Languages and Systems, 8(2):244-263, January 1986. 

26 



[CFM] M. Codish, M. Falaschi, and K. Marriott. Suspension analysis for concurrent logic 
programs. Submitted and revised for ACM Transactions on Programming Languages 
and Systems, (In Press); Also: University of Pis a Technical Report TR-12/92; December 
1991. 

[CGL92] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In Proc. 
19th Ann. ACM Symp. on Principles ofProg. Lang., January 1992. 

[DGD+94] D. Dams, R. Gerth, G. Dohmen, R. Herrmann, P. Kelb, and H. Pargmann. Model checking 
using adaptive state and data abstraction. In Dill [DiI94]. 

[DGG93] D. Dams, R. Gel1h, and O. Grumberg. Generation of reduced models for checking 
fragments of CTL. In C. Courcoubetis, editOl; Proc. Fifth Conf. on Computer-Aided 
Verification (CAV), Lecture Notes in Computer Science 697, pages 479-490. Springer 
Verlag, .Iuly 1993. 

[DiI89] D. L. Dill. Trace TheOlY te)r AulOmatic Hierarchical Verification of Speed-Independent 
Circuits. ACM Distinguished Dissertations. MIT Press, 1989. 

[DiI94] D. Dill, editor. Proc. Sixth Con terence on Coml'ut.-Aided Verification, 1994. 

[EH86] E.A. Emerson and J.Y. Halpern. 'Sometimes' and 'Not Never' revisited: on branching 
time versus linear time temporal logic. Journal of the ACM, 33( I): 151-178, 1986. 

[Gin68] A. Ginzburg. Algebraic Them), of Automatil. ACM Monograph Series. Academic Press, 
New York/London, 1968. 

[GL93] S. Graf and C. Loiseaux. A tool for symbolic program verification and abstraction. In 
C. Courcollbetis, editor, Proc. Fillh Conference on ComJlut.-Aided Verification, LNCS 
697. Springer-Verlag, July 1993. 

[Gra94] S. Graf. Verification of a distributed cache memory by using abstractions. In Dill [DiI94]. 

[KeI94] 

[Kur89] 

To appear in Distributed Compllting. 

P. Kelb. Model checking and abstraction: A framework preserving both truth and failure 
information, 1994. OFFIS, Oldenburg, Germany. 

R. P. Kurshan. Analysis of discrete event coordination. In.l. W. de Bakker, W.-P. de Roever, 
and G. Rozcnberg::, editors, Proceedings of the Workshop all Stepwise Refinement of 

Distributed Systems: Mode/.s, Forllla/isms, Correctness, volume 430 of Lecture Notes in 
Computer Science, pages 414-454. Springer-Verlag, 1989. 

[LGS+93] C. Loiseaux, S. Graf, .I. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving 
abstractions for the verification of concurrent systems. Spectre technical report RTC40, 
LGTlIMAG, Grenoble, France, 1993. To appear in Formal Methods in System Design. 

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their 
linear specification. In Proceedings of the Twelfth ACM Symposium on the Principles 
of Programming Languages (POPL), pages 97-107, New Orleans, Louisiana, January 
1985. ACM Press. 

27 



[MiI71] 

[QS81] 

[Sif82] 

[Sif83] 

R. Milner. An algebraic definition of simulation between programs. In Proc. 2nd Int. 
Joint Cont: 011 AI1ificialllltelligence, pages 481-489. BCS, 1971. 

J.P. Quielle and J. Sifakis. Specification and verification of concurrent systems in CESAR. 
In Proceedings of the 5th international Sympmi'"lJ on Programming, volume 137 of 
Lecture Notes in Computer Science. pages 337-351. Springer-Verlag, 1981. 

J. Sit~lkis. Property preserving homomorphisms and a notion of simulation for transition 
systems. Rapport de Recherche 332, IMAG, Grenoble, France, November 1982. 

J. Sifakis. PropcI1y preserving homomorphisms of transition systems. In E. Clarke and 
D. Kazen, editors, 4th Workshop 011 Logic .... of Progr<'Jl118, number 164 in Lecture Notes 
in Computer Science, pages 458-473, Pittsburgh. June 1983. Springer Verlag. 

28 



Computing Science Notes 

In this series appeared: 

91/01 D. Alstein 

91/02 R.P. Nederpeit 
H.C.M. de Swart 

91/03 J.P. Katoen 
L.A.M. Sehoenmakers 

91/04 E. v.d. Sluis 
A F. v. d. Stappen 

91/05 D. de Reus 

91/06 K.M. van Hee 

91/07 E.Poli 

91/08 H. Schepers 

91/09 W.M.P.v.d.Aalst 

91/10 R.C.Backhouse 
PJ. de Bruin 
P. Hoogendijk 
G. Malcolm 
E. Voermans 
J. v.d. Woude 

91/11 R.C. Backhouse 
P.J. de Bruin 
G.Malcolm 
E.Voermans 
J. van der Woude 

91/12 E. van der Sluis 

91/13 F. Rietman 

91/14 P. Lemmens 

91/15 A.T.M. Aerts 
K.M. van Hee 

91/16 AJ.J.M. Marcelis 

Department of Mathematics and Computing Science 
Eindhoven University of Technology 

Dynamic Reconfiguration in Distributed Hard Real-Time 
Systems, p. 14. 

Implication. A survey of the different logical analyses 
"if...,then ... ", p. 26. 

Parallel Programs for the Recognition of P-invariant 
Segments, p. 16. 

Performance Analysis of VLSI Programs, p. 31. 

An Implementation Model for GOOD, p. 18. 

SPECIFICATIEMETHODEN, een over Licht, p. 20. 

CPO-models for second order lambda calculus with 
recursive lypes and subtyping, p. 49. 

Terminology and Paradigms for Fault Tolerance, p. 25. 

Interval Timed Petri Nets and their analysis, p.53. 

POLYNOMIAL RELATORS, p. 52. 

Relational Catamorphism, p. 31. 

A parallel local search algorithm for the travelling 
salesman problem, p. 12. 

A note on Extensionality, p. 21. 

The PDB Hypermedia Package. Why and how it was 
built, p. 63. 

Eldorado: Architecture of a Functional Database 
Management System, p. 19. 

An example of proving attribute grammars correct: 
the representation of arithmetical expressions by DAGs, 
p. 25. 



91/17 A.T.M. Aerts 
P.M.E. de Bra 
KM. van Hee 

91/18 Rik van Geldrop 

91/19 Erik Poll 

91/20 A.E. Eiben 
R.V. Schuwer 

91/21 J. Coenen 
W.-P. de Roever 
J.Zwiers 

91/22 G. Wolf 

91/23 KM. van Hee 
L.J. Somers 
M. Voorhoeve 

91/24 A.T.M. Aerts 
D. de Reus 

91/25 P. Zhou 
J. Hooman 
R. Kuiper 

91/26 P. de Bra 
GJ. Houben 
J. Paredaens 

91/27 F. de Boer 
C. Palamidessi 

91/28 F. de Boer 

91/29 H. Ten Eikelder 
R. van Geldrop 

91/30 J.C.M. Baeten 
F.W. Vaandrager 

91/31 H. ten Eikelder 

91/32 P. Struik 

91/33 W. v.d. Aalst 

91/34 J. Coenen 

Transforming Functional Database Schemes to Relational 
Representations, p. 21. 

Transformational Query Solving, p. 35. 

Some categorical properties for a model for second order 
lambda calculus with subtyping, p. 21. 

Knowledge Base Systems, a Formal Model, p. 21. 

Assertional Data Reification Proofs: Survey and 
Perspective, p. 18. 

Schedule Management: an Object Oriented Approach, p. 
26. 

Z and high level Petri nets, p. 16. 

Formal semantics for BRM with examples, p. 25. 

A compositional proof system for real-time systems based 
on explicit clock temporal logic: soundness and complete 
ness, p. 52. 

The GOOD based hypertext reference model, p. 12. 

Embedding as a tool for language comparison: On the 
CSP hierarchy, p. 17. 

A compositional proof system for dynamic proces 
creation, p. 24. 

Correctness of Acceptor Schemes for Regular Languages, 
p. 31. 

An Algebra for Process Creation, p. 29. 

Some algorithms to decide the equivalence of recursive 
types, p. 26. 

Techniques for designing efficient parallel programs, p. 
14. 

The modelling and analysis of queueing systems with 
QNM-ExSpcct, p. 23. 

Speci fying fault tolerant programs in deontic logic, 
p. 15. 



91/35 F.S. de Boer 
J.W. Klop 
C. Pa1amidessi 

92/01 J. Coenen 
J. Zwiers 
W.-P. de Roever 

92/02 J. Coenen 
J. Hooman 

92/03 J.C.M. Baeten 
J.A. Bergstra 

92/04 J.P.H.W.v.d.Eijnde 

92/05 J.P.H.W.v.d.Eijnde 

92/06 J.C.M. Baeten 
J.A. Bergstra 

92/07 R.P. Nederpelt 

92/08 R.P. NederpeJt 
F. Kamareddine 

92/09 R.C. Backhouse 

92/10 P.M.P. Rambags 

92/11 R.C. Backhouse 
J.S.C.P.v.d.Woude 

92/12 F. Kamareddine 

92/13 F. Kamareddine 

92/14 J.C.M. Baeten 

92/15 F. Kamareddine 

92/16 R.R. Scljce 

92/17 W.M.P. van der Aalst 

92/18 R.Nederpelt 
F. Kamareddine 

92/19 J.C.M.Baeten 
J.A.Bergstra 
S.A.Smolka 

92/20 F.Kamareddine 

Asynchronous communication in process algebra, p. 20. 

A note on compositional refinement, p. 27. 

A compositional semantics for fault tolerant real-time 
systems, p. 18. 

Real space process algebra, p. 42. 

Program derivation in acyclic graphs and related 
problems, p. 90. 

Conservative fixpoint functions on a graph, p. 25. 

Discrete time process algebra, pA5. 

The fine-structure of lambda calculus, p. 110. 

On stepwise explicit substitution, p. 30. 

Calculating the Warshall/Floyd path algorithm, p. 14. 

Composition and decomposition in a CPN model, p. 55. 

Demonic operators and monotype factors, p. 29. 

Set theory and nominalisation, Part I, p.26. 

Set theory and nominalisation, Part II, p.22. 

The total ordcr assumption, p. 10. 

A system at the cross-roads of functional and logic 
programming, p.36. 

Integrity checking in deductive databases; an exposition, 
p.32. 

Interval timed coloured Petri nets and their analysis, p. 
20. 

A unified approach to Type Theory through a refined 
lambda-calculus, p. 30. 

Axiomatizing Probabilistic Processes: 
ACP with Generative Probabilities, p. 36. 

Are Types for Natural Language? P. 32. 



92/21 F.Kamareddine 

92/22 R. Nederpelt 
F.Kamareddine 

92/23 F.Kamareddine 
E.Klein 

92/24 M.Codish 
D.Dams 
Eyal Yardeni 

92/25 E.Poll 

92/26 T.H.W.Beelen 
WJJ.Stut 
P.A.C.Verkou1cn 

92/27 B. Watson 
G. Zwaan 

93/01 R. van Geldrop 

93/02 T. Verhoeff 

93/03 T. Verhoeff 

93/04 E.H.L. Aarts 
J.H.M. Korst 
PJ. Zwietering 

93/05 J. C.M. Baeten 
C. Verhoef 

93/06 J.P. Veltkamp 

93/07 P.D. Moerland 

93/08 J. Verhoosel 

93/09 K.M. van Hee 

93/10 K.M. van Hee 

93/11 K.M. van Hee 

93/12 K.M. van Hee 

93/13 K.M. van Hee 

Non well-foundedness and type freeness can unify the 
interpretation of functional application, p. 16. 

A useful lambda notation, p. 17. 

Nominalization, Predication and Type Containment, p. 40. 

Bottum-up Abstract Interpretation of Logic Programs, 
p. 33. 

A Programming Logic for Fro, p. 15. 

A modelling method using MOVIE and SimCon/ExSpect, 
p. 15. 

A taxonomy of keyword pattern matching algorithms, 
p. 50. 

Deriving the Aho-Corasick algorithms: a case study into 
the synergy of programming methods, p. 36. 

A continuous version of the Prisoner's Dilemma, p. 17 

Quicksort for linked lists, p. 8. 

Deterministic and randomized local search, p. 78. 

A congruence theorem for structured operational 
semantics with predicates, p. 18. 

On the unavoidability of metastable behaviour, p. 29 

Exercises in Multiprogramming, p. 97 

A Formal Determ inistic Scheduling Model for Hard Real
Time Executions in DEDaS, p. 32. 

Systems Engineering: a Formal Approach 
Part I: System Concepts, p. 72. 

Systems Engineering: a Formal Approach 
Part II: Frameworks, p. 44. 

Systems Engineering: a Formal Approach 
Part III: Modeling Methods, p. 101. 

Systems Engineering: a Formal Approach 
Part IV: Analysis Methods, p. 63. 

Systems Engineering: a Formal Approach 



93/14 J. C.M. Baeten 
J.A. Bergstra 

93/15 J.C.M. Baeten 
J.A. Bergstra 
R.N. Bol 

93/16 H. Schepers 
J. Hooman 

93/17 D. Alstein 
P. van der Stok 

93/18 C. Verhoef 

93/19 G-J. Houben 

93/20 F.S. de Boer 

93/21 M. Codish 
D. Dams 
G. File 
M. Bruynooghe 

93/22 E. Poll 

93/23 E. de Kogel 

93/24 E. Poll and Paula Severi 

93/25 H. Schepers and R. Gerth 

93/26 W.M.P. van der Aalst 

93/27 T. Kloks and D. Kratsch 

93/28 F. Kamareddine and 
R. Ncderpelt 

93/29 R. Post and P. De Bra 

93/30 J. Deogun 
T. Kloks 
D. Kratsch 
H. Miiller 

93/31 W. Korver 

93/32 H. ten Eikelder and 
H. van Gcldrop 

Part V: Specification Language, p. 89. 
On Sequential Composition, Action Prefixes and 
Process Prefix, p. 21. 

A Real-Time Process Logic, p. 31. 

A Trace-Based Compositional Proof Theory for 
Fault Tolerant Distributed Systems, p. 27 

Hard Real-Time Reliable Multicast in the DEDOS system, 
p. 19. 

A congruence theorem for structured operational 
semantics with predicates and negative premises, p. 22. 

The Design of an Online Help Facility for ExSpect, p.21. 

A Process Algebra of Concurrent Constraint Program
ming, p. 15. 

Freeness Analysis for Logic Programs - And Correct
ness?, p. 24. 

A Typechccker for Bijective Pure Type Systems, p. 28. 

Relational Algebra and Equational Proofs, p. 23. 

Pure Type Systems with Definitions, p. 38. 

A Compositional Proof Theory for Fault Tolerant Real
Time Oistributed Systems, p. 31. 

Multi-dimensional Petri nets, p. 25. 

Finding all minimal separators of a graph, p. II. 

A Semantics for a fine A-calculus with de Bruijn indices, 
p.49. 

GOLD, a Graph Oriented Language for Databases, p. 42. 

On Venex Ranking for Permutation and Other Graphs, 
p. II. 

Derivation of delay insensitive and speed indepcndenL 
CMOS circuit" using directed commands and 
production rule sets, p. 40. 

On the Correctness of some Algorithms to generate Finite 
Automata for Regular Expressions, p. 17. 



93/33 L. Loyens and J. Moonen 

93/34 

93/35 

93/36 

93/37 

93/38 

93/39 

93/40 

93/41 

J.C.M. Baeten and 
J.A. Bergstra 

W. Ferrer and 
P. Severi 

J.C.M. Baeten and 
J.A. Bergstra 

J. Brunekreef 
J-P. Katoen 
R. Koymans 
S. Mauw 

C. Verhoef 

W.P.M. Nuijten 
E.H.L. Aarts 
D.A.A. van Erp Taalman Kip 
K.M. van Hee 

P.D.V. van der Stok 
M.M.M.P.J. Claessen 
D. Alstein 

A. Bijlsma 

93/42 P.M.P. Rambags 

93/43 B.W. Watson 

93/44 B.W. Watson 

93/45 EJ. Luit 
J.M.M. Martin 

93/46 T. Kloks 
D. Kratsch 
J. Spinrad 

93/47 W. v.d. Aalst 
P. De Bra 
G.J. Houben 
Y. Komatzky 

93/48 R. Gerth 

ILIAS, a sequential language for parallel mattix 
computations, p. 20. 

Real Time Process Algebra with Infinitesimals, p.39. 

Abstract Reduction and Topology, p. 28. 

Non Interleaving Process Algebra, p. 17. 

Design and Analysis of 
Dynamic Leader Election Protocols 
in Broadcast Networks, p. 73. 

A general conservative extension theorem in process 
algebra, p. 17. 

Job Shop Scheduling by Constraint Satisfaction, p. 22. 

A Hierarchical Membership Protocol for Synchronous 
Distributed Systems, p. 43. 

Temporal operators viewed as predicate transformers, 
p. 11. 

Automatic Verification of Regular Protocols in PjT Nets, 
p. 23. 

A taxomomy of finite automata construction algorithms, 
p. 87. 

A taxonomy of finite automata minimization algorithms, 
p. 23. 

A precise clock synchronization protocol,p. 

Trcewidth and Patwidth of Cocomparability graphs of 
Bounded Dimension, p. 14. 

Browsing Semantics in the "Tower" Model, p. 19. 

Verifying Sequentially Consistent Memory using Interface 
Refinement, p. 20. 



94/01 P. America 
M. van der Kammen 
R.P. NederpeJt 
O.S. van Roosmalen 
H.C.M. de Swart 

94/02 F. Kamareddine 
RP. Ncderpelt 

94/03 L.B. Hartman 
K.M. van Hee 

94/04 J.C.M. Baeten 
1. A. Bergstra 

94/05 P. Zhou 
1. Hooman 

94/06 T. Basten 
T. Kunz 
J. Black 
M. Coffin 
D. Taylor 

94/07 K.R. Apt 
R Bol 

94/08 O.S. van Roosmalen 

94/09 J.C.M. Baeten 
J.A. Bergstra 

94/10 T. verhoeff 

94/11 1. Peleska 
C. Huizing 
C. Petersohn 

94/12 T. Kloks 
D. Kratsch 
H. Miiller 

94/13 R. Seljce 

94/14 W. Peremans 

94/15 RJ.M. Vaessens 
E. H.L. Aarts 
1.K. Lenstra 

94/16 R.C. Backhouse 
H. Doornbos 

94/17 S. Mauw 
M.A. Reniers 

The object-oriented paradigm, p. 28. 

Canonical typing and n -conversion, p. 51. 

Application of Marcov Decision Processc to Search 
Problems, p. 21. 

Graph Isomorphism Models for Non Interleaving Process 
Algebra, p. 18. 

Formal Specification and Compositional Verification of 
an Atomic Broadcast Protocol, p. 22. 

Time and the Order of Abstract Events in Distributed 
Computations, p. 29. 

Logic Programming and Negation: A Survey, p. 62. 

A Hierarchical Diagrammatic Representation of Class 
Slruclure, p. 22. 

Process Algebra with Partial Choice, p. 16. 

Thc tesling Paradigm Applied to Network Structure. 
p. 31. 

A Comparison of Ward & Mellor's Transformation 
Schema wilh State- & Activitycharts, p. 30. 

Dominoes, p. 14. 

A Ncw Method for Integrity Constraint checking in 
Deductive Databases, p. 34. 

Ups and Downs of Type Theory, p. 9. 

Job Shop Scheduling by Local Search, p. 21. 

Mathematical Induction Made Calculational, p. 36. 

An Algebraic Semantics of Basic Message 
Sequence Charts, p. 9. 



94/18 F. Kamarcddine 
R. Nedcrpelt 

94/19 B.W. Watson 

94/20 R. Bloo 
F. Kamareddine 
R. NederpeJt 

94/21 B.W. Watson 

94/22 B.W. Watson 

Refining Reduction in the Lambda Calculus, p. 15. 

The performance of single-keyword and multiplc
keyword pattern matching algorithms, p. 46. 

Beyond ~-Reduction in Church's A-., p. 22. 

An introduction to the Fire engine: A C++ toolkit for 
Finite automata and Regular Expressions. 

The design and implementation of the FIRE engine: 
A C++ toolkit for Finite automata and regular Expressi
ons. 

94/23 S. Mauw and M.A. Reniers An algebraic semantics of Message Sequence Chans, p. 
43. 


	Abstract
	1. Introduction
	2. Preliminaries
	2.1 Temporal logic
	2.2 Trasition systems
	2.3 Abstract Interpretation
	2.4 Relation transformers
	3. Abstract Transition Systems
	3.1 Valuation of atoms
	3.2 Abstract initial states
	3.3 Abstract transition relations
	3.4 Preservation of ...
	3.5 Mixed Abstraction: preservation of CTL*
	4. Computing Abstract Model By Abstract Interpretation
	5. Example
	6. Approximations
	6.1 Computing approximations
	7. Related work
	7.1 Precision
	8. Conclusions
	References

