12 research outputs found

    An Automatic Ship Detection Method Based on Local Gray-Level Gathering Characteristics in SAR Imagery

    Get PDF
    This paper proposes an automatic ship detection method based on gray-level gathering characteristics of synthetic aperture radar (SAR) imagery. The method does not require any prior knowledge about ships and background observation. It uses a novel local gray-level gathering degree (LGGD) to characterize the spatial intensity distribution of SAR image, and then an adaptive-like LGGD thresholding and filtering scheme to detect ship targets. Experiments on real SAR images with varying sea clutter backgrounds and multiple targets situation have been conducted. The performance analysis confirms that the proposed method works well in various circumstances with high detection rate, fast detection speed and perfect shape preservation

    Adaptive signal processing techniques for clutter removal in radar-based navigation systems

    Get PDF
    The problem of background clutter remains as a major challenge in radar-based navigation, particularly due to its time-varying statistical properties. Adaptive solutions for clutter removal are therefore sought which meet the demanding convergence and accuracy requirements of the navigation application. In this paper, a new structure which combines blind source separation (BSS) and adaptive interference cancellation (AIC) is proposed to solve the problem more accurately without prior statistical knowledge of the sea clutter. The new algorithms are confirmed to outperform previously proposed adaptive schemes for such processing through simulation studies

    Automatic detection of signals by using artificial intelligence techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Premio a la Mejor Tesis Doctoral en Seguridad y Defensa por el Colegio Oficial de Ingenieros de Telecomunicación (COIT) y la Asociación Española de Ingenieros de Telecomunicación (AEIT) en 2013La detección automática de señales (blancos) en interferencia aditiva (clutter más ruido) es un problema no resuelto hoy en día. Muchos y diversos esquemas de detección son propuestos constantemente en revistas especializadas sobre temas de investigación radar y de procesado de señal. Esos esquemas son adaptados normalmente a la casuística del problema, es decir, a los blancos y al tipo de clutter presentes en esos experimentos. Es por ello que la tesis presentada a continuación busca proponer un esquema de detección que trabaje con altas prestaciones en distintos entornos. En esta tesis se pretende resolver dos tipos de problemas: uno centrado en la detección de blancos radar de tipo Swerling 0 en presencia de clutter sintético modelado con una distribución Weibull y ruido blanco Gaussiano; y otro centrado en la detección de barcos en movimiento a partir de imágenes radar provenientes de un radar marino comercial. Se ha comprobado que los datos reales están estadísticamente relacionados con los datos sintéticos simulados, lo cual permitirá proponer un único esquema de detección que trabaje en ambos casos. Teniendo en cuenta los problemas de detección planteados, se asumen varias premisas. Las imágenes radar generadas en entornos simulados tienen en cuenta una correlación temporal entre celdas consecutivas de la imagen y una distribución espacial constante de los parámetros estadísticos del clutter dentro de una misma imagen, pero variable de una imagen a otra. Dentro de este entorno simulado, se asumen distintos tamaños y formas de blanco. Estos entornos han sido simulados mediante el uso de los parámetros estadísticos del clutter descritos en la literatura. Comparando dichos entornos, se observa una gran disparidad en sus parámetros estadísticos, haciendo más difícil aún si cabe la tarea de proponer un detector radar que trabaje correctamente y con altas prestaciones en distintos entornos radar. Para resolver los problemas de detección planteados, se han considerado detectores radar utilizados habitualmente en la literatura. Así, se ha seleccionado como detector de referencia para el caso de trabajar con datos procedente de un radar coherente el detector de blanco conocido a priori (TSKAP: target sequence known a priori). Detectores basados en técnicas CFAR (constant false alarm rate) han sido elegidos para el caso de trabajar con datos procedentes de un radar incoherente. Por otro lado, se ha estudiado el uso de técnicas de inteligencia artificial (IA) para crear detectores que resuelvan los dos problemas de detección planteados. De las posibles técnicas de IA existentes en la literatura, se han elegido dos tipos de redes neuronales artificiales (RNAs): el perceptron multicapa (MLP: Multilayer perceptron) y las RNAs basadas en funciones de base radial (RBFNs: Radial basis function networks). Mediante este tipo de técnicas, se proponen nuevas estrategias de detección para los casos coherente e incoherente. Aparte de la contribución en el uso de técnicas de IA en temas de detección radar, se presenta otra contribución importante: el uso de nuevos modos de selección de celdas de una imagen para la mejora de las prestaciones del detector radar propuesto. Estos modos están basados en esquemas de selección con retardo (en una o dos dimensiones), dentro de los cuales se pueden elegir más celdas para poder realizar una mejor estimación de los parámetros del clutter que rodea al blanco. Además, el uso de estos modos de selección en dos dimensiones en detectores CFAR también puede ser considerado contribución ya que antes no se habían presentado resultados para los modos aquí propuestos. Los experimentos desarrollados consideran entornos simulados de mar, mar helado y tierra para el diseño y test de los detectores coherentes tomados como referencia y los basados en IA. En estos experimentos, se estudió la influencia de los siguientes parámetros durante el diseño de los detectores bajo estudio: las propiedades del clutter presente en las imágenes de los conjuntos de diseño (para entrenar RNAs y establecer el umbral de detección); los modos de selección; el número de celdas seleccionadas; así como el número de neuronas ocultas en las RNAs. A partir de estos estudios, se obtienen los valores de dichos parámetros, de tal forma que se obtienen altas prestaciones, mientras que se mantiene un coste computacional moderado en el detector propuesto. Una vez diseñados los detectores, éstos se testean utilizando un conjunto de datos de test no utilizado previamente. Este conjunto de test está compuesto por imágenes radar con distintas propiedades estadísticas para simular lo que ocurre en entornos reales. Las prestaciones observadas para este conjunto son ligeramente inferiores a los obtenidas en la etapa de diseño. Además, se observa que las prestaciones del detector para las distintas imágenes radar del con- junto, es decir, para distintos condiciones de clutter, presentan pequeñas variaciones. Esto nos indica un alto grado de robustez en los detectores cuando las condiciones de clutter cambian con el tiempo. Teniendo en cuenta estas pequeñas variaciones de las prestaciones del detector, podemos inferir que las mismas prestaciones presentadas aquí se pueden obtener cuando el detector diseñado procese nuevas imágenes radar en el futuro. Por otro lado, se han realizado estudios similares para el caso de detectores incoherentes en entornos simulados de mar, mar helado y tierra. De estos estudios, destacamos las diferencias que existen entre los resultados obtenidos por los detectores coherentes e incoherentes en entornos simulados de clutter de mar. La primera diferencia que se observa es que las prestaciones del detector incoherente son ligeramente menores que las obtenidas por el coherente, aspecto que era de esperar porque sólo considera la información de amplitud. La segunda diferencia observada es la alta reducción de coste computacional que se obtiene, siendo esto debido a que en estos detectores se utiliza menos información a la entrada. Los resultados obtenidos para los entornos simulados de mar helado y tierra no han sido incorporados en la memoria de la tesis porque tanto las prestaciones como el coste computacional obtenidos son similares a los obtenidos para el caso de entornos marinos. Finalmente, se han diseñado y testeado detectores incoherentes para trabajar con imágenes provenientes de un radar marino comercial situado en la plataforma de investigación alemana FINO-1, la cual se encuentra localizada en el mar del Norte (Alemania). Antes de proceder con el diseño de estos detectores, se comprobó que las medidas de clutter contenidas en las imágenes radar seguían una distribución Weibull, tal y como se asumió en el entorno simulado de mar. Acto seguido a esta comprobación, se procedió con el ajuste de los parámetros de cada uno de los detectores bajo estudio (CFAR y basados en técnicas de IA) para obtener las mejores prestaciones posibles, así como un coste computacional moderado. Una vez diseñados los detectores, se procedió a testearlos, llegando a las mismas conclusiones a las que se llegó para el caso sintético: alta robustez frente a cambios en las condiciones de diseño y baja pérdida de prestaciones cuando se procesan nuevas imágenes radar. También se muestra cual es el coste computacional de la configuración seleccionada en los casos de detectores incoherentes basados en MLPs y RBFNs, así como la velocidad de computo necesaria para poder procesar imágenes radar en tiempo real. A partir de estos resultados, se llega a la conclusión final de que como las unidades de procesado disponibles en el mercado permiten trabajar a las velocidades que necesita el sistema, el procesado en tiempo real está garantizado. A partir del análisis de las prestaciones obtenidas para los distintos casos de estudio abordados en la tesis, se llega a la siguiente conclusión general: los detectores basados en técnicas de IA mejoran las prestaciones obtenidas por los detectores de referencia seleccionados de la literatura en todos los casos de estudio presentados. Ésta conclusión se obtiene para radares que trabajan a distintas frecuencias, con distintas resoluciones y con receptores diferentes (coherentes e incoherentes). Además, esta conclusión también es independiente del entorno radar bajo estudio (mar, mar helado y tierra)

    Automatic detection of signals by using artificial intelligence techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Premio a la Mejor Tesis Doctoral en Seguridad y Defensa por el Colegio Oficial de Ingenieros de Telecomunicación (COIT) y la Asociación Española de Ingenieros de Telecomunicación (AEIT) en 2013La detección automática de señales (blancos) en interferencia aditiva (clutter más ruido) es un problema no resuelto hoy en día. Muchos y diversos esquemas de detección son propuestos constantemente en revistas especializadas sobre temas de investigación radar y de procesado de señal. Esos esquemas son adaptados normalmente a la casuística del problema, es decir, a los blancos y al tipo de clutter presentes en esos experimentos. Es por ello que la tesis presentada a continuación busca proponer un esquema de detección que trabaje con altas prestaciones en distintos entornos. En esta tesis se pretende resolver dos tipos de problemas: uno centrado en la detección de blancos radar de tipo Swerling 0 en presencia de clutter sintético modelado con una distribución Weibull y ruido blanco Gaussiano; y otro centrado en la detección de barcos en movimiento a partir de imágenes radar provenientes de un radar marino comercial. Se ha comprobado que los datos reales están estadísticamente relacionados con los datos sintéticos simulados, lo cual permitirá proponer un único esquema de detección que trabaje en ambos casos. Teniendo en cuenta los problemas de detección planteados, se asumen varias premisas. Las imágenes radar generadas en entornos simulados tienen en cuenta una correlación temporal entre celdas consecutivas de la imagen y una distribución espacial constante de los parámetros estadísticos del clutter dentro de una misma imagen, pero variable de una imagen a otra. Dentro de este entorno simulado, se asumen distintos tamaños y formas de blanco. Estos entornos han sido simulados mediante el uso de los parámetros estadísticos del clutter descritos en la literatura. Comparando dichos entornos, se observa una gran disparidad en sus parámetros estadísticos, haciendo más difícil aún si cabe la tarea de proponer un detector radar que trabaje correctamente y con altas prestaciones en distintos entornos radar. Para resolver los problemas de detección planteados, se han considerado detectores radar utilizados habitualmente en la literatura. Así, se ha seleccionado como detector de referencia para el caso de trabajar con datos procedente de un radar coherente el detector de blanco conocido a priori (TSKAP: target sequence known a priori). Detectores basados en técnicas CFAR (constant false alarm rate) han sido elegidos para el caso de trabajar con datos procedentes de un radar incoherente. Por otro lado, se ha estudiado el uso de técnicas de inteligencia artificial (IA) para crear detectores que resuelvan los dos problemas de detección planteados. De las posibles técnicas de IA existentes en la literatura, se han elegido dos tipos de redes neuronales artificiales (RNAs): el perceptron multicapa (MLP: Multilayer perceptron) y las RNAs basadas en funciones de base radial (RBFNs: Radial basis function networks). Mediante este tipo de técnicas, se proponen nuevas estrategias de detección para los casos coherente e incoherente. Aparte de la contribución en el uso de técnicas de IA en temas de detección radar, se presenta otra contribución importante: el uso de nuevos modos de selección de celdas de una imagen para la mejora de las prestaciones del detector radar propuesto. Estos modos están basados en esquemas de selección con retardo (en una o dos dimensiones), dentro de los cuales se pueden elegir más celdas para poder realizar una mejor estimación de los parámetros del clutter que rodea al blanco. Además, el uso de estos modos de selección en dos dimensiones en detectores CFAR también puede ser considerado contribución ya que antes no se habían presentado resultados para los modos aquí propuestos. Los experimentos desarrollados consideran entornos simulados de mar, mar helado y tierra para el diseño y test de los detectores coherentes tomados como referencia y los basados en IA. En estos experimentos, se estudió la influencia de los siguientes parámetros durante el diseño de los detectores bajo estudio: las propiedades del clutter presente en las imágenes de los conjuntos de diseño (para entrenar RNAs y establecer el umbral de detección); los modos de selección; el número de celdas seleccionadas; así como el número de neuronas ocultas en las RNAs. A partir de estos estudios, se obtienen los valores de dichos parámetros, de tal forma que se obtienen altas prestaciones, mientras que se mantiene un coste computacional moderado en el detector propuesto. Una vez diseñados los detectores, éstos se testean utilizando un conjunto de datos de test no utilizado previamente. Este conjunto de test está compuesto por imágenes radar con distintas propiedades estadísticas para simular lo que ocurre en entornos reales. Las prestaciones observadas para este conjunto son ligeramente inferiores a los obtenidas en la etapa de diseño. Además, se observa que las prestaciones del detector para las distintas imágenes radar del con- junto, es decir, para distintos condiciones de clutter, presentan pequeñas variaciones. Esto nos indica un alto grado de robustez en los detectores cuando las condiciones de clutter cambian con el tiempo. Teniendo en cuenta estas pequeñas variaciones de las prestaciones del detector, podemos inferir que las mismas prestaciones presentadas aquí se pueden obtener cuando el detector diseñado procese nuevas imágenes radar en el futuro. Por otro lado, se han realizado estudios similares para el caso de detectores incoherentes en entornos simulados de mar, mar helado y tierra. De estos estudios, destacamos las diferencias que existen entre los resultados obtenidos por los detectores coherentes e incoherentes en entornos simulados de clutter de mar. La primera diferencia que se observa es que las prestaciones del detector incoherente son ligeramente menores que las obtenidas por el coherente, aspecto que era de esperar porque sólo considera la información de amplitud. La segunda diferencia observada es la alta reducción de coste computacional que se obtiene, siendo esto debido a que en estos detectores se utiliza menos información a la entrada. Los resultados obtenidos para los entornos simulados de mar helado y tierra no han sido incorporados en la memoria de la tesis porque tanto las prestaciones como el coste computacional obtenidos son similares a los obtenidos para el caso de entornos marinos. Finalmente, se han diseñado y testeado detectores incoherentes para trabajar con imágenes provenientes de un radar marino comercial situado en la plataforma de investigación alemana FINO-1, la cual se encuentra localizada en el mar del Norte (Alemania). Antes de proceder con el diseño de estos detectores, se comprobó que las medidas de clutter contenidas en las imágenes radar seguían una distribución Weibull, tal y como se asumió en el entorno simulado de mar. Acto seguido a esta comprobación, se procedió con el ajuste de los parámetros de cada uno de los detectores bajo estudio (CFAR y basados en técnicas de IA) para obtener las mejores prestaciones posibles, así como un coste computacional moderado. Una vez diseñados los detectores, se procedió a testearlos, llegando a las mismas conclusiones a las que se llegó para el caso sintético: alta robustez frente a cambios en las condiciones de diseño y baja pérdida de prestaciones cuando se procesan nuevas imágenes radar. También se muestra cual es el coste computacional de la configuración seleccionada en los casos de detectores incoherentes basados en MLPs y RBFNs, así como la velocidad de computo necesaria para poder procesar imágenes radar en tiempo real. A partir de estos resultados, se llega a la conclusión final de que como las unidades de procesado disponibles en el mercado permiten trabajar a las velocidades que necesita el sistema, el procesado en tiempo real está garantizado. A partir del análisis de las prestaciones obtenidas para los distintos casos de estudio abordados en la tesis, se llega a la siguiente conclusión general: los detectores basados en técnicas de IA mejoran las prestaciones obtenidas por los detectores de referencia seleccionados de la literatura en todos los casos de estudio presentados. Ésta conclusión se obtiene para radares que trabajan a distintas frecuencias, con distintas resoluciones y con receptores diferentes (coherentes e incoherentes). Además, esta conclusión también es independiente del entorno radar bajo estudio (mar, mar helado y tierra)

    Proceedings of the 2010 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    On the annual Joint Workshop of the Fraunhofer IOSB and the Karlsruhe Institute of Technology (KIT), Vision and Fusion Laboratory, the students of both institutions present their latest research findings on image processing, visual inspection, pattern recognition, tracking, SLAM, information fusion, non-myopic planning, world modeling, security in surveillance, interoperability, and human-computer interaction. This book is a collection of 16 reviewed technical reports of the 2010 Joint Workshop

    Processing of optic and radar images.Application in satellite remote sensing of snow, ice and glaciers

    Get PDF
    Ce document présente une synthèse de mes activités de recherche depuis la soutenance de ma thèse en 1999. L'activité rapportée ici est celle d'un ingénieur de recherche, et donc s'est déroulée en parallèle d'une activité ``technique'' comprenant des taches d'instrumentation en laboratoire, d'instrumentation de plateformes en montagne, de raids scientifiques sur les calottes polaires, d'élaboration de projets scientifiques, d'organisation d'équipes ou d'ordre administratif. Je suis Ingénieur de recherche CNRS depuis 2004 affecté au laboratoire Gipsa-lab, une unité mixte de recherche du CNRS, de Grenoble-INP, de l'université Joseph Fourier et de l'université Stendhal. Ce laboratoire (d'environ 400 personnes), conventionné avec l'INRIA, l'Observatoire de Grenoble et l'université Pierre Mendès France, est pluridisciplinaire et développe des recherches fondamentales et finalisées sur les signaux et les systèmes complexes.}Lors de la préparation de ma thèse (mi-temps 1995-99) au LGGE, je me suis intéressé au traitement des images de microstructures de la neige, du névé et de la glace. C'est assez naturellement que j'ai rejoint le laboratoire LIS devenu Gipsa-lab pour y développer des activités de traitement des images Radar à Synthèse d'Ouverture (RSO) appliqué aux milieux naturels neige, glace et glaciers. Etant le premier à générer un interférogramme différentiel des glaciers des Alpes, j'ai continué à travailler sur la phase interférométrique pour extraire des informations de déplacement et valider ces méthodes sur le glacier d'Argentière (massif du Mont-Blanc) qui présente l'énorme avantage de se déplacer de quelques centimètres par jour. Ces activités m'ont amené à développer, en collaboration avec les laboratoires LISTIC, LTCI et IETR, des méthodes plus générales pour extraire des informations dans les images RSO.Ma formation initiale en électronique, puis de doctorat en physique m'ont amené à mettre à profit mes connaissances en traitement d'images et des signaux, en électromagnétisme, en calcul numérique, en informatique et en physique de la neige et de la glace pour étudier les problèmes de traitement des images RSO appliqués à la glace, aux glaciers et à la neige

    University of New Hampshire undergraduate catalogue 2006-2007 bulletin..

    Get PDF

    2003-2005 Bulletin undergraduate course catalog University of New Hampshire.

    Get PDF
    corecore