859,418 research outputs found

    The Translocal Event and the Polyrhythmic Diagram

    Get PDF
    This thesis identifies and analyses the key creative protocols in translocal performance practice, and ends with suggestions for new forms of transversal live and mediated performance practice, informed by theory. It argues that ontologies of emergence in dynamic systems nourish contemporary practice in the digital arts. Feedback in self-organised, recursive systems and organisms elicit change, and change transforms. The arguments trace concepts from chaos and complexity theory to virtual multiplicity, relationality, intuition and individuation (in the work of Bergson, Deleuze, Guattari, Simondon, Massumi, and other process theorists). It then examines the intersection of methodologies in philosophy, science and art and the radical contingencies implicit in the technicity of real-time, collaborative composition. Simultaneous forces or tendencies such as perception/memory, content/ expression and instinct/intellect produce composites (experience, meaning, and intuition- respectively) that affect the sensation of interplay. The translocal event is itself a diagram - an interstice between the forces of the local and the global, between the tendencies of the individual and the collective. The translocal is a point of reference for exploring the distribution of affect, parameters of control and emergent aesthetics. Translocal interplay, enabled by digital technologies and network protocols, is ontogenetic and autopoietic; diagrammatic and synaesthetic; intuitive and transductive. KeyWorx is a software application developed for realtime, distributed, multimodal media processing. As a technological tool created by artists, KeyWorx supports this intuitive type of creative experience: a real-time, translocal “jamming” that transduces the lived experience of a “biogram,” a synaesthetic hinge-dimension. The emerging aesthetics are processual – intuitive, diagrammatic and transversal

    A role-based software architecture to support mobile service computing in IoT scenarios

    Get PDF
    The interaction among components of an IoT-based system usually requires using low latency or real time for message delivery, depending on the application needs and the quality of the communication links among the components. Moreover, in some cases, this interaction should consider the use of communication links with poor or uncertain Quality of Service (QoS). Research efforts in communication support for IoT scenarios have overlooked the challenge of providing real-time interaction support in unstable links, making these systems use dedicated networks that are expensive and usually limited in terms of physical coverage and robustness. This paper presents an alternative to address such a communication challenge, through the use of a model that allows soft real-time interaction among components of an IoT-based system. The behavior of the proposed model was validated using state machine theory, opening an opportunity to explore a whole new branch of smart distributed solutions and to extend the state-of-the-art and the-state-of-the-practice in this particular IoT study scenario.Peer ReviewedPostprint (published version

    Application and support for high-performance simulation

    Get PDF
    types: Editorial CommentHigh performance simulation that supports sophisticated simulation experimentation and optimization can require non-trivial amounts of computing power. Advanced distributed computing techniques and systems found in areas such as High Performance Computing (HPC), High Throughput Computing (HTC), grid computing, cloud computing and e-Infrastructures are needed to provide effectively the computing power needed for the high performance simulation of large and complex models. In simulation there has been a long tradition of translating and adopting advances in distributed computing as shown by contributions from the parallel and distributed simulation community. This special issue brings together a contemporary collection of work showcasing original research in the advancement of simulation theory and practice with distributed computing. This special issue is divided into two parts. This first part focuses on research pertaining to high performance simulation that support a range of applications including the study of epidemics, social networks, urban mobility and real-time embedded and cyber-physical systems. Compared to other simulation techniques agent-based modeling and simulation is relatively new; however, it is increasingly being used to study large-scale problems. Agent-based simulations present challenges for high performance simulation as they can be complex and computationally demanding, and it is therefore not surprising that this special issue includes several articles on the high performance simulation of such systems.Research Councils U

    High-performance simulation and simulation methodologies

    Get PDF
    types: Editorial CommentThe realization of high performance simulation necessitates sophisticated simulation experimentation and optimization; this often requires non-trivial amounts of computing power. Distributed computing techniques and systems found in areas such as High Performance Computing (HPC), High Throughput Computing (HTC), e-infrastructures, grid and cloud computing can provide the required computing capacity for the execution of large and complex simulations. This extends the long tradition of adopting advances in distributed computing in simulation as evidenced by contributions from the parallel and distributed simulation community. There has arguably been a recent acceleration of innovation in distributed computing tools and techniques. This special issue presents the opportunity to showcase recent research that is assimilating these new advances in simulation. This special issue brings together a contemporary collection of work showcasing original research in the advancement of simulation theory and practice with distributed computing. This special issue has two parts. The first part (published in the preceding issue of the journal) included seven studies in high performance simulation that support applications including the study of epidemics, social networks, urban mobility and real-time embedded and cyber-physical systems. This second part focuses on original research in high performance simulation that supports a range of methods including DEVS, Petri nets and DES. Of the four papers for this issue, the manuscript by Bergero, et al. (2013), which was submitted, reviewed and accepted for the special issue, was published in an earlier issue of SIMULATION as the author requested early publication.Research Councils U

    Distributed Learning System Design: A New Approach and an Agenda for Future Research

    Get PDF
    This article presents a theoretical framework designed to guide distributed learning design, with the goal of enhancing the effectiveness of distributed learning systems. The authors begin with a review of the extant research on distributed learning design, and themes embedded in this literature are extracted and discussed to identify critical gaps that should be addressed by future work in this area. A conceptual framework that integrates instructional objectives, targeted competencies, instructional design considerations, and technological features is then developed to address the most pressing gaps in current research and practice. The rationale and logic underlying this framework is explicated. The framework is designed to help guide trainers and instructional designers through critical stages of the distributed learning system design process. In addition, it is intended to help researchers identify critical issues that should serve as the focus of future research efforts. Recommendations and future research directions are presented and discussed

    Organizational knowledge transfer through creation, mobilization and diffusion: A case analysis of InTouch within Schlumberger

    Get PDF
    There is a paucity of theory for the effective management of knowledge transfer within large organisations. Practitioners continue to rely upon ‘experimental’ approaches to address the problem. This research attempts to reduce the gap between theory and application, thereby improving conceptual clarity for the transfer of knowledge. The paper, through an in-depth case analysis conducted within Schlumberger, studies the adoption of an intranet-based knowledge management (KM) system (called InTouch) to support, strategically align and transfer knowledge resources. The investigation was undertaken through the adoption of a robust methodological approach (abductive strategy) incorporating the role of technology as an enabler of knowledge management application. Consequently, the study addressed the important question of translating theoretical benefits of KM into practical reality. The research formulates a set of theoretical propositions which are seen as key to the development of an effective knowledge based infrastructure. The findings identify 30 generic attributes that are essential to the creation, mobilisation and diffusion of organisational knowledge. The research makes a significant contribution to identifying a theoretical and empirically based agenda for successful intranet-based KM which will be of benefit to both the academic and practitioner communities. The paper also highlights and proposes important areas for further research

    Desktop multimedia environments to support collaborative distance learning

    Get PDF
    Desktop multimedia conferencing, when two or more persons can communicate among themselves via personal computers with the opportunity to see and hear one another as well as communicate via text messages while working with commonly available stored resources, appears to have important applications to the support of collaborative learning. In this paper we explore this potential in three ways: (a) through an analysis of particular learner needs when learning and working collaboratively with others outside of face-to-face situations; (b) through an analysis of different forms of conferencing environments, including desktop multimedia environments, relative to their effectiveness in terms of meeting learner needs for distributed collaboration; and (c) through reporting the results of a formative evaluation of a prototype desktop multimedia conferencing system developed especially for the support of collaborative learning. Via these analyses, suggestions are offered relating to the functionalities of desktop multimedia conferencing systems for the support of collaborative learning, reflecting new developments in both the technologies available for such systems and in our awareness of learner needs when working collaboratively with one other outside of face-to-face situations
    corecore