164 research outputs found

    SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices

    Full text link
    Trusted Execution Environments (TEEs) embedded in IoT devices provide a deployable solution to secure IoT applications at the hardware level. By design, in TEEs, the Trusted Operating System (Trusted OS) is the primary component. It enables the TEE to use security-based design techniques, such as data encryption and identity authentication. Once a Trusted OS has been exploited, the TEE can no longer ensure security. However, Trusted OSes for IoT devices have received little security analysis, which is challenging from several perspectives: (1) Trusted OSes are closed-source and have an unfavorable environment for sending test cases and collecting feedback. (2) Trusted OSes have complex data structures and require a stateful workflow, which limits existing vulnerability detection tools. To address the challenges, we present SyzTrust, the first state-aware fuzzing framework for vetting the security of resource-limited Trusted OSes. SyzTrust adopts a hardware-assisted framework to enable fuzzing Trusted OSes directly on IoT devices as well as tracking state and code coverage non-invasively. SyzTrust utilizes composite feedback to guide the fuzzer to effectively explore more states as well as to increase the code coverage. We evaluate SyzTrust on Trusted OSes from three major vendors: Samsung, Tsinglink Cloud, and Ali Cloud. These systems run on Cortex M23/33 MCUs, which provide the necessary abstraction for embedded TEEs. We discovered 70 previously unknown vulnerabilities in their Trusted OSes, receiving 10 new CVEs so far. Furthermore, compared to the baseline, SyzTrust has demonstrated significant improvements, including 66% higher code coverage, 651% higher state coverage, and 31% improved vulnerability-finding capability. We report all discovered new vulnerabilities to vendors and open source SyzTrust.Comment: To appear in the IEEE Symposium on Security and Privacy (IEEE S&P) 2024, San Francisco, CA, US

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Improving Security in Internet of Things with Software Defined Networking

    Get PDF
    Future Internet of Things (IoT) will connect to the Internet billions of heterogeneous smart devices with the capacity of interacting with the environment. Therefore, the proposed solutions from an IoT networking perspective must take into account the scalability of IoT nodes as well as the operational cost of deploying the networking infrastructure. This will generate a huge volume of data, which poses a tremendous challenge both from the transport, and processing of information point of view. Moreover, security issues appear, due to the fact that untrusted IoT devices are interconnected towards the aggregation networks. In this paper, we propose the usage of a Software- Defined Networking (SDN) framework for introducing security in IoT gateways. An experimental validation of the framework is proposed, resulting in the enforcement of network security at the network edge

    mHealth Engineering: A Technology Review

    Get PDF
    In this paper, we review the technological bases of mobile health (mHealth). First, we derive a component-based mHealth architecture prototype from an Institute of Electrical and Electronics Engineers (IEEE)-based multistage research and filter process. Second, we analyze medical databases with regard to these prototypic mhealth system components.. We show the current state of research literature concerning portable devices with standard and additional equipment, data transmission technology, interface, operating systems and software embedment, internal and external memory, and power-supply issues. We also focus on synergy effects by combining different mHealth technologies (e.g., BT-LE combined with RFID link technology). Finally, we also make suggestions for future improvements in mHealth technology (e.g., data-protection issues, energy supply, data processing and storage)

    System for monitoring and supporting the treatment of sleep apnea using IoT and big data

    Full text link
    [EN] Sleep apnea has become in the sleep disorder that causes greater concern in recent years due to its morbidity and mortality, higher medical care costs and poor people quality of life. Some proposals have addressed sleep apnea disease in elderly people, but they have still some technical limitations. For these reasons, this paper presents an innovative system based on fog and cloud computing technologies which in combination with IoT and big data platforms offers new opportunities to build novel and innovative services for supporting the sleep apnea and to overcome the current limitations. Particularly, the system is built on several low-power wireless networks with heterogeneous smart devices (i.e, sensors and actuators). In the fog, an edge node (Smart IoT Gateway) provides IoT connection and interoperability and pre-processing IoT data to detect events in real-time that might endanger the elderly's health and to act accordingly. In the cloud, a Generic Enabler Context Broker manages, stores and injects data into the big data analyzer for further processing and analyzing. The system's performance and subjective applicability are evaluated using over 30 GB size datasets and a questionnaire fulfilled by medicals specialist, respectively. Results show that the system data analytics improve the health professionals' decision making to monitor and guide sleep apnea treatment, as well as improving elderly people's quality of life. (C) 2018 Elsevier B.V. All rights reserved.This research was supported by the Ecuadorian Government through the Secretary of Higher Education, Science, Technology, and Innovation (SENESCYT) and has received funding from the European Union's "Horizon 2020'' research and innovation program as part of the ACTIVAGE project under Grant 732679 and the Interoperability of Heterogeneous IoT Platforms project (INTER-IoT) under Grant 687283.Yacchirema-Vargas, DC.; Sarabia-Jácome, DF.; Palau Salvador, CE.; Esteve Domingo, M. (2018). System for monitoring and supporting the treatment of sleep apnea using IoT and big data. Pervasive and Mobile Computing. 50:25-40. https://doi.org/10.1016/j.pmcj.2018.07.007S25405

    Linear CCD-Based Spectrometry Using Either an ASIC or FPGA Design Methodology

    Get PDF
    At room temperature, high-responsivity charge-coupled devices (CCD) comprising arrays of several thousand linear photodiodes are readily available. These sensors are capable of ultraviolet to near infrared wavelengths sensing with detecting resolutions of up to 24 dots per millimeter. Their applicability in novel spectrometry applications has been demonstrated. However, the complexity of their timing, image acquisition, and processing necessitates sophisticated peripheral circuitry for viable output. In this chapter, we outline the application specifications for a versatile spectrometer that is reliant on a field programmable gate array (FPGA) automation. The sustained throughput is 1.23 gigabit per second 8-bit color readout rate. This approach is attractive because the final FPGA design may be reconfigured readily to a single, branded, application-specific integrated circuit (ASIC) to drive a wider range of linear CCDs on the market. This is advantageous for rapid development and deployment of the spectrometer instrument

    Programmable photonics : an opportunity for an accessible large-volume PIC ecosystem

    Get PDF
    We look at the opportunities presented by the new concepts of generic programmable photonic integrated circuits (PIC) to deploy photonics on a larger scale. Programmable PICs consist of waveguide meshes of tunable couplers and phase shifters that can be reconfigured in software to define diverse functions and arbitrary connectivity between the input and output ports. Off-the-shelf programmable PICs can dramatically shorten the development time and deployment costs of new photonic products, as they bypass the design-fabrication cycle of a custom PIC. These chips, which actually consist of an entire technology stack of photonics, electronics packaging and software, can potentially be manufactured cheaper and in larger volumes than application-specific PICs. We look into the technology requirements of these generic programmable PICs and discuss the economy of scale. Finally, we make a qualitative analysis of the possible application spaces where generic programmable PICs can play an enabling role, especially to companies who do not have an in-depth background in PIC technology

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Manufacturing as a Data-Driven Practice: Methodologies, Technologies, and Tools

    Get PDF
    n recent years, the introduction and exploitation of innovative information technologies in industrial contexts have led to the continuous growth of digital shop floor envi- ronments. The new Industry-4.0 model allows smart factories to become very advanced IT industries, generating an ever- increasing amount of valuable data. As a consequence, the neces- sity of powerful and reliable software architectures is becoming prominent along with data-driven methodologies to extract useful and hidden knowledge supporting the decision making process. This paper discusses the latest software technologies needed to collect, manage and elaborate all data generated through innovative IoT architectures deployed over the production line, with the aim of extracting useful knowledge for the orchestration of high-level control services that can generate added business value. This survey covers the entire data life-cycle in manufacturing environments, discussing key functional and methodological aspects along with a rich and properly classified set of technologies and tools, useful to add intelligence to data-driven services. Therefore, it serves both as a first guided step towards the rich landscape of literature for readers approaching this field, and as a global yet detailed overview of the current state-of-the-art in the Industry 4.0 domain for experts. As a case study, we discuss in detail the deployment of the proposed solutions for two research project demonstrators, showing their ability to mitigate manufacturing line interruptions and reduce the corresponding impacts and costs
    • …
    corecore