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Abstract— The problem of background clutter remains as a
major challenge in radar-based navigation, particularly due to its
time-varying statistical properties. Adaptive solutions for clutter
removal are therefore sought which meet the demanding conver-
gence and accuracy requirements of the navigation application.
In this paper, a new structure which combines blind source
separation (BSS) and adaptive interference cancellation (AIC)
is proposed to solve the problem more accurately without prior
statistical knowledge of the sea clutter. The new algorithms are
confirmed to outperform previously proposed adaptive schemes
for such processing through simulation studies.

Index Terms— adaptive signal processing, sea clutter removal,
blind source separation, adaptive interference cancellation

I. INTRODUCTION

In ship navigation systems, there are many pieces of nav-

igation equipment such as GPS (Global Positioning System),

ECDIS (Electronic Chart Display and Information System),

gyroscopes, sonar and radar. Navigation radar is an important

element of such equipment for the following reasons. First of

all, radar can detect other ships thereby avoiding collisions.

Secondly, radar can also detect the coastline and islands to

avoid tragic events. Although ECDIS can provide such infor-

mation, ECDIS combined with radar detection can improve the

accuracy of the whole navigation system. Thirdly, radar can

also have the ability to examine the GPS accuracy. Thus, radar

plays an important role in ship navigation systems. However,

there is always a problem for radar in ship navigation systems,

the sea clutter. The sea clutter disturbs the detection ability of

radar. It makes the real targets hard to recognize. Therefore,

methodology for removing the clutter from a radar signal is a

very important and practical issue.

A traditional method to detect the presence of a radar return

is based on the CFAR method (Constant False Alarm Rate)[1].

Radar detection involves the comparison between a threshold

and the radar signal. In order to attain a constant false alarm

rate, the CFAR method is introduced to get the adaptive thresh-

old to reflect the local clutter situation. There are many CFAR

related methods, such as cell-averaging CFAR (CA-CFAR),

greatest of CFAR (GO-CFAR), smallest of CFAR (SO-CFAR)

and order statistic CFAR (OS-CFAR)[2]. CA-CFAR method

uses the average of the chosen cell to calculate the adaptive

threshold. The GO-CFAR method uses the greatest element

of the chosen cell to calculate the threshold, while the SO-

CFAR uses the smallest one. OS-CFAR is an order statistical

method which is introduced from image processing. But there

is a drawback for these methods, the prior knowledge (the

density distribution) describing the sea clutter is needed. It is

well known that sea clutter is very hard to describe accurately,

which makes the prior assumptions inaccurate. As a result, the

effect of removing clutter is not well understood. BSS[3] and

AIC[4] have the advantage that no major prior knowledge is

needed. So, the sea clutter removal based on BSS and AIC can

successfully avoid the problem that sea clutter is too complex

to describe. In this paper, first of all, the radar signal is

modelled. Then two types of traditional adaptive interference

canceler structures are introduced, and the drawbacks of the

traditional methods are also indicated. After these analyses, a

new method based on BSS and AIC is proposed to solve the

radar sea clutter removal problem. This new method does not

depend on the sea clutter assumptions, and can provide more

stable and more accurate performance. Finally, the experiments

are provided to confirm the advantages of this new structure.

II. MEASUREMENT MODEL

A. Radar Signal

A received radar signal typically contains two parts: the

target and sea clutter. It is well known that sea clutter is

difficult to describe fully statistically. Mostly, there are three

types of model to describe sea clutter. They are Rayleigh,

Weibull and Log-normal distributions[5]. Generally, the

Rayleigh model tends to underestimate the dynamic range

of the real clutter distribution while the Log-normal model

tends to overestimate the dynamic range. Compared with

the other two models, the Weibull distribution can describe

the sea clutter more accurately. The Weibull clutter model

offers the potential to represent accurately the real clutter

distribution over a much wider range of conditions than

either the Log-normal or Rayleigh model. By appropriately

adjusting its parameters, the Weibull distribution can be

made to approach either the Rayleigh (a member of the

Weibull family) or log-normal distribution. So, the Weibull

distribution is adopted to establish the clutter model in this

paper. The Weibull probability density function is written as

follows:

p(x) = c
b (

x
b )

c−1exp[−(xb )c] for x, b, c > 0
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where x is the amplitude of the return signals, and b is

a scale parameter and c is a shape parameter. For c = 2.0, the

Weibull distribution is identical to the Rayleigh distribution.

When the radar is working, firstly, it emits a series of

signals; when these signals meet the target, a reflected signal

is generated which can be detected by the radar receiver. So, if

there was no sea clutter, the received signal would only have

values in certain time intervals, while the rest of the received

signal should be zero. In practice, clutter will be present so

we must examine schemes for its removal.

B. Traditional Adaptive Interference Canceller Structure

Traditionally, there are two types of adaptive structures to

cancel interference, Fig.1 and Fig.2[4]. The first uses two sen-

sors, with one been used for receiving signal plus interference

and the other for detecting correlated interference. A signal

is assumed to be transmitted over a channel to a sensor that

receives the target signal and uncorrelated interference. The

combined signal, forms the primary input to the canceller. A

second sensor receives an interference which is uncorrelated

with the target signal but correlated with the interference. In

this type of system, the reference input is processed by an

adaptive filter, and the output of the adaptive filter can be a

close replica of the interference. This output is subtracted from

the primary input to produce the output of the whole system,

namely the target signal without interference. The other type

of AIC only uses one sensor to receive signals. A fixed delay

of the input signal is taken as the reference input. We must

make sure that the delay is of sufficient length so that the

broadband signal components in the reference input become

de-correlated from those in the primary input, otherwise signal

leakage to the reference input degrades performance. For the

first type of AIC, the problem is that it is hard to find a method

to detect the interferences only, especially for radar. As for the

second type, the drawback is that the performance is generally

not as good as the first type with two sensors, as it is difficult

to select the decorrelation delay.

Fig. 1. Two sensor type of AIC processing structure

C. A New Processing Structure

In this paper, a new processing structure is therefore pro-

posed to solve the clutter removal problem. In Fig 3, the new

structure combines BSS and the first type of AIC. BSS is used

to separate the target and sea clutter. BSS can not be used alone

to solve this problem, because there are two ambiguities for

Fig. 2. Single sensor type of AIC processing structure

BSS. One of them is that the independent components can only

be estimated up to a nonzero multiplicative constant, since

any constant multiplying the sources can be cancelled out by

dividing the corresponding column of the mixing matrix by

the same constant. This ambiguity leads to the problem that

the separated target is sometimes very small, which makes it

hard to be recognized. Thus, only using BSS can not achieve

the ideal result. However, BSS is still potentially very useful.

The separated sea clutter is highly correlated with the real sea

clutter. Thus we can use the separated sea clutter signal as the

reference signal for the first type of AIC structure.

Fig. 3. Combined BSS and AIC processing structure for adaptive noise
cancellation

III. PROPOSED ADAPTIVE ALGORITHMS FOR NEW

SCHEME

The new processing structure contains two parts, the BSS

and AIC. In the BSS part, the FastICA algorithm[6] is chosen

for its good performance. And in the AIC part, the RLS

(Recursive Least Square)algorithm[7] is chosen for its fast

convergence.

A. FastICA using Negentropy

Independent component analysis (ICA) is the main method

for the BSS problem. The principle of ICA is maximizing

non-Gaussianity. Kurtosis and negentropy are used to measure

the non-Gaussianity. In this paper, negentropy is used to

measure the non-Gaussianity, because it is more accurately

than kurtosis[6].

Negentropy is based on the information-theoretic quantity

of differential entropy. Entropy is the basic concept of

information theory. The entropy H of a random vector y
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with density py(η) is defined as

H(y) = − ∫
py(η)log(py(η))dη

A fundamental result of information theory is that a Gaus-

sian variable has the largest entropy among all random vari-

ables of equal variance. This means that entropy can be used

as a measure of non-Gaussianity.

To obtain a measure of non-Gaussianity that is zero for a

Gaussian variable and always nonnegative, the negentropy is

introduced.

J(y) = H(ygauss)−H(y)

The FastICA algorithm using negentropy involves[6]:

(1). Center the data s = [s1; s2] to make its mean zero.

(2). Whiten the data to give z.

(3). Choose m, the number of independent components to

estimate.

(4). Choose initial values for the wi, i = 1, · · · ,m,

each of unit norm. Orthogonalize the matrix W,W =
(w1, · · · ,wm)T

(5). Let E{zg(wT
i z)} − E{g′(wT

i z)}w → w, for every

i = 1, · · · ,m, where g = tanh() and g′ = 1− tanh2().
(6). Do a symmetric orthogonalization of the matrix W.

(7). If not converged, return to step (5).

B. AIC based on RLS

After the BSS, the estimated sea clutter and the estimated

target can be attained. The problem is the value of the

estimated target can be too small to detect. However, it is

found that the estimated clutter fits the real clutter very

well, see Fig.6. Now, the estimated sea clutter can be used

as the reference input of the first type AIC model. The

RLS algorithm is chosen because the target signal is not a

statistically stationary signal. When the target appears, RLS

can converge fast to track the target.

Derivation of the RLS algorithm[7]: Start from the

regularized Newton’s recursion

wi = wi−1 + μ(i)[ε(i)I+Ru]
−1[Rdu −Ruwi−1]

Replace (Rdu−Ruwi−1) by the instantaneous approximation

u∗i [d(i) − uiwi−1]. Then replace Ru by an estimate based

on the exponentially weighted sample average as follow:

Ru = 1
i+1

∑i
j=0 λ

i−ju∗juj where 0� λ ≤ 1

Make μ(i) = 1/(i + 1) and ε(i) = λi+1ε/(i + 1), we

have

wi = wi−1 + [λi+1ε(i)I +
∑i

j=0 λ
i−ju∗juj ]

−1u∗i [d(i) −
uiwi−1]

Let Φi = (λi+1ε(i)I+
∑i

j=0 λ
i−ju∗juj)

Φi satisfies Φi = λΦi−1 + u∗iui

Make Pi = Φ−1
i

Pi = λ−1Pi−1 − λ−1Pi−1u
∗
i uiPi−1

1+λ−1uiPi−1u∗i
]

The RLS algorithm is convergent in the mean and mean

square if the filter input and the desired response are jointly

stationary ergodic processes.Compared with the LMS algo-

rithm, the convergence performance of RLS is significantly

superior to that of LMS. The RLS algorithm converges in the

mean square in about 2M iterations, where M is the number

of taps in the filter. While the LMS algorithm needs about

20M to converge. And the rate of the convergence of the

RLS algorithm is essentially insensitive to variations in the

eigenvalue spread of the correlation matrix of the input vector.

The performance of the RLS algorithm can also be beneficial

for duration limited non-stationary signals and on this basis we

employ the RLS algorithm in our work. Moreover,In theory,

the RLS algorithm produces zero excess mean-squared error

in a stationary environment[8]. And therefore it is suitable for

practical situations where the clutter might be coloured.

IV. EXPERIMENT

In this experiment, the target signal is a non-stationary

(since it is only present in certain time intervals) sinusoid

signal x1 with normalized frequency pi/5 and with 10

samples per period. And the sea clutter signal x2 obeys to

Weibull distribution, Fig.4. The two radar received signals s1,

s2 are :

s1 = α1x1 + β1x2

s2 = α2x1 + β2x2

In this experiment, α1 = 0.3, β1 = 0.8, α2 = 0.4, β2 = 0.7.

The received signals in Fig.5 show that the sea clutter

submerges the target. It is hard to detect the target reliably

in the sea clutter.
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Fig. 4. Target signal and sea clutter signals

The BSS separated target signal can be too small to be

detected. While the separated sea clutter signal is quite well,

see Fig 6. The red line is estimated signal and the green line
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Fig. 5. Two example received signals
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Fig. 6. Separated sea clutter signal by BSS, the red line is estimated signal
and the green line is the original signal

is the original signal. So the separated sea clutter signal can

be used as the reference signal of AIC.

From the results in Fig.7 and Fig.8, it is clear that the result

of the proposed structure and algorithm is much better. The

result of the AIC shows that it misses some targets because

of its convergence. Moreover, the SNR also verifies that the

proposed approach and algorithm is much better.

SNR(dB) = 10log10(
Psignal

Pnoise
)

where Psignal is the power of signal and Pnoise is the

power of noise. The SNR of s1 is 2.04dB, and the SNR of

AIC structure is 4.34dB, while the SNR of the proposed

approach is 10.26dB.

The detection ability of this new scheme can be measured

by the false alarm rate (FAR).

FAR =
Nfalse

Ntotal

Nfalse is the sample number of false detection, and Ntotal is

the total sample number. The interval between the two targets

is used to do this experiment. Ideally, all the values of the

sample numbers between the two targets should be zero. In

practice, a threshold is set to detect the false alarm rate. If the

value of a sample is greater than the threshold, it is a false

alarm. In this experiment, the threshold is set as 0.1 times of

the first received target value. The FAR of original signal is

0.09, and the FAR of the de-noised signal dealt with by the

proposed scheme is 0.

V. CONCLUSION

In this paper, a new adaptive processing structure is pro-

posed to solve the sea clutter problem of a radar signal in
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Fig. 7. Results with the AIC
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Fig. 8. Results with the proposed structure using FastICA and RLS
algorithms

the navigation system. The new approach combines BSS and

AIC. The separated sea clutter by BSS can be used as the

reference input of the AIC. The experiment results shows that

the proposed structure and algorithm is better than the AIC

objectively in term of the performance index such as SNR

and FAR and subjectively according to visual observation of

the simulation results.
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