8,681 research outputs found

    Technical solutions for low-voltage microgrid concept

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Power system planning methods and experiences in the energy transition framework

    Get PDF
    In recent years, the unbundling of the electricity market together with the profound “energy landscape” transformation have made the transmission network development planning a very complex multi-objective problem. The climate and energy objectives defined at the European level aim for a deepening integration of the European power markets and the electricity sector is recognized as one of the main contributors to the energy transition from a thermal-based power system to a renewable-based one. In the deregulated framework, network planners have to satisfy multiple different objectives, including: facilitating competition between market participants, providing non-discriminatory access to all generation resources for all customers, including green resources, mitigating transmission congestions, efficiently allocating the network development actions, minimizing risks associated with investments, enhancing power system security and reliability and minimizing the transmission infrastructure environmental impact. Further complexities are related to the significant uncertainty about future energy scenarios and policy rules. In particular, the increasing distributed renewable energy source integration dictated by the European energy targets, raises several issues in terms of future power flow patterns, power system flexibility and inertia requirements, and cost-effective development strategies identification. The thesis aims to investigate various aspects concerning the transmission network planning, with particular reference to the Italian power system and the experience gained working in the “Grid Planning and Interconnections Department” of Terna, the Italian Transmission System Operator. One of the main topics of this work is the use of the series compensation to exploit operating limits of underused portions of the HV – EHV transmission network in parallel to critically loaded ones, in order to control and provide alternative paths for power flows. The purpose is to extend the allowable transmission capacity across internal market sections. To this aim, a specific application of series compensation (together with reconductoring) to exploit the transfer capacity of a 250 km long, 230 kV-50 Hz transmission backbone spanning the critical section Centre South – Centre North is illustrated. The results are validated by means of static assessment and similar applications could be hypothesized for grid portions in the South of Italy where the primary network is mainly unloaded whereas the sub-transmission network reaches high levels of loading because of the huge renewable generation capacity situated there. A further characteristic of modern power systems is the need to integrate high levels of renewable energies while fulfilling reliability and security requirements. The offshore wind farms perspectives in the Italian transmission system are evaluated, considering policies, environmental and technical aspects. Furthermore, the adoption of the HVDC technology in parallel to the AC traditional system topic is addressed: planning static and dynamic studies involving a real HVDC Italian project are proposed. In particular, the impact of the planned HVDC link on the loadability and the dynamic performance of the system is investigated in medium and in long-term future planning scenarios. The evaluation of the thermal performance of a specific grid portion in the South of Italy affected by significant increase of power generation by variable energy sources is proposed both in the current situation and in the future scenarios in order to highlight the benefits related to the presence of the planned network reinforcements. Finally, some issues of the prospective reduced inertia systems are illustrated and a possible methodology to evaluate the economic impact of inertia constraints in long-term market studies is proposed. In the light of the emerging concept of power system flexibility, traditional planning evolved to assess the ability of the system to employ its resources when dealing with the changes in load demand and variable generation. Flexibility analyses of the Italian power system, carried out in terms of some market studies-based metrics and grid infrastructure-based indexes, are provided. The flexibility requirements assessment in planning scenarios are of interest to evaluate the impact of network development actions and have been included in the yearly National Development Plan. The last research topic involves the cost-effective target capacity assessment methodology developed by Terna in compliance with the Regulator directives presented together with the results yielded by its application to each significant market section of the Italian power system. The methodology has been positively evaluated from academic independent expert reviewers, and its outputs are relevant for the policy makers, regulatory authority and market participant to assess and co-design the energy transition plan of a future European interconnected power system

    Pregled različitih tehnologija upravljanja naprednim mreĆŸama za povećanje fleksibilnosti elektroenergetskih sustava i omogućavanje masovne integracije obnovljivih izvora energije

    Get PDF
    Over the last 15 years, major changes have taken place in the electricity sector. A significant increase in the share of renewable energy sources (RES) with variable generation, followed by the decommissioning of conventional power plants based on fossil fuels, has dramatically changed the way of the power system (EPS) operation. During this time, there has been inadequate and untimely investment in the transmission infrastructure. This occurred partly due to the lack of funding, and partly due to the climate change and the rising environmental awareness, as well as the influence of green activists making it difficult to obtain permits to build electrical grid facilities. Additionally, electricity consumption is steadily increasing due to population growth in the undeveloped and developing countries, and due to the rising living standard in the developed countries. Therefore, global electricity consumption is expected to triple by 2050. To meet the new demands, Transmission System Operators (TSOs) are deploying advanced transmission technologies based on a comprehensive application of information and communication solutions. These technologies increase the capacity, efficiency, and reliability of both the existing and new elements of the transmission system. These solutions applied vary from system to system and depend on many influencing factors. The application of these advanced technologies is particularly important for congestion management, as the power system operates closer and closer to stability limits, increasing the risk of collapse. The paper describes the technologies that transform the existing network into smart grids, primarily from the point of view of increasing the capacity of the existing infrastructure through different smart grid investments.U posljednjih 15 godina u elektroenergetskom sektoru dogodile su se velike promjene. Značajno povećanje udjela obnovljivih izvora energije (OIE) s varijabilnom proizvodnjom, praćeno gaĆĄenjem konvencionalnih elektrana na fosilna goriva, dramatično je promijenilo način rada elektroenergetskog sustava (EES). Tijekom tog vremena bilo je neodgovarajućih i nepravovremenih ulaganja u prijenosnu infrastrukturu. To se dogodilo dijelom zbog nedostatka financijskih sredstava, a dijelom zbog klimatskih promjena i porasta ekoloĆĄke svijesti, kao i utjecaja zelenih aktivista koji su oteĆŸali dobivanje dozvola za izgradnju energetskih objekata. Osim toga, potroĆĄnja električne energije u stalnom je porastu zbog rasta stanovniĆĄtva u nerazvijenim zemljama i zemljama u razvoju te zbog povećanja ĆŸivotnog standarda u razvijenim zemljama. Stoga se očekuje da će se globalna potroĆĄnja električne energije utrostručiti do 2050. Kako bi zadovoljili nove zahtjeve, operatori prijenosnih sustava (TSO) uvode napredne tehnologije prijenosa temeljene na sveobuhvatnoj primjeni informacijskih i komunikacijskih rjeĆĄenja. Ove tehnologije povećavaju kapacitet, učinkovitost i pouzdanost postojećih i novih elemenata prijenosnog sustava. Ova primijenjena rjeĆĄenja razlikuju se od sustava do sustava i ovise o mnogim utjecajnim čimbenicima. Primjena ovih naprednih tehnologija posebno je vaĆŸna za upravljanje zaguĆĄenjima jer elektroenergetski sustav radi sve bliĆŸe i bliĆŸe granicama stabilnosti, povećavajući rizik od njegovog sloma. U radu su opisane tehnologije koje transformiraju postojeću mreĆŸu u napredne elektroenergetske mreĆŸe, prvenstveno sa stajaliĆĄta povećanja kapaciteta postojeće infrastrukture kroz različite investicije u napredne tehnologije

    Renewable Energy

    Get PDF
    Renewable Energy is energy generated from natural resources - such as sunlight, wind, rain, tides and geothermal heat - which are naturally replenished. In 2008, about 18% of global final energy consumption came from renewables, with 13% coming from traditional biomass, such as wood burning. Hydroelectricity was the next largest renewable source, providing 3% (15% of global electricity generation), followed by solar hot water/heating, which contributed with 1.3%. Modern technologies, such as geothermal energy, wind power, solar power, and ocean energy together provided some 0.8% of final energy consumption. The book provides a forum for dissemination and exchange of up - to - date scientific information on theoretical, generic and applied areas of knowledge. The topics deal with new devices and circuits for energy systems, photovoltaic and solar thermal, wind energy systems, tidal and wave energy, fuel cell systems, bio energy and geo-energy, sustainable energy resources and systems, energy storage systems, energy market management and economics, off-grid isolated energy systems, energy in transportation systems, energy resources for portable electronics, intelligent energy power transmission, distribution and inter - connectors, energy efficient utilization, environmental issues, energy harvesting, nanotechnology in energy, policy issues on renewable energy, building design, power electronics in energy conversion, new materials for energy resources, and RF and magnetic field energy devices

    Hybrid Smart Transformer for Enhanced Power System Protection Against DC With Advanced Grid Support

    Get PDF
    The traditional grid is rapidly transforming into smart substations and grid assets incorporating advanced control equipment with enhanced functionalities and rapid self-healing features. The most important and strategic equipment in the substation is the transformer and is expected to perform a variety of functions beyond mere voltage conversion and isolation. While the concept of smart solid-state transformers (SSTs) is being widely recognized, their respective lifetime and reliability raise concerns, thus hampering the complete replacement of traditional transformers with SSTs. Under this scenario, introducing smart features in conventional transformers utilizing simple, cost-effective, and easy to install modules is a highly desired and logical solution. This dissertation is focused on the design and evaluation of a power electronics-based module integrated between the neutral of power transformers and substation ground. The proposed module transforms conventional transformers into hybrid smart transformers (HST). The HST enhances power system protection against DC flow in grid that could result from solar storms, high-elevation nuclear explosions, monopolar or ground return mode (GRM) operation of high-voltage direct current (HVDC) transmission and non-ideal switching in inverter-based resources (IBRs). The module also introduces a variety of advanced grid-support features in conventional transformers. These include voltage regulation, voltage and impedance balancing, harmonics isolation, power flow control and voltage ride through (VRT) capability for distributed energy resources (DERs) or grid connected IBRs. The dissertation also proposes and evaluates a hybrid bypass switch for HST module and associated transformer protection during high-voltage events at the module output, such as, ground faults, inrush currents, lightning and switching transients. The proposed strategy is evaluated on a scaled hardware prototype utilizing controller hardware-in-the-loop (C-HIL) and power hardware-in-the-loop (P-HIL) techniques. The dissertation also provides guidelines for field implementation and deployment of the proposed HST scheme. The device is proposed as an all-inclusive solution to multiple grid problems as it performs a variety of functions that are currently being performed through separate devices increasing efficiency and justifying its installation

    A Novel Control Method For Grid Side Inverters Under Generalized Unbalanced Operating Conditions

    Get PDF
    This thesis provides a summary on renewable energy sources integration into the grid, using an inverter, along with a comprehensive literature research on variety of available control methods. A new generalized method for grid side inverter control under unbalanced operating conditions is also proposed. The presented control method provides complete harmonic elimination in line currents and DC link voltage with adjustable power factor. The method is general, and can be used for all levels of imbalance in grid voltages and line impedances. The control algorithm proposed in this work has been implemented by using MATLAB Simulink and dSPACE RT1104 control system. Simulation and experimental results presented in this thesis are in excellent agreement
    • 

    corecore