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Preface

For the second time, the annual joint workshop of the Fraunhofer Institute of Op-
tronics, System Technologies and Image Exploitation IOSB and the Vision and
Fusion Laboratory (Institute for Anthropomatics, Karlsruhe Institute of Technol-
ogy (KIT)) was held in La Bresse, France. From July 19 to July 23 the 2010
joint workshop provided a forum for the doctoral students of both institutions to
present their latest research and development findings. It further allows discussing
potential research avenues and alternative scientific approaches. The research re-
sults presented on the 2010 joint workshop are put down in this book in form of
a collection of technical reports. Thus, it provides are a valuable insight into the
scientific and developmental progress in the research fields of the Vision and Fu-
sion Laboratory and the Fraunhofer IOSB. These research fields mainly are image
processing, pattern recognition, system technologies, and information fusion.

The editors thank all the organizers of the workshop for their efforts that led in
a pleasant and rewarding stay in France. The editors further thank the doctoral
students for writing and reviewing the technical reports as well as for responding
to comments and suggestions of their colleagues.

Prof. Dr.-Ing. Jürgen Beyerer
Dr.-Ing. Marco Huber
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Probabilistic Active Vision: An Overview
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marco.huber@ieee.org

Technical Report IES-2010-01

Abstract: In active vision, the configuration of a camera system is adapted
automatically in order to acquire the most informative observations for a given
task. This paper gives an overview of a probabilistic approach for active vi-
sion. Planning the camera parameters is described as a partially observable
Markov decision process. Here, the relevant components of the image acqui-
sition task, i.e., object and camera, are represented by means of probabilistic
models for incorporating uncertainties into planning. Additionally including
reinforcement learning allows a priori unknown probabilistic models.

1 Introduction

Research on computer vision mostly focuses on the object or scene observed by
the camera system. It is assumed that the parameters of the camera (e.g., posi-
tion, illumination, or focus) are given or determined off-line in a time-consuming
trial-and-error process involving human interaction. Particular operations are then
applied on the acquired images in order to solve the given vision task, e.g., object
localization or surface reconstruction. Thus, in so-called passive vision systems,
the camera configuration is not adapted on-line. This is in contrast to an active vi-
sion system, where the configuration for the next camera observation is carefully
planned based on the so far acquired information and the employed models of the
scene dynamics and camera system (see Figure 1.1).

Ideally, by utilizing active vision, no irrelevant or non-informative data is pro-
cessed. This in turn reduces the consumption of costly or rare resources like
computation power, memory, or energy. Furthermore, adapting the configuration
of the camera to the current conditions improves the performance of subsequent
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Observation Image Processing Planning

Model Model

camera configuration

Figure 1.1: Processing chain in an active vision system. The red components are
not part of a passive vision system.

computer vision algorithms like feature detection or image segmentation. Con-
sider for example an object recognition task. Here, a single camera configuration
may not be sufficient due to occlusions or near-symmetrical or similar objects. By
moving the camera, ambiguities can be resolved, which improves the recognition
performance [RCB04].

To attain these benefits, an active vision algorithm 1. has to incorporate uncertain-
ties into the planning of the configurations and 2. has to deal with several camera
specific constraints. As in any sensor system, data/information acquisition is al-
ways to some degree uncertain. In case of a camera sensor, uncertainties arise
from noise and the finite resolution in terms of for example space, intensity, or
contrast. A common practice in computer vision is to process features instead of
the raw camera images. The calculation of features can be considered a dimen-
sionality reduction [CV08]. This leads to a loss of information or in other words,
increases the uncertainty about the observed object or scene depending on the ex-
pressiveness and dimensionality of the used features [PP00].1 Typical constraints
an active vision algorithm has to deal with are for example the limited field-of-
view of a camera or (partial) occlusion of the object. In case of a movable camera,
kinematic or geometric restrictions have to be considered as well.

Most of the existing active vision algorithms are designed for a specific applica-
tion. Furthermore, heuristics or rule-of-thumbs are applied. For a survey see for
example [TA95]. In this report, planning camera configurations under uncertain-
ties is formalized via the general mathematical framework of partially observable
Markov decision processes (POMDPs). A brief introduced into POMDPs is given
in the next section. POMDPs rely on the assumption that probabilistic models
of the sensor and the scene/object dynamics are given. If this assumptions is not

1It is worth mentioning that carefully selected features are typically more expressive than the
intensities of the image pixels.



Probabilistic Active Vision: An Overview 3

valid, reinforcement learning (RL) introduced in Section 3 allows the simultane-
ous learning of the models and planning of the camera configuration. In Sec-
tion 4, it is shown how typical active vision tasks can be mapped to the introduced
probabilistic active vision framework. The technical report closes with a summary.

2 Theoretical Framework: POMDPs

For characterizing the object’s state and dynamics as well as the observations and
their relation to the object, probabilistic models are employed. The object state
vector xk ∈ X ⊆ Rnx is the quantity of interest, which has to be estimated from
the observations and which may vary over the time2 k ∈ N+. Depending on
the vision task, the state vector may comprise the position and orientation of the
object, its shape or color information. Initially, at time step k = 0, the state x0 is
described by means of the probability density function fx0 (x0), which usually is
quite uninformative.

The observation vector zk ∈ Z ⊆ Rnz with density function fzk (zk) may consist
of the whole image. But due to the high dimension of the raw image date, it
is common practice that features are extracted from the image during the image
processing step and thus, zk comprises the extracted features.

Finally, with the camera configuration vector ak ∈ A ⊆ Rna it is possible to
modify the image acquisition by changing the parameters of the camera system,
which may be the position, orientation, focus, or illumination, just to name a few.
It is assumed that ak is a deterministic variable.

Besides these variables, there are also probabilistic models describing the rela-
tions between the variables. The relationship between observations and the state
depending on the camera configuration is characterized via the observation model
f(zk|xk, ak). The probabilistic nature of this models allows capturing uncertain-
ties in the observation process resulting for example from camera noise or feature
extraction.

Example 1 A 3-D point in the world with coordinates x = [x, y, z]T is ob-
served via a camera. The projection of the point to the 2-D screen co-
ordinates of the camera is typically modeled as a matrix multiplication in

2Discrete time steps are assumed.
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homogeneous coordinatesuv
w

 =

ξu(a) 0 πu
0 ξv(a) πv
0 0 1

 · [φ t
]
·
[
x
1

]
,

where the affine transformation between camera coodinates and world co-
ordinates is given by the rotation matrix φ ∈ R3×3 and the translation vec-
tor t = [tx, ty, tz]

T. The internal camera parameters are the focal lengths
ξu(a), ξv(a) and the principal point [πu, πv]

T. Here, the focal lengths de-
pend on the parameter a. Thus, by modifying a it is possible to adapt the
zoom of the camera.

The actual observation is given by

z =

[
zx
zy

]
=

[
u
w
v
w

]
=: h(x, a) ,

where zx and zy are the horizontal and vertical coordinates reported by the
camera and typically measured in pixels. This transformation h is nonlinear
due to the division. Assuming additive zero-mean Gaussian noise on z, the
corresponding probabilistic observation model is

f(z|x, a) = N (z;h(x, a),R) ,

where N (v; v̂,R) is a Gaussian density with mean v̂ and covariance
matrix R.

If the state of the object varies over time, which is for example the case in object
tracking applications, the transition or dynamics model f(xk+1|xk) describes how
the object state changes for the next time step based on the current state.

Example 2 The dynamic behavior of a mobile object in tracking scenar-
ios (see Section 4.3) is often described by the so-called constant velocity
model [May79], which is given by the linear transformation

xk+1 = A · xk + wk .

The object state xk = [xk, ẋk,yk, ẏk, zk, żk]T comprises the 3-D position
[xk,yk, zk]T and the velocities [ẋk, ẏk, żk]T in x, y and z direction. The
noise wk is zero-mean Gaussian with covariance matrix Q. The so-called
system matrix A is

A = I3 ⊗
[
1 ∆t
0 1

]
,
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where I3 is the 3× 3 identity matrix, ⊗ is the Kronecker product, and ∆t is
the sampling time interval. Putting all together,

f(xk+1|xk) = N (xk+1;A · xk,Q)

is the corresponding probabilistic transition model.

2.1 Bayesian Inference

Based on the previously introduced probabilistic models, the so-called Bayesian
inference allows predicting future object states or updating the estimate of the
object state based on new observations. Therefore, Bayesian inference performs
two alternating steps, i.e., prediction and filtering. In the prediction step, the result
fxk (xk|z0:k, a0:k) of the previous filter step is propagated from time step k to k+1
by means of the Chapman-Kolmogorov equation

fxk+1(xk+1|z0:k, a0:k) =

∫
f(xk+1|xk) · fxk (xk|z0:k, a0:k) dxk . (2.1)

Here, z0:k = (z1, . . . , zk) and a0:k = (a0, . . . , ak) summarize all observations
and camera configurations up to and including time step k.

In the filtering step, the current observation zk given the camera configuration ak is
used for updating the result of the prediction step fxk (xk|z0:k−1, a0:k−1) according
to Bayes’s rule

fxk (xk|z0:k, a0:k) =
f(zk|xk, ak) · fxk (xk|z0:k−1, a0:k−1)

fzk (zk|z0:k−1, a0:k)
, (2.2)

where fzk (zk|z0:k−1, a0:k) =
∫
f(zk|xk, ak) · fxk (xk|z0:k−1, a0:k−1) dxk is a

normalization constant.

An analytic solution of Bayesian inference is only possible in some special cases.
For instance, if the probabilistic models are linear Gaussian, the famous Kalman
filter [Kal60] provides the optimal state estimate in closed form. A further special
case is given in case of discrete states and observations, which leads to the Grid
or HMM filter [AMGC02]. But in general, appropriate approximations have to be
applied. Examples of approximate methods are Gaussian filters (see e.g. [HH08]
and [JU04]), where the nonlinear non-Gaussian probabilistic models are approxi-
mated with Gaussians via moment matching, or particle filters [AMGC02], which
employ a discretized representation of the state density fxk (xk|z0:k, a0:k).
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2.2 Planning

The main task in active vision is the sequential selection of camera parameters,
where planning over a (potentially infinite) time horizon with length N , i.e.,
planning N time steps ahead, is involved. Such sequential decision problems
under probabilistic models are covered by the theory of Markov decision pro-
cesses (MDPs). The primary assumption of MDPs is that the observations provide
enough information for exactly determining the system state, i.e., perfect state in-
formation is assumed. This assumption does not hold for the considered active
vision scenario. Due to the probabilistic observation model f(zk|xk, ak), infer-
ring the object state by means of observations leaves residual uncertainty con-
cerning the object state. Problems of this type are covered by partially observ-
able Markov decision processes (POMDPs), which are a generalization of MDPs
[Dra62, Ast65].

2.2.1 Optimal Solution

Besides the observation and transition model, a partially observable Markov
decision process consists of:

Cost function The primary goal of active vision is the determination of a se-
quence of camera configurations in order to gain maximum information
about the observed object. To achieve this goal, a cost function (reward
function) to be minimized (maximized) is specified. This function consists
of two components: 1. the real-valued step costs gk(xk, ak), which are the
costs if parameter ak is applied at time k when the object state is xk, and
2. the terminal costs gN (xN ), which is are costs when arriving in state xN
on completion of the planning. Typical cost functions in active vision con-
sider informativeness of observations, which can be quantifies for example
via the mutual information [CT91], classification accuracy, or the effort of
acquiring and processing observations.

Decision state Since the object state xk is not directly accessible, a so-called de-
cision state Xk needs to be introduced. This state is a sufficient statistic for
all past and present information upon which decisions about camera param-
eters can be made. It is assumed that the sufficient statistic forms a Markov
process, i.e., subsequent states are independent of the past if the present state
is given.

A POMDP can be reformulated as a fully observed MDP by introducing the so-
called information set Ik = {a0, z0, . . . , ak, zk} [CC07]. This set comprises the
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history of all applied configurations and the resulting observations. Thus, the infor-
mation set is one possible choice of a decision state. Unfortunately, with increas-
ing time k, the dimension of the information set increases as well. Instead of the
information set, the probability density function xk ∼ fxk (xk|z0:k−1, a0:k−1) =
fxk (xk|Ik−1) is an alternative choice of the decision state Xk and forms a suf-
ficient statistic for the entire information set [BMWDW06]. Thus, merely the
density function at time step k needs to be stored.

In order to minimize the costs over the considered planning horizon with lengthN ,
the expected costs

E

{
gN (xN ) +

N−1∑
k=0

gk(xk, ak)

}
(2.3)

need to be considered, where the expectation E{·} is with respect to the object
states x0:N and the observations z0:N−1. The optimization of (2.3) is over policies

ak = µ
k
(fxk (xk|Ik−1)) ,

i.e., rules for choosing ak for each k and each possible decision state. How to
determine the optimal policy will be shown below.

The optimization can be simplified by exploiting Bellman’s principle of optimality.
This results in the backward recursion

Jk(fxk (xk|Ik−1)) =

min
ak

{
Exk,zk

{
gk(xk, ak) + Jk+1(fxk+1(xk+1|Ik))|Ik−1, ak

}}
(2.4)

for k = 0, . . . , N−1, commencing from the terminal costs. JN (fxN (xN |IN−1)) =
E{gN (xN )}. This recursion is also known as Bellman’s equations [Bel57] and
the functions Jk are often referred to as value functions or cost-to-go functions.
The density function fxk+1(xk+1|Ik) on the right hand side of (2.4) is calculated
according to the prediction (2.1) and filtering (2.2) described above. According to
the Bellman recursion, the optimal policy satisfies

a∗k = µ∗
k

(fxk (xk|Ik−1))

= arg min
ak

{
Exk,zk

{
gk(xk, ak) + Jk+1(fxk+1(xk+1|Ik))|Ik−1, ak

}}
.

Under certain assumptions, it is possible to prove that POMDPs for active vi-
sion converge, i.e., the uncertainty of the object state decreases over time [DB00].
However, solving POMDPs even for discrete states and discrete observations is
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PSPACE-complete3, as the size of Ik grows rapidly with the number of observa-
tions and camera parameters [PT87]. In case of continuous-valued states, solving
POMDPs is intractable in general. A famous exception is LQG4, where the sepa-
ration principle leads to a decomposition into an estimation part and a control part
[Ben92, Ber00]. For an survey of POMDP solution methods see [Hau00].

2.2.2 Closed-loop vs. Open-loop

The primary assumption of POMDPs is that state feedback is employed, i.e., the
information about the object state is revealed to the planning component and the
optimal policy utilizes that new information as it becomes available. This proce-
dure corresponds to a closed-loop scheme. In many practical applications, how-
ever, the length N of the planning horizon may be too long and thus, the (ap-
proximate) calculation of the policy is too time consuming. Employing open-loop
planning instead, where the primary assumption of POMDPs is not made, leads
to an approximate procedure, where the optimal plan (that is a sequence of cam-
era parameters rather than the sequence of policies as in the closed-loop case) can
often be found with a significantly lower computational demand. Admittedly, no
state feedback is employed.

As an compromise between open-loop and closed-loop, open-loop feedback plan-
ning (OLF) can be used alternatively. Like in open-loop planning, no future in-
formation is anticipated. But when a new observation becomes available, it is
used for calculating an updated plan, i.e., the open-loop feedback planning com-
ponent first determines the parameter sequence for the observation period in an
open-loop fashion, executes one or more steps of the sequence, and then calculates
a new sequence that incorporates the newly received observation. It can be shown,
that OLF is no worse than open-loop planning, but the deviation from closed-loop
planning can be arbitrarily large [Ber00]. The plans, however, are still constructed
considering the total length N of the planning horizon.

To avoid the computational burden of optimizing over long time horizons, a model-
predictive control scheme is often employed. Here, the planning component re-
peatedly determines the optimal configuration sequence over a moving or rolling
horizon of length K. The length K of this moving horizon is considered to be
much smaller than the planning horizon N , which may be infinite. Depending on
the optimization type, two possible model-predictive schemes arise: at each time

3PSPACE is a superset of NP and is the set of decision problems that can be solved by a Turing
machine using a polynomial amount of memory and unlimited computation time.

4LQG: linear quadratic Gaussian control, i.e., Gaussian transition and observation models with
quadratic cost function
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step, the closed-loop feedback planner solves a POMDP for the moving horizon,
while the open-loop feedback planner determines a plan for the moving horizon
that does not anticipate the availability of future information5. Whenever a new
observation is received, both schemes utilize this new information about the object
state by calculating an updated policy and plan, respectively. Obviously, the open-
loop feedback scheme provides an approximate solution to the closed-loop feed-
back problem. The computations, however, are typically less complicated since no
expectations with respect to uncertain observations are necessary.

3 Reinforcement Learning

So far, it was assumed that the probabilistic observation and transition models are
known to the planning component. This assumption may be valid in simple scenar-
ios like tracking a point object as considered in Example 1 and 2. But in general,
it is too involved or even not possible to identify these models or only oversim-
plified models can be derived. This problem arises when the observation vector
zk comprises complex features like intensity histograms or when the object state
xk comprises rather abstract elements like the class/type of the object. It becomes
worse when dimensionality reduction techniques like principle component ana-
lysis are applied additionally in order to reduce the computation time and memory
consumption.

A paradigm designed for this problem setup is reinforcement learning. Here, it
is learned, which action6 needs to be applied in which state in order to gain the
maximum reduction of costs without knowledge about the models. There are no
hints, which action is beneficial in which state. Instead, actions are applied based
on a currently learned policy. The effects caused by the action are evaluated and
the gained experience in terms of costs is used to modify the policy. This is dif-
ferent from many other learning methods in machine learning, where learning is
performed on the basis of labeled examples.

Reinforcement learning methods can be divided into two classes. The model-free
or direct approaches learn the policy without any probabilistic observation and
transition models. In model-based approaches instead, the policy and the mod-
els are learned simultaneously. In Figure 3.1 on the next page, the more general
second class is depicted. Removing the modeling component yields model-free

5The combination of model predictive control with closed-loop/open-loop planning is often also
referred to as limited lookahead closed-loop/open-loop planning. Open-loop model-predictive planning
can be considered as the combination of OLF with a limited and moving time horizon.

6In the context of active vision, the word action has to be replaced by camera parameter.
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Modeling Planning Execution
models policy

experience, observation

experience, observation

Figure 3.1: Extension of a POMDP by learning. The black blocks and arrows
indicate planning as described in the previous section. Reinforcement learning
utilizes experience from applying actions to learn and improve the policy as well
as the probabilistic models.

reinforcement learning. In the following a brief introduction into both classes is
provided. More details can found in [SB98].

From now on, the typical reinforcement learning assumption of an infinite plan-
ning horizon is made. An infinite horizon is appropriate in most of the active vision
tasks, where observations are acquired over many time steps and the end of observ-
ing an object is not predefined. This assumption requires bounded, discounted, and
stationary cost functions γk ·g(xk, ak), where γ ∈ (0, 1) is the discount factor that
determines the importance of future costs. Furthermore, the policy and value func-
tion are stationary, i.e., it holds µ

k
(Xk) = µ(Xk) and Jk(Xk) = J(Xk) for all k.

Thus, the point in time for selecting a camera parameter is no longer relevant.

3.1 Model-free Planning

A common approach in model-free reinforcement learning is to learn the policy
indirectly. For this purpose, the so-called Q-function

J(Xk) = min
ak
{Q(Xk, ak)}

is introduced, which is the argument of the minimization in (2.4). Hence, the
Q-function can be written as

Q(Xk, ak) = E

{
g(xk, ak) + γ ·min

a∈A
{Q(Xk+1, a)}

}
(3.1)

In case of a finite decision state X and a finite set of actions A, the Q-function
can be considered a table that stores for each combination of states and actions the
expected costs. In case of continuous decision states and actions, universal func-
tion approximators like neural networks or radial basis functions are employed for



Probabilistic Active Vision: An Overview 11

representing the Q-function. The policy then can be derived from the Q-function
by means of µ(Xk) = arg minak{Q(Xk, ak)}. Thus, by learning the optimal
Q-function Q∗, the optimal policy is learned by the way.

One of the mostly used algorithms for learning the Q-function is Q-learning, which
is given by

Q(Xk, ak)← Q(Xk, ak) +

α ·
(
g(Xk, ak) + γ ·min

a∈A
{Q(Xk+1, a)} −Q(Xk, ak)

)
, (3.2)

where Xk+1 results from selection ak according to the currently learned policy.
α ∈ (0, 1] is the learning rate and determines to what extent newly acquired infor-
mation will override old information. Equation (3.2) is obtained from (3.1) by first
considering a general version of (3.1) by including (1− α) ·Q(·), which leads to

Q(Xk, ak)← (1− α) ·Q(Xk, ak) +

α · E
{
g(xk, ak) + γ ·min

a∈A
{Q(Xk+1, a)}

}
.

Evaluating the expectation requires the knowledge about the probabilistic transi-
tion model and observation model. An approximate version can be derived when
replacing the expectation by a single sample. That is, when applying action ak in
state Xk, it is assumed that the cost g(·) and the subsequent decision state Xk+1

can be acquired directly7 by interaction with the environment. This and some
minor arrangements of terms lead to the Q-learning equation (3.2).

In case of finite states and actions, it can be shown that Q-learning converges to-
wards the optimal Q-function if each combination of states and actions if visited in-
finitely often [BT96]. In the continuous case, no convergence towards the optimal
Q-function can be proven in general.

An alternative to learning the Q-function is to learn the policy directly. For this pur-
pose, the policy is now represented via a function approximator. The parameters
of the function approximator are then adapted by applying the currently learned
policy and by utilizing the acquired observations and costs. A typical approach
are policy gradients for modifying the parameters of the policy [PS08]. The main
problem with policy gradients is obtaining a good estimator for the gradient since
no model is available and thus, the gradients have to be estimated from the acquired

7This assumption holds for example, if the decision state is equal to the observation vector, i.e., the
decision state is the image itself or comprises features generated from the image.
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observations and costs. On the other hand, policy gradient algorithms are well
suited to continuous problems and are guaranteed to converge to locally optimal
policies.

3.2 Simultaneous Planning and Model Learning

Convergence of reinforcement learning towards the optimal policy can be sig-
nificantly improved, if the probabilistic models are learned simultaneously with the
policy [AS97, RN09]. Due to utilizing the observations for additionally building
up the observation and transition models, observations are used more effectively
in a model-based approach since information about the object and the vision sys-
tem is exploited explicitly. For instance, consider Q-learning for a fully observed
scenario, i.e., the underlying planning problem is an MDP, where Xk = xk. The
policy is (indirectly) adjusted to agree with the observed successor state Xk+1

(see equation (3.2)). A model-based approach instead exploits the learned tran-
sition model for updating the policy in order to agree with all successor states
weighted by their probabilities. Examples for model-based reinforcement learn-
ers are for example adaptive dynamic programing [RN09] or Gaussian process
dynamic programming [DRP09].

The benefits of model-based reinforcement learning, however, come at the expense
of additional computations for learning the models. In case of fully observed sce-
narios, it is just necessary to learn the transition model. This is a supervised learn-
ing task, where the input is a state-action pair and the output is the subsequent
state. Things become more complicated in the partially observed case. Now, the
states are not directly accessible. Both the transition and observation model have
to be learned merely on the basis the observations instead. A general framework
to solve this unsupervised learning problem is expectation maximization (EM)
[DLR77]. Representing the probabilistic models by means of parametric func-
tion approximators, EM could be employed for learning the parameters of the
approximators.

4 Active Vision Tasks

So far, probabilistic active vision was only discussed on a rather abstract math-
ematical level. In the following, some specific vision tasks are introduced and
connected with the introduced theoretical framework. For this purpose typical
assumptions are clarified, i.e., what typical camera parameters and states are and
whether the task is a dynamic problem or not.
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4.1 Object Recognition

In object recognition or classification the goal is to identify an object as one of a
given database of known objects. The camera is varied in position and orientation
in order to improve classification performance. The object state is discrete and
indicates the class of the object. Correspondingly, the decision state is the discrete
probability distribution of the class. Since the object class is not changing with the
time, there is no need for a transition model. Sometimes, however, not only the
class of an object is of interest but also its 3-D position in the world. In this case,
the state becomes a mixed discrete-continuous one. But still, a static (non moving)
object is assumed.

4.2 Reconstruction

To gain an accurate surface model of an object, especially if it is large and/or if
its shape is complex, multiple views from different positions are necessary. As
in the object recognition problem, typical camera parameters in the reconstruction
problem are the position and orientation of the camera. Furthermore, a static object
is typically assumed. The state and observations instead comprise the points on
the object’s surface and thus, are continuous. For reconstructing the surface from
observations, interpolation methods like splines or Gaussian processes [RW06]
can be used.

Based on the reconstructed surface, further planning tasks are often conducted,
e.g., grasp planning for humanoid robots. If a very accurate object model in form
of a CAD model is given, inspection planning aims at setting up a visual inspection
machine for identifying anomalies on industrial goods. This includes the number
and positions of the cameras or the illumination of the object. Here, it is typically
sufficient to construct a plan rather than a policy, since the inspection machine will
not alter the inspection procedure in order to allow a high throughput of goods.

4.3 Tracking

In surveillance tasks, it is common to track the location of an object. Therefore,
stationary cameras are used and thus, camera parameters that can be varied are
mainly the focal length and the orientation. In some applications, selecting an
subset of active cameras for tracking in a camera network is subject to parame-
terization as well. This selection or scheduling task is discussed in more detail in
Section 4.5. Contrary to the previously considered vision tasks, the object is now
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assumed to be moving. This requires the incorporation of a transition model into
planning, where the state is the position and often the velocity of the object.

4.4 SLAM

Simultaneous localization and mapping (SLAM) is a common problem in robotics,
where a robot creates a map of its environment while using this map to locate itself
[TBF05]. The SLAM problem can be turned into an active vision problem, if 1.
the robot uses cameras for observing the environment and 2. the path of the robot is
planned. Planning here means dealing with the tradeoff between visiting unknown
areas of the environment (exploration) and revisiting known regions in order to
reduce uncertainty (exploitation). This so-called active SLAM problem has some
special properties. The state comprises not only the location of the robot, it also
comprises the map and thus, the dimension of the state may grow with increasing
time. Furthermore, adapting camera parameters affects the robot and thus the state
of the entire system and not only the observations.

4.5 Scheduling

In the scheduling or selection problem, the focus is on selecting only a subset of
the cameras at each time step for observation. This task is of special interest in
camera networks with limited communication bandwidth, computational power,
or energy capacity. As only those observations are informative that are provided
by camera in close vicinity of the observed object, considering not all cameras at
each time step allows trading of estimation accuracy against operational lifetime.
The camera parameter vector is binary in this task and indicates which cameras
should be switch on and which off.

5 Summary

In this report, a probabilistic framework for active vision was introduced. Select-
ing the optimal parameters for adapting the perception of visual information can
be modeled as a partially observable Markov decision process (POMDP). Solving
a POMDP requires probabilistic models of the used camera system and the dy-
namics of the observed object. Both models however, might be unknown in many
applications. To still allow planning the optimal camera parameters, model-free
reinforcement learning can be exploited. Although well established, model-free
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approaches typically converge very slowly towards the optimal policy. This draw-
back can be avoided by simultaneously learning the policy and the probabilistic
models. Finally, some common active vision task were mapped on the introduced
probabilistic framework. Future work is concerned with developing well-designed
instantiations of this framework for the different tasks.
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Abstract: The objective of advanced surveillance systems is not only to col-
lect as much sensor data as possible, but also to process and represent it in
a meaningful way for supporting situation awareness of a decision maker.
However, in today’s surveillance systems, there is still a need for information
processing methods that meet these higher-level objectives. In this article,
the information flow inside of an advanced surveillance system is highlighted
and the term situation is discussed with respect to different abstraction levels.
Furthermore, several challenges are identified that an advanced system has to
address. Therefore, methods selected for information processing should meet
these challenges in order to provide a high-level functionality for situation
awareness support.

1 Introduction

During the operation of complex systems that include human decision making,
acquiring and interpreting information from the environment forms the basis for
the state of knowledge of a decision maker. This state is often referred to as situ-
ation awareness. The most commonly used definition of situation awareness was
provided by Endsley in [End95]:

“Situation awareness is the perception of the elements in the environment within a
volume of time and space, the comprehension of their meaning, and the projection
of their status in the near future.”

Due to this definition, situation awareness consists of three levels, namely per-
ception, comprehension, and projection, as depicted in Figure 1.1. The first level
of situation awareness includes the detection of relevant elements and its charac-
teristics in the environment. These elements are of course domain specific and
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Figure 1.1: The process of dynamic decision making (adopted from [End95]).

their status, their attributes and their dynamics have to be observable by sensorial
means. The second level of situation awareness is based on the relevant elements
that have been detected on the first level and includes the understanding of the
significance of these elements in relation to the operator’s goals. The third and
highest level of situation awareness is again based on the lower levels and deals
with the ability to project future actions of elements in the environment.

Thus, a high level of situation awareness consists of much more than simply col-
lecting information about elements in the environment. It is furthermore a result
from the comprehension of its meaning and the projection of future states in order
to make decisions on the most favorable actions. Situation awareness is therefore
referred to as a mental state or a state of knowledge, whereas the processes to
achieve and maintain that state are referred to as situation assessment. As a high
level of situation awareness provides the complete knowledge which is necessary
for effective decision making, the decision process itself and the performance of
actions are separate stages of the dynamic decision making process as illustrated
in Figure 1.1.

Endsley described several factors that have a major influence on the decision mak-
ing process. First, individual factors influence the situation assessment process,
for example the operator’s abilities, experience, and training. But individuals do
not only vary in their information processing mechanisms but also in their ex-
pectations and objectives. Other influencing factors can be summarized as system
factors which include the system capabilities or the interface design, and also some
features of the task environment like workload, stress or complexity.

The concept of situation awareness established by Endsley is applicable in many
different domains and it can also be used for advanced surveillance systems. Es-
pecially in security-related tasks, like the surveillance of specific areas, decision
makers should always have a high level of situation awareness. Situations of inter-
est that take place in surveyed areas are often of a high complexity and dynamic,
because they consist of multiple different objects that interact with each other and
their activities evolve over time. In such a complex and dynamic environment, the
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limited capacity of a person’s attention is quickly exhausted. The focus of attention
is therefore a major limit on situation awareness.

In today’s surveillance systems, level 1 situation awareness is highly supported
through various heterogeneous sensors and appropriate signal-processing methods
for extracting as much information as possible about the surveyed environment
and its elements. The challenge of advanced surveillance systems is therefore not
only to collect as much sensor data as possible, but also to process and represent
them in an intelligent and meaningful way to give a sufficient information support
to a decision maker. Or, in other words, to detect and assess complex situations
that evolve over time as an automatic support to an operator’s situation assessment
process. The information overload is then reduced by providing only relevant or
task-oriented information, which can be used to guide the focus of attention of a
decision maker and allows him to decide and react in a timely and effective manner.

Working with heterogeneous sensors, the theories of multi-sensor data fusion
[HM04], [Mit07] offer a powerful technique for supporting situation awareness.
A lot of data fusion models have been developed and compared to Endsley’s sit-
uation awareness model [lBRW07], whereas the most dominant model is the JDL
model [SBW99]. However, there is still a need for concepts and methods sup-
porting higher level situation awareness (level 2 and 3) that are able to infer real
situations from observed elements in the environment and to project their status in
the near future.

The paper is structured as follows. The next section gives an overview of the in-
formation flow inside an advanced surveillance system. Section 3.1 deals with a
discussion on situational abstraction levels and tries to give a definition of the term
situation. Section 3.2 is a first attempt of formalizing situations. In Section 4, sev-
eral problems concerning automatic situation assessment in surveillance systems
are identified. The paper finishes with a conclusion and outlook in Section 6.

2 Information Flow

Regarding data fusion in surveillance systems, the object-oriented world model
(OOWM) is an approach to represent the relevant information extracted from sen-
sor signals, fused into a single comprehensive, dynamic model of the monitored
area. It was developed in [Bau09], whereas the basic ideas have been published in
[EGB08]. A detailed description of the architecture can be found in [MRV10] and
an application of the OOWM for wide area maritime surveillance is proposed in
[FB10].
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Figure 2.1: Information flow in surveillance systems.

In Figure 2.1, the information flow inside an advanced surveillance system is il-
lustrated, whereas the real world is depicted on the top and the world model,
i.e. the OOWM, is depicted on the bottom. Rectangular boxes represent ag-
gregates of information and round boxes represent processes. The real world is
defined as a spatio-temporal section of the physical world. Relevant parts of it
can be observed by humans (or experts) and the result of this process is called
expert knowledge. By formalizing the expert knowledge, knowledge-or more
precisely-machine readable knowledge is generated.

The physical conditions of the real world can also be observed by appropriate sen-
sors. The sensor data itself represents a spatio-temporal section of the real world
and can be analyzed by using knowledge. The analyzed sensor data is transferred
as information to the world model. The world model can be interpreted as a repre-
sentation of the real world and its history, which is generated by using knowledge
for analyzing sensor data, or by inference methods. Analyzing sensor data with
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knowledge includes for example data association and tracking methods, or con-
sistency checks of the world model. Updating the world model with new sensor
information is conducted by the inference process.

The knowledge includes all information that is needed for updating the world
model by inference or for analyzing sensor data. It builds the basis for the de-
scription of relevant aspects of the real world in the world model. The knowledge
is of course strongly dependent of the application domain, the context and the task.
Furthermore, the knowledge is not static because it can be changed by new infor-
mation coming from the world model or from expert knowledge. This dynamic
aspect of the knowledge is also visualized by the learning process.

3 Higher-Level World Modeling

Regarding situational modeling, several concepts exist in literature. Roy proposed
in [Roy01] the concept of situation analysis as a process to provide and maintain a
state of situation awareness. He also proposed definitions of situational elements
like entities, events and activities. Another refinement of the situational terminol-
ogy with respect to the JDL data fusion model is given in [Sal07]. The concept
of situation management in dynamic systems proposed by Jakobson [JBL07] in-
cludes not only the processes of perceiving and recognizing situations, but also
the analysis of past situations and the prediction of future situations. In [Ste08],
a rough taxonomy of functions related to situation assessment is proposed and a
general overview of current approaches to automating this process is given.

3.1 Situational Abstraction Levels

In the revised version of the JDL data fusion model [SBW99], situation assess-
ment (JDL-level 2) is defined as the estimation and prediction of relations among
entities. The resulting network of relations among its elements is then referred to
as the state of aggregation or the estimated situation. However, there is no formal
representation of a situation, as the JDL definition admits any variety of relations
to be considered. Types of relations exist at many different levels of abstraction,
ranging from quantitative to highly abstract qualitative statements. Therefore, a
formal representation of a situation, which fulfills the essential requirements in var-
ious application areas, is not easy to define. Situations are characterized mainly by
their respective qualitative statements and their representation is therefore strongly
dependent on the application domain.
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Figure 3.1: Situational Abstraction Levels.

Figure 3.1 shows a general decomposition of a situational description with respect
to different abstraction levels. The level of abstraction is determined by the quan-
tity of context information added to the observed element, whereas only relevant
context information is used. The context information consists of knowledge that is
not directly observable by sensors, for example expert knowledge. Its content and
relevance is determined by the application domain and the task that an operator
has to solve. The higher the level of abstraction, the lower is the level of detailed
knowledge of a single, observed element. In the following, we will explain the
decomposition in detail and give examples for each level of abstraction.

With the focus on surveillance systems, the perception stage includes the acquisi-
tion of object information by means of various sensors. Time invariant attributes
about an object are summarized as properties and time variant attributes are sum-
marized as the object’s state. When observing for example human beings, the
results from the perception stage are therefore the person’s position and velocity
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as states and the height as property. This information is the input for the next stage,
the comprehension of a situation.

At the lowest level of abstraction, a scene includes all observed objects at a certain
point in time. A scene can therefore be interpreted as a snapshot or as a spatial
subset of the world’s observable objects at a point in time, whereas an episode
includes also the time-dimension. An episode is the recording of all observed
objects in a period of time (either discrete or continuous) and can therefore be
defined as a spatio-temporal subset of the world’s observable objects. Note, that at
this level of abstraction, no relational aspects between objects are regarded.

The next level of abstraction deals with the description of quantitative relations
that can be extracted directly from the information content of a scene or of an
episode. Quantitative relations are quantitative statements about the connection
between two or more relevant information values, mostly about the attribute values
of some objects. The spatial distance measured in meter between two objects is
for example a quantitative relation. Note that quantitative relations do not assume
that the information values are derived from different objects. Another example of
a quantitative relation is therefore the distance that an object has passed between
two time points.

In Figure 3.1, special placements between quantitative and qualitative relations are
given to events and processes. They can be interpreted as special cases of quanti-
tative relations. An event is defined as the change of relevant object information at
a point of time and a process describes the behavior of relevant object information
during a time period. For example, the disappearance of an observed person could
be tagged as an event or that a person’s attribute value, indicating its speed, has
changed to zero. A process would be the person’s speed value or the direction of
its movement over a time period. Events and processes are not limited to a single
object. A process between two objects could be the decreasing distance between
them and an event between them could be that the distance value of the respective
quantitative relation changed to zero.

On the next higher level of abstraction, events, processes and quantitative relations
can be summarized to qualitative relations. Detailed knowledge of attribute values
of the observed objects goes lost at this level. A qualitative relation is an interpre-
tation of the underlying events, processes and quantitative relations. Examples for
qualitative relations are a person that is walking, a person that stops its movement,
a person that is moving towards another object, or a person that meets another
person.

Qualitative relations are strongly connected to activities. However, we state
that activities take place in a longer period of time and are more complex in
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their construction. As qualitative relations can be interpreted as single and non-
decomposable structures, an activity includes also the temporal relationships be-
tween them. An activity is a sequence of qualitative events, processes and rela-
tions. Temporal relationships of overlapping processes can for example be ex-
pressed by Allen’s temporal interval logic [All83]. An example for this level of
abstraction is a fighting activity between two human beings. The term behavior is
often used if the focus is on activities conducted by humans or only by a single ob-
ject. However, we will use the term activity for this level because it has a broader
meaning.

At the highest level of abstraction, there is the situation itself. The human com-
prehension of a situation can be interpreted as the knowledge of everything of
relevance that is going on. Therefore, based on our discussion so far, we give the
following definition of the term situation:

A situation at time t is defined as a world state, which is characterized by the
collection of relevant activities up to the time t and their interpretation with respect
to the context knowledge.

As the world evolves over time, it changes from one state to another. Therefore,
the change from one situation to another is due to the change of any activity that is
going on or due to a change of the context. As an example, we assume a fighting
activity between two humans that is going on so far. Regarding the context, the
situation is completely different if the fighting takes place on the street or inside a
boxing ring, although the underlying activity is the same.

The situation assessment process can therefore be described as the estimation and
interpretation of the relevant state of the real world, which however does not only
consist of the recognition of all activities that are going on. Moreover, it also
includes contextual conditions like the environment in which an activity is tak-
ing place and its aim is to reduce the quantity of information with respect to its
relevance.

3.2 Situational Configuration Spaces

In this subsection it is assumed that there are objects in the real world that have
been observed. As described above, the objects have properties and states, which
we will summarize as attributes. Attributes are for example the existence, the
type, the position, the size or the color of an object. Objects can be divided into
several classes, based on their type, whereas the number and style of attributes are
determined by the object’s type. Relations can be temporal or attributive and they
can consider several objects. Most of the time only relations between two objects,
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Figure 3.2: Formalization of a Scene.

binary relations are considered. As objects, also relations have attributes like the
existence, the type or for example the relative distance between two objects. They
can also be divided into classes based on their type.

If we interpret a scene as a snapshot of all observed objects at a certain point in
time including their attributes, a scene can be formalized as depicted in Figure 3.2.
Therefore, a configuration space KScene of a scene consists of

• the possible object classes C1, . . . , Cm,

• the number ni of observed objects of class Ci, i = 1, . . . ,m, and

• the attributes Ai1, . . . , A
i
li

of Class Ci, i = 1, . . . ,m.

The configuration space of a scene can then be defined as

KScene =
m∏
i=1

 ni∏
j=1

(
li∏
k=1

Aik

) =
m∏
i=1

 ni∏
j=1

Ci


= (C1 × . . . C1)︸ ︷︷ ︸

n1

× (C2 × . . . C2)︸ ︷︷ ︸
n2

× . . .× (Cm × . . . Cm)︸ ︷︷ ︸
nm

.
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Figure 3.3: Scenes and Episodes.

The dimension of the configuration space KScene is therefore dependent on the
number of observed objects per class:

dimKScene =
m∑
i=1

ni · li .

Based on the definition of the configuration space of a scene, we can add the time-
dimension for defining the configuration space of an episode, see Figure 3.3. The
configuration space KEpisode of an episode consists therefore of

• the configuration space of a scene KScene, and

• the time-sequence {t0, t1, . . . , ts} := T .

The configuration space of an episode can then be defined as

KEpisode = KScene × T .

The dimension of the configuration space KEpisode is therefore

dimKEpisode = 1 + dimKScene .

Situations can be interpreted as episodes enriched with relations and they include
therefore higher-level information which is not included in a scene or an episode,
see Figure 3.4. The configuration spaceKSituation of a situation consists therefore
of

• the possible relational classes R1, . . . , Rp,

• the number qi of relations of the relational class Ri, i = 1, . . . , p,
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Figure 3.4: Formalization of a Situation.

• the attributes Bi1, . . . , B
i
ri of the relational class, and

• the configuration space of an episode KEpisode.

The configuration space of a situation can then be defined as

KSituation = KEpisode ×
p∏
i=1

 qi∏
j=1

(
ri∏
k=1

Bik

)
= KEpisode ×

p∏
i=1

 qi∏
j=1

Ri


= KEpisode × (R1 × . . . R1)︸ ︷︷ ︸

q1

× . . .× (Rp × . . . Rp)︸ ︷︷ ︸
qp

.

The dimension of the configuration space KSituation is therefore

dimKSituation = dimKEpisode +

p∑
i=1

qi · ri = 1 +
m∑
i=1

ni · li +

p∑
i=1

qi · ri .
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The definitions in this chapter are a first attempt of formalizing the term situation
by the introduction of a configuration space. The formalizations are straightfor-
ward, based on the objects that have been observed in the environment. Obvi-
ously, the dimension of the configuration space is quite high, even if only few
observed objects are present. The formalizations also show the complexity of
defining situations.

4 Challenges of Advanced Surveillance Systems

In this Section we will identify the main problems and challenges of situation as-
sessment in advanced surveillance systems. More advanced systems also support
such high-level functions as described in general in [Das08]. Probabilistic meth-
ods like hidden Markov models can be used for situation recognition [MDPB09],
but are strongly dependent on training data. Also several other approaches have
been proposed, for example grammar-parsing detection of abnormal behavior of
a person’s movement in indoor surveillance [BF10] or logic based approaches for
the recognition of human activities [IS10]. In [SNSS10], a heuristic graph match-
ing approach for the identification of meaningful patterns in large volumes of data
have been proposed as an enhancement to existing situation assessment methods.
In [GGS06], Markov random fields are used to model contextual relationships and
maximum a posteriori labeling is used to infer intentions of observed elements.

Mostly, there is a lack of training data, especially for critical situations that an
operator wants to detect. For interventional reasons, critical situations have to be
detected timely, which means during their development and not only when they are
finished. Moreover, the system should be able to deal with uncertain observations,
as signal processing methods usually provide estimated feature values and also
false detections. The system should be able to deal with incomplete observations,
whereas the incompleteness can be of spatial and of temporal type. Spatial incom-
pleteness follows from incomplete sensor coverage, as for example in wide areas
it is not possible to continuously observe every part of the environment. Tempo-
ral incompleteness follows from spatial incompleteness in the past. As situations
evolve over time, it is possible that the beginning of a situation was not observed.
Furthermore, the system should be able to predict the situation state in the near
future and give a clue to the question: What might happen next?

The main challenges of situation assessment functions are therefore:

• dealing with no training data,

• detection of situations during their development,
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• dealing with uncertainties,

• dealing with incomplete observations, as a result of

– spatial incompleteness due to incomplete sensor coverage,

– temporal incompleteness due to missing observations in the past, and

• predicttion of developments in the near future.

Due to these challenges, the result of the situation recognition should not be a
binary decision if a certain situation is recognized or not. The result should be
a Degree of Belief for each template situation, indicating the existence of the
underlying and ongoing situation in the real world.

5 Conclusion and Outlook

In this article, the information flow inside of an advanced surveillance system has
been highlighted and the term situation has been discussed with respect to different
abstraction levels. A first attempt of formalizing the term situation via the introduc-
tion of a configuration space has been provided. Furthermore, several challenges
has been identified that an advanced surveillance system has to address. Methods
selected for situational assessment should meet these challenges in order to provide
a high-level functionality for situation awareness support. Further research direc-
tions involve the generation of example situations in surveillance applications and
the practical realization of various situation assessment methods. The objective is
to support the situation awareness of a decision maker as best as possible because
in today’s surveillance systems, there is still a need for information processing
methods that meet the higher-level objectives.
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Abstract: Focussed Bayesian fusion is a local Bayesian fusion technique by
that high costs caused by Bayesian fusion can get circumvented. This publi-
cation constitutes an analysis with regard to the use of a probability interval
scheme for focussed Bayesian fusion, which has been developed in previous
publications. Its reduction to a unique posterior distribution by the Maximum
Entropy method and its direct use for decision making are analyzed.

1 Introduction
Local Bayesian fusion approaches reduce costs caused by Bayesian fusion by a
concentration of the actual Bayesian fusion task on a local context U . By a local
context, we mean an appropriately chosen subset of the space Z that is spanned
by the range of the Properties of Interest (PoI). Ignoring U := Z \ U completely,
a straightforward fusion scheme, which we termed focussed Bayesian fusion, re-
sults. In [San09, SHGB10], a probability interval scheme for focussed Bayesian
fusion has been developed. By this scheme, the uncertainty that results additionally
from the focussing on U is represented explicitly in a non-probabilistic manner.

Provided that such a distinction of uncertainties is not used effectively, facts and
corresponding uncertainties are represented in an adequate manner by probability
in the sense of the Degree of Belief (DoB) interpretation. Hence, if the aim of
the fusion task is to obtain a comprehensive representation of the posterior state of
knowledge, a reduction of the probability interval scheme to a unique posterior dis-
tribution1 should be done. For this, the use of the Maximum Entropy (ME) method

1According to the nature of the respective quantities, which may be discrete or continuous in a
concrete fusion task, the term distribution has a mixed meaning as discrete probability function and
probability density in this publication.
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[Kap93, Ros77]–an established method to obtain objective DoB distributions–is
self-evident. In Sec. 3, a closed solution for the ME problem given a probability
interval scheme is derived and the result is analyzed critically.

Choosing a unique posterior distribution is a decision [BS04]. It appears not sen-
sible to make such a decision if subsequently another decision problem is to be
solved on basis of the posterior knowledge: doing so, two hard decisions are sub-
sequent one another. It is shown in Sec. 4 how the probability interval scheme
is usable directly for decision making. Under the assumption that the respective
decision problem is one under linear partial information (LPI) [KM76, Pre02],
common decision criteria under partial information are considered. Possibilities
of improving the criteria by an enlargement of the local context and the inclu-
sion of additional constraints are shown. Finally, the generalization of the derived
concepts for the solution of arbitrary decision problems is sketched exemplarily.

2 Theoretical Foundations

2.1 Focussed Bayesian Fusion

At Bayesian fusion, we are interested in some PoI z ∈ Z which adopt a certain
“true” value. Instead of z, only the information d from several information sources
is directly observable.

In the Bayesian theory, all quantities are assumed to be random and all available
information is represented probabilistically in the sense of the DoB interpretation.
The prior distribution p(z) and the Likelihood function2 p(d|z) are combined via
the Bayesian theorem to the posterior distribution p(z|d) ∝ p(d|z) p(z). Using
concepts from decision theory, subsequent decisions can be derived from p(z|d).

At focussed Bayesian fusion, the actual Bayesian fusion is performed only with
respect to the local context. As explained in [SHGB09], the corresponding fusion
scheme is given by

p(z|d, U) ∝ p(d|z) p(z|U) .

In the focussed Bayesian model, events3 E ⊆ U are assumed to be impossi-
ble. The probability of events E ⊆ U gets distorted according to the posterior

2It holds d := (d1, . . . , dS) whereby ds is the contribution of source number s ∈ {1, . . . , S},
S ∈ N. Especially in the case that d1, . . . , dS are conditionally independent given z, a sequential
fusion scheme is easily realizable: by the use of source specific Likelihood functions, each information
contribution can get incorporated individually into the posterior distribution [BHSG08]. We skip the
respective exposition because it is not essential with regard to the aims of this publication.

3Events are sets to that a probability is assigned.
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probability4 P (U |d) =
∫
U
p(z|d) dz of the local context. More precisely, we

have

p(z|d, U) =

{
p(z|d)
P (U |d) , z ∈ U ,

0 , z ∈ U .
(2.1)

A local context can be specified by a pre-evaluation of the available information. In
the following, it is concretely assumed that U contains at least these values of the
PoI whose Likelihood is larger than a suitable threshold. The rationale behind this
specification, its extensions, and the threshold determination have been pointed up
in several previous publications, see [SB08, SHGB09, SKB10].

2.2 Probability Interval Scheme

Assume we know that p(d|z) ≤ δ holds for all z ∈ U with a threshold δ ∈ (0, 1).
As shown in [San09, SHGB10], this inequality delivers the following lower bound
for the posterior probability of U in the non-focussed Bayesian model:

P (U |d) ≥
∫
U
p(d|z) p(z) dz∫

U
p(d|z) p(z) dz + (1− P (U)) δ

=: β . (2.2)

β is computable in the focussed model if P (U) is ratable.

Combining (2.1) and (2.2), general bounds for posterior probabilities are derived:

P (E|d) ∈ [a(E),b(E)] :=

{
[β P (E|d, U), P (E|d, U)] , E ⊆ U ,

[0, 1− β] , ∅ 6= E ⊆ U .

(2.3)

Additionally, from (2.1), one obtains for z∗, z∗∗ ∈ U :

o(z∗, z∗∗) :=
p(z∗|d, U)

p(z∗∗|d, U)
=

p(z∗|d)

p(z∗∗|d)
. (2.4)

Hence, it is not possible that the posterior probabilities of events that are included
in U vary arbitrarily within the corresponding intervals [SHGB10]: if z∗ ∈ U is
arbitrary but fixed, for each E ⊆ U , we have P (E|d) = p(z∗|d)

∫
E
o(z, z∗) dz.

This means that the posterior probability of E varies according to one parameter
given by p(z∗|d). Obviously, it holds p(z∗|d) ∈ [β p(z∗|d, U), p(z∗|d, U)].

4Integration with respect to the counting measure is summation. Because of this, generally, an
integral notation is used for both, the summation of discrete and the integration of continuous quantities.
A summation sign is used only if the respective formula is to refer exclusively to the discrete case.
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3 Reduction to a Unique Probability Distribution

Let Π denote the set of all probability distributions on Z that are consistent with
(2.3) and (2.4). The reduction of the probability interval scheme to a single ME
distribution pME(z|d) can be stated as5:

pME(z|d) = arg max
p(z|d)∈Π

H[p(z|d)] , (3.1)

H[p(z|d)] = −
∫
Z

p(z|d) log2 p(z|d) dz . (3.2)

3.1 Formulation as One-Dimensional Optimization Problem

Lemma 1 Let H[(P (U |d), P (U |d))] denote the entropy of the probability distri-
bution on the set {U,U} that assigns U probability P (U |d). It holds

H[p(z|d)] =H[(P (U |d), P (U |d))]

+ P (U |d) H[p(z|d, U)] + P (U |d) H[p(z|d, U)] .
(3.3)

PROOF. We have p(z|d) = P (E|d) p(z|d, E), E ∈ {U,U}, z ∈ E, compare
(2.1). Together with (3.2), this delivers

H[p(z|d)] =− P (U |d)

∫
U

p(z|d, U) log2 (p(z|d, U)P (U |d)) dz

− P (U |d)

∫
U

p(z|d, U) log2

(
p(z|d, U)P (U |d)

)
dz .

Using the identity log2 (p(z|d, E)P (E|d)) = log2 p(z|d, E)+log2 P (E|d),E ∈
{U,U}, and rearranging the resulting terms directly leads to (3.3). �

Lemma 1 is also traceable back to the grouping axiom [DL75] for entropy. We
will use the lemma to formulate the reduction of the probability interval scheme
as optimization problem with respect to the value of P (U |d) at the proof of the
following theorem.

Theorem 1 The reduction of the probability interval scheme by the ME method
delivers

pME(z|d) =

{
π p(z|d, U) , β ≤ π ,
β p(z|d, U) , π < β ,

(3.4)

5For the shake of simplicity, it is assumed that all considered ME distributions exist.
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with

π :=
2H[p(z|d,U)]

2H[p(z|d,U)] + 2H[pME(z|d,U)]
.

Thereby, the quantity H[pME(z|d, U)] denotes the entropy of the ME distribution
on U , which results if no knowledge–except that pME(z|d, U) is a probability
distribution–is imposed as constraint at the application of the ME method.

PROOF. The maximization of H[p(z|d)] is equivalent to the minimization of
−H[p(z|d)]. Using the notation x := P (U |d), lemma 1 delivers:

−H[p(z|d)] =x log2 x+ (1− x) log2(1− x) (3.5)

− xH[p(z|d, U)]− (1− x)H[p(z|d, U)] .

At the focussing on U , U is ignored completely. Because no knowledge con-
cerning U is available in the focussed Bayesian model, it gets clear from (3.5)
that −H[p(z|d)] becomes minimal if H[p(z|d, U)] is chosen to be maximal, i.e.,
if p(z|d, U) = pME(z|d, U). Hence, the reduction of the probability interval
scheme by the ME method is equivalent to the minimization of the function

f(x) := x log2 x+(1−x) log2(1−x)−xH[p(z|d, U)]−(1−x)H[pME(z|d, U)]

under the constraint β ≤ x, which corresponds to (2.2). Calculating the sec-
ond derivative of f(x), one sees that this function is convex for x ∈ (0, 1). The
corresponding Lagrangian function [BV05] is given by

L(x, λ) =x log2 x+ (1− x) log2(1− x)− xH[p(z|d, U)]

− (1− x)H[pME(z|d, U)] + λ (β − x) .

The Karush-Kuhn-Tucker (KKT) conditions [BV05] are:

(a) β ≤ x , (b) λ ≥ 0 , (c) λ = 0 ∨ β = x ,

(d) log2

(
x

1− x

)
−H[p(z|d, U)] + H[pME(z|d, U)]− λ = 0 .

Now, we make a case distinction according to condition (c):

If λ = 0, condition (d) delivers

x

1− x
= 2H[p(z|d,U)]−H[pME(z|d,U)] ⇔ x =

2H[p(z|d,U)]

2H[p(z|d,U)] + 2H[pME(z|d,U)]

which holds according to condition (a) if β ≤ x.
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In the case that β = x, condition (d) delivers

λ = log2

(
β

1− β

)
−H[p(z|d, U)] + H[pME(z|d, U)] .

Hence, according to condition (b), it must hold

β ≥ 2H[p(z|d,U)]

2H[p(z|d,U)] + 2H[pME(z|d,U)]
.

�

3.2 Direct Formulation

Let z∗ ∈ U be arbitrary but fixed. Because of (2.4), the ME distribution pME(z|d)
in (3.1) is exactly the probability distribution that minimizes∫

U

p(z|d) log2 p(z|d) dz +

∫
U

p(z∗|d) o(z, z∗) log2 (p(z∗|d) o(z, z∗)) dz

(3.6)
under the condition (2.2), i.e., β −

∫
U
p(z∗|d) o(z, z∗) dz ≤ 0.

If U is a discrete set of cardinality M ∈ N, this is a convex optimization problem
on RM+1, which is also easily solvable by the consideration of the KKT condi-
tions. The verification that the solution is identical to (3.4), which has been derived
in Sec. 3.1 by an optimization on R, is straightforward.

In the literature, finite ME problems under constraints on upper and lower bounds
on probabilities have been discussed elaborately, see for example [Abb05]. By the
formulation (3.6), constraints on probability ratios can get included additionally.

3.3 Discussion

Entropy is an inverse measure of DoB concentration. If β ≤ π, it follows from
(3.4) that6 P (U |d) ∝ 2H[p(z|d,U)] ≤ |U | and P (U |d) ∝ 2H[pME(z|d,U)] = |U |.
Hence, the more concentrated p(z|d, U) is, the more probability mass gets shifted
on U at the transition from p(z|d, U) to pME(z|d). For the case of a finite Z with
|U | = |U | = 2, this phenomenon has been noted by Van Fraassen already in 1981
[Fra81]. In connection to his Judy Benjamin problem, it is analyzed and discussed
to date [Bov10, DR09].

6The notation |E| stands for the number of elements of a discrete eventE ⊆ Z and for the Lebesgue
measure, respectively, if E is continuous.
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Within the context of focussed Bayesian fusion, the described property of the ME
method substantiates the interpretation that it corresponds to a worst case princi-
ple [Wal91]: the fact that p(z|d, U) is highly concentrated may be misleading.
Thereby, we mean that it may result from a high distortion at the transition from
p(z|d) to p(z|d, U), which is done at the focussing.7 The ME method assumes
that such a situation is on hand and tries to correct the distortion.

To our mind, the application of the ME method for the reduction of the probability
interval scheme may be conductive. We come to this conclusion also due to the
fact that–if P (U |d) is high and if β is a good bound for it–the condition β ≤ π in
(3.4) may prevent the shifting of absurd much probability mass on U .

4 Direct Use for Decision Making

4.1 Decisions under Risk, Partial Information, and LPI

It is assumed that a set A of actions is given and that ũ(a, z) is the utility of action
a ∈ A provided that z ∈ Z is the “true” value of the PoI.

If the posterior state of knowledge is represented by an unique posterior distribu-
tion p(z|d), the decision making is done under risk [Rüg99]. According to the
principle of expected utility [BS04], a rational decision maker should chose an
action a∗ ∈ A such that it holds8

a∗ = arg max
a∈A

Ep(z|d)[ũ(a, z)] , (4.1)

Ep(z|d)[ũ(a, z)] =

∫
Z

ũ(a, z) p(z|d) dz . (4.2)

In contrast, making decisions directly on the basis of the probability interval
scheme is decision making under partial information [Pre02]. Here, it is only
assumed that p(z|d) is contained in the set of all probability distributions on Z
that are consistent with (2.3) and (2.4). In this situation, a set of possible values
for the expected utility of an action has to be considered explicitly–instead of one
unique value as at decision making under risk. The next theorem shows that it may
be possible to identify also here an action that is optimal in the sense of (4.1).

Theorem 2 For events E∗ ⊆ U , E∗∗ ⊆ Z, we have P (E∗|d) ≥ P (E∗∗|d) if the
corresponding interval bounds satisfy b(E∗∗ ∩ U) ≤ a(E∗)− a(E∗∗ ∩ U).

7A high distortion is due to a low value of P (U |d). See [San09, SB08] for a more comprehensive
analysis of the critical effects of the distortion.

8We assume all used utility functions to be bounded and an act which maximizes (4.1) to exist.
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Remark 1 Without loss of generality, it can be assumed that we haveE∗∩E∗∗ =
∅ in theorem 2: if this does not hold, theorem 2 follows from a comparison of the
posterior probabilities of E∗ \ (E∗ ∩ E∗∗) and E∗∗ \ (E∗ ∩ E∗∗).

Remark 2 Theorem 2 can be formulated as decision problem by defining9 A =
{E∗, E∗∗}, ũ(E,z) = 1E(z) such that Ep(z|d)[ũ(E,z)] = P (E|d), E ∈ A.

PROOF. P (E∗|d) ≥ P (E∗∗|d) is equivalent to

P (E∗∗ ∩ U |d) ≤ P (E∗|d)− P (E∗∗ ∩ U |d) . (4.3)

Remembering (2.1) and (2.4), we obtain

P (E∗∗ ∩ U |d) = P (E∗|d)
P (E∗∗ ∩ U |d, U)

P (E∗|d, U)
= P (E∗|d)

a(E∗∗ ∩ U)

a(E∗)
.

Hence, (4.3) is equivalent to

P (E∗∗ ∩ U |d) ≤ P (E∗|d)

(
1− a(E∗∗ ∩ U)

a(E∗)

)
. (4.4)

From (2.3), we know that P (E∗∗ ∩ U |d) ≤ b(E∗∗ ∩ U) and P (E∗|d) ≥ a(E∗)
hold10. Hence, (4.4) is surely satisfied if it holds

b(E∗∗ ∩ U) ≤ a(E∗)

(
1− a(E∗∗ ∩ U)

a(E∗)

)
= a(E∗)− a(E∗∗ ∩ U) .

�

Theorem 2 directly applies to Maximum-a-Posteriori (MAP) estimation:

Lemma 2 Let Z be discrete. Then, ẑ ∈ U is a MAP estimate if a(z) ≤ a(ẑ) holds
for all z ∈ U and b(z) ≤ a(ẑ) holds for all z ∈ U .

Remark 3 The condition a(z) ≤ a(ẑ) for all z ∈ U in lemma 2 is equivalent to
the condition that ẑ must be a MAP estimate in the focussed Bayesian model.

The literature provides different criteria for decision making under partial informa-
tion if it is not or only hardly possible to identify directly an action that is optimal
in the sense of (4.1). See for example [KM76, Pre02, UA05, Wal91]. A lot of them
are–partially with slight modifications–meaningful also at dealing with continuous

91E(z) is the indicator function of E: it has the value one if z ∈ E and the value zero if z /∈ E.
10Using additionally (2.4), one can derive that these bounds are reachable together.
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distributions [Aug98, Wal91, Wei01]. However, at the present, the most feasible
algorithms, which make their efficient application possible, deal only with quan-
tities on finite sets. Their application to arbitrary decision problems is an actual
research theme, see for example [OA07, UD09].

Assuming U to be a finite set, the given decision problem will be traced back to a
decision problem under LPI. The following definition is based on [KM76]:

Definition 1 Partial information about a probability distribution over a finite set of
cardinality k is LPI if the respective subarea W of the k-dimensional probability
simplex can be specified by a system of inequalities such that it holds

W =

{
pT = (p1, . . . , pk)T ∈ Rk

∣∣∣∣∣
k∑
i=1

pi = 1, 0 ≤ pi for i ≤ k,ApT ≥ b

}
.

with A ∈ Rl×k and b ∈ Rl, k, l ∈ N.

Because of (2.1), (4.2) can be rewritten to

Ep(z|d)[ũ(a, z)] =

∫
U

ũ(a, z) p(z|d) dz + P (U |d) Ep(z|d,U)[ũ(a, z)] . (4.5)

We assume that we have U = {z1, . . . ,zM}, M ∈ N. In the following, the no-
tations pi := p(zi|d), i ∈ {1, . . . ,M}, zM+1 := U , pM+1 := P (U |d) are used.
The quantity p := (p1, . . . , pM+1) specifies a discrete probability distribution on
ZD := {z1, . . . ,zM+1}.
If a probability distribution p(z|d) on Z satisfies (2.3) and (2.4), the respective
discrete probability distribution p can be identified with an element of the set

W =

{
pT = (p1, . . . , pM+1)T

∣∣∣∣∣
M+1∑
i=1

pi = 1, 0 ≤ pi for i ≤M,β ≤ pM+1

}
.

(4.6)
Formula (4.6) makes clear that the given partial information is LPI.

For a given utility function ũ(a, z) on A× Z, we define

u(a, zi) :=

{
ũ(a, zi) , i ∈ {1, . . . ,M} ,
Ep(z|d,U)[ũ(a, z)] , i = M + 1 ,

and treat u(a, zi) as appendant utility function on A× ZD: (4.5) becomes

Ep[u(a, zi)] =
M∑
i=1

ũ(a, zi) pi + pM+1 Ep(z|d,U)[ũ(a, z)] . (4.7)
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4.2 Geometry of LPI and Linear Optimization

A set of probability functions that is specified by LPI constitutes a convex poly-
hedron [Fis01, KM76]. It is not hard to identify the edges of W in (4.6)
analytically:

Lemma 3 pT = (p1, . . . , pM+1)T ∈ RM+1 is an edge of W in (4.6) if it holds

pi =

{
0 , i ≤M ,

1 , i = M + 1 ,
or pi =


1− β , for one i0 ∈ {1, . . . ,M} ,
0 , i ≤M ∧ i 6= i0 ,

β , i = M + 1 .

PROOF. It is known [KM76, Pre02] that a point of W is an edge if M + 1 of
the M + 2 conditions in (4.6) are satisfied as equations. Here, this means that the
values of M components of p must be equal to the respective lower bounds. �

Lemma 4 (see [NM04] or [Fis01]) Let f : Rk → R be a linear function andW ⊆
Rk a convex polyhedron, k ∈ N. Then, there exists edges wmin and wmax of W
such that f(wmin) = minw∈W f(w) and f(wmax) = maxw∈W f(w).

4.3 Decision Criteria under LPI

Expected Utility Intervals Let LPI according to W ⊆ Rk be available.
Ep[u(a, zi)] is a linear function with respect to p. Because W is convex and
lemma 4 holds, for each action a ∈ A, the set of possible expected utility values
with respect to the LPI according to W is given by an interval. Denoting the set of
edges of W by V (W ), this interval is given by[
Ep[u(a, zi)],Ep[u(a, zi)]

]
W

:=

[
min

p∈V (W )
Ep[u(a, zi)], max

p∈V (W )
Ep[u(a, zi)]

]
.

Theorem 3 If LPI according to W in (4.6) is on hand, we have

Ep[u(a, zi)] = min

{
(1− β) min

1≤i≤M
ũ(a, zi) + β Ep(z|d,U)[ũ(a, z)],

Ep(z|d,U)[ũ(a, z)]

}
, (4.8)

Ep[u(a,zi)] = max

{
(1− β) max

1≤i≤M
ũ(a, zi) + β Ep(z|d,U)[ũ(a, z)],

Ep(z|d,U)[ũ(a, z)]

}
. (4.9)
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PROOF. V (W ) has been identified in lemma 3. From (4.7), we obtain{
Ep[u(a,zi)]

∣∣∣p ∈ V (W )
}

=
{

Ep(z|d,U)[ũ(a, z)]
}

⋃{
(1− β) ũ(a, zi) + β Ep(z|d,U)[ũ(a, z)]

∣∣∣i = 1, . . . ,M
}
.

zi0 ∈ {z1, . . . ,zM} minimizes the term contained in the second set on the right
side if it holds that ũ(a, zi0) = min1≤i≤M ũ(a, zi). This proves (4.8). An analog
consideration with respect to maximization delivers (4.9). �

Dominance of Actions With respect to LPI given by W ⊆ Rk, an action
a∗ ∈ A dominates another action a∗∗ ∈ A \ {a∗} if, for all p ∈ W , it holds
that Ep[u(a∗∗, zi)] ≤ Ep[u(a∗, zi)]. In this case, a∗∗ can be eliminated from A
because a∗ is definitively at least as good (in terms of expected utility) as a∗∗ is.

Theorem 4 If LPI according to W in (4.6) is on hand, an action a∗∗ ∈ A is
dominated by another action a∗ ∈ A \ {a∗∗} if it holds that

max

{
(1− β) max

1≤i≤M

{
ũ(a∗∗, zi)− ũ(a∗, zi)

}
(4.10)

+β Ep(z|d,U)[ũ(a∗∗, z)− ũ(a∗, z)],Ep(z|d,U)[ũ(a∗∗, z)− ũ(a∗, z)]

}
≤ 0 .

A necessary prerequisite therefore that condition (4.10) is fulfilled is that a∗

dominates a∗∗ in the respective focussed model.

PROOF. a∗∗ is dominated by a∗ if, for all p ∈W , it holds that

Ep[u(a∗∗, zi)]− Ep[u(a∗, zi)] = Ep[u(a∗∗, zi)− u(a∗, zi)] ≤ 0 .

This condition is satisfied if we have

max
p∈W

Ep[u(a∗∗, zi)− u(a∗, zi)] ≤ 0 . (4.11)

Because Ep[u(a∗∗, zi) − u(a∗, zi)] is also a linear function with respect to p, it
adopts its maximum at least in one edge of W . Compare lemma 4. Using the
notation ṽ(a∗, a∗∗, z) := ũ(a∗∗, zi)− ũ(a∗, zi), we obtain{

Ep[u(a∗∗, zi)− u(a∗, zi)]
∣∣∣p ∈ V (W )

}
=
{

Ep(z|d,U)[ṽ(a∗, a∗∗, z)]
}

(4.12)⋃{
(1− β) ṽ(a∗, a∗∗, z) + β Ep(z|d,U)[ṽ(a∗, a∗∗, z)]

∣∣∣i = 1, . . . ,M
}
.
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From this, one sees that condition (4.10) is a sufficient dominance criterion: taking
the maximum over (4.12), we just have to eliminate from the second set of the right
side these elements for that Ep[ṽ(a∗, a∗∗, z)] is surely not maximal.

Condition (4.10) can be fulfilled only if it holds that Ep(z|d,U)[ũ(a∗∗, z)] ≤
Ep(z|d,U)[ũ(a∗, z)], i.e., if a∗ dominates a∗∗ with respect to p(z|d, U). �

Example By the use of theorem 4, another proof for theorem 2 will be given:
we will show that E∗ dominates E∗∗ if the conditions in theorem 2 hold. To make
the decision theoretic framework from remark 2 applicable, it has to be assumed,
here, that there exist I∗, I∗∗ ⊆ {1, . . . ,M} such that E∗ =

⋃
i∈I∗ z

i and E∗∗ =⋃
i∈I∗∗ z

i hold. Additionally, it is again assumed that E∗ and E∗∗ are disjoint,
compare remark 1. Criterion (4.10) delivers the condition

max
{

b(E∗∗ ∩ U)− b(E∗),b(E∗∗ ∩ U) + a(E∗∗ ∩ U)− a(E∗)
}
≤ 0 .

(4.13)
The second element of the set in (4.13) is not larger than zero if it holds

b(E∗∗ ∩ U) ≤ a(E∗)− a(E∗∗ ∩ U) . (4.14)

The condition b(E∗∗ ∩ U) − b(E∗) ≤ 0 holds if a(E∗∗ ∩ U) − a(E∗) ≤ 0.
Because we have b(E∗∗ ∩ U) ≥ 0, the validity of (4.14) is sufficient to guarantee
this. Hence, theorem 2 has been proven.

The case E∗∗ ⊆ U \E∗ shows that the condition that the expected utility intervals
of the considered actions have at least one point in common is a sufficient but
not necessary condition for dominance: it holds

[
Ep[u(E,zi)],Ep[u(E,zi)]

]
=

[a[E],b[E]], E ∈ {E∗, E∗∗}. From theorem 2, one knows that E∗ dominates E∗∗

if a[E∗∗] ≤ a[E∗]. This is a weaker condition than b[E∗∗] ≤ a[E∗] is.

Regret With respect to LPI given by W ⊆ Rk, the regret RW (a∗) for an action
a∗ ∈ A is defined to be the maximal deficit (in terms of expected utility) that can
arise from the choice of a∗:

RW (a∗) := max
a∈A

max
p∈W

{
Ep[u(a, zi)]− Ep[u(a∗, zi)]

}
. (4.15)

For the determination of the expected utility intervals and for the checking of
the dominance criterion (4.10), it is possible to compute the necessary values of
ũ(a, zi) with respect to U ex ante, i.e., before the focussed posterior distribution
is known. For the regret values, this proceeding delivers only an upper bound:
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Theorem 5 If LPI according to W in (4.6) is given, it holds for each a∗ ∈ A that

RW (a∗) ≤max

{
Rp(z|d,U)(a

∗), (4.16)

(1− β) max
a∈A

max
1≤i≤M

{
ũ(a, zi)− ũ(a∗, zi)

}
+ βRp(z|d,U)(a

∗)

}
.

Thereby, Rp(z|d,U)(a
∗) := maxa∈A

{
Ep(z|d,U)[ũ(a, z)]− Ep(z|d,U)[ũ(a∗, z)]

}
is the regret in the respective focussed Bayesian model.

PROOF. Except for the notation, the set in (4.15) is equal to the set in (4.11).
Therefore, theorem 5 follows from a nearly analogous proceeding as the one ap-
plied at the maximization of the set in (4.11): performing an additional maximiza-
tion with respect to a, noting that this maximization is subadditive, and respecting
the definition of Rp(z|d,U)(a

∗) directly leads to (4.16). �

Example Let Z be finite, A = Z, and ũ(z∗∗, z) = 1{z∗∗}(z) such that
Ep(z|d)[ũ(z∗∗, z)] = p(z∗∗|d). Then, for z∗ ∈ U , it holds that

RW (z∗) = max
z∗∗∈U

{b(z∗∗)− b(z∗), a(z∗∗)− a(z∗), (1− β)− a(z∗)} .

The reader may verify this directly as done as in the proof of theorem 2 or
more straightforwardly as done in this section by using the results from Sec. 4.2.
Theorem 5 delivers

RW (z∗) ≤ max
z∗∗∈U

{b(z∗∗)− b(z∗), (1− β) + a(z∗∗)− a(z∗)} .

4.4 Application and Improvement of the Decision Criteria

At the application of the developed criteria, the decision maker should firstly elim-
inate the dominated actions from A. Also if no action which maximizes the ex-
pected utility with respect to all p ∈ W is identifiable, the decision maker may
be able to make a final decision: considering the expected utility intervals and the
regret values (or rather the respective bounds), he may be able to chose an action
which is guaranteed to be good enough with respect to the task at hand. Following
the principles of Lazy Decision Making [Pre02], the decision maker may render
the LPI more precisely in cases in that no action is acceptable in this sense.

He may improve the probability interval scheme by enlarging U . To show this, it
is assumed without loss of generality that U is enlarged to UL := U ∪ {zM} and
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that it holds p(d|z) ≤ δL for all z ∈ UL with a δL ≤ δ. Compare the beginning
of Sec. 2.2. By this, in (4.6), the inequality 0 ≤ pM gets sharpened to the equality
pM = pM+1 p(zM |d,UL)

1−p(zM |d,UL)
and the inequality pM+1 ≥ β gets sharpened to

pM+1 ≥
∫
U
p(d|z) p(z) dz∫

UL
p(d|z) p(z) dz + (1− P (UL)) δL

(≥ β) .

Hence, enlarging U results in LPI which is specified by a subset WL of the set W
in (4.6). This can lead to a shrinking of the expected utility intervals, a larger set
of dominated actions and smaller regret values. For the numerical evaluation of
the decision criteria, the new LPI can get redrafted: setting ML := M − 1, ZD :=
{z1, . . . ,zML+1}, p := (p1, . . . , pML+1) with zML+1 := UL, pi = p(zi|d) for
i ∈ {1, . . . ,ML}, and pML+1 := P (UL|d), the results from Sec. 4.2 and Sec. 4.3
are directly applicable by replacing M by ML.

Making the additional assumption that P (U |d) is not concentrated on small parts
of U , the decision maker may alternatively precise the LPI by the inclusion of
non-trivial upper bounds for pi, i ∈ {1, . . . ,M}. Obviously, this also leads to a
subset of W in (4.6). If he assumes pi ≤ 1−β

k with a k ∈ {2, . . . ,M}, the set
of edges V (W ) gets changed and formulas (4.8), (4.9), (4.10), and (4.16) must be
modified: the minimal and maximal values of the utility and utility differences of
actions with respect to U get substituted by the arithmetic means of the respective
k-th lowest and largest values. We remark that the case k = M corresponds to the
assumption that either P (U |d) = 0 or pi = 1−β

M , i ∈ {1, . . . ,M}, holds.

4.5 Generalization of the derived concept

Analyzing the previous results, it becomes clear how to proceed also in the case
that U is not a finite set. We will sketch this by deriving exemplarily a lower bound
for the expected utility of an action a ∈ A: because of (2.1) and (4.2), we have

Ep(z|d)[ũ(a, z)] = (1− P (U |d)) Ep(z|d,U)[ũ(a, z)]+P (U |d)Ep(z|d,U)[ũ(a, z)] .
(4.17)

(4.17) corresponds to a splitting of the expected utility of a with respect to p(z|d)
into a weighted sum of two different expected utilities: Ep(z|d,U)[ũ(a, z)] is the
expected utility of a within the focussed model. While the value of this quantity is
known, the value of Ep(z|d,U)[ũ(a, z)] depends on the completely unknown distri-
bution p(z|d, U). This means that, to obtain a lower bound for Ep(z|d,U)[ũ(a, z)],
all distributions on U have to be considered. Hence, we must assume that the
probability mass is concentrated as well as possible on these elements of Z for
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that ũ(a, z) is minimal. Then, to obtain the lower bound for Ep(z|d)[ũ(a, z)], the
weighting factors of the two expected utilities have to be adjusted such that the
lower bound for Ep(z|d,U)[ũ(a, z)] gets as much weight as possible if it is smaller
than Ep(z|d,U)[ũ(a, z)] and as low weight as possible, otherwise. Thereby, the
constraint (2.2) on P (U |d) has to be kept in mind. These observations lead to a
lower bound for Ep(z|d)[ũ(a, z)] which is consistent with (4.8). Of course, a upper
bound that is consistent with (4.9) is obtained analogously.

5 Conclusion

The reduction of the probability interval scheme to a unique posterior distribution
by the ME method may be reasonable to obtain a comprehensive representation
of the posterior knowledge as final result. If the size of U is low compared to the
total size of Z, usually, the ME distribution corresponds to the lower bounds in
the probability interval scheme. At subsequent (additional) decision making, the
direct use of the probability interval scheme makes more sense than its reduction
to a unique distribution. In the LPI case, the determination and estimation, respec-
tively, of common decision criteria under partial information is not excessively
costly, here–provided that the size of U is moderate and that specific values of the
utility function are calculable ex ante. In principle, results that have been easily
obtained for the LPI case are generalizable, here.
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Abstract: The engineering of production monitoring and control systems has
to be done before it can be taken into operation. This engineering splits up
into different tasks: engineering of plant components, engineering of I/O, and
engineering of process visualization. Today, these tasks are mainly processed
manually, are time- and cost-intensive and error-prone.

The project IDA deals with interoperable semantic data fusion for the au-
tomated provision of view-based process visualization. Its goal is to increase
efficiency in the engineering process and to simplify and improve the sub-
sequent operation phase. This contribution provides an overview about the
general architecture developed in the project and highlights several aspects of
the developed methods and tools.

1 Introduction

Process visualization forms part of a production monitoring and control system.
It component visualizes the monitored and controlled production process. One
example is depicted in Figure 1.1. Each of the images in a process visualiza-
tion shows another process step or provides a specific view on process data. The
process visualization serves not only for monitoring the production process, but
also for manual intervention. It bridges the gap between men and machine, and
provides the following functionality:

• Static and dynamic representation of values of the process signals and
production monitoring and control system variables
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• Manipulation of values of the process signals and production monitoring
and control system variables
• Representation and confirmation of alarms
• Representation and archiving of measured values
• Switch between different representation types or images

Figure 1.1: Example image of a process visualization

1.1 Motivation

The engineering of production monitoring and control systems aims for connect-
ing at the level of automation components, such as PLCs, with the production
monitoring and control system. Normally, the engineering of the corresponding
process visualization takes place as follows:

• The engineer specifies the production process, including plant and cell lay-
out, material flow and control equipment. Plant and control equipment is
represented either by graphical objects or by I/O fields. In this step, the
type (overview, topology, detail) and number of images and the navigation
through them is determined.
• The engineer connects the real process signals with specific elements of the

configured plant and control equipment. In this step, selected objects of the
process image are dynamized to change their appearance dependant on the
process values or react on user interaction.
• Before the real startup and test at the plant, there is more and more often a

simulation-based virtual startup and test.
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This is done mainly manually and it is time-/cost-intensive and error-prone. The
information processing depends highly on the abilities and preference of the en-
gineer, as there are no standards for the discrete production industry. The process
visualization shall be as standardized as possible, but as individually as necessary.

1.2 Goals and Innovation

The approach tries to achieve different goals:

• Process visualization shall be generated automatically using already existing
information and its interpretation by semantic relations.
• The manual and error-prone part of the work shall be reduced.
• The quality of the solution shall be increased. This shall be done by the

provision of different views independent of system and application.
• The work of the plant operator shall be simplified by additional visualiza-

tion.
• Errors shall be avoided by more ergonomic visualization

1.3 Approach

An overview about several basic parts developed in the project is given in Fig-
ure 1.2. One part deals with the model-specific data interpretation and the inter-
pretation of the fusioned data. Challenges are to design the data model being able
to integrate all examined information in one data format and to introduce seman-
tic. Another part deals with the development of data models, their semantic fusion,
and the algorithms for view generation. The export of the acquired information in
different visualization systems is also one of the key tasks. All developed methods
have to be easily adaptable to future views and interfaces.

2 AutomationML as Integrated Data Exchange
Format

AutomationML [Dra09, Aut10, SD09, DLPH08] is an open, independent, XML-
based data format for the exchange of plant planning data. It tries to bridge the gap
between product development and production. It aims to enhance the interoper-
ability of production-related IT tools and can be used for all phases of engineering.
The general architecture is depicted in Figure 2.1. The topology of objects and re-
lations between them is described by means of the format CAEX (Computer Aided
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Figure 1.2: Approach of IDA

Engineering Exchange) [FEDF03]. For geometry and kinematics, Automation ML
integrates COLLADA (COLLAborative Design Activity) [AB06]. Logic and be-
havior is introduced by means of PLCOpenXML [PLC10]. The combination of
these standards and their linkage using CAEX opens up completely new possibili-
ties for applications, such as the integrated process description. Furthermore, it is
designed to integrate further relevant XML based data exchange formats for rele-
vant topics. The current model is scalable. For the IDA goals, only the top-level
format CAEX and the geometry area with Collada are important.

2.1 CAEX

CAEX [FEDF03, FD05] has been developed in cooperation with the Department
of Process Control Engineering of the RWTH Aachen and the ABB Research Cen-
ter in Ladenburg. It is defined in the IEC62424 standard. CAEX is a semi-formal
data description language, which is based on XML. It contains an XML meta
model for describing the setup and structure of plant data. First and foremost,
the format supports library concepts and object-oriented approaches. It is possible
to integrate libraries from users and suppliers as well as project-specific libraries.
In addition, both a top-down and a bottom-up system design are supported. The
technical innovation of this approach is the syntactic and semantic unification of
the data. This allows the required configuration algorithms to be decoupled from
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Figure 2.1: General architecture of AutomationML [DLPH08]

the data sources. [SDS08] CAEX consists of three types of libraries: Interface-
ClassLibraries, RoleClassLibraries and SystemUnitClassLibraries. In addition to
these libraries, there is the InstanceHierarchy which models the specific plant. An
InterfaceClassLibrary consists of one or many InterfaceClasses. They are used
to model interfaces for communication or the topology, or, briefly, to create rela-
tions between elements within the CAEX model. The interfaces themselves do not
include any connection; rather, they are mere connection points. The functional
RoleClasses are described within the RoleClassLibraries. The roles are used to
describe the semantics of elements. Examples of roles include conveyors, turnta-
bles, or robots. Roles do not contain information about the internal structure of
elements. They define general attributes and interfaces for these objects. Syste-
mUnitClassLibraries consist of the description of complex plant components, the
SystemUnitClasses. They contain specific information about their functionality
and structure. The semantic is then introduced by assigned RoleClasses. Instances
serve for the modelling of concrete real-world plant objects in an InstanceHier-
archy. In the described approach, the InternalElements are always instances of
SystemUnitClasses. In this part of the data model, planning data and parameters
are stored. These main components of CAEX form the basis for a CAEX file. In
addition, there are further elements, which serve the purpose of detail specification
or definition of links between the elements.
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2.2 Collada

Collada is an exchange format for interactive three-dimensional contents. It de-
scribes the geometric shape of an object. One advantage of Collada are precise
object descriptions which are represented by meshes. But there are still other types
of information which can be integrated: information about kinematic, material and
structure. The information within a Collada XML file is easily readable for men
and machine. [AB06]

3 General Architecture Developed in the
Project IDA

As already shown in Figure 1.2, the general architecture (developed in the project
IDA) is divided into the IDA fusion assistant and the IDA image assistant.

3.1 Import and Merge

Import and merge of data is done in the IDA fusion assistant (see Figure 3.1).
Several possible data formats can be imported. CAEX describes the topology
and I/O connection. This can be handled by the EA importer developed in the
ProduFlexil research project [SBO+09, EOB07]. The 2D topology and geometry
can be handled by a CAEX importer. The Collada importer deals with the three
dimensional geometry or layout. One additional data format used for hall layout
is DXF. This format is integrated by a DXF2COLLADA converter. In the end, a
data merger integrates all these information and builds up one single description.

Figure 3.2 shows the integration of AutomationML and Collada used in IDA.
Topology and I/O connections are described in CAEX. 3D geometry is described
in Collada. The 2D data of the hall layout serves for the positioning of the spe-
cific 3D geometries. All this forms part of an AutomationML model which acts as
provider for the generation of the process visualization.

The Drawing Interchange Format (DXF, [Wik10]) is an ASCII-based standard,
which was specified by Autodesk. DXF describes a CAEX model as vector
graphic. Supported geometry elements are point, line, circle, spline, etc. In Fig-
ure 3.3, the relation between a 2D hall layout, an AutomationML model, 3D detail
information, and the generated process visualization can be seen. The DXF lay-
out is used to determine the position and orientation of the plant component (in
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Figure 3.1: IDA fusion assistant

Figure 3.2: Data integration with AutomationML

this case: a robot) in the production cell, line or hall. This position and orienta-
tion is introduced in an AutomationML-CAEX-frame attribute which consists of
the 3D position coordinates and Roll-Pitch-Yaw angles. The frame forms part of
the AutomationML object of the robot in the InstanceHierarchy. At the same Au-
tomationML object, the Collada 3D geometry is linked in by an ExternalInterface
of type ColladaRepresentationInterface. The DXF data can be used additionally
by transforming it to Collada geometry data. A complete AutomationML scene
consists of different AutomationML objects in the InstanceHierarchy. They are
derived from SystemUnitClasses, and have a corresponding RoleClass to define
their semantic. Furthermore, they posses different interfaces which connect them
to other AutomationML objects.
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Figure 3.3: IDA information fusion

One of the application examples is a transport line consisting of six conveyors,
four turntables and a test station. Every conveyor is an InternalElement (Automa-
tionML object) in the InstanceHierarchy. It is derived from a SystemUnitClass
Bidirectional conveyor and posseses the role conveyor. It has different External-
Interfaces such as the ColladaRepresentationInterface for linking corresponding
3D geometry to the object and Order to describe the material or process flow. By
means of the frame attributes at each of the InternalElements, a complete scene of
this production cell can be built up. This scene is shown in Figure 3.4.

3.2 Processing and Projection

After merging all information into one consisting AutomationML model, there are
still several problems concerning the representation of the objects in the process
visualization. First of all, many of the process visualization at the market support
only two dimensional. Furthermore, these systems would be overextended by the
detailed geometries of the CAD because they do not concentrate on one specific
plant component, but often deal with up to 50 components in one image. The
difference is outlined in Figure 3.5.
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Figure 3.4: IDA application example - demo line

Figure 3.5: Abstraction problem

The problems by breaking down three dimensions into two are various. Figure 3.6
shows that depending on the point of view on the object (here: top), the underlying
object cannot be determined unambiguously. In the figure, both objects at the left
have the same top view.

The silhouette of an object is also problematic. It can falsify the look of the object
of the user. One essential point for process visualizations is that users recognize
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Figure 3.6: Representation problem

the depicted objects and their types easily. Therefore, this is a problem. Figure 3.7
depicts how a cuboid or a robot can look like as silhouette. It is not always possible
to recognize this as cuboid or robot without any additional information. The visible
edges in contrast to this are rich of information. The problem there is that the
objects remain very complex in this representation.

Figure 3.7: Contour problem

For the processing and projection of the geometries/the representation there are
several steps and complexity levels.

3.2.1 Projection Level One

On level one, bitmaps are used for every objects. That means that the three dimen-
sional geometries are screen captured from different point of view like top, front,
back, side,iso (see Figure 3.8). These bitmaps can then be imported in the process
visualization. The disadvantage of this case is the dynamization of the objects.
If the state of a plant component connected to this object is erroneous, the whole
object blinks in red for example. If there are overlapping objects, this becomes
very quickly confusing. One possible extension or improvement can be made by
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generating bitmaps for each part of the plant components itself. This concept
is integrated as on-top-plugin in an existing layout manager for the visualization
system (see [SS08, SS09]).

Figure 3.8: Views

3.2.2 Projection Level Two

The level two approach in IDA is to take a Bitmap and generate an overlaying
contour element (Figure 3.9). Advantages are the easy structure (bitmap) of the
object and that there is no need to reduce information in this case.

3.2.3 Projection Level Three

The level three approach deals with the handling of complex objects (see left side
of Figure 3.10). The first step the projection from 3D to 2D. This is in this case
done by a parallel projection (instead of for example a central projection or an
intersection). Therefore, every point coordinates in the Collada description is pro-
jected to the x-z-, y-z-, x-y-, or ISO-layer. Before that, the visible contours are
extracted by a calculation via the normals of the triangles. If a normal of a surface
triangle ‘looks into the direction of the camera’, it is visible and in the foreground
and is extracted for the whole projection. This can be calculated by proving, if the
normal multiplied with the unit vector and normalized is greater than zero. After
having generated such a two dimensional, geometry in the three dimensional space
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Figure 3.9: Silhouette and bitmap fusion

(as on the right hand of Figure 3.10), the complexity has to be reduced, because vi-
sualization systems have to process a big amount of such objects in an acceptable
timeslot.

Figure 3.10: Contour extraction and reduction
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3.3 View Generation

The view generation consists of several steps and is highly related to the ex-
port (both are depicted in Figure 3.11). Altogether they build up the IDA image
assistant.

Figure 3.11: IDA image assistant

The user can configure how the views and images shall be generated. The user
defines representations, image grouping and configures in this way his personal
view. Figure 3.12 shows how the components work together. The user gets an
AutomationML file consisting of topology and geometry. He defines or has already
defined which views shall be generated. This information is given altogether with
the AutomationML file to the view provider. The view provider generates with
the information or list of actions a reduced view. The configuration can be seen as
manual for view generation.

3.4 Export

In the end of the process (see Figure 3.11), the reduced view has to be ex-
ported to the process visualization system. Therefore, the data is in the case of
ProVis.Visu R© converted to OIF which is a proprietary XML based data format.
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Figure 3.12: View generation

This interface helps to import and manipulate the system-specific data. For each
visualization system a specific exporter has to be developed.

4 Summary

In this contribution, the general architecture developed in the research project IDA
was explained. Figure 4.1 depicts the sample process through all developed meth-
ods and tools. Starting with the import of data from different sources, the acquired
data is then fusioned. After that, the data is processed, and projections from three
to two dimensions are created. The views on these data are applied and these will
be exported to the proprietary process visualization format. All concepts were
tested by means of the mentioned application example. In the field of view gen-
eration and processing/projection there is still a big range of open questions and
research topics.

Figure 4.1: IDA process
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Abstract: In order to robustly perform SLAM (Simultaneous Localization
and Mapping), places need to be recognized when they are visited again.
In the deep-sea environment SLAM-assisted navigation based on side-scan
sonar data benefits from using three-dimensional features of the environ-
ment as they are much less view-dependent than classic 2D features. Ob-
taining these features requires processing of the sonar data as the side-scan
sonar sensor readings contain three dimensional information only indirectly.
To extract that information the ensonification process needs to be inverted.
This inversion is an ill-posed inverse problem and therefore regularization is
needed before a unique solution can be found. Once the true seabed shape is
reconstructed, wide area SLAM techniques can be applied.

1 Introduction and Existing Work

The process of robustly navigating an autonomous underwater vehicle (AUV)
through unknown terrain using side-scan sonar data and an inertial measurement
unit (IMU) is a multi-layered process. The first stage involves transforming the
side-scan sonar data to a 3D representation of the environment. Afterwards, sig-
nificant features of the environment have to be identified. Using the extracted
features and the data of the inertial sensors a SLAM method can be employed.

The paper is structured as follows. First, related work to underwater SLAM is
presented. In Section 2 the challenge in side-scan sonar reconstruction is explained
and it is shown how data is preprocessed for the regularization steps (Section 3.1)
where a state-of-the-art method to tackle the problem is explained. Section 4 shows
a hybrid SLAM concept that is suitable for deep-sea applications and gives an
outlook to further developments. In Section 5 a short peek of the used hardware is
given.
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1.1 Loop-closing

An essential task of every SLAM system is the closing of trajectory loops, e.g.,
detecting that exactly the same spot has been visited before. Johnson-Roberson
et al. [JPWM10] perform loop closing in a shallow water environment with a stereo
camera. With the great amount of information obtained by high resolution color
camera images, the resulting loop closures are very reliable and accurate.

For a similar approach in the deep-sea it would be necessary to artificially illumi-
nate the environment. However, turbid water and energy constraints make classic
lighting impossible. In the future, gated viewing solutions using a very short laser
pulse and precise camera shutter timing may enable image-assisted loop-closing
also in the deep sea.

It is difficult to apply this technique to side-scan sonar data only as the side-
scan sonar provides gray level image lines which contain much less information
compared to high-resolution 2D color images.

1.2 Dead-reckoning

In order to build a robust SLAM solution one has to deal with cases where the
AUV is unable to detect features in the environment either because of sensor error
or simply because the environment is lacking significant features. Without envi-
ronmental features the dead-reckoning navigation of the vehicle is the only source
of ego-motion estimation and therefore has to be calibrated carefully.

Jakuba et al. show in [JPW10] that with sophisticated calibration methods very
small navigation errors can be achieved. To correctly calibrate the compass they
performed star-shaped test dives. The trajectory obtained through camera-based
visual SLAM served as ground truth. That way they could calibrate the compass
readings according to that ground truth. With their calibration they can bridge
several minutes without observing external features. They also investigated the
influences of the tides on the depth measurements.

1.3 SLAM in Man-made Environments

SLAM for underwater man-made environments (e.g., a marina) using sonar sen-
sors was investigated in [?]. They use a mechanically scanning imaging sonar
sensor (MSIS) that is rotating while taking measurements. That way the vehicle
repeatedly gains a full 360◦ view of the environment. Depending on the sensor
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settings it takes only several seconds for a full 360◦ scan. Due to the sensor prin-
ciple the measurements are carried out in a polar coordinate frame. Applying the
Hough-Transform to the data, they are able to detect lines that correspond to the
man-made walls. Eventually, their environment map in which the vehicle localizes
itself and navigates consists of these lines.

The approach was refined to a scan matching approach in [MRRH10] that does not
rely on line-shaped structures any more.

2 Data Preprocessing

The main difficulty in performing SLAM on side-scan sonar data is the ambiguity
in the sensor readings itself: the side-scan sonar records an echo amplitude over
time, i.e., with no spatial information where that echo came from but only when it
arrived (two-way travel time). Furthermore, a certain echo tells only whether there
is a reflector or not and how strong the reflectance is. Unfortunately, the reflectance
strength is only partially linked to the reflector’s geometry. Amongst other things
the echo strength is also dependent on the sediment material, water absorption and
the grazing angle (denoted β in Figure 2.3). More information about this problem
and related research in that field is given in [WF10].

Before the three-dimensional reconstruction of the environment based on the side-
scan sonar data can take place the sonar data has to be pre-processed: The first
bottom return has to be found and the sonar data is mapped to ground coordinates
(slant range correction).

2.1 First Bottom Return

Before the side-scan sonar pulses reach the ground they propagate through the
water beneath the AUV which results in a silent period after the sending peak at the
beginning of each line as water does not produce an echo. After the silent period
the first echo is received. The time until the first echo arrives is the two-way travel
time of the sonar signal and thereby gives information about the distance to the
nearest reflecting object which is assumed to be the seabed perpendicularly below
the vehicle. That assumption does not always hold as can be seen in Figure 2.1.
This fact is mostly neglected as the seafloor shape can often be approximated by a
plane and the error is usually not too large. Hence, this first echo is called the First
Bottom Return (FBR) and its detection can be seen as an additional altitude sensor
which can be combined with altitude measurements of another sensor.
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Figure 2.1: The FBR is not necessarily an echo from perpendicularly below the
vehicle and therefore not always equal to the altitude of the vehicle. However, in a
deep-sea environment it is assumed to be the case most of the time.

Before the detection of the FBR the sonar line is filtered by a median filter to
reduce the influence of speckle noise while preserving discontinuities for a more
robust detection. Speckle noise stems from the side-scan sonar being a coherent
recording method. Rank value filters, for example a median filter, are very effective
against this type of noise [RVRV95].

In Fig 2.2 the FBR is detected as the first occurrence of two adjacent sonar sam-
ples that are more than 1.7 standard deviations apart from the mean value of the
sonar line. The threshold value is determined empirically for every sensor config-
uration in advance. However, an automatic derivation and adaptive behavior of the
threshold is possible and will be added in the future.

The FBR detection applied is strictly per-line. Under the assumption that the first
return always stems from perpendicularly beneath and that the surface geometry is
not changing too quickly one could also apply Kalman filtering in time to smooth
the detection and limit the influence of outliers as occasionally a stronger echo that
arrives later could be mistaken for the FBR.

2.2 Slant Range Correction

In order to obtain ground coordinates (e.g., to perform the aforementioned regu-
larization) the sonar image has to be slant range corrected when the sonar altitude
is known either from detection of the FBR or from additional sensor readings. The
geometric configuration is depicted in Figure 2.3. The original data can be thought
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Figure 2.2: Per-line detection of the FBR (red) on side-scan sonar data. The plot
shows the echo intensity over time.

Figure 2.3: Geometry of slant range correction

of lying on the rs ray (brown). The data of the water column (before the FBR) is
mapped to the height h and the part starting at the FBR until the end is mapped to
the ground rg (green).

This correction is a non-linear distortion and its effect on a sonar image is depicted
in Figure 2.4 where the signal part from the FBR to the end are shown. The
strongest effect is seen for the near-nadir parts of the sonar image (left hand side
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(a) Before slant range correction. (b) After slant range correction.

Figure 2.4: Sonar image slant range correction. The part containing the water
column up to the FBR has been removed.

in Figure 2.4b)). For longer ranges the difference between slant range and ground
range diminishes as the grazing angle β is decreasing.

All sonar lines in the image are corrected with the same depth value, derived from
the median of the FBR detections in the whole observation window, assuming
constant altitude and a flat seabed. This is necessary to apply the regularization
process of [CPL07] which is detailed in Section 3.1.

rg =
√
r2
s − h2

cosβ =
rg
rs

In Figure 2.3 and in the above equation rs denotes the slant range, rg denotes the
ground range and h the sensor altitude.

3 Estimating Seabed Shape from Side-Scan Sonar
Data

To obtain the seabed shape that created a particular echo one has to invert the
ensonification process. As it is known how sonic waves propagate in water and
how they are reflected on objects, inverting that process means estimating what
kind of shape may be responsible for a certain echo. This is done through a so-
called forward model that performs a simulation of the ensonifying process and
the echo generation.
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However, there is a multitude of environmental parameters that alter a sonic echo,
e.g., sediment type, water temperature, salinity, sonar beam form, etc. It is not
feasible to incorporate all of them into such a forward model as there are only
few measurements and infinitely many possibilities to adjust parameters. Besides,
computation time restrictions call for a simple but sufficiently accurate model.

An overview over different sonar simulation models is given in [CPL07].

3.1 Iterative Optimization

Incorporation of a priori knowledge or assumptions about the seabed to make the
problem invertible are called regularization. Coiras et al. proposed a powerful
method for the inversion process, where they investigated different regularization
strategies ([CPL07] and [CG09]).

Their inversion method is an iterative approach, the basic principle is shown in
Figure 3.1. Initially, in [CPL07] a flat seabed is assumed and the sonar data is
slant range corrected (see Section 2.2) before the estimation starts. Within an
Expectation-Maximization (EM) framework they optimize the seabed shape to be
close to the truth. With a forward model they simulate an echo response for a
given seabed shape and compare it to the measurements taken. The difference be-
tween simulation and measurement indicates whether the model represents reality
already correctly and where it needs further adaptation. Then, parameters are ad-
justed accordingly. Then, the simulation with the forward model is done with the
updated parameter set and the difference is examined again. This is repeated until
the difference between the simulated echo and the measured echo falls below an
error threshold or until the model is unable to diminish the difference further.

3.2 Regularization Techniques

In this iterative cycle the regularization is performed after each iteration step: For
example in [CPL07] it is assumed that the sensor’s beam form is constant over
time. That means that every surface patch pointing to the sensor at a certain angle
is subject to the same beam form model parameter even across sonar scan lines.

In [Woo10] it was illustrated that no information about the surface shape is ob-
tained in areas that are not reached by the sonic waves (so-called sonar shadows).
It is assumed that in such areas the seabed does not behave differently than in
the directly adjacent areas. It is therefore plausible to assume the model param-
eters describing the reflectance properties of the sediment are similar both in the
shadowed areas and the surrounding non-shadowed areas.
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Figure 3.1: Iterative estimation process of the seabed surface shape.

Additionally, as another regularization restriction it could be assumed that sedi-
ment composition in general changes rather slowly and not with each sonar sample
which corresponds to smoothing the reflectance map.

It is also possible to introduce smoothness constraints to be imposed on the re-
constructed surface. The rationale is that between two scan lines and two sonar
samples the changes of the surface height are assumed to be minor (i.e., no needle-
shaped seafloor). Thus, the connection between the surface points should also be
continuous and may have matching derivatives (first and higher derivatives, de-
pending on the level of intended smoothing). However, this method is prone to
smooth out interesting surface details. Coiras et al. try to avoid this effect using
different surface constraints, e.g., based on a deformable mesh with forces between
the mesh points [CG09].

Further, Coiras et al. achieved much better reconstruction results with a hierar-
chical approach using an image pyramid. That way, the coarser surface parts are
reconstructed first while the details are recovered later in the stages with finer res-
olution. This helps to avoid local minima in the optimization process. In addition,
the subsampling reduces the image noise which helps the optimization process to
converge quicker in the low resolution stages.
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Using synthetic aperture sonar (SAS) data the method can be modified [CG09]
to work in polar coordinates. With SAS it is not necessary to estimate the beam
form of the sonar sensor in contrast to the side-scan approach [CPL07] as it can be
assumed as being uniform. In the procedure for SAS data the surface is modeled
as a deformable elastic mesh where forces between the grid points make sure that
smoothness requirements are met.

The method in [CPL07] is related to [LH91] who worked their way from nadir
towards the peripheral areas by summing up differential surface patches. A de-
tailed description of this Propagation Shape-from-Shading and a comparison to a
Fourier-based approach is done by [DBL04].

3.3 Extension

In order to perform SLAM with the reconstructed seabed surface, the mentioned
inversion methods need to be extended so that curved trajectories and varying
AUV altitudes may be also considered as AUVs drive turns and are unable to
perfectly maintain a constant flying altitude. With an ego-motion estimation based
on inertial sensors the reconstruction may be modified accordingly to obtain an
undistorted map.

4 SLAM Concept

4.1 3D Features

SLAM approaches that use higher-level landmarks opposed to plain point cloud
data feature a more robust recognition and distinction. Spline features ([PDM+07]
[PRLM+09]) are an example for such landmarks. They are more robust because
formulated as a spline one landmark comprises multiple points and as a result small
variations of the input points in general do not alter the overall shape of the spline
much. Three-dimensional landmarks may be compiled of several one-dimensional
splines in space that have one point in common or may even consist of full spline
surface patches.

A comprehensive overview of other features that may be used for three-
dimensional SLAM applications is given in [Run10].
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4.2 Hybrid SLAM Concept

In order to achieve long underwater mission durations, the used SLAM algorithm
needs to be carefully chosen. Furthermore, it is important to balance computing
requirements and the stability of the SLAM solution.

In [BB08] Brooks and Bailey propose a combined EKF/FastSLAM framework
termed HybridSLAM. It tries to retain the best of both SLAM approaches while
mitigating their respective weaknesses. FastSLAM works by approximating the
true probability distribution of the vehicle paths and maps by particles and can
therefore inherently track multiple hypotheses about the path taken and the re-
spective map of the environment. However, the approach suffers from so-called
particle depletion which means that the longer the filter runs the more certain it
becomes about the beginning of the path trajectory and the oldest parts of the map.
It more and more “forgets” about other possibilities in the past. On the other hand,
the EKF can only maintain a single hypothesis and wrong associations between
measurements and landmarks are “remembered” forever and may eventually lead
to divergence of the filter. The idea is to use a FastSLAM front-end and an EKF
back-end. The rationale behind the concept is that for the most recent measure-
ments the FastSLAM algorithm can deal better with wrong associations by main-
taining multiple path and map hypotheses. The parts of the map about which the
FastSLAM filter has become “more confident” over time are placed inside an EKF
as submaps. Until then the risk of wrong submap associations has become very
low and the EKF will most probably remain stable.

Other submapping approaches that tackle the same problem are Fairfield’s
SegSLAM [Fai09] and Bosse’s ICP-based map matching [BZ08].

5 Hardware

The computing devices are placed inside a glass sphere that can withstand water
pressure up to 10000 m. The main difficulty is to integrate a powerful processing
unit while at the same time managing heat transfer and placing all components in
the small volume of the sphere. For the on-board sonar data processing, feature
extraction and the SLAM algorithm we will use an embedded PCI/104 board using
an Intel Core2DuoTM SP9300 processor. The inertial measurements are provided
by an Xsens MTi. Data logging is done with an Intel 1,8′′ Postville SSD as SSD
technology provides high speed and shock resistance. The hardware is pictured in
Figure 5.1. Not shown are the two side-scan sonar sensors that are connected via
USB.
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(a) View from below:
PCI/104-Module
with heat spreader
baseplate.

(b) Top view: inertial
measurement unit
and SSD data stor-
age.

(c) Pressure hull made
of glass resistant to
10,000 m water
depth.

Figure 5.1: Hardware of the sensor data processing module.

The cooling solution consists of an aluminum baseplate that serves as heat spreader
to conduct the heat to the titan flange of the sphere which in turn is cooled by the
surrounding seawater. All metal-metal connections have thermal grease applied to
feature better thermal conductance.

6 Conclusion

The systematic process of creating an underwater SLAM solution that is suitable
for deep-sea applications has been shown using inertial measurements and side-
scan sonar. The challenge to invert the side-scan sonar image creation into a 3D
representation has been discussed. A suitable SLAM architecture for long deep-
sea missions and the chosen hardware layout have been outlined.
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Abstract: Planning cooperative motions of multiple vehicles is a task of high
computational complexity. However, real-time performance is required in ap-
plications such as cooperative collision avoidance for road vehicles, enforcing
a trade-off between computing time and solution quality. In this report, sev-
eral motion planning algorithms are compared with respect to these criteria.
The considered algorithms are a tree search algorithm relying on precomputed
lower bounds, the elastic band method, mixed-integer linear programming,
and a priority-based approach.

1 Introduction

In recent years, an increasing number of vehicles has been equipped with sensor-
based driver assistance systems and drive-by-wire actuators [Bis00]. Furthermore,
many researchers have shown the feasibility of vehicle-to-vehicle communication
[HL08]. Taken together, these technologies offer the foundations for the devel-
opment of a cooperative collision avoidance and mitigation system. In dangerous
situations involving multiple vehicles, automatic intervention of this assistance
system might prevent accidents. Human drivers are often unable to initiate the ap-
propriate actions, as they have a considerable response time and few possibilities
to coordinate their actions with other drivers [BWB09].

Planning cooperative maneuvers which avoid or mitigate accidents is an important
requirement for the proposed system. Previous work has considered cooperative
motion planning mainly in the context of robotics, and decoupling strategies like
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path-velocity decomposition and prioritized planning prevail. However, the re-
quirements in robotics are somewhat different from dangerous traffic situations in
which the vehicles have significant dynamics.

1.1 Contributions

This report investigates different algorithms for planning cooperative motions in
dangerous traffic situations. The algorithms are examined by simulating several
scenarios. Both computing times and success rates are compared. It is shown that
the suitability of the algorithms varies with the scenario.

1.2 Structure

The paper is structured as follows. In Section 2, the cooperative motion planning
problem is formalized. Section 3 presents the four algorithms considered: a tree
search algorithm, mixed-integer linear programming, the elastic band method, and
a prioritized approach. Results of the comparison are reported in Section 3, and
Section 6 presents some conclusions.

2 Problem Formulation

The configuration of a vehicle ci is denoted qi ∈ Qi. A motion planning algorithm
has to compute a motion trajectory, which is a continuous function from time into
configuration space, [0, tmax]→ Qi. The configuration of a vehicle is a parametric
specification of its entire geometric position [LP83]. A common approximation is
a rectangular vehicle geometry and a configuration restricted to the position and
orientation on the road plane, qi = (xi, yi, φi)

T. The resulting configuration space
is the manifold Qi = R2 × S, where S denotes the unit circle [LaV06].

The motion plan has to respect several constraints, caused by static and moving
obstacles, road boundaries and the kinodynamic capabilities of the vehicle.

Cooperative motion planning involves multiple vehicles which have to avoid col-
lisions among each other. For M vehicles, the composite configuration space
Q = Q1 × . . .×QM results.

Altogether, the motion planning task for M vehicles can be formalized as follows:
compute a continuous trajectory [0, tmax]→ Q = Q1 × . . .×QM which

1. starts at the initial states of the vehicles,
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2. avoids collisions among the M cooperative vehicles, considering their
geometric models,

3. avoids collisions with both static and moving obstacles,

4. keeps the vehicles on the road area, and

5. respects the kinematic and dynamic constraints of the vehicles.

Additionally, a goal region is specified usually. This has been omitted here because
collision avoidance is the main objective in dangerous situations. Motion planning
is required in this application due to the multi-vehicle coordination problem, the
moving obstacles and the dynamic constraints. This cannot be achieved with path
planning algorithms which neglect the velocities along the path.

3 Algorithms for Cooperative Motion Planning

In this section, four different algorithms for planning cooperative motions are
described. Specific advantages and drawbacks of each method are pointed out.
Three of the algorithms try to exploit the full potential of cooperative actions. Ta-
ble 3.1 summarizes the characteristics of these methods. The fourth method is a
state-of-the-art prioritized planner, which is used as a baseline in the comparison.

3.1 Tree Search

The tree search method has been proposed in [Fre10, FB10] and is only sketched
briefly here. A setAi of actions like maximum braking, steering, etc. is defined for
each vehicle. The execution of an action by vehicle ci can be simulated by means
of a state-space model fi. An action is performed for a predefined interval of time
before the next decision is made. Therefore a tree of possible action sequences
results. The tree has AT leaves for a single-vehicle motion planning problem and
AM ·T leaves for cooperative motion planning, where A is the number of actions
considered per vehicle and T is the number of decision points. Action sequences
are rated using a loss functional which penalizes violations of the constraints listed
in Section 2. The algorithm has to find the action sequence having minimum
accumulated loss within the tree.

Even for moderate values of A, M , and T , the tree grows too large to be con-
structed entirely. Therefore pruning techniques are applied in order to avoid
searching subtrees which cannot contain the optimal solution. The pruning relies
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on lower bounds for the loss values. If the loss within a subtree is guaranteed to be
higher than the minimum loss found so far, the subtree can safely be discarded. The
bounds are obtained in a precomputation stage by evaluating all action sequences
of each single vehicle. This approach is effective because many components of
the loss functional only depend on the decisions of one vehicle. Different search
strategies may be used within the cooperative tree, including branch and bound
search and A* search.

An important advantage of the tree search formulation is the use of explicit vehi-
cle, loss and action models, which can be chosen in the level of detail appropriate
for the task under consideration. By shifting most of the computational effort into
the precomputation stage, running times become more predictable, increasing the
real-time capability of the algorithm. The algorithm offers good parallelization po-
tential, e.g., the precomputation can be distributed by assigning one processor core
for each vehicle. The main drawback of the tree search method is the coarse dis-
cretization of actions and time which is required in order to achieve computational
feasibility.

3.2 Mixed-Integer Linear Programming

A linear program consists of an objective function, equality and inequality con-
straints, all of them being linear in the real-valued variables. An extension is
mixed-integer linear programming (MILP) which constrains some of the variables
to be integer, or—as a special case—binary. As standard software is available for
solving MILPs, it is appealing to formulate cooperative motion planning in this
framework. In recent years, there has been some research in this direction, with
focus on the air traffic domain [SDMFH01, BSRB06, RH02].

Variables pi,k = (xi,k, yi,k)T denote the position of vehicle ci at time t = k ·∆t
within a planning horizon k = 0, . . . , T . Further variables vi,k, acci,k are intro-
duced for velocity and acceleration vectors, together with appropriate inequality
constraints based on vehicle dynamics. They are coupled by equations describing
a linearized version of a state-space vehicle model:

vi,k+1 = vi,k + ∆t · acci,k
pi,k+1 = pi,k + ∆t · vi,k

Binary variables bi,j,k,l, 1 ≤ i < j ≤ M are required for the collision avoidance
constraints:
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xi,k − xj,k + bi,j,k,1 · C > di,j

yi,k − yj,k + bi,j,k,2 · C > di,j

−xi,k + xj,k + bi,j,k,3 · C > di,j (3.1)
−yi,k + yj,k + bi,j,k,4 · C > di,j

4∑
l=1

bi,j,k,l ≤ 3

bi,j,k,l ∈ {0, 1} k = 1, . . . , T

Therein, di,j is the minimum distance to be enforced between the vehicle reference
points (xi,k, yi,k)T and (xj,k, yj,k)T at time k ·∆t, and C � 0 is a large constant.
This formulation makes use of a well-known modeling technique to transform a
disjunction of inequalities into a conjunction, which is the standard semantics of
MILP constraints [Sie96]. Only one of the first four inequalities has to be active,
while the others can be trivially satisfied with bi,j,k,l = 1. The binary variables
thus describe on which side the vehicles pass each other. It may be necessary
to discretize the space of directions into more than the four paraxial directions
of (3.1). This can be accomplished by additional separating half-planes [ED07].
Obstacle avoidance is modeled in the same way, the only difference being that the
position of the second object is no longer variable. Complex obstacles may be
represented by a covering of several geometric primitives.

The constraints (3.1) turn out to be too restrictive for road traffic applications: if
di,j is chosen large enough to ensure collision avoidance, vehicles can no longer
pass each other on neighboring lanes. An accurate modeling of a vehicle as an
oriented rectangle is impossible because of the nonlinearity of rotation equations.
Therefore the following workaround is chosen: collision avoidance constraints
are imposed not only on the positions of the same time index k, but also on the
positions of the time indices k − 1 and k + 1 which immediately precede and
follow the reference time k, respectively:

xi,k − xj,k−1 + bi,j,k,5 · C > di,j

yi,k − yj,k−1 + bi,j,k,6 · C > di,j

−xi,k + xj,k−1 + bi,j,k,7 · C > di,j

−yi,k + yj,k−1 + bi,j,k,8 · C > di,j
8∑
l=5

bi,j,k,l ≤ 3

bi,j,k,l ∈ {0, 1} k = 2, . . . , T
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xi,k − xj,k+1 + bi,j,k,9 · C > di,j

yi,k − yj,k+1 + bi,j,k,10 · C > di,j

−xi,k + xj,k+1 + bi,j,k,11 · C > di,j

−yi,k + yj,k+1 + bi,j,k,12 · C > di,j
12∑
l=9

bi,j,k,l ≤ 3

bi,j,k,l ∈ {0, 1} k = 1, . . . , T − 1

Thereby the passing distance di,j can be lowered. This approximation works quite
well due to the nonholonomic kinematics of the vehicle: the position of the back of
the vehicle at time index k is approximately where the reference point has been at
k − 1, and the front at k is approximately at the place where the vehicle reference
point will be at k + 1. However, this requires the distances di,j and the time
discretization ∆t to be chosen according to the velocities of the vehicles.

Road boundaries introduce additional constraints which do not occur in the air traf-
fic domain. A single straight road is easily modeled by two inequality constraints.
Curves and intersections, however, have a nonconvex geometry. To model this in
a MILP, a decomposition into R convex polygons is performed. A polygon is de-
scribed by the equations of its Er edges, nx · x + ny · y ≤ d. Additional binary
variables ensure that the vehicle is within one of the road polygons:

nr,l,x · xi,k + nr,l,y · yi,k − broad
i,k,r · C ≤ dr,l l = 1, . . . , Er
R∑
r=1

broad
i,k,r ≤ R− 1 (3.2)

broad
i,k,r ∈ {0, 1} k = 1, . . . , T, r = 1, . . . , R

As collision avoidance and road boundaries are enforced by hard constraints, a
suitable objective function to be minimized is the sum of absolute accelerations,

min
T∑
k=1

M∑
i=1

(accabsi,k,x + accabsi,k,y) ,

with the following constraints for defining the absolute accelerations,

accabsi,k,x > acci,k,x

accabsi,k,x > −acci,k,x
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accabsi,k,y > acci,k,y

accabsi,k,y > −acci,k,y
k = 1, . . . , T .

Some constraints of the MILP model can be eliminated by simple reachability
considerations. For example, when two vehicles cannot reach each other within
k · ∆t even if maximum acceleration is applied, a collision at time index k is
impossible and (3.1) can safely be removed from the model for this k. In other
cases, certain constellations of the objects relative to each other are impossible to
reach, which then reduces the number of equations and binary variables in (3.1).
Concerning the road boundary constraints, usually most of the road polygons are
not reachable, which means that much less than R binary variables are necessary
in (3.2). These techniques can considerably reduce the number of constraints and
especially binary variables. Experiments show that the reduced MILP models are
solved much faster than the original ones.

Paralleling the tree search approach of the previous section, MILP solvers often
employ branch and bound methods. However, in the tree search formulation, the
branching occurs over the vehicle actions and collisions are tested depending on
the selected actions, whereas in the MILP formulation, the binary decision vari-
ables describe collision avoidance constraints and the vehicle actions are optimized
given the collision avoidance decisions. As a consequence, time discretization is
tightly coupled with passing distances and cannot be coarsened without impairing
collision avoidance. By contrast, in the tree search method, the number of decision
points can be reduced without any difficulty in order to improve computational ef-
ficiency. Furthermore, adding obstacle and road constraints can cause a dramatic
increase in MILP computing time, while it has minor influence in other planning
algorithms. This may be an explanation for the observed running times of the
MILP approach, which seem to question a real-time usage at present. Another
drawback of the MILP method is the restriction to linear models and objective
functions. An important advantage is the utilization of an established framework
with available tool support, which facilitates modeling and implementation.

3.3 Elastic Bands

Different variants of the elastic band method have been applied to path adapta-
tion for mobile robots [QK93, Bro99, KJCL97] and to path planning for cars
[HHBH03, BSW05, HS07, GS07]. Recently, the method has been extended to
cooperative motion planning in dangerous situations [FBB08, FBB09].
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Figure 3.1: Illustration of internal forces.

Once again, nodes pi,k = (xi,k, yi,k)T describe the vehicle positions at discrete
points in time. Consecutive nodes of one vehicle are connected to form an elastic
band. Orientation and velocity of the vehicle are implicitly represented by the
sequence of nodes.

Virtual forces are designed to represent the constraints described above in Sec-
tion 2. The resulting elastic band can be interpreted as a combination of point
masses and springs [BSW05]. The virtual forces show some similarities with po-
tential field path planners, as forces can be interpreted as derivatives of potential
fields. However, potential field planners only have a local view of the environment
[Lat91], while elastic bands allow collision avoidance forces to propagate along
the band. Internal forces can be designed to represent the dynamic and kinematic
constraints of the vehicle.

The total force vector applied to node pi,k is denoted by fi,k. It is additively
composed of several force terms. The internal forces f dist and f ang implement
the dynamic and kinematic constraints of the vehicle in longitudinal and lateral
direction, respectively. They correspond to springs between consecutive nodes of
one band, pi,k and pi,k+1 (Figure 3.1):

f dist
i,k := f̃ dist

i,k − f̃ dist
i,k+1

f̃ dist
i,k := wdist(i, k)(pi,k − pi,k−1)

f ang
i,k := f̃ ang

i,k − f̃ ang
i,k+1

f̃ ang
i,k := wang(i, k)

(
pi,k−1 +

‖pi,k − pi,k−1‖
‖pi,k−1 − pi,k−2‖

(pi,k−1 − pi,k−2)− pi,k

)
These forces act in an anti-symmetric way on both nodes. The scalar weighting
functions wdist and wang prefer the vehicle to drive straight ahead at constant speed
and penalize the violation of dynamic constraints with a sharp increase.
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Figure 3.2: Visualization of the elastic bands of two oncoming vehicles. The force
components are depicted in different colors.

External forces repel the band from obstacles, other vehicles and the road bound-
ary. For example, the force f coop acts between nodes of different bands having the
same time index, pi,k and pj,k:

f coop
i,k :=

∑
j=1,...,M, j 6=i

e−‖pi,k−pj,k‖
T∑
l=0

e−‖pi,l−pj,l‖(pi,l − pj,l)

The direction vectors of the cooperative force are averaged in order to obtain an
unambigous direction of evasion and to avoid the forces of neighboring nodes
to cancel each other out. In a similar way, the force f obst repels the nodes from
obstacles:

f obst
i,k :=

∑
j

(
e−‖pi,k−p

obst
j,k‖+r

obst
j

T∑
l=0

e−‖pi,l−p
obst
j,l ‖+r

obst
j (pi,l − pobst

j,l )

)

The elastic band framework uses a circular object model: obstacles are character-
ized by their center pobst

j,k at time index k and their radius robst
j . Other object shapes

are approximated by a covering of circles [HHBH03].

Road boundary constraints can be modeled by a force f road:

f road
i,k := wroad(pi,k)n(pi,k)

Therein, wroad(p) is a scalar function of the distance from p to the road boundary
and n(p) is the normal vector of the road at point p.

A visualization of elastic bands and virtual forces is shown in Figure 3.2.

The nodes of an elastic band have to be initialized in a meaningful way, e.g., corre-
sponding to a lane-keeping behavior of the vehicle. The virtual forces are applied
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to the band iteratively until an equilibrium is reached in which the resulting forces
vanish for every node: ∀i ∀k fi,k ≈ 0. A continuous state and control trajectory is
obtained from the discrete sequence of nodes using, e.g., cubic spline interpolation
[HHBH03].

Elastic bands exhibit potential for real-time implementation and a good scalability
with the number of cooperative vehicles, even when a comparatively fine time
discretization is chosen. However, the method can only find a local optimum,
unlike the tree search and MILP approaches. This means that the result depends
on the initialization of the elastic bands.

3.4 Prioritized Motion Planning

The algorithms described so far try to exploit the possibilities of combined coop-
erative actions in the composite configuration spaceQ as much as possible. While
it has been known that planning in the composite configuration space is possi-
ble [CLH+05, LaV06], this method has rarely been applied in practice because
the computational complexity of motion planning algorithms usually increases ex-
ponentially with the dimension of the configuration space [Lat91]. Instead, de-
coupling approaches are state of the art for multi-robot motion planning problems.
These methods make certain simplifying assumptions. Thereby the planning prob-
lem is decomposed into multiple planning problems in lower-dimensional config-
uration spaces, usually one associated with each vehicle. This decreases computa-
tional complexity, but also restricts the solution space because not all combinations
of actions remain possible.

One of the two common decoupling methods is the path-velocity decomposition
[KZ86, PA05, GL06]. Path planning is performed separately for each vehicle,
and subsequently the velocities are coordinated in order to obtain a collision-free
motion. As mentioned in Section 2, path planning is not suitable for coopera-
tive collision avoidance systems. Therefore the path-velocity decomposition is not
considered further in this report.

The other decoupling strategy is prioritized motion planning [ELP87, BTK07].
The motions are planned separately for each vehicle in the order of priorities. Each
vehicle considers the plans of the higher-priority vehicles as moving obstacles, but
ignores the lower-priority vehicles.

More formally, the priorities can be described by a permutation σ ∈ SM . The
symmetric group SM consists of all bijections from a set having M elements to it-
self. As the planning result depends on the choice of the permutation, two variants
of prioritized planning are considered: the permutation is either chosen at random,
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Tree Search Elastic Bands MILP
Actions coarse discretization continuous continuous
Time discretization coarse fine fine
Optimization global local global
Models explicit implicit explicit

arbitrary linear
Collision mitigation yes no restricted

Table 3.1: Comparison of cooperative motion planning algorithms according to
certain evaluation criteria. The prioritized method is not shown because it inherits
its properties from the underlying single-vehicle planner.

or the result is optimized over all σ ∈ SM . The latter variant yields the best so-
lution quality possible with prioritized planning. Some strategies for choosing or
optimizing the permutation have been proposed in literature [vdBO05, BBT01]. In
road traffic applications, criteria based on traffic rules could be used for selecting
the permutation. For example, the leading vehicle should have higher priority than
the follower when two vehicles are driving on the same lane. Priorities may also
be based on the right of way at intersections.

The priority-based approach has been implemented using the tree search method
from Section 3.1 as single-vehicle motion planner. As the single-vehicle prob-
lems are easier to solve, a finer time discretization may be chosen, resulting in a
larger number of decision points T . With regard to time efficiency, this is presum-
ably not the best way to implement prioritized planning. However, results from
related work suggest that prioritized planning can achieve real-time performance
[vdBO05].

4 Results

The described algorithms have been applied to a multitude of problem instances
derived from different scenarios such as cooperative obstacle avoidance, merging,
overtaking, and intersection crossing. The scenarios have been created by means
of a traffic simulator [VNB+07]. In the following, results on intersection and
overtaking scenarios are reported, both of them involving M = 4 vehicles. Two
variants of the overtaking scenario have been considered, differing mainly in the
initial positions of the vehicles. For each scenario, 30-150 problem instances have
been generated by periodically starting the planner during the simulation run. An
example of a cooperative motion plan is shown in Figure 4.1.
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(a)

(b)

Figure 4.1: (a) A problem instance of scenario Overtaking 1. (b) Cooperative mo-
tion plan for this instance obtained by the tree search algorithm. A gap is created
which allows the overtaking vehicle to merge into the right lane.

Elastic Random
Tree search MILP bands priorities

Scenario avg max avg max avg max avg max
Overtaking 1 0.3 1.1 1.9 17.5 0.4 0.4 0.7 5.0
Overtaking 2 2.5 10.3 443.9 3148.9 0.9 1.1 0.7 4.3
Intersection 0.7 4.3 10.6 382.4 1.5 1.9 1.6 5.6

Table 4.1: Average and maximum computing times in seconds for three different
scenarios. For each scenario, averaging and maximization was performed over the
problem instances which could be solved successfully by the respective algorithm.

4.1 Computing Times

Table 4.1 shows average and maximum computing times for the different algo-
rithms measured on an off-the-shelf desktop PC. Tree search, elastic bands, and
prioritized planning have potential for real-time application: improved imple-
mentations should be able to achieve computing times of less than one second
on the considered problem instances. The MILP approach is remarkably fast on
many problem instances, however it sometimes requires several minutes or even
hours on very similar problems. Therefore it seems difficult to obtain real-time
performance.

The MILP method has been implemented using the free C library lp solve 5.5
[BEN08]. Some parameters of the MILP solver significantly influence its per-
formance on cooperative motion planning problems. By changing the bb rule
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Figure 4.2: Percentage of correct plans obtained by the different algorithms.

parameter, computing times can be decreased by orders of magnitude. The best re-
sults are achieved with fractionselect+branchreversemode. The com-
putation is stopped as soon as the first feasible solution is found. This solution is
guaranteed to be correct and is usually of good quality. Determining the optimal
solution increases computing times by a factor of about 2.

4.2 Planning Success

Figure 4.2 shows the percentage of problem instances in which the algorithms can
find a correct plan, i.e., a collision-free cooperative motion respecting road bound-
ary and kinodynamic constraints. Surprisingly, the results on the two overtaking
scenarios are quite different, although both scenarios appear very similar at first
glance. However, the merging is the most critical maneuver in scenario 1, while
the collision with the oncoming vehicle is more time-critical in scenario 2 due to
the slight variation of the initial positions. The prioritized planner can deal with the
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merging task, but cannot resolve the oncoming situation with a cooperative maneu-
ver. Elastic bands and MILP have good success rates in both scenarios, while the
tree search algorithm is a bit worse in scenario 1 due to the coarse discretization.
In the intersection scenario, best results are achieved by the tree search and by
the priority-optimizing planner. The elastic band method suffers from its local
optimization which prohibits a change of turning direction. The MILP approach
fails in some instances because the geometric constellations cannot be modeled
exactly with linear models. A conservative approximation is required to ensure
collision-free plans, thus narrowing the space of admissible solutions.
Concerning prioritized planning, it becomes clear that the choice of the permuta-
tion is crucial for the planning success. But even with optimal priorities, there are
scenarios that cannot be solved due to the restricted action space.

5 Conclusions

Different multi-vehicle motion planning algorithms have been evaluated on co-
operative collision avoidance tasks. The state-of-the-art prioritized planner can-
not solve certain problem instances due to its inherent restriction of the action
space. The algorithms which exploit the composite action space of the vehicles
have been more successful on these instances. In the intersection scenario, the tree
search method performed best, while elastic bands and MILP showed good results
in the overtaking scenarios. These observations indicate that either the algorithm
should be chosen depending on the traffic scenario, or multiple planners should be
executed in parallel to guarantee optimal results.
Tree search and elastic bands clearly have the potential for real-time application.
While the MILP method can also solve a lot of problem instances rather fast, its
timing behavior appears to be too unpredictable for real-time use.
Another criterion is the possibility to plan collision mitigation maneuvers. The tree
search method can handle collision mitigation if the loss functional is modified so
that the severity of collisions is minimized. It seems to be difficult to integrate
collision mitigation in the elastic band or MILP framework, as these methods do
not support arbitrary explicit models.
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Abstract: The ability of a mobile robot to localize itself in the environment is
a prerequisite for autonomous navigation.This is accomplished by using dif-
ferent sensors. Unfortunately all sensors’ measurements are noisy and suffer
from errors. Thus it is essential to combine several sensors to reduce the er-
rors and also compensate for the shortcomings of individual sensors by means
of multi-sensor fusion and simultaneous localization and mapping (SLAM).

1 Introduction

Due to noisy sensor measurements several sensors have to be used for self lo-
calization of a mobile robot. The mobile robot platform of the Fraunhofer IOSB
and its sensor equipment is shown in Figure 1.1. Motion sensors like odome-
try and the gyros of the inertial measurement unit (IMU) allow to perform dead-
reckoning, i.e., incrementally incorporating their relative measurements from an
initially known pose. On the other hand, absolute position and attitude sensors do
not depend on an initial pose and their measurements do not suffer from error ac-
cumulation. Absolute measuring sensors include for example GPS, compass, and
partially the accelerometers of the IMU. The latter are absolute sensors, if used for
roll and pitch estimation in contrast to estimation of linear motion by numerical
integration of the accelerometers’ measurements, in which case the estimates are
relative [EFK08].

In addition, sensors which observe the environment like a laser scanner or camera
can be used for localization in a map. For navigation, a map is also advantageous
as it provides the possibility of path planning beyond the actual sensor coverage.
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 Laserscanner
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Figure 1.1: System overview.

To build a precise and correct map, the robot has to simultaneously localize itself in
the so far registered map which contains errors and has to update it continuously.
Consequently, the map built becomes inconsistent unless the dependencies be-
tween the uncertainty in the pose and the errors in the map are taken into account.
By observing areas or features of the map several times, the uncertainties in the
map are decreased and the map converges to a better solution. Several approaches
of probabilistic mapping exist to solve this so called simultaneous localization and
mapping (SLAM) problem [DWB06a].

For the purpose of combining all mentioned sensors, their individual uncertainties
have to be considered in a mathematically and statistically sound way. There-
fore, a probabilistic fusion framework has been developed combining methods of
multi-sensor fusion to incorporate the motion, position, and attitude sensors with a
SLAM algorithm capable of integrating several sensors and corresponding maps.

2 Fusion Framework

The fusion framework is shown in Figure 2.1. In the top left corner the motion,
position, and attitude sensors are shown. They are fused in an Extended-Kalman
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Figure 2.1: Fusion framework.

Filter (EKF), which is explained in in more detail in Section 3. Its estimate serves
as prior probability density for the SLAM algorithm. As SLAM algorithm a Rao-
Blackwellized particle filter was chosen, due to its property of conditional inde-
pendence between the landmarks, which enables a straightforward integration of
a landmark model comprised of statistically independent attributes as presented
in Section 4. Furthermore, it allows to integrate and combine several maps like a
dense map as presented in [Emt10] and a feature based map as shown in Figure 2.1
as map modules. A feature map is built of features extracted from the sensor data
as distinct landmarks (Section 4). The combination of maps can be seen as map
layers with different levels of abstraction of the same area, each one containing
data provided by a certain sensor. All landmarks and dense data also could be
saved into a hybrid map while ensuring that every type of map data is updated
with the appropriate senor data.

A particle filter samples the state space of the robots’ path proportional to its prob-
ability density. Applying the condition that every particle tracks the hypothesis of
the true path, the landmarks become conditionally independent of each other. Ev-
ery particle tracks its own hypothesis of the robots’ path and thus has its own dis-
tinct map and dedicated data association hypotheses. Regarding the fusion frame-
work every particle also has its own EKF as the localization estimate is different for
each particle. The proposal distribution includes the positioning sensors through
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the estimates of the EKFs, while the posterior distribution of the particle filter is
fed back to the EKFs. The particle filter is based on an instance of the FastSLAM
2.0 algorithm. It incorporates localization by current sensor measurements of the
environment into the proposal distribution and is therefore more robust against par-
ticle depletion. As the observations of the environment are incorporated into the
proposal distribution, convergence of the algorithm with only one particle could
be shown [MTKW03]. The proposal distribution is proportional to

p(s
[l]
k |s

k−1,[l], zk, uk, nk,[l])p(sk−1,[l]|zk−1, uk−1, nk−1,[l])

and the importance weights are defined by:

w
[l]
k =

target distribution
proposal distribution

=
p(sk,[l]|zk, uk, nk,[l])

p(s
[l]
k |sk−1,[l], zk, uk, nk,[l])p(sk−1,[l]|zk−1, uk−1, nk−1,[l])

∝ p(zk|sk−1,[l], zk−1, uk, nk,[l]) · wk−1 .

The robots’ path per particle [l] is denoted s, while k indicates the time steps. The
pose estimate of the EKF is the input u. The measurement z is acquired by sensors
observing the environment. The data association is denoted n. A variable with
superscripted time step like sk denotes the set of all its instances up to time step
k. The importance weights are calculated by the likelihood of the current obser-
vations and the so far recorded landmarks in the map. The higher the resulting
importance weight of a particle, the higher the probability that the map of this
particle is correct.

The framework was designed for straightforward extensibility and thus is easy to
extend with additional position sensors like indoor GPS as well as other mapping
sensors like RADAR with according map modules as shown in Figure 2.2.

3 Asynchronous Sensor Fusion

The utilized sensors are not synchronized and the senors’ data rates are different.
The naı̈ve approach to use the rate of the slowest sensor as estimation rate of the
fusion algorithm is not ideal as a lot of information is discarded and the output
rate would be restricted. Furthermore, an outage of this sensor would compromise
the whole system. Therefore, the fusion algorithm should be capable of incorpo-
rating all sensor data at their corresponding clock rate and thus ensuring the high-
est possible output rate. The fusion algorithm is implemented as an asynchronous



Multi-Sensor Fusion for Localization and Mapping for Mobile Robots 95

DRadar Ind. GPS

MSF

Map module 2Map module 1

RBPF

EKF Proposal

Posterior

Imp. weight

LM Extraktion

Matching & Lok.

DA & Lokalization

Feature based
map

Dense
map

osteri

modul

ure b

M

DA

Map modul

ktionExtrakMSFF

Compass DGPS IMU Odometry

Camera LIDAR

Dense

Map module 3

Matching& Lok.

Dense
map

modu Map module 4

DA & Lokalization

Feature based
map

LM Extraktion

modu

Dense ure b

M

Extrak
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EKF structure to ensure low computational complexity and real-time requirements.
The Kalman filter is an optimal estimator for the state of a linear system with a
known model from measurements with additive white Gaussian noise. The EKF
extends the plain Kalman filter for estimation of non-linear systems by lineariza-
tion through Taylor-expansion around the current estimate. The asynchronous pro-
cessing is achieved by a prediction step with the system model for every incoming
measurement and a dedicated update step with the according sensor data. The nine
sensors of the inertial measurement unit (IMU), i.e., three gyroscopes, three axial
accelerometers, and three magnetometers, are pre-processed and fused in a sep-
arate Kalman filter to estimate the attitude. Cascading of Kalman filters reduces
computational complexity and regarding this mobile robot the assumptions con-
cerning independence between position and attitude subsystems are met because
of its comparably low dynamics and restricted pitch and roll movements. The es-
timated attitude is combined with the sensor data of odometry, compass, and GPS
in the main Kalman filter resulting in an estimate of the full 6 DoF. Additional
meta-knowledge about the GPS’ error characteristics is incorporated by pre- and
post-processing combined with an adaptive tuning of the Kalman filter, which is
explained in more detail in [ESP10].

Figure 3.1 shows the results of the compensation capabilities of the fusion algo-
rithm in a situation where several short GPS outages occurred. A drawback of the
asynchronous processing is the occurrence of sawtooth patterns as shown when
zoomed in (Figure 3.2). The relative sensors have higher data rates, and because
of the asynchronous fusion technique, for every sensor data a prediction and cor-
rection step is performed. Thus, the relative sensor data may cause the position
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Figure 3.1: Compensation of temporal sensor outages.

estimate to drift somewhat because of the cumulative errors caused by the addition
of the relative measurements. The measurements of the absolute sensors arrive less
frequently and correct the position, possibly causing the recently filtered position
to be slightly away from the previously estimated pose, which causes small skips
in the filtered sensor data. This cannot be overcome with a causal filter which is
needed for on-line processing.

The integration of the asynchronous EKF in the fusion framework is straightfor-
ward as the filter algorithm is capable of computing the density required for the
proposal of the particle filter at any required time step.

4 SLAM with an Augmented Landmark Model

A very important prerequisite for the SLAM algorithm to converge is the data
association, i.e., the association between an observation and the appropriate land-
mark in the map. Wrong data associations may lead to wrong or imprecise maps
and intensify the particle depletion problem [Emt10]. With a landmark only de-
fined by its position –a point landmark– the data association is particularly prone
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to errors in situations where the mobile robot’s pose uncertainty is high. How-
ever, additional attributes of a landmark model entail a more reliable distinction
between landmarks [DWB06b]. Investigations via simulations with point land-
marks augmented by an additional signature attribute have shown an improvement
in data association and consequently improved convergence of the FastSLAM al-
gorithm [Emt10]. In the following paragraph an augmented landmark model and
experimental validation of its impact on the convergence of the SLAM algorithm
is presented.

4.1 Augmented Landmark Model

To achieve robust data association an augmented landmark model consisting of
metric information plus additional features or attributes is utilized. From an object-
oriented view a landmark is described by its attributes, whose statistically depen-
dency has to be considered. Ideally, some attributes are independent of the position
of the landmark so that the data association becomes collectively more independent
of the uncertainty of the localization estimate of the mobile robot. The proposed
landmark model θ describes vertical cylindrical objects like tree trunks, pillars or
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Figure 4.1: Schematic of a landmark and the LIDAR scan in red.

lamp posts and has the feature vector f(θ) = (nLM , eLM , rLM , vLM ), which is
comprised of metric features (nLM , eLM , rLM for north, east, and radius) and a vi-
sual signature (vLM ). It augments the simple point landmark model (nLM , eLM )
by the additional feature horizontal dimension, expressed as radius rLM , as well
as the visual appearance v. The landmark model has been chosen to represent
cylindrical objects because their radii do not depend on their position and the vi-
sual appearance is mostly invariant under changes of the point of view and thus
can also be assumed to be independent of the position (nLM , eLM ). Employing
SIFT features as augmented landmarks or visual signature has been discarded as
it turned out, e.g., in [ESL06], that SIFT is not feasible for real-time applications.
Especially in case of particle filter SLAM it is advisable to rather use a straight-
forward landmark model described by few parameters combined with an elabo-
rate and robust landmark extraction, as the extraction has to be performed only
once, while map processing consisting of data association and fusion is processed
multiple times.

To detect and observe these landmarks a hierarchical extraction scheme based on
a LIDAR in combination with camera images was used. The LIDAR was used
to detect landmark candidates as they appear as distinct local distance minima in
the scan as can be seen in Figure 4.1. Within the scan line several objects of
the environment like stones are spuriously identified as candidates for landmarks.
To eliminate false candidates the camera image regions around the candidates are
searched for vertical edges which have to be on the left and right, see Figure 4.2.
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Figure 4.2: Laser scan referenced in the camera image.

In the image individual candidates originating from the laser scan are shown as
differently colored laser points. The green rectangle depicts the final landmark
with its left and right edges detected by the camera. The image content of this
rectangle is used as visual signature represented by a normalized HSV-histogram.
The distance of the landmark to the robot is obtained from the laser scanner as its
measurements are very accurate. Because of the superior angular resolution of the
camera compared to the laser scanner the radius is obtained from the image. Thus,
the conjunction of these two sensors has the advantage of the accurate distance
measurements of the LIDAR combined with the high angular resolution of the
camera.

To obtain the position of the landmark (nLM , eLM ) in world coordinates transfor-
mations have to be applied, cf. Figure 4.3. The radius r of the landmark is half of
the width of the aforementioned green rectangle while the distance d and angle ϑ is
from the measurement of the LIDAR. The latter are given in the robot coordinate
system (xLMR ,yLMR ): xLMRyLMR

rLM

 =

(r + d) sin(ϑ)
(r + d) cos(ϑ)

r

 .

The landmark’s position has to be transformed into the world coordinate system
(n,e) with respect to the robot’s position (nR,eR) and heading Ψ:[

nLM

eLM

]
=

[
nR + (r + d) · cos(ϑ+ Ψ)
eR + (r + d) · sin(ϑ+ Ψ)

]
.

At this point it becomes evident that the position of a landmark is dependent of the
uncertainty in the pose of the robot.

4.2 Data Association

For the matching of an observation to an existing landmark in the map and for the
calculation of the importance weights a statistical distance measure is required.
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One of the most widely used ones is the likelihood. The statistical independence
of the visual signature of the mobile robots’ pose s is an important characteristic.
The likelihood for the observation of the metric features zmLM ,k is independent
of the likelihood for the observation of the visual signature zvLM ,k, so the overall
likelihood can be split:

p(zges,k|sk−1,[l], zk−1
ges , u

k, nk,[l])

= p(zmLM ,k|sk−1,[l], zk−1
mLM , u

k, nk,[l]) · p(zvLM ,k|zk−1
vLM

, nk,[l]) .

Thus the overall likelihood is calculated by the multiplication of the likelihood of
the metric features and the likelihood of the visual signature. While the continuous
metric features are assumed to be normally distributed

eLM , nLM , rLM ∼ N (µm,Σm) ,

the discrete multi modal feature vLM is defined by a 2D-histogram q calculated
from the earlier mentioned HSV-histogram.
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The observation likelihood of the metric features can be calculated by the differ-
ence between the observation z

mLM ,n
[l]
k

and the predicted observation ẑ
mLM ,n

[l]
k

for
Gaussian distributions:

pm =
1

(2π)3/2
√
|Z
n

[l]
k ,k
|
· (4.1)

exp

(
−1

2
(zmLM ,k − ẑmLM ,n

[l]
k ,k

)TZ−1

n
[l]
k ,k

(zmLM ,k − ẑmLM ,n
[l]
k ,k

)

)
,

Z
n

[l]
k ,k

being the innovation covariance matrix:

Z
n

[l]
k ,k

= HP
[l]

n
[l]
k ,k−1

HT +R

composed of the linearized measurement model H , the covariance of the asso-
ciated landmark P

n
[l]
k

, and the covariance of the measurement noise R [MT07].
The likelihood of the histogram matching between an observation q̂ and the visual
signature of the landmark q can be calculated by:

p(zvLM ,k|zk−1
vLM

, nk,[l]) = exp {−λD(q̂, q)} =: pvLM (4.2)

with D(q̂, q) = 1 −
∑B
b=1

√
q̂(b) · q(b), where b denotes the histogram’s

bins. q is the histogram of the current observation which is compared to
the histogram q̂ of an already known landmark in the map. The distance D
was introduced by [CRM00] who derived it from the Bhattacharyya-distance
DBhattacharyya(q̂, q) = − ln

(∑
b∈B

√
q̂(b)q(b)

)
and proved that it conforms to a

metric. The Bhattacharyya-distance itself and the Kullback-Leibler-Divergence
for example violate at least one the the distance axioms [PHVG02]. In [CT91] it
is stated that the Kullback-Leibler-Divergence is frequently mentioned as distance
between two probability densities but it does not fulfill the triangle inequality and
the symmetry condition. According to [PHVG02] the likelihood of a histogram
matching can be calculated with equation (4.2), in which the parameter λ was
chosen to 20 as in [PHVG02].

Thus, the likelihood of an observation to landmark matching can be calculated in
closed form and therefore serves directly as a robust data association and can be
used as importance weight in the Rao-Blackwellized particle filter.
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The data association is performed per particle [l] with the maximum-likelihood
estimator:

n̂
[l]
k = arg max

n
[l]
k

p(zges,k|sk−1,[l], zk−1
ges , u

k, nk,[l])

= arg max
n

[l]
k

pmLM · pvLM ,

with pvLM for the visual signature from equation (4.2) and pmLM for the metric
features from equation (4.1).

4.3 Data Fusion

The hitherto recorded landmarks in the maps have to be updated with the asso-
ciated observations by fusion. The metric features are assumed to be normally
distributed as mentioned before and therefore can be fused with an EKF like up-
date. The visual signature vLM is defined by a 2D-histogram and is updated with
a discrete Bayes filter [TBF05].

For all bins b of the histogram a prediction is performed:

q−k (b) =
∑
i

p(x(b)|uk, x(i))q+
k−1(i) .

p(x(b)|uk, x(i)) is the transition probability from bin x(i) to bin x(b). In this
case p(x(b)|uk, x(i)) is 0 for all i 6= b, as the signature is independent of the
mobile robots’ pose and therefore of the motion uk. Consequently, the prediction
is simplified to q−k (b) = q+

k−1(b). The update step is calculated by multiplying
the respective bins of the histogram of the landmark with that of the observation
p(zvLM ,k|x(b)):

q+
k (b) = ηp(zvLM ,k|x(b))q−k (b),

where η depicts a normalization factor, i.e., the histogram is normalized after every
filter step, so that

∑B
b=1 q̂(b) = 1 applies.

4.4 Results

The following results have been accomplished with an implementation of the Fast-
SLAM 2.0 algorithm. For the evaluation these scenarios were conducted with and
without additional features rLM and vLM for comparison:

1. 1 particle with additional features
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2. 1 particle without additional features

3. 25 particles with additional features

4. 25 particles without additional features

The figures show the maps at the end of a course with three loop closures and
a traveled distance of about 100m, which was driven by the mobile robot from
the left to the right and back. Within the area 12 objects are recognized as land-
marks. The blue arrow depicts the mobile robots’ pose, which in case of multiple
particles is gathered by weighted averaging of the particles. In the scenarios with
multiple particles the map shown is the map of the particle possessing the highest
importance weight, as it most probably possesses the best map. The landmarks
are numbered and their 3σ error interval is shown with blue ellipses. The red line
depicts the ground truth. In Figures 4.6 and 4.7 the individual particles are marked
as red dots. In the result of scenario 1 (Figure 4.4), it can be seen that the mobile
robot is close to the ground truth and the map correctly consists of 12 landmarks,

Figure 4.4: Map of one particle with additional features.

Figure 4.5: Map of one particle without additional features.
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Figure 4.6: Map of 25 particles with additional features.

which all have been recognized properly. In contrast, the result of the second sce-
nario without additional features in Figure 4.5 shows a large offset of the robots’
pose to the ground truth and not all landmarks have been properly recognized, but
some landmarks have been spuriously instantiated multiple times. Thus, the al-
gorithm did not converge in this case. For example, the right loop could not be
successfully closed because landmarks No. 2 and No. 3 were not associated cor-
rectly but have been newly instantiated as landmarks No. 9 and No. 10. The same
applies for landmarks No. 0 and No. 1. Hence, the additional features improved
the data association and loop closure so that the algorithm converges successfully.

The result of scenario 3 (Figure 4.6) is expectedly nearly identical to the result of
scenario 1. The landmarks were correctly recognized and the robot is localized
quite precisely. The result of scenario 4 (Figure 4.7) shows, that the landmarks
were correctly associated and instantiated, but the localization of the mobile robot
is set off a little bit compared to the scenarios with additional features (scenarios 1
and 3). One reason for the worse performance of the algorithm without additional
features cannot be seen in the figures: Already at the beginning of the course the
data association fails several times and cannot correctly associate observations of
landmarks No. 0 and No. 1. Thus, additional features also improve the precision
of particle filters with a higher number of particles.

The comparisons clearly demonstrate that additional features can improve the
quality of the results of the FastSLAM 2.0 mapping algorithm and that less par-
ticles are required for robust loop closure. Particularly in case of using only one
particle the convergence of the algorithm could only be achieved with additional
features.
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Figure 4.7: Map of 25 particles without additional features.

5 Conclusion & Outlook

A fusion framework has been presented which allows for integration of motion, po-
sitioning and attitude sensors combined with ambient sensors by means of multi-
sensor fusion and SLAM. An asynchronous EKF-based fusion scheme was de-
signed to integrate unsynchronized sensors with different data rates into the frame-
work. The SLAM algorithm of the fusion framework is based on FastSLAM 2.0
and is capable of using augmented landmark models with additional features for
improved data association. This enhances the particle filter with respect to more
precise maps or robust convergence with fewer particles.

Future work covers the incorporation of the grid mapping algorithm presented
in [Emt10] into the fusion framework in combination with the asynchronous EKF.
Further investigations will concentrate on the impact of the sawtooth shaped pat-
tern originating from the asynchronous filter structure on the convergence of the
SLAM algorithm.
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Abstract: Modern surveillance systems collect a massive amount of data.
In contrast to conventional systems that store raw sensor material, modern
systems take advantage of smart sensors and improvements in image process-
ing. They extract relevant information about the observed objects of interest,
which is then stored and processed during the surveillance process. Such
high-level information is, e.g., used for situation analysis and can be pro-
cessed in different surveillance tasks. Modern systems have become power-
ful, can potentially collect all kind of user information and make it available
to any surveillance task. Hence, direct access to the collected high-level data
must be prevented. Multiple approaches for anonymization exist, but they
do not consider the special requirements of surveillance tasks. This work
examines and evaluates existing metrics for anonymization and approaches
for anonymization. Even though all kind of data can be collected, position
data is still the one with the highest demand. Hence, this work focuses its
anonymization and proposes an algorithm that fulfills the requirements for
anonymization in surveillance.

1 Introduction

Data protection and (video-) surveillance is an up-to-date topic. Since September
11th, 2001, public space is observed in almost every country. The United Kingdom
is still the most observed country and current estimations about installed cameras
differ between one million and 4.2 millions, thereof 500,000 in London. These
impressive numbers are just estimated, but they point out the need privacy-aware
surveillance.

Conventional video systems collect all available information, store it and perform
situation analysis on the raw material. With the growing number of cameras and
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other sensors it is essential to extract required information as soon as possible to
reduce the amount of data. In addition, data collected by other sensors (RFID,
acoustics, etc.) must be combined with information gained out of the video mate-
rial. Hence, data must be represented and processed on a high level of abstraction.
The abstraction leads to new opportunities for privacy enforcement and a frame-
work for surveillance systems that follows the fair information practice principles
[VB09]. If personal data is only stored in conjunction with the corresponding
object, anonymization strategies can be applied to the records. It is possible to
maximize privacy and efficiently fulfill surveillance tasks at the same time.

Metrics and strategies for anonymization already exist. This work examines to
what extent they can be used in the context of surveillance. After a short in-
troduction of the most important metrics for anonymization, metrics useful for
surveillance are discussed. In the following the requirements for anonymization in
surveillance are pointed out and an algorithm for anonymization of position data
in surveillance is presented.

2 Related Work

Multiple architectures for intelligent surveillance systems exist. An overview of
them can, e.g., be found in [VV05].

2.1 Intelligent surveillance and privacy

One of the architectures, which is following a task-oriented approach, is NEST
[MRV10]. Basically, an architecture of a modern and intelligent surveillance sys-
tem consists of three parts. These are (smart) sensors that collect all relevant in-
formation for a surveillance task, a central storage for data and intelligent modules
that process the stored data to fulfill the surveillance task. In NEST data is stored
in an object-oriented world model [Bau09], which is a virtual representation of a
part of the real world. However, anonymization requires that data is not stored in
its raw format (e.g. video), but methods must rather be applied to sets of abstract
data, e.g. position data of the observed objects, that contain fused information of
all sensors. The anonymization itself is then independent from the data sources.

Existing approaches for privacy in surveillance aim at adding privacy to a the video
source itself. This is not sufficient, if different types of sensors are used and sys-
tems are working with data on a high level of abstraction. Schiff et al. [SMM+09]
propose a system that identifies employees by marks that are applied to the ob-
served objects. However, if the recognition of an objects fails, privacy cannot be
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enforced. A similar solution is proposed by Senior et al. [SPH+05]. They make
use of a “privacy-preserving console” that manipulates a video stream and hides
sensitive details. Fleck [SS08b] proposes a more extreme approach that makes
use of smart cameras. These cameras do not transmit video data, but rather high-
level information, e.g., the position of a human combined with the information,
whether he is standing or has fallen to the ground. Fidaleo et al. [FNT04] propose
a framework for video surveillance that uses a privacy buffer. According to privacy
policies, the information is filtered and presented to the user.

2.2 Metrics for anonymization

Metrics for anonymity have been compared in [AL08] and Kelly2008, but both
works do not consider the requirements of surveillance systems. A detailed de-
scription of them would go beyond the work. Hence, only k-Anonymity and
l-Diversity are roughly introduced.

An explicit identifier is an attribute that can identify an object directly, without
other attributes, e.g., an assurance number.

Definition 2 (Explicit Identifier (EI)) Given a population of entities Ω, an entity-
specific table T (A1, ..., Am), fc : Ω → T and fg : T → Ω′ with Ω ⊆ Ω′. An
explicit identifier of T , denoted with EIT , is an attribute Ai ∈ {A1, ..., Am}
where: ∃ei ∈ Ω such that fg(fc(ei)[EIT ]) = ei.

Besides the EI, also other attributes can be used for identification, but not on there
own, they need to be combined with other other attributes.

Definition 3 (Quasi Identifier (QI)) Given a population of entities Ω, an entity-
specific table T (A1, ..., Am), fc : Ω → T and fg : T → Ω′ with Ω ⊆ Ω′.
A Quasi-identifier of T , denoted with QIT , is a set of attributes {Ai, ..., Aj} ⊆
{A1, ..., Am} where: ∃ei ∈ Ω such that fg(fc(ei)[QIT ]) = ei. [Swe02a]
An attribute Ai with Ai ∈ QIT is denoted as Quasi Identifier attribute QIA.
The equity of the values in QIA forms an equivalence class over the set of all
tuples t ∈ T . A QI equivalence class QI-EC is a set of tuples t ∈ T with equivalent
QIA values.[WFWP09]

The idea of k-Anonymity is motivated by the observation that QIs can destroy
anonymity of a data set. An attacker might use background knowledge to identify
objects [SS98]. K-anonymity has weaknesses for numeric values, a solution (k,e)-
Anonymity is proposed in [ZKSY07].
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Definition 4 (k-Anonymity) Let T (A1, ..., Am) be a table andQIT be the Quasi-
identifier associated with it. T is said to satisfy k-Anonymity in relation to QIT , if
and only if each tuple t ∈ T k-1 other tuples ti1 , ti2 , ..., tik−1

∈ T exist, such that
∀QI ∈ QIT : t[QI] = ti1 [QI] = ti2 [QI] = ... = tik−1

[QI].

Definition 5 (l-Diversity principle) An equivalence class QI-EC of a table T is
l-diverse, if it contains at least l values for a sensitive attribute SA. A table T is
l-diverse, if all of its QI-EC are l-diverse.

Definition 6 (Entropy l-Diversity) A table T is Entropy l-diverse, if for all
QI-EC of T :

−
∑
s∈SA

ps log2 ps ≥ log2(l)

with ps as part of the tuple in the equivalence class with t[SA] = s. SA denotes a
sensitive attribute.

It follows, because−x log2(x) is concave, for Entropy l-Diversity that the entropy
of the entire table is at least log2(l)[MKGV07]. This is a very high requirement,
hence Entropy l-Diversity is sometimes too restrictive.

3 Metrics for the anonymization of surveillance

Intelligent surveillance sets a standard for anonymization and the requirements
differ depending on the surveillance task. This work focuses on surveillance of a
single object.

Position data is still of major importance and has a special characteristic that must
be considered during anonymization.

It is important do distinguish between sensitive and non-sensitive attributes: sen-
sitive attributes of a specific object must be hidden from attackers. It can be esti-
mated that most attributes are QIs. In most work [SS98, MKGV07, ZKSY07], QIs
and sensitive attributes are considered not to be disjunct. This assumption cannot
be made in the field of surveillance.

3.1 Anonymization of position data

As mentioned above, position data is a sensitive attribute and a QI. In addition,
it has its own semantic, which does not allow the use of regular methods for
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anonymization of numeric attributes. The information content does not change,
if the position is altered by a few inches or yards. Hence, position data must be
treated in a special manner.

A lot of research has been done in the field of Location Based Services (LBS), but
surveillance is a different scenario. In LBS, queries with anonymized position data
are send to the LBS service providers. In surveillance, the observers send queries
to the systems. Thus, the answer of the system must be anonymized instead and
new concepts for surveillance are needed.

In general, k-Anonymity and l-Diversity can be used for the anonymization
of position data. It is however essential to consider the special characteristic,
respectively, to adapt metrics.

K-Anonymity seems to be a reasonable metric, which was used by Gruteser and
Grunwald [GG03] for position data for the first time. A position date must be
valid, i. e., must be imprecise enough, for at least k objects. This does not only
fulfill the k-Anonymity requirement, but also k-Anonymity, which is different to
LBS. Moreover, it matches the original definition of the Anonymity Set. Bettini
et al. [BWJ05] follow a similar k-Anonymity approach. They make use of spatio-
temporal patterns, which are declared to be identifying for k-Anonymity and at
least k persons must be within a pattern. A disadvantage is that these patterns are
not known in advance when used in practice.

However, k-Anonymity is not appropriate for position data. If many people are at
a small spot, the semantic information of each position is the same, i.e., all tuples
of the QI’s equivalence class have the same sensitive attribute and a known user
attack can be performed. An extension to (k,e)-Anonymity reduces the problems,
but the selection of e is random and is based on a global definition, which does not
consider the semantic differences.

A solution is to decouple the aspects of being a QI and a sensitive attribute for
position data. For this reason the attribute region is introduced, as well as a func-
tion fh of a position (x,y) to a region r: fh : (x, y) → r. Region contains now
the sensitive information and the exact arrangement is depending on the specific
context. As a consequence, position data is a QI only. The differentiation of the
semantic information is performed in the attribute region.

Two metrics can be used to measure the differentiation of the sensitive aspect,
l-Diversity and t-Closeness. T-Closeness is based on distributions and is there-
fore matching the requirements for anonymization metrics, but has several disad-
vantages when used in surveillance. When observing a single object exactly one
equivalence class, which contains the object, is created. Hence, t-Closeness is triv-
ially fulfilled. Even when collecting data for statistical investigation with multiple
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objects, t-Closeness cannot be used, unless a critical amount of data is collected.
Moreover the measure of distance is depending on the attribute, hence it cannot be
flexibly used for different attributes.

The last remaining metric is l-Diversity. Here, a trade-off between the level of
anonymization and usability of the data can be made. The highest anonymization
with the best theoretical base is provided by Entropy l-Diversity and is used in the
following.

4 An Approach for Anonymization in Surveillance

After determining satisfying metrics it must be specified, which methods for
anonymization are sufficient to achieve a specific level of anonymity.

4.1 Time

In existing work, the factor time has not been considered. However, time has
an extensive impact on anonymization in surveillance. It can be used in three
dimensions.

At first as a temporal variance ∆z. If the date of the observation is published with
reduced accuracy, the position can be published with a higher precision in return,
while the anonymity is still at the same level.

Second as a latency λ, i. e., the time a surveillance system can wait until it provides
an answer to a query. More future data can be used for anonymization, when
allowing a latency.

At last, as the maximum frequency for requests φ. If it is too low, an attacker can
trace an object just by sending requests.

4.2 Grid versus Graph

Two approaches exist for anonymization of position data. Either the observed area
can be split into a grid, or a graph can be used. In case of the latter, nodes represent
the objects and the (weighted) edges represent the distance between them. When
using a grid, it is the objective to find the smallest set of neighboring fields that
fulfills the anonymity requirements. When using graphs a clique problem must be
solved, which may result in a bad performance. However, even if a grid approach
is not optimal, it has performance advantages and it can also be chosen in what
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direction the selected region is extended on the grid, which makes it more difficult
to find an object in a raster field.

4.3 Finding a suitable algorithm

When following the grid-based approach, an algorithm can either work top-down
or bottom-up. Grutser and Grundwald propose in [GG03] a hierarchical top-down
algorithm that is based on a Quad Tree Algorithm. In each step the segment, which
contains the object, is picked and is split in four squares of the same size. The
algorithm stops, if the number of objects in a segment is < k. The position is then
replaced by the segment that was split. No matter whether top-down or bottom-up,
when using a hierarchical algorithm, the accuracy is drastically reduced with each
step, and the way of anonymization is thus designating.

A compromise between speed (grid-based method) and accuracy is the approach
from Bamba and Lui [BL07]. Furthermore, it is the only approach that considers
l-Diversity and k-Anonymity. The area that is released instead of a position must
contain k − 1 other objects and must span over l regions. The algorithm is also
based on a grid, but in each step only one segment of the grid is added to the re-
leased region (north, east, west, south). The algorithm offers the option to separate
k-Anonymity, which is related to the objects and l-Diversity, which is related to
the segments of the released region. Hence, the attribute region is not allocated
to positions, instead it is related to segments of the grid. This results in many
advantages:

• If k-Anonymity and l-Diversity are both related to objects, k is high on the
one side and l is low on the other side. This effect is prevented.

• When observing a single object, l-Diversity ensures that the region is only
related to the observed object. No prediction for other objects can be made
by considering the borders.

• As A-anonymity and l-Diversity are decoupled, both parameters can be
changed independently and according to the scenario. Both metrics can be
weighted differently.

• The sensitivity of regions does not depend on the number of people that are
in it.

• The approach can be extended to consider multiple levels of sensitivity for
different regions.
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The named separation can only be performed, because a grid-based approach has
been chosen. A trade-off between performance and accuracy can be achieved by
setting the density of the grid and choosing the algorithm for extension of the
region. A top-down approach is faster, if the size of the final segment is close to the
size of the observed area. Such a region only contains a minimum of information
and is not useful in practice. Hence, a bottom-up approach should be chosen.

As shown above, time is an important factor. Thus, an algorithm should be ex-
tended with another dimension. The grid then consists of cubes instead of squares.
It must also be considered that time has only an influence on k-Anonymity and
not on l-Diversity. This leads to three QoS parameters that should be used. The
maximal temporal variance ∆zmax, the maximal latency λmax and the maximal
frequency for requests φmax.

4.4 Faked positions

Positions of non existing objects can be used to anonymize data. Kideo et al.
[KYS05] and Xiao et al. [XMX08] propose approaches. In Kido’s approach, the
user creates several dummies. In the field of surveillance, the surveillance system
must perform this task. Both approaches are based on coincidence. Hence they
do not consider the semantic information related to the observer area. This makes
it easy to detect faked positions, if one object is observed for a longer time. In
addition, the usage of an observation itself can be put into question, if the system
contains wrong information.

4.5 Location tracking

Gruteser and Lui [GL04] identified location tracking, i. e., tracking the path of a
person, as a privacy concern. Their proposed solution does not go far beyond the
principles of k-Anonymity and l-diversity. A limitation of the request frequency
(bounding rate), as proposed, seems reasonable. In [BW09] Belle and Waldvogel
take advantage of the crossing of paths to change IDs of objects. This and other
approaches, e.g. [BS03], are limited by a low density. Hoh and Gruteser [HG05]
weaken this limitation by releasing position data with a lower accuracy, if paths
come closer (Path Confusion). An extension of this approach is Path Cloaking
[HGXA07].

However, in surveillance the substitution of IDs is only an option, if an object is
not observed for a longer period. A grid-based approach already implies a stronger
crossing of paths. Thus, further anonymization is not required. It is important to
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Algorithm 5.1 Position Privacy
Require: {ID, z}, {δmax,∆zmax, λ}, {k, l}
Ensure: {[x1, x2], [y1, y2], [z1, z2]}

1: z2← random(z −∆zmax, z + min ∆zmax, λ)
2: x2← xPosOf(ID, z2)
3: y2← yPosOf(ID, z2)
4: C← getCuboidOf(x2, y2, z2)
5: C← FUNCTION FIND K CUBOID

(C, z, {δmax,∆zmax, λ}, k)
6: C← FUNCTION FIND L CUBOID

(C, δmax, l)
7: return C.XYZ

choose a bounding rate φmax, which depends on the average moving speed of
objects in the observed area. In general, it can be said that an object should be able
to change regions or meet another object.

5 An algorithm for position data

As shown above, an algorithm that fulfills the requirements for anonymization
of position data in surveillance should follow the approach from Bamba and Liu
[BL07]. The existing approach must be extended with the temporal dimension and
the parameters k and l are to be handled separately. The algorithm determines a
k-anonymous and l-diverse space-time cuboid.

The Position Privacy Algorithm determines in lines 1 to 4 the initial cuboid C for
the anonymization. To extend the cuboid in the temporal dimension, a starting
point must be chosen randomly out of the valid time interval. The anonymization
after k (line 5) and l (line 6) itself takes place in two separated functions.

At first, the cuboid is extended to contain at least k objects (Algorithm 5.2, line
1). This is done within the restrictions given by the variables δmax, ∆zmax and λ
(line 2). In the lines 5 to 18, the increment of k for the extension of the cuboid is
determined in the different directions and dimensions (if an extension is possible).
In the last step the extension that leads to the highest increment of k is chosen
(lines 19 to 23). This is repeated until the cuboid complies with the k value.

To achieve l-Diversity for the location, the cuboid must contain fields of the grid in
a suitable diversity. The approach is similar to the k value. Time is not considered,
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Algorithm 5.2 FUNCTION FIND K CUBOID
Require: Ausgangsquader C, z, {δmax,∆zmax, λ}, k
Ensure: Ergebnisquader C

1: while C.kValue < k do
2: if C.sizeX + gridElementSizeX ≤ δmax = false

and C.sizeY + gridElementSizeY ≤ δmax = false
and C.sizeZ + gridElementSizeZ ≤ ∆zmax = false then

3: return PrivacyNotPossibleError
4: end if
5: if C.sizeX + gridElementSizeX ≤ δmax then
6: cuboidExtension(S)← C ∪ southern 3D row
7: cuboidExtension(N )← C ∪ northern 3D row
8: end if
9: if C.sizeY + gridElementSizeY ≤ δmax then

10: cuboidExtension(E)← C ∪ eastern row
11: cuboidExtension(W )← C ∪ western row
12: end if
13: if C.sizeZ + gridElementSizeZ ≤ ∆zmax then
14: if C.upperZ + gridElementSizeZ ≤ z + λ then
15: cuboidExtension(F )← C ∪ 3D row in future
16: end if
17: cuboidExtension(P )← C ∪ 3D row in the past
18: end if
19: for all d ∈ {S,N,E,W,F, P} do
20: if C.kValue < cuboidExtension(d).kValue then
21: C← cuboidExtension(d)
22: end if
23: end for
24: end while

as the room layout is static. Each field of the grid is assigned to the region ID of
the region, which it covers for the most part.

6 Conclusion and future work

A lot of research has been done in the area of privacy and anonymization. Intelli-
gent surveillance systems can imperil privacy. Hence, this work has analyzed the
suitability of existing metrics and approaches for anonymization. Each observable
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Algorithm 5.3 FUNCTION FIND L CUBOID
Require: start cubiod C, δmax, l
Ensure: result cuboid C

1: while C.LValue < l do
2: if C.sizeX + gridElementSizeX ≤ δmax = false

and C.sizeY + gridElementSizeY ≤ δmax = false then
3: return PrivacyNotPossibleError
4: end if
5: if C.sizeX + gridElementSizeX ≤ δmax then
6: cuboidExtensionS← C ∪ 3DZeile southern 3D row
7: cuboidExtensionN← C ∪ 3DZeile northern 3D row
8: end if
9: if C.sizeY + gridElementSizeY ≤ δmax then

10: cuboidExtensionE← C ∪ 3DZeile eastern 3D row
11: cuboidExtensionW← C ∪ 3DZeile western 3D row
12: end if
13: for all d ∈ {S,N,E,W} do
14: if C.LValue < cuboidExtension(d).LValue then
15: C← cuboidExtension(d)
16: end if
17: end for
18: end while

attribute can result in privacy issues, but the position is the most important one.
Thus an algorithm for anonymization of position data in intelligent surveillance
has been proposed.

The anonymization of other attributes is currently being analyzed and an approach
is being developed. Currently, the presented approach for position data is imple-
mented in a demonstration system of the NEST architecture. In future, the system
must then be tested under real time conditions.
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Abstract: Natural gaze behavior during human-computer interaction pro-
vides valuable information about user’s cognitive processes and intentions.
Including it as an additional input modality therefore provides great poten-
tial to improve human-computer interaction. However, the relations between
natural gaze behavior and underlying cognitive processes still is unexplored
to a large extend. In this paper we identify and characterize major factors
influencing natural gaze behavior during human-computer interaction with a
focus on the role of user’s mental model about the interactive system. In a
user study we investigate how natural gaze behavior can be influenced by in-
teraction design and point out implications for usage of gaze as additional
modality in gaze-based interfaces.

1 Introduction

In general there are two ways to incorporate eye gaze as an input modality into
multimodal human-computer interfaces. The first way is to force the user to con-
sciously look at certain locations in order to trigger actions. An example for such
approaches is eye typing, which has been studied for decades [MR02]. Eye gaze
is used directly as pointing device and actions are mostly triggered by dwell times,
which determine how long a certain object needs to be looked at until it is activated
(e.g., a key on a virtual keyboard). The biggest advantage of such approaches is
that they are easy and straightforward to implement and do not require analysis of
complex gaze behavior. Especially for people with severe disabilities such input
techniques often provide the only way for interacting with visual interfaces. How-
ever, for most people conscious and direct usage of gaze as input modality is very
unnatural and hence requires training and/or induces cognitive workload [JK03].
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The second way to use eye gaze as input modality is to interpret natural gaze
behavior during human-computer interaction while using another modality as pri-
mary input modality. Promising examples for such interaction techniques are pre-
sented in [HMR03] and [ZMI99]. In both approaches natural gaze behavior is
analyzed and the user is not forced to diverge from that natural behavior for inter-
action purposes. iDict [HMR03] analyzes the duration of fixations while the user
reads a text in a foreign language and automatically provides a translation of the
fixated word if a longer fixation is detected. In the approach “Manual And Gaze
Input Cascaded (MAGIC) Pointing” [ZMI99] the mouse pointer is placed close
to the currently fixated object in order to eliminate a large portion of the cursor
movement. Both approaches do not use gaze directly as pointing or input device,
but interpret gaze data in the context of the task (reading, pointing).

In general, the second approach has the advantage that valuable information con-
tained in natural gaze behavior can be used for improving human-computer inter-
action. Additionally, the user has not to consciously diverge from natural gaze
behavior, which would require training and would induce cognitive workload.

However, natural gaze behavior is highly complex and many different influencing
factors have to be considered for appropriate interpretation. Especially the task
and the experience of users have been shown to be key factors influencing natural
gaze behavior [JWBF01, LM00].

In this paper we characterize different influences on natural gaze behavior during
an object manipulation task, which was designed especially for that purpose. Ad-
ditionally, we point out their implications for designing gaze-based multimodal
interaction techniques.

2 User Study

2.1 Task and Apparatus

The task to be solved by participants is designed based upon a basic object ma-
nipulation task as it is common in many GUIs, where the visual representation of
an object has to be moved from one location to another on a display. However, in
order to being able to investigate effects of user’s mental model on natural gaze
behavior in a controlled way, we designed the mapping between input and system
reaction in an unusual way not expected by the users. This ensures that all users
have the same level of knowledge about the system at the beginning of the experi-
ment and can be considered as novice users. Additionally, we are able to monitor
changes in natural gaze behavior with increasing knowledge about the system.
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Figure 2.1: Input devices and task.

As input devices we use one single key of a keyboard (Figure 2.1(a)) and a pen
tablet, while only horizontal movements of the pen on the tablet are interpreted by
the system (Figure 2.1(b)). The task is illustrated in Figure 2.1(c). A colored point
that initially is displayed at the center of the display has to be moved to one of the
four squares, which has the same color.

For manipulating the object position we implemented two different interaction
techniques. The mapping between inputs and system state transitions (position
of the point) is graphically illustrated for the first technique in Figure 2.2(a). For
example, a horizontal movement of the pen to the right (R) causes a movement of
the point to the upper right if the key is not pressed (U) and to the lower right if
the key is pressed (D). For the second technique the object is expanded as shown
in Figure 2.2(b) left as soon as the pen touches the tablet. Then the mapping is the
same as for the first technique, while the object starts to move from the respective
position in expanded state.

In preliminary experiments with Technique1 we observed that experience of users
seems to have significant influence on proactivity of gaze behavior. Novice users,
for example, mainly directed visual attention towards the initial object position
at the beginning of the task. In contrast, expert users predominantly anticipated
future object positions. With Technique2 we want to investigate whether it is
possible to induce more proactive gaze behavior, especially for novice users, by
avoiding visual feedback in proximity to the initial object position right before the
first object movement.

The size of the display is 33,7 × 27 cm with a resolution of 1280 × 1024 pixels.
Eye-gaze of the users was captured during task execution by a Tobii 1750 tracking
device.
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(a) Technique1

R,U

R,DL,U

L,D

(b) Technique2

Figure 2.2: Mapping of input to system actions for different interaction tech-
niques.

2.2 Participants

Since we want to investigate effects of mental model building on natural gaze
behavior we chose a between-subjects design to avoid any prior knowledge of
participants about the task or interaction techniques. We had two groups with 10
participants each. Participants were between 21 and 32 years old and did not know
anything about the experiment, except that their gaze is measured.

2.3 Procedure

The experiment was organized in two phases A1 and A2 with 40 runs each. Every
run consists of moving an object from its initial position at the center of the screen
to the respective target area.

Between the two phases users were asked to fill in a questionnaire in order to cap-
ture their mental model. However, in this paper we focus on analysis of objective
data only and analysis of subjective data obtained from the questionnaire will be
reported in future papers.

In order to allow for a more detailed analysis of the temporal development of
objective measures in subsequent sections the two phases are further divided into
A1/1, A1/2, A2/1 and A2/2 with 20 runs each.

3 Results

Most interesting from the interaction design perspective are gaze movements that
occur before any object movement. In the following we denote such gaze data as
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(a) Technique1 (b) Technique2

Figure 3.1: Data captured for different interaction techniques during phase A1
from one user for each technique.

pre-object gaze data and pre-object fixations, respectively. Such data allows for
estimating user’s intentions previous to any input made by the user. Therefore in
this work we mainly focus on the analysis of such data.

In Figure 3.1 a plot of object- and gaze-data during the first 40 runs is shown for
each of the two interaction techniques for one user. Green dots represent object
positions, small red dots connected by gray lines are pre-object fixations and larger
dots, colored from gray to black, indicate the last pre-object fixation for each run.
The red diagonal lines indicate possible movement directions of the object from
its initial position and were not shown to the users during the experiments.

For the first interaction technique two things can easily be seen from Figure 3.1.
First, the preferred policy for solving the task seems to be first moving the object
along the diagonal line reaching from the lower left to the upper right (D1, see
Figure 3.2(b) for definition). This corresponds to an input sequence where the
key is not pressed (U) during the first phase. Second, fixations are mainly located
at three different positions on the screen. While the last fixation before the first
object movement is either located at the initial position of the object or along the
preferred diagonal axis D1, other fixations also can be observed towards the target
area.

Both observations in average can be confirmed for all participants. In Figure 3.2(a)
the distribution of tasks, which were solved by moving the object first along the
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Figure 3.3: Distribution of pre-object fixations.

different axes D1 and D2, is shown for both interaction techniques. A clear ma-
jority of the users first moved the object along D1 for both interaction techniques.
However, the policies with first movement direction along axis D2 was used more
often for Technique2 (31.5 %) compared to Technique1 (15.38 %) .

This difference in interaction behavior also shows an effect on pre-object gaze
behavior. Figure 3.3 shows the distribution of positions of all pre-object fixations
for all users and tasks for the two interaction techniques. Note that the color scale
at the lower end is not linear in order to improve the visibility of the plot. Both
plots show that most pre-object fixation are centered around the initial position
of the object. However, also a significant amount of fixations can be observed at
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different locations on the screen, which are related to the task. Except from the
initial object position for Technique1 fixations are mainly distributed along axis
D1 or are located at the target areas. The plot for Technique2 in Figure 3.3(b)
shows also fixations along axis D2 and in general more proactive fixations. For
further task related characterization of fixations we use two features:

• Distance d from initial object position
• Direction α of vector between fixation and object position

Along d fixations are classified in proactive fixations (d > rp) and reactive fix-
ations (d ≤ rp). While reactive fixations indicate attention allocation towards
the current state of the object, proactive fixations are induced by mental planing
activity for solving the task or anticipation of future system states. In order to dis-
tinguish between proactive fixations which are directed towards one of the target
areas T0, ..., T3 and those directed towards a certain policy P0, ..., P3 we evaluate α
for every proactive fixation regarding the underlying target for attention allocation
A as follows:

A =

{
Ti if |αTi − α| < αmax
Pi if |αPi − α| < αmax

,

where αTi and αPi denote directions of vectors between the initial object position
and the corresponding target Ti or first movement direction of policy Pi (see Figure
3.2(b)).

The thresholds rp = 100 and αmax = 20◦ are chosen based on the analysis of
gaze data captured during the experiments.
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Figure 3.4: Development of distribution of d over time for both interaction
techniques.
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Figure 3.5: Development of ratio between proactive and reactive fixations with
increasing knowledge about the system

In Figure 3.4 the distributions of d for the last pre-object fixation are shown for
the different phases of the experiment. The plots show both, significant influence
of growing experience on the location of the last pre-object fixation and signifi-
cant differences between the two interaction techniques. For Technique1 initially
most of the fixations are located closely around the object position and hence are
classified as reactive fixations. For phase A1/1 (first 20 runs) with Technique1
66.5% of all last pre-object fixations are reactive and 33.5% are proactive. In con-
trast, during phase A1/1 with Technique2 57.5% of the fixations are proactive and
42.5% reactive. The development of the ratio of proactive and reactive fixations
over all phases of the experiment is shown in Figure 3.5. On average the ratio for
Technique1 is 58.625/41.375 (proactive/reactive) and 67.25/32.75 for Technique2.

As already mentioned above we further analyze pre-object proactive fixations re-
garding the underlying target of visual attention. Figure 3.6 shows the distribution
of A over all possible targets T0, ..., T3, P0, ..., P3 for all last pre-object fixations.
The different areas represent the categories as defined above by rp and αmax and
are colored according to the occurrence of fixations within the corresponding area
on the screen.

For both techniques the number of last pre-object fixations that occur on the object
are reduced from phase A1 to phase A2 of the experiment almost to the half. For
Technique2 approximately 10% less fixations are made on the object for both of
the two phases compared to Technique1. In all plots among all policies P0, ..., P3

a clear majority of fixations can be found along policy P0. While for Technique1
proactive fixations are mainly distributed along axis D1 (policies P0 and P2), for
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Figure 3.6: Distribution of target of visual attention of last fixation before first
object movement for all users and tasks

Technique2 an almost equal distribution over policies P1, P2 and P3 can be ob-
served. This corresponds to findings illustrated in Figure 3.2(a), where similar
differences in policies chosen by the users for solving the task are depicted.

4 Discussion

The results in the previous section show that both independent variables we used in
our experiment, namely the interaction technique and the experience of users, have
significant influence on natural gaze behavior during human-computer interaction.
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For both interaction techniques increasing experience of the user with the system
resulted in a highly increased number of proactive fixations with increasing ori-
entation towards policies at the expense of decreasing orientation towards target
areas. This development can be explained from an information theoretical per-
spective. The more knowledge the user has about the dynamics of the system the
less new information can be acquired by reactive fixations on the initial object
position and by observing the first object movement, respectively. If future ex-
pected object positions can be accurately predicted by acquired knowledge based
on inputs, it is more efficient to directly draw visual attention towards expected
future object states, e.g., in order to support accurate positioning of the object at
the intended target location. The decreasing orientation of visual attention towards
target areas can be explained by the same effect. Increasing knowledge of the loca-
tion of certain target areas decreases the value of directing visual attention towards
the target area.

When comparing gaze data for the different interaction techniques a significantly
increased number of proactive fixations and a slight increase in fixations directed
towards the target areas can be observed for Technique2. Additionally, while for
Technique1 the policies along axis D1 are predominantly chosen by the users
and proactive fixations are mainly distributed along this axis, with Technique2
the policies along axis D2 are chosen significantly more often and fixations along
P1, ..., P3 are almost equally distributed. Obviously, the different ways how vi-
sual feedback is organized for the different interaction techniques not only influ-
ences natural gaze behavior, but also human decision processes and task solution
strategies.

For both interaction techniques and independent from experience of users by far
most of the proactive fixations are made along P0. Participants’ gaze behavior
seems to be more proactive when moving the object from the left to the right than
into the opposite direction. Possible explanations for that bias could be found by
further examination of influence of writing direction, handedness or other cultural
and individual factors.

For designing interaction based on natural gaze behavior the observations above
have different implications. Natural gaze behavior is influenced by many different
factors. These factors can either be used for adapting human-computer interac-
tion or they prevent the development of consistent interaction techniques due to
their dependency from uncontrollable and varying environmental conditions (e.g.,
experience of users, different cultural background).

In this user study we identified 4 classes of major factors influencing natural
gaze behavior during object manipulation and characterized their influence in
proactivity and direction of visual attention:
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1. task / goal
2. policy / strategy
3. experience of users / state of mental model
4. visual feedback / interaction technique

We further identified further phenomenons, which probably could be explained
by individual differences among users and/or cultural factors (e.g., increased
proactivity for P0).

The first two factors can be used for estimating user’s intention from gaze data.
However, their visibility in gaze data in the form of proactive fixations towards
a certain task related location on the display depends to a large extend on the
third factor, namely the state of user’s mental model. This fact in principal can
be used for estimating user’s experience and adaption of interaction. However, if
the main goal is to design a consistent gaze-based interaction technique for novice
and experienced users the goal would be to minimize the influence of experience
on natural gaze behavior. According to the results of our study one option would
be to use the fourth factor and to design interaction techniques that reduce this
influence as demonstrated with Technique2. However, as we showed in the results
section there still remain variances in natural gaze behavior, which probably can be
explained by individual differences among users or cultural factors. These factors
have also to be considered when interpreting natural gaze behavior and designing
appropriate system reactions.

5 Conclusion

By the experiment described in this paper we were able to identify different factors
influencing natural gaze behavior during an object manipulation task and to char-
acterize their influence on proactivity and direction of fixation towards different
task-related targets. Additionally, we demonstrated that the influence of individ-
ual factors can be changed by interaction design and adjusted visual feedback,
respectively.

The results reported in this paper show the variety of information contained in
natural gaze behavior. By analyzing natural gaze behavior during human-computer
interaction information like user’s intention or experience can be inferred which
can be used for designing proactive or adaptive interfaces.

In future work we plan to further validate the identified dependencies with more
complex tasks and to design and evaluate gaze-based multimodal interaction tech-
niques with a focus on multimodal combination of gesture and gaze for interaction
in multi-display environments.
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Abstract: Analyzing scenes under variable illumination has been an impor-
tant and widely studied research area in the field of computer vision. In this
technical report, we present an illumination device for capturing image series
of small objects under variable illumination directions. Due to using a digital
projector as programmable light source and a parabolic reflector to reflect the
emitted illumination patterns, the device dispenses with the need of moving
parts. Furthermore, we demonstrate the utility of illumination series for un-
supervised surface defect detection by applying statistical anomaly detection
to the obtained reflectance data.

1 Introduction

Imaging and analyzing objects under different illumination directions has long
been an active research area in both computer vision and computer graphics. While
computer graphics aim to synthesize realistic images from appearance models,
computer vision is concerned with the problem of deducing properties of a scene
based on its appearance. Therefore, many algorithms from both disciplines rely on
an accurate analysis of how light reflects off surfaces and how the appearance of a
scene depends on different illumination conditions.

In this technical report, we present an acquisition device to image objects under
variable illumination directions. The device utilizes a parabolic mirror to direct il-
lumination patterns, emitted by a digital projector, onto an object to be investigated
(see Figure 1.1). At the same time, the appearance of the object is captured with a
camera with fixed viewpoint. The illumination device has the following features:
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F

Fresnel Lens

Projector

Camera

Parabolic Reflector

Figure 1.1: Device for variably illuminating an object from different directions. A
digital LCD projector, a Fresnel lens, a parabolic reflector with a center hole and a
digital camera are aligned along their optical axes. By placing the optical center of
the projector at the focal point of the Fresnel lens, all emitted light rays intersect
at the focal point F of the reflector.

• No moving parts: Since the device dispenses with the need to position parts
mechanically, image acquisition with different illumination conditions is
less time-consuming and becomes more accurate and repeatable.

• Directional and spectral modulation: The device is able to emulate illu-
mination conditions provided by distant, arbitrary extended light sources.
Hence, the illumination direction can be varied over nearly the whole hemi-
sphere. In addition, the spectral appearance of an object can be sampled
coarsely by projecting colored illumination patterns or using a color camera
for image capturing.

• Unattended data acquisition: Since a digital light projector is used as pro-
grammable light source, images of a test object under various illumination
conditions can be acquired and evaluated automatically. This renders the
device particularly suitable for the application and evaluation of data-driven
image analysis methods.

The remainder of this report is organized as follows: In the next section, we give
an extensive literature review to show the relevance of variable illumination con-
ditions across many research areas. Next, the setup of our illumination device is
described in detail and how it is used for illumination series acquisition (Section
3). In Section 4, we employ unsupervised anomaly detection to evaluate image
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series with variable illumination. Finally, we discuss planned extensions of the
illumination device and conclude in Section 5.

2 Related Work and Background

Analyzing scenes under variable illumination has been an important and widely
studied research area in the field of computer graphics and vision. At the same
time, significant effort has been put into the development of variable illumination
devices. In the following, we give an overview of related work on illumination
research and of various illumination devices from the literature.

Object and Face Recognition Murase and Nayar [MN94] addressed the prob-
lem of determining the illumination for which certain objects are most distinguish-
able in appearance from each other. To achieve this, for each illumination direction
the objects are represented as parametrized manifolds in Eigenspace. By deter-
mining the shortest distance between the object manifolds, the optimal illumina-
tion direction is the one that maximizes this distance. To acquire images under
variable illumination, they developed an acquisition device which uses a motor-
ized turntable and light bulbs that are uniformly distributed in a plane around the
turntable.

In a theoretical work, Belhumeur and Kriegmann [BK98] raised the question of
“what is the set of images of an object under all possible lighting conditions”.
They showed that the set of images of an object under arbitrary illumination forms
a convex cone in the space of all possible images. Restricted to objects with convex
Lambertian surface, the illumination cone can be determined from three properly
chosen images. Ramamoorthi [Ram02] and Basri et al. [BJ03] extend this work
by proving that the set of images of a convex Lambertian object, obtained under
variable lighting conditions, lies very close to a low-dimensional linear subspace.
These results indicate that regardless of the complexity of the illumination, linear
subspace methods can be used for object recognition under lighting variability.

Reflectometry Reflectometry is concerned with measuring how light is reflected
at the surface of real-world materials. Reflectance acquisition and modeling is
essential for rendering realistic images in computer graphics. Surface reflectance
at a single point can be described by the 4D bidirectional reflection distribution
function (BRDF), which gives the ratio of radiance, the amount of light reflected
by the surface in every direction, to irradiance, the amount of light falling on the
surface in every direction. The incoming and outgoing directions are both defined
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with respect to the local surface normal at the considered point. Over the past
years, much efforts have been made to enhance the measurement of BRDFs using
elaborated illumination systems.

The most common approach to measure BRDFs is by a gonioreflectometer, which
mechanically positions a light source and a photoelectric sensor at various loca-
tions on a hemisphere above a flat material sample. To speed-up the measure-
ment process, various acquisition devices with few moving elements were pro-
posed (see [WLL+08] for an extended review) that employ cameras to measure
radiance and digital projectors as programmable light sources. Ward [War92] em-
ployed a half-silvered hemispherical mirror and a camera with a fish-eye lens to
capture the entire hemisphere of reflected light directions simultaneously. Dana
and Wang [DW04a] introduced a device which is able to measure spatially-varying
BRDFs (SVBRDFs), i.e., a set of surface points with mutually independent BRDFs,
without the need of complex mechanical apparatus. The device uses an off-axis
parabolic mirror to capture a large range of viewing direction and to provide illu-
mination directions over the hemisphere. The incident illumination direction can
be controlled by planar motions of the light source and material sample. An optical
setup for BRDF measurement without any moving parts was presented by Gosh
et al. [GAHO07], who use two curved, rotationally symmetric mirrors and a digi-
tal projector as light source. By projecting light as a sequence of basis functions,
BRDFs can be measured with few images.

Appearance Acquisition and Representation Appearance acquisition ad-
dresses the problem of modelling the relationship between a given real-word scene
and the light that illuminates it with the aim to predict the scene’s appearance
in novel illumination conditions (or viewpoints). Therefore, many acquisition
procedures utilize special illumination devices for capturing images under differ-
ent illumination conditions. For modelling the appearance of a scene, basically
two approaches can be distinguished, namely local and global scene descriptions
[Fuc08].

Local descriptions model the appearance of a scene by a set of surfaces that scatter
and reflect light according to their known material properties. Since local appear-
ance descriptions are specified in a local coordinate frame on the scene surface,
they describe the light scattering effects that occur immediately at the surface. A
simple and prominent local appearance descriptor is the BRDF, which is appro-
priate for modelling objects and scenes consisting of the same pure material. To
describe the inhomogeneous reflectance of real-word surfaces rather than the re-
flectance at a singe point, the BRDF representation can extended with dependence
on surface position by two spatial dimensions to the 6D spatially-varying BRDF
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(SVBRDF). Due to the complexity of SVBRDFs, sampling the angular domain of
view and light directions as well as the spatial domain densely becomes very time-
consuming, even with elaborated acquisition devices. Much research has been de-
voted on data-driven modeling of SVBRDFs, that is, features like redundancy and
symmetry are exploited in the reflectance data space to simplify the measurement
process. Recently, Dong et al. [DWT+10] proposed an approach to SVBRDF
modeling that bases on the idea that the reflectance over a given material sample
forms a low-dimensional manifold.

In global appearance modeling, the light transport in the whole scene is consid-
ered, i.e., the relationship between the incident light field and the exitant light
field that results from the interaction of light with the scene. This relationship
can be described by the reflectance field, which was introduced by Debevec et
al. [DHT+00] as a 8D function for global scene description. Reflectance fields
are parameterized in arbitrary world coordinates, e.g., in camera coordinates, and
therefore make abstraction from the geometry of the scene. By restricting the inci-
dent light fields to a distant directional illumination and reducing the exitant light
field to a single viewpoint, a 4D slice of the 8D reflectance field can be consid-
ered. For sampling such a 4D slice, Debecev et al. used a mechanical illumination
device called Light Stage to lit an object by a directional light source and to cap-
ture images from a fixed viewpoint. Since reflectance fields represent the scene
appearance in a global manner they are able capture non-local illumination effects
such as self-shadowing, interreflections, translucency, refraction and subsurface-
scattering. As a consequence, the 4D response of the reflectance field at a given
scene point across all lighting and viewing directions is not a physically valid
BRDF since it violates Helmholtz reciprocity and energy conservation.

A closely related concept to a 6D slide of the reflectance filed is the Bidirectional
Texturing Function (BTF), introduced by Dana et al. [DvGNK99]. Similar to
the SVBRDF, the BTF is a 6D function that depends on position, lighting and
viewing directions, but includes non-local illumination effects caused by the sur-
face geometry. Therefore, the BTF is considered as a spatially dependent set of
so-called apparent BRDFs [WHON97], that can be thought of as BRDFs modu-
lated by a visibility function defined by the neighboring geometric mesostructure
[KMBK03]. As with the reflectance field, the BTF makes abstraction of the scene
geometry but at a smaller measurement scale. Commonly, BTFs are measured by
robotic gantries which are able to capture images of a given surface patch for ev-
ery illumination and viewing direction. An acquisition device for BTF capturing
without any mechanical parts was introduced by Han et al. [HP03]. They utilized a
kaleidoscope and a beam splitter to align the view of a camera and a projector. Illu-
mination and capturing a surface patch through the kaleidoscope then results in an
kaleidoscopic image that shows the illuminated surface from multiple viewpoints.
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Photometric Stereo Photometric stereo is a well-established technique for shape
recovery using shading information from images captured under different illumi-
nation directions. In its early formulations, e.g., by Woodham [Woo89], Lam-
bertian surface reflectance and prior knowledge of the illumination setting were
assumed.

Recently, much research has been done to weaken these constrains in order to
use photometric stereo for real-world scenes with partly-known or unknown re-
flectance properties. For instance, it has been shown that the reflectance of many
real-world surfaces can be approximated by the sum of specular and diffuse lobes
[BP03][MZKB05]. By evaluating color or identifying specular pixels, the diffuse
component can be extracted and used for surface shape estimation.

An example-based approach to photometric stereo has been proposed by Hertz-
mann et al. [HS03], where the surface reflectance, illumination direction and shape
may all be unknown. By exploiting the fact that points with the same surface ori-
entation must have similar appearance under variable illumination, the shape of
a test object can be reconstructed when imaged together with a reference object
with known shape and similar material. Alldrin et al. [AZK08] and Goldman et al.
[GCHS10] presented a method for simultaneously recovering shape and spatially-
varying reflectance of a scene from photometric stereo images. While differing in
their approach to appearance modelling, both techniques utilize an optimization
procedure to fit model parameters and to estimate scene properties from these.

Acquisition and Evaluation of Illumination Series In the field of image pro-
cessing often the term illumination series is used to refer to a set of images taken
with fixed viewing parameters but varied illumination conditions. Much research
has been reported on the acquisition and evaluation of illumination series in the
field of automated visual inspection in order to enhance image processing. As
opposed to photometric stereo, often explicit shape reconstruction is not the main
objective here.

Puente [Leo97] proposed an image fusion algorithm to compute images with max-
imal contrast from an illumination series. To this end, an energy functional is
introduced and minimized which specifies the desired requirements on the image
fusion result. For image series acquisition, an illumination system was set up con-
sisting of a parabolic reflector which is illuminated by a circular array of LEDs.
By turning on LEDs at different locations, a test object at the focal point of the
reflector can be illuminated from different directions. Heizmann used an identical
illumination device for the analysis of forensic striation marks [Hei04].
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Lindner [Lin09] proposed several methods for surface segmentation using varying
illumination directions and demonstrated the superiority of illumination series over
a single image. For this purpose, different reflection features are extracted for each
pixel and used for unsupervised clustering. With this approach, a wide variety
of textures on structured surfaces could have been segmented. In [Gra10], Grassi
used illumination series to detect and classify varnish defects on wood surfaces.
By constructing invariant features, good detection and classification ratios could
have been achieved.

In order to segment images into material types, [WGSD09] used illumination se-
ries acquired with a dome providing lighting from many directions. A hemispher-
ical harmonics model is fit to the measured reflectance values and the model co-
efficients are used to train a multi-class Support Vector Machine. To account for
geometric dependencies on the measured reflectance, photometric stereo is applied
to estimate the surface normal at each pixel and to transform the measurements to
the local surface reference frame.

Koppal et al. [KN06] considered illumination series acquired by a smoothly mov-
ing distant light source. By this, continuous appearance profiles are generated and
used for clustering scene points to their surface normals. In order to minimize
the dependency of the profiles on material properties, a feature extraction tech-
nique and clustering metric is proposed that bases on the class of linearly separable
BRDFs which were introduced by Narasimhan et al. [NRN03].

In the field of illumination planning and optimal light source placements, Lensch
et al. [LLSS03] determined illumination directions by minimizing the uncertainty
in the estimated parameters of a BRDF model. By this, reflectance measurement is
performed more effectively and less measurements suffice to model the reflectance
properties of an object.

Jehle et al. [JSJ10] learned optimal illumination directions for material classifi-
cation by using an embedded feature selection method for a random forest clas-
sifier. For illumination series acquisition, an illumination device very similar to
the one presented in this report is used. However, our device, developed indepen-
dently, differs in the wax coating of the parabolic mirror to obtain a homogeneous
illumination of the test object.



142 Robin Gruna

3 Acquisition of Illumination Series

3.1 Illumination Device

The proposed illumination device is shown in Figure 1.1. The optical components
are a digital LCD projector, a Fresnel lens, a parabolic reflector featuring a center
hole and a digital camera. All components are aligned along their optical axes.

The projector serves as programmable light source, which allows to control the
relative radiance along the emitted light rays independently. If a pinhole model is
assumed for the projector, each projector pixel can be thought of as the source of a
single ray of light that emanates from the optical center of the projector. By placing
the projector at the focal point of the Fresnel lens, the light rays are collimated by
the lens and converge at the focal point F of the parabolic reflector. Therefore, the
illumination direction of light rays incident to the focal point can be controlled by
projecting spatially resolved illumination patterns.

To image objects under different illumination directions, a test object is placed
at the focal point of the parabolic reflector and the reflected radiance is captured
by a camera attached to the center hole of the reflector. Although the proposed
illumination device allows to project arbitrary complex illumination patterns, in
this report we consider a simple binary illumination pattern depicted in Figure 3.1.
The illumination pattern consists of a single circular spot of white pixels with all
other pixels being black. Due to the spatial extend of the illumination spot, this
illumination pattern leads to a ray-bundle rather than to a single ray. However,
each individual light ray of the bundle follows the laws of reflection and refraction
and hence a cone-shaped illumination is incident to F .

By establishing a Cartesian coordinate system with its origin at the focal point F
of the parabolic reflector and its Z-axis aligned with the optical axis and pointing
into the direction of the camera, we are able to parametrize the illumination pat-
tern as well as the resulting illumination direction incident to F , see Figure 3.1.
The position of the illumination spot is considered in the X-Y -plane and can al-
ternatively be represented by its radial coordinate r and angular coordinate ϕ in
polar coordinates. The resulting illumination is then described by the illumination
vector L(ϕ, θ) that points in the direction of the cone-shaped illumination. The
angular coordinates of L(ϕ, θ) are derived as follows: the azimuthal coordinate ϕ
equates the angular coordinate of the illumination pattern and the polar coordinate
θ is given by

θ := arctan
4fr

4f2 − r2
,
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Figure 3.1: (a) Illumination pattern used in our experiments. The circular illumi-
nation spot is parametrized using polar coordinates r and ϕ. The pole of the coor-
dinate system is aligned with the focal point F of the parabolic reflector. (b) Pro-
jecting the illumination pattern from Figure (a) with the illumination device (Fig-
ure 1.1) approximates a distant illumination whose direction is described by the
azimuthal angle ϕ and polar angle θ with origin F . The relationship between the
illumination pattern and the illumination direction is given through Equation (3.1).

where f denotes the focal length of the parabolic reflector.

Note that given highly accurate optical components and a perfectly calibrated
setup, all emitted light rays by the projector would intersect at a small point at
the focus F of the parabolic reflector. Clearly this is not practical to illuminate
even small test objects. By moving the test object slightly before or behind the fo-
cal point would result in a spatial extension of the directed illumination, however,
as consequence, the position of the illumination will also vary.

To account for this problem, we use a parabolic reflector which is not perfectly
specular, having a matte surface appearance. Hence, the specular reflection at the
reflector surface becomes partly diffuse and the incident ray bundles from the pro-
jector are reflected in a small solid angle toward the focal point F . This results in
a broadening of the area for which the direction of the incident illumination can
be varied. To enhance this effect, we use wax based transparent dulling spray to
coat the surface of the reflector in order to further increase the diffuse component
of the reflection, see Figure 3.2. However, care must be taken to keep the propor-
tion between diffuse and specular reflection right, since a diffuse coating causes
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Figure 3.2: Projected ray bundle reflected at the surface of the parabolic reflector.
A thin wax layer is used to roughen the specular surface of the reflector in order to
obtain a diffuse directed reflection and to broaden the illuminated area size at F .

undesirable interreflections and the directional property of the illumination may
get lost. By applying the dulling spray sparsely, we yield a circular area of radius
≈ 15 mm around F for which we can control the direction of the incident illumi-
nation. In a similar approach in [PHD06], heated acrylic is inflated to roughen the
texture of a hemispherical mirror.

3.2 Illumination Series Acquisition

The illumination device introduced in Section 3.1 is used to capture images of
small test objects under varying illumination. To accomplish this, the illumina-
tion pattern shown in Figure 3.1 is used with fixed size r and polar parametrization
φ ∈ [0, 2π) and θ ∈ [0, π). Since the spatial extend of the objects to be illuminated
is small (≈ 15 mm) compared to the diameter of the parabolic reflector (600 mm),
we make the approximation that the projection of the illumination pattern emulates
a distant, collimated point light source. This means, for each scene point the illu-
mination originates from the same direction with the same intensity. Therefore, an
image can be formalized as mapping (per color-channel)

g : Ω×Ψ→ R+
0

where Ω ⊂ Z2 is the domain of pixel positions and Ψ = [0, 2π)× [0, π) the space
of illumination parameters. Debevec et al. [DHT+00] refer to g as the reflectance
field of a scene, which describes the optical response of a scene illuminated by
a distant light source. Although the digital projector is able to project light of
different colors, we do not consider the spectral modulation of the illumination in
this report. By varying the illumination direction and capturing images g(x,ωi),
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(a) (b)

Figure 3.3: (a) Illumination series of a test object for various illumination di-
rections. (b) Reflectance functions at different pixel locations. The upper two
reflectance functions depict the illumination-depend appearance of two surface
points with similar surface geometry. The lower reflectance functions correspond
to a surface edge (left) and shadowed surface point (right), respectively.

we obtain an illumination series

I := {g(x,ωi), i = 0, . . . , n− 1}

where x ∈ Ω denotes the pixel location and ω ∈ Ψ describes the illumination
direction incident on the test object within a hemisphere (see Figure 3.3(a) for an
example). The illumination series I can be considered as samples of the mapping
g with respect to the parameter space Ψ.

By considering a fixed pixel locations x0 in Ω, the reflectance function

rx0
(ωi) := g(x0,ωi), i = 0, . . . , n− 1

can be defined, describing the illumination-dependent appearance at individual
pixels, see Figure 3.3(b). Note that the reflectance function is image-based and that
it includes non-local and geometry-induced illumination effects like the foreshort-
ening term, interreflections and self-shadowing. Therefore, the term “reflectance”
should be understood with care since rx0

(ωi) is not a physically plausible BRDF
slice of the corresponding surface element. Instead, rx0(ωi) can be considered
as a 2D slice of the apparent BRDF (see Section 2), which includes non-local
illumination effects.
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(a) (b)

Figure 4.1: RX anomaly detection applied to illumination series. (a) Inspection
of a wooden test surface. Surface scratches are marked as abnormal pixels and
hence become visible and detectable by succeeding image processing operations.
(b) Anomaly detection in the illumination series of a coin. By thresholding the
detector output, the RX detector operates as edge detector.

4 Anomaly Detection in Reflectance Data

In the following, we present a first approach to unsupervised defect detection us-
ing illumination series. In automated visual inspection, collecting labeled training
data is often expensive or difficult, since possible defects are not known a pri-
ori. However, in many cases it can be assumed that defects are rare and occur
with low probability compared to the nominal inspection state. This is especially
true for their appearance under variable illumination directions and hence for the
reflectance function of defective surface regions.

In order to detect defects by their illumination-dependent appearance in an unsu-
pervised manner, we apply the anomaly detector developed by Reed and Yu (RX
detector [RY90]) to illumination series. The RX detector bases on a Gaussian
background model and is widely used in hyperspectral image analysis, enabling
one to detect regions of interest without prior knowledge whose signatures are
spectrally distinct form their surroundings. Applied to an illumination series, the
RX detector implements a filter specified by

δRDX(x) = (rx(ωi)− µ)TC−1(rx(ωi)− µ) ,

where µ ∈ Rn is the sample mean and C ∈ Rn×n the sample covariance ma-
trix of the reflectance functions in the image series. Therefore, the detector output
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δRDX(x) is the Mahalanobis distance between a tested pixel and the mean re-
flectance function. Large distances correspond to low probabilities of occurrence,
and hence, by displaying the detector output as grayscale image, more anomalous
pixels appear brighter.

In a first experiment, an illumination series of n = 144 grayscale images of a
wooden surface with various surface defects was recorded. In Figure 4.1(a), the
output of the RX-detector δRDX(x) applied to the whole illumination series is
shown. As it can be seen, surface defects like scratches and nicks are displayed
as anomalous pixels. In a subsequent step, a threshold can be applied to the de-
tector output to segment anomalous surface regions. In doing so, the threshold
value controls the false-alarm rate for the detection process. In Figure 4.1(b), the
RX detector is applied to the illumination series of a coin and the detector out-
put is thresholded. As it can be seen, the RX detector operates as edge detector
identifying regions that correspond to geometric edges.

5 Conclusions and Future Work

We have presented an illumination device to acquire images of small test objects
under variable illumination directions from nearly the full hemisphere. Since the
device has no moving parts, illumination series can be acquired unattended once
a test object as been setup. Furthermore, illumination conditions can be varied
adaptively depending on the outcome of preceding image processing operations.

One of the major issue when building and evaluating the device was to ensure a
spatially homogeneous irradiance on the test object. Due to the low quality of
the used optical components and the adjustment by hand, the illumination slightly
varies spatially across the scene, dependent on the projected direction. To re-
duce this effect, we roughened the surface of the reflector with a thin wax layer
to broaden the illuminated area. Another way to solve the problem of inhomoge-
neous illumination is to use prospective shading correction techniques as employed
by Jehle et al. [JSJ10].

In an exemplary application, we show how a classic anomaly detection method can
be applied to illumination series for defect detection and pixel exact edge detection.
Surely, with the processing of illumination series instead of single images, the
question arises how illumination series can be acquired in a planned manner, using
different sources of information.

Currently, the proposed illumination device acquires color images with a trichro-
matic camera. By extending the device with a camera with a liquid-crystal tun-
able filter (LCTF), dense multispectral reflectance measurements can be obtained.
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Such measurements can be used to investigate the interaction between spectral
and geometric material properties, which is still an open research issue in re-
flectometry [WLL+08] [NRH+92] and may eventually be exploited for improved
material-based image analysis.

Moreover, we plan to extend the device to capture 6D reflectance fields [DHT+00].
Today, light field cameras can be bought for reasonable prices and hence have
become attractive for academic research. By acquiring a partial light field of a test
object, not only the appearance under angularly-varying illumination directions
but also from different viewpoints can be investigated. As a consequence, depth
information from the test object can be obtained.
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[Gra10] Ana Pérez Grassi. Variable illumination and invariant features for detecting and
classifying varnish defects. KIT Scientific Publishing, Karlsruhe, 2010.

[Hei04] Michael Heizmann. Auswertung von forensischen Riefenspuren mittels automatischer
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Abstract: One important step for character recognition is character segmen-
tation, since this mainly influences the quality of the characters and thus the
classification result. There are several difficulties in character segmentation,
e.g.if characters in a line of text are too close together then the segmentation
algorithm may merge these characters, on the other hand characters may fall
apart if a character is not connected with respect to the segmentation direction.
To deal with such kinds of wrong segmentation, a graph based approach is in-
troduced in this technical report. First experiments show that the approach is
promising, but still has some shortcomings.

1 Introduction

Character segmentation is still an ongoing research topic, since it essentially af-
fects classification. The character segmentation methods are commonly based on
projection analysis, connected component processing, or segmentation based on
recognition [Lu95, CL96, SSR10]. The challenging task is to correctly segment
touching, overlapping, or fragmented characters. If one of these difficulties causes
wrongly segmented characters, correct classification is very difficult and costly.
On the other hand most character segmentation methods are based on binarized
images. Unfortunately, binarization can even enforce the appearance of touching
or fragmented characters. Hence, many segmentation errors can be omitted if the
segmentation method is based on gray scale images.
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1.1 Related Work

A character segmentation method that works on gray scale images is introduced
in [LeB97]. It is based on the ratio of vertical gray level projection and the sum
of vertical gradients. The author points out, that the procedure works good even
on touching characters under severe conditions. A similar method is proposed
in [LL95]. This method is based on projection profiles in combination with topo-
graphic features for presegmentation. For the segmentation itself, they use multi-
stage graph search to determine the nonlinear segmentation path. The authors
show that the method performs better than methods based on binarized images. A
method for character segmentation of license plates is introduced in [ZZ03]. This
method combines projection profile analysis with the Hough transform. Accord-
ing to the authors this has the advantage that no rotational correction is needed
and it is robust to illumination changes. In [NYK+05] another character segmen-
tation approach for license plates is introduced. However, this method is based
on binarized images on which the degradation—fragmented, overlapped, or con-
nected characters—of the characters is adaptively detected. With the detection
result, the degradations of the characters are corrected by applying corresponding
morphological operations. The characters are finally segmented based on the ver-
tical histogram combined with the costs of the segmentation lines. A character
segmentation method of license plates based on binarized images is as well intro-
duced in [PYX08]. Firstly, the skew angle in horizontal and in vertical direction
is estimated with a least squares approach. For segmentation they use a projection
method, which was improved to remove noisy regions in between the characters
additionally. In [Yan00] the author proposes a segmentation method especially
for dot matrix characters. The author investigates three methods for pitch estima-
tion. The methods are based on autocorrelation, Fourier analysis, and peak-valley
analysis, respectively. The peak-valley analysis shows the most promising result,
but it fails in the case of skewed text lines or italic fonts. A segmentation method
that deals with touching italic typewritten fonts is introduced in [LNCS04]. Based
on the determination of the slant angle and a contour analysis, they locate seg-
mentation points. Furthermore, the authors use dynamic programming to find the
best cut path, which is associated with the segmentation points. For the final de-
cision whether a cut path is correct, they apply a neural network to the segmented
regions. The output of the neural network is a confidence value on which the de-
cision for the best segmentation path is based. Unfortunately, their comparison to
other methods is not very significant, since these methods do not consider the slant
angle of the text at all. Hence, it is clear that the results of the other methods do
not look very promising. Another method that works on typewritten gray scale
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characters is proposed in [TCJY07]. They have their main focus on smeared char-
acters. Based on the connected component analysis on the binarized images, they
determine whether any of the characters are smeared. If so, they apply a shortest
path algorithm on the gray scale images to locate the best segmentation path. They
also point out the big influence of the binarization step, which can result in touch-
ing or fragmented characters. The results are promising, but the shortcoming is
the detection of smeared characters and the decision whether or not two characters
are still connected. In [Suw05] the author introduces a graph-based segmentation
approach for handwritten connected numerals. The numerals were smoothed and
afterwards thinned on which the graph representation is based. They investigate
to determine whether two numerals are touched at multiple points or not. If the
case of multiple touches of two numerals is detected, the shortest path through the
graph between the obtained connecting points is determined. The segmentation is
achieved by dividing the edges and vertices along the shortest path into two dis-
connected subgraphs. However, this method is only applied to binary images with
two touching characters.

1.2 Contribution

The method proposed in this technical report is on segmenting typewritten char-
acters from gray scale images containing one line of text only. It is assumed that
the characters’ height is the height of the text line image, i.e.the characters are
touching top and bottom of the image. Similar to the method mentioned before, it
is also based on graphs. However, not the character is represented by the graph,
but the image containing one line of typewritten characters. The graph must rep-
resent the text line in a way that the cut of minimum cost through the graph is the
segmentation cut through the image in front of or in between two characters. The
result of the minimum cost cut through a graph from the source to the sink termi-
nal is equivalent to the result obtained by maximum flow algorithms, see [JFZ63].
The graph cut method can be efficiently used to solve discrete energy function-
als with binary variables that are graph representable. For some conditions even
the global minimum cut can be found, i.e.the global minimum of the energy func-
tional [BVZ01, KZ04]. In the case of a one dimensional energy functional—the
argument is a function of one binary variable—the result is the same as can be
obtained by dynamic programming. However, the graph cut approach can also be
efficiently applied if the energy functional is multi-dimensional. Due to this ad-
vantages graph cut techniques have been successfully applied to many image pro-
cessing tasks like image segmentation, multi-camera scene reconstruction, image
restoration, and stereo vision [BVZ01, BK04, BFL06, KZ04]. Another approach
is the synthesis of image and video textures, which was introduced in [KSE+03].
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1.3 Outline

The fundamentals of the energy functionals that can be minimized using the graph
cut technique are discussed in the next section. Furthermore, the general con-
ditions for a valid energy functional are mentioned and adapted to the character
segmentation task. In Section 3, it is explained how the graph is built, which rep-
resents the energy functional. Some experiments are described in Section 4 and
the pros and cons of the method are pointed out. In the last section the report is
concluded and some remarks for future work are given.

2 Energy Formulation

In this section the energy formulation for typewritten character segmentation is
introduced. For this reason, it is referred to the fundamentals of energy functionals
that can be minimized by minimizing the costs of a cut through a graph. The single
energy terms that are important for the proposed method are discussed explicitly.
For the following introduction let the gray scale image with the characters be

G : P := {1, . . . ,M} × {1, . . . , N} → {0, . . . , 255} ,

where M and N indicate the number of rows and columns of the image, respec-
tively. The indices of the pixels are expressed as ordered pair p = (m,n) ∈ P .

2.1 General Formulation

The typewritten character segmentation is based on the minimization of an energy
functional that has in general the form

E (l) :=
∑
p∈P

Dp (lp) +
∑

(p,q)∈N

Vpq (lp, lq) . (2.1)

This functional is well known from other applications in image processing,
e.g.image segmentation, image restoration, or stereo vision [BK04]. In equa-
tion (2.1), Dp (lp) denotes the position penalty, which is dependent on the label
lp ∈ L. The labeling assigns one label lp of the label set L to every pixel p ∈ P
of the image. Since in this approach character segmentation is considered to be
a binary problem the label set is defined by L := {0, 1}. With the second term
in equation (2.1) the labeling of discontinuous label assignments can be penalized,
i.e.the cost for the labeling lp of pixel p if pixel q is labeled lq. The setN ⊆ P×P
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describes the neighborhood relation between the pixels. All the pixels q for which
(p,q) ∈ N are called the neighbors of p, i.e.Np := {q ∈ P|(p,q) ∈ N} is the
neighborhood of the pixel p.

According to [KZ04, BFL06] the binary labeling problem can be solved in polyno-
mial time and the global optimum solution can be determined. However, the only
constraint is that the energy functional must be regular, which ensures that it is rep-
resentable by a graph. That is, the minimum cost cut of this graph is equal to the
minimum of the energy functional. For the regularity of a function the following
constraints apply:

• A function with only one binary variable is always regular.

• A function with two binary variables is regular if

Vpq (0, 0) + Vpq (1, 1) ≤ Vpq (0, 1) + Vpq (1, 0) , ∀ p,q ∈ P .

• The sum of two regular functions is regular too.

If the regularity is not fulfilled or a multi-label problem has to be optimized, mini-
mization of the energy functional becomes NP-hard. More information on this can
be found in [KZ04, BFL06].

2.2 Energy Model for Character Segmentation

The first idea of using graph cuts for character segmentation, is based
on [KSE+03]. However, they use graph cuts to find an optimal cut to merge two
image patches. For character segmentation it can be used to find a segmentation
path through an image—the image contains only characters—in such a way that
the image is split in between two characters. However, it turned out that this ap-
proach has several drawbacks. Since the image is cut into two images, where both
contain characters, the method has to be applied multiple times. This raises the
question when to stop the iteration. The task is even getting worse, since the num-
ber of characters in both images is unknown. Hence, the method that is proposed
in this report does not cut the image at an arbitrary position, but cuts the image
in front of—depending on the size of the background region in front of the first
character—or right after the leftmost character. In that case, too, the algorithm has
to be applied multiple times, but it can be stopped if the image is smaller than the
width of the narrowest character.

First of all, the position penalty function is defined in a way that the graph is cut
right after the first character. To guarantee that the image is cut on the left hand
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side of the line of text, the position penalty for label lp = 0 is chosen to be

Dp(lp = 0) :=



cd
(M−2) (n− 1) ,

cd
3M (n+M) ,

cd ,

0 < n ≤ M
2

M
2 < n ≤ 2M

2M < n ≤ N

with

p = (m,n) , m = 1, . . . ,M , n = 1, . . . , N .

In this equation, the constant cd is a weighting factor with respect to the neighbor-
hood interaction term in (2.1). The position penalty for the label lp = 1 is given
by

Dp (lp = 1) := cd −Dp (lp = 0) .

These position penalties are the basis for assigning the leftmost character to the
object (lp = 0) and the rest to the background (lp = 1). With this position penalty,
the maximal width that can be assigned to the object is 2M . This is chosen, since
a character is mostly higher than wide, i.e.it is sure that 2M is larger than the
width of one character. The illustration of the position penalty function is given in
Figure 3.1 on the bottom. If the remaining text line image is shorter than 2M , then
the position penalty is changed in a way that the minimum cut is assumed to be in
the middle of the image.

With the definition above, it is known where the image is approximately cut, but
it is not sure whether the cut is between two or in front of the first character. This
raises the need of the second term of the energy functional (2.1). This is used to
ensure that the cut goes through a region that belongs to the background. Note,
since the neighborhood is symmetric for the discontinuity penalty holds that

Vpq (lp, lq) = Vqp (lp, lq) .

The penalty is defined by

Vpq (lp, lq) := fs (W (p,q) · δ(lp, lq)) ,

where W (p,q) indicates the weight between pixel p and q of the image and func-
tion δ(·, ·) is equal to zero if lp = lq and one otherwise. The function fs(·) denotes
a scaling function, to adjust the range and the influence of the discontinuity penalty
on the energy functional. To minimize the influence of illumination changes, it is
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chosen to normalize the discontinuity penalty to mean zero and subsequently it is
scaled to the interval [0, cs]. The upper bound of the interval cs is chosen subject
to the desired influence of the discontinuity penalty with respect to the position
penalty. For example, if cs is too low, than the segmentation is mostly influenced
by the position penalty. Whereas the discontinuity penalty is dominant, if cs is too
high.

Using the previous energy functions, the energy functional given in (2.1) is con-
sistent with the Ising model. The Ising model is a special case of the Potts model,
which covers the general case of more than two labels. The models are disconti-
nuity preserving functions and often used in image processing. The Ising model
ensures that the global minimum of the binary energy functional (2.1) can be found
by the graph cut method [BK04], i.e.the energy functional is regular.

Since with this method at most one character can be cut off the text line, it is
repeated as long as the image width is still wider than the narrowest expected
character. In the case that spaces are between or in front of a character in the
image, it may happen that the image is cut in front of the first character, i.e.this
image does not contain a character, but only background. However, such images
can be identified by either considering the image mean or the width of the image.

3 Graph Representation

For the calculation of the minimum cut through a graph, the energy functional (2.1)
must be representable by a graph. In Section 2.2, it has already been mentioned
that the energy functional is regular and thus representable by a graph. The graph
G := (V, E) is fully characterized by the vertices V and the edges E connecting
the vertices. The set of vertices

V := {vp|p ∈ P} ∪ {s, t}

contains one vertex vp corresponding to every pixel p ∈ P of the image and two
additional terminal vertices. The terminal vertices represent the labels 0 (source
terminal s) and 1 (sink terminal t), i.e.object and background, respectively. The
total number of vertices of the graph is

|V| = |P|+ 2 = M ·N + 2 .

The vertices are connected via edges, where the edge from vertex vp to vertex
vq is denoted by epq. The edges of the graph can be distinguished into three
classes. The s-links esp and t-links ept are edges connected with the object



158 Martin Grafmüller

and background terminal, respectively, and the n-links are connections between
neighboring pixels. The set of edges

E :=

⋃
p∈P
{esp, ept}

 ∪
 ⋃

(p,q)∈N

{epq}

 ,

is the union of the sets of all pixels connected to the terminal links and the set of
all edges between neighboring pixels. The setN contains the eight adjacent pixels
of the pixel p. Since the energy functional has already been introduced, it has
only to be defined how the graph and the energy functional (2.1) come together.
Depending on the class of edge, the corresponding edge weights are given by

s-links : wsp := Dp (lp = 0) p ∈ P ,
t-links : wpt := Dp (lp = 1) p ∈ P ,
n-links : wpq := fs (W (p,q) · δ(lp, lq)) (p,q) ∈ N .

W (p,q) represents the inverted mean value of two horizontal or diagonal adjacent
pixels. The inverted mean value of two pixels is chosen, since this value is low if
both pixels belong to the background. It is medium, if one pixel belongs to a
character and one to the background. For two pixels that belong to a character this
value is high. Hence, a cut is preferred in the background region, since there the
weights are lower. For vertical adjacent pixels the weight is set to twice the mean
value of the two gray values. This favors that the background region is vertically
cut.

As already mentioned the cost of the minimum cut through the graph is equivalent
to the minimum of the energy functional defined in equation 2.1. The cut severs
the graph into to disjoint graphs, where one is connected to the source s and one to
sink t. After the cut, the sets of vertices connected to source and sink are denoted
by S and T , respectively. With respect to the labels this means that label lp = 0
is assigned to vertex vp ∈ S and label lq = 1 to vertex vq ∈ T . The minimum
cut costs are given by the sum of the weights of the edges that are cut. This can
formally be expressed as

CST :=
∑
p∈S,
q∈T ,
epq∈E

wpq .

An example is given in Figure 3.1, where the graph is indicated in the image on
top. The two terminal vertices are connected to every pixel according to the po-
sition penalty function, which is given in the plot on the bottom. Note, in spite
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of the connections of the terminal vertices shown in Figure 3.1 to the pixels at the
border of the image only, all pixels are connected to both terminals, i.e.the position
penalty plotted in Figure 3.1 is applied to each row of the image and is valid for
the label lp = 0. The connections represented by the discontinuity penalty are
based on the gray values of the image. Furthermore, the first minimum cost path
is emphasized in black. For segmenting all characters the first segmented part is
removed and the source terminal is connected to the new image.

Figure 3.1: Example of the graph and the position penalty function.

Now the graph is fully defined, in which the minimum cut can be exactly deter-
mined in polynomial time. In the next section the rather theoretical consideration
up to now is supplemented by some experiments.

4 Experiments

In addition to the fundamentals of character segmentation using graph cuts that
have been introduced so far, some experiments are given in this section. Based on
these experiments the results of the proposed method are discussed in detail.

For the experiments some conditions have to be mentioned. Since it is assumed
that the characters are of a width not larger than twice the characters’ height, the
position penalty introduced in Section 2.2 is restricted to this, i.e.it is essential that
N > 2M . Hence, the position penalty is slightly changed, if this not applies. In
fact it is chosen that the most probable segmentation cut is approximately in the
middle of the image. Since we assume that no character is wider than half of its
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height this is used as the stopping criterion (N ≤ M
2 ) of the iteration. The constant

of the position penalty is set to cd = 255, since this is the interval in which the
values of an 8 bit gray scale image lie. For most examples the constant in the
discontinuity penalty is chosen cs = 40 · cd, i.e.this penalty is weighted 40 times
higher than the position penalty. There is only one example where it is chosen
differently, which is especially mentioned.

4.1 Results

In Figure 4.1 the same text line is given as in Figure 3.1. The image in this figure
also shows the segmentation cuts in black. These cuts are determined by iteratively
applying the method proposed in this report. As we can see, the segmentation
cuts are mostly vertical, since the weights of the discontinuity penalty in vertical
direction are two times higher. Even though the typewritten characters are written
in italic characters, the segmentation cuts are correct in this example.

Figure 4.1: Text line of typewritten italic characters. The segmentation cuts are
indicated in black.

The example in Figure 4.2 shows a text line with typewritten dot matrix characters.
The segmentation cuts are also indicated in black, which show that all characters
are segmented correctly. Usually this kind of font is very difficult to segment, since
dots of the characters may not be touching, e.g.the dots of the digit “4” in this
image. One thing that can be noticed in the figure, the region after the character—
only background—is segmented as well. However, in most cases these regions can
be rejected not to be a character by considering the mean gray value of this region
or its width.

Figure 4.2: Text line of typewritten dot matrix characters.
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The text line in the image in Figure 4.3 is a little curved and the characters are
badly printed. The characters are segmented correctly though. Another difficulty
is that the character distance is very small, e.g.the digit “6” six and the following
two digits “9” are very close together, thus segmentation of these characters is very
hard.

Figure 4.3: Segmentation of badly printed characters.

In Figure 4.4 a text line is given, which contains touching and badly printed char-
acters. Some are not even readable for humans. However, the segmentation result
looks promising. The example shows that with this method even touching charac-
ters can be segmented correctly. The only shortcoming noticed with this example
is, that the method is very sensitive to the scaling constant cs of the discontinuity
penalty. For the correct segmentation of all characters of this text line it is set to
cs = 20 · cd.

Figure 4.4: Segmentation of badly printed and touching characters.

As already mentioned, the segmentation of dot matrix characters can be very diffi-
cult due to non-touching dots. In Figure 4.5 another example of a text line contain-
ing dot matrix characters is given. For most characters the segmentation is correct,
but the digits “2” and “7” in this image are split. In consideration of this shortcom-
ing it is assumed that the segmentation result can be further improved, if the dis-
continuity penalty is especially adapted to dot matrix fonts, i.e.more information
about the neighborhood of a pixel must be considered.

Figure 4.5: Wrongly segmented dot matrix characters.
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A third text line with dot matrix characters is given in Figure 4.6. The dots of
the characters in this image are mostly touching. But in some cases dots are not
touching, which leads two times to a wrong segmentation of the digit “9”. Since
this kind of mistake is without any further expense hard to detect, it will also have
an effect on classification. Both digits “9” would probably be classified as “3”.

Figure 4.6: Text line with wrongly segmented dot matrix characters.

4.2 Discussion

Based on the previous experiments some pros and cons of the proposed procedure
are discussed. Since this is just the first approach using graph cuts for character
segmentation, there are still a lot of shortcomings. Nevertheless, the experiments
done so far on badly printed or merged characters and on dot matrix fonts, show
promising results. The position penalty introduced in Section 2.2 makes sure that
the characters are segmented from left to right. Due to this restriction it seems
to be the better approach than to allow a segmentation cut anywhere in the im-
age. However, we assume that the method can be further improved, if the position
penalty is adaptive to the characters’ width and not fixed to twice the characters’
height. The experiments also have shown that the method is sensitive to the illu-
mination conditions, although the discontinuity penalty is normalized with respect
to the image mean. Furthermore, in some cases the scaling constant cs can influ-
ence the segmentation result dramatically. These are two shortcomings that come
along with the discontinuity penalty and shows that this is an important topic for
further research. Part of future investigations must also be more experiments to
show the robustness and the reliability and an evaluation in comparison to methods
mentioned in Section 1.

5 Conclusion

A typewritten character segmentation method has been introduced, which is based
on graph cuts. For the graph representation of the images the commonly used
energy functional has been adapted to the character segmentation task. The func-
tional consists of two components. The first one is adapted such that the characters
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are segmented out of the image from left to right. The second component penal-
izes discontinuities and brighter regions to enforce the minimum cut between to
characters. The method has to be iteratively applied, since only one cut can be ob-
tained at a time. The experiments have shown that this first approach is promising,
e.g.for the segmentation of merged or badly printed characters. However, there are
still some shortcomings, which have to be rectified.

The main topic for future research is the selection of the discontinuity penalty. This
regards the scaling as well as the influence of the neighborhood, since it is assumed
that the improvement of both can definitely make the segmentation method more
robust to noise and changing illumination conditions. Furthermore, the method
has to be evaluated with respect to common methods.
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Abstract: This report describes problems of Multi-Target-Tracking and gives
an introduction to the state-of-the-art methods of dynamic state estimation
and data association in cluttered environments. A detailed derivation of the
Probabilistic Data Association Filter and Joint Probabilistic Data Association
Filter is given.

1 Introduction

Object detection and tracking is an important task in modern environment per-
ception and surveillance systems. Its aim is continuous localization of people or
objects in an environment by processing data of environment perception sensors
such as sonars, radars, lidars, or video cameras. In general, the problem of object
tracking can be divided into three subtasks: data association (re-identification),
dynamic state estimation (filtering), and track management. The first subtask is
responsible for the correct interpretation of the collected observations, i.e., assign-
ment of sensor measurements to the tracked objects (tracks). The second subtask
deals with estimation of the dynamic state of the objects (e.g., kinematics) from
a sequence of noisy measurements. Finally, the third subtask is responsible for a
consistent internal representation of the tracked objects, which includes initiation
of new and deletion of obsolete tracks. The following sections give an introduc-
tion to the basic state-of-the-art methods for dynamic state estimation and data
association in cluttered environments.
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2 Dynamic State Estimation

Each measurement process contains sources of noise. Thus, obtained measure-
ments may differ from the expected values. The aim of a dynamic state estimator
is the determination of the real value of a not known system state from the obtained
(noisy) measurements. This is done by the so-called filtering algorithms that aim
at minimization of the noise effects. There exists a variety of such methods. Most
of the modern tracking systems use statistical filters that are based on the Bayesian
approach. They model system state and noise as random variables and estimate
their statistics using certain assumptions about their nature.

Applications with real-time requirements often cannot consider the entire mea-
surement history for achieving the best estimation result. Thus, they proceed re-
cursively using only the last estimated system state and the current measurements.
The underlying assumption is that all previous measurements are incorporated in
the estimated state and are not required to be processed again in each time step
(Markov property). The system evolution is thus modeled by means of a Markov
process.

A system state xk at discrete time point k is modeled as a realization of a random
variable X in the state space X . The system state between two discrete points in
time k and k + 1 is assumed to behave according to a known system evolution
function f (system model):

Xk+1 = f(Xk,uk,Wk) ,

where uk represents the (known) system control parameters and Wk represents
the stochastic component which cannot be modeled analytically (system noise).

The observations zk are modeled as a realization of a random variable Z in the
measurement space Z . The measurement process is modeled by means of a
measurement model h(Xk,Vk):

Zk = h(Xk,Vk) ,

where Vk represents the stochastic component of the measurement process (mea-
surement noise). Since the system state can not be observed directly, one speaks
of the Hidden Markov Model (HMM). The relation between system states and ob-
servations of a Hidden Markov Model for the case of discrete states is shown in
Figure 2.1.
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x1
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x3
x4

x5

z1 z2

z3

z4
z5

X

Z

Figure 2.1: Relation between system states and observations in a Hidden Markov
Model. Possible state transitions are represented by blue arrows, emission prob-
abilities are indicated as purple arrows. Here, the subscripts of the states and
observations are used not for indicating the time index k but serve for enumeration
of the both sets.

The state estimation is done using the so-called Predictor-Corrector cycle, which
consist of two steps:

Prediction of the probability density functions of the new system state and ex-
pected measurements based on the latest state estimate by using the system
model and the measurement model.

Correction of the estimated system state and adaptation of the both models based
on the actually obtained measurements. It is also called Innovation, Update
or Filtering.

The basic principle of a recursive statistical filter is shown in Figure 2.2. The filter
works recursively in a predictor-corrector cycle starting with an initial system state
estimate x̂0. Given a state estimation at time step k − 1 the filter propagates it in
the time using the system model. In this way, an a-priori estimate of the current
system state x̂−k is obtained. Then, the measurement model is used for estimating
the expected measurement ẑk. After having obtained the actual measurement zk,
a correction step is performed, in which both the current state and the uncertainties
of the both models are updated based on the difference (residuals) between the
predicted and actually obtained measurements.
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Figure 2.2: Illustration of the dependencies between the observed system and the
filtering process of a statistical filter.

One of the simplest statistical dynamic state estimators is the Kalman Filter in-
troduced by R. E. Kalman in 1960 [Kal60]. It assumes Gaussian distributions of
both the state and the noise variables and provides equations for propagation of
those distributions using linear system and measurement models. For the case of
Wk and Vk being uncorrelated and having white Gaussian distribution with zero
mean, the Kalman Filter is an optimal estimator in the sense of the least square
errors and Bayesian filtering.

A Gaussian distribution can be represented by the two first moments (mean and
covariance matrix) and is easily propagated through a linear system resulting in
another Gaussian distribution. In case of non-linearities in at least one of the both
models, this is not the case anymore. For coping with this problem two differ-
ent approaches have been proposed. The first one aims at approximation of the
non-linear function by using the Taylor series expansion around the mean of the
Gaussian distribution (Extended Kalman Filter (EKF), Iterative Extended Kalman
Filter (IEKF)). The second approach aims at approximation of the distribution by
means of a set of points that can be propagated through the non-linear functions
and serve for determination of the new distribution parameters (Unscented Kalman
Filter (UKF), Central Difference Kalman Filter (CDKF) etc.). A generalization of
this approach leads to the family of the Sequential Monte Carlo Methods (SMCM)
also known as Particle Filters (PF). An overview over different dynamic state es-
timators can be found in [BSL93, Bro98, Sim06]. Following subsections recapit-
ulate the basics of the linear Kalman Filter, Extended Kalman Filter and Iterative
Extended Kalman Filter since they build the basement for the data association
methods presented in this paper.
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2.1 Linear Kalman Filter

In the case of the linear Kalman Filter, system model and measurement model are
given as linear equations

Xk+1 = FXk + Guk + Wk (state equation) (2.1)
Zk = HXk + Vk (measurement equation)

with F, G and H being the system matrix, the control matrix and the measurement
matrix, respectively, and

Xk ∼ N (x̂k,PXkXk
) (2.2)

with

PXkXk
:= Cov(Xk,Xk) = E

[
(Xk − x̂k)(Xk − x̂k)

]
.

The noise components W and V are assumed to be uncorrelated and to have white
Gaussian distribution with zero mean and known covariance matrices Qk and Rk:

Wk ∼ N (0,Qk) , Vk ∼ N (0,Rk) ,

PWkWt
:= Cov(Wk,Wt) = E

[
WkW

T
t

]
=

{
Qk for t = k

0 for t 6= k ,

PVkVt := Cov(Vk,Vt) = E
[
VkV

T
t

]
=

{
Rk for t = k

0 for t 6= k ,

PWkVt
:= Cov(Wk,Vt) = E

[
WkV

T
t

]
= 0 for all t and k ,

PXkWt := Cov(Xk,Wt) = E
[
XkW

T
t

]
= 0 for all t and k ,

PXkVt
:= Cov(Xk,Vt) = E

[
XkV

T
t

]
= 0 for all t and k .

In the considered application there is no possibility to influence the observed
system. Hence, the control parameter vector u will be omitted in the following.

As mentioned above, the Kalman Filter gives estimates of the two first moments
x̂k and PXkXk

of the distribution of the true state xk. It is initialized at time step
k = 0 with initial state estimate x̂0 and covariance matrix PX0X0 . The recursive
expression for the calculation of the a-priori estimates x̂−k and PX−

k X−
k

at time
step k from the a-posteriori estimates x̂k−1 and PXk−1Xk−1

at the previous time
step k − 1 is derived by using the state equation (2.1) in the expectation value
computation:

x̂−k = E
[
Xk|z1:k−1

]
= E

[
FXk−1 + Wk−1|z1:k−1

]
= Fx̂k−1
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and

PX−
k X−

k
=E
[
(Xk − x̂−k )(Xk − x̂−k )T

]
=E
[
(FXk−1 + Wk−1 − Fx̂k−1)(FXk−1 + Wk−1 − Fx̂k−1)T

]
=FPXk−1Xk−1

FT + Qk . (2.3)

In equation (2.3), Qk represents the unpredictable noise component. The uncer-
tainty PX−

k X−
k

of the state grows in each time step by this expression. The coun-
teraction is achieved by integrating new information about the system state that
is contained in the new measurements. This is done in the correction step using
innovation z̃k = zk − ẑk:

x̂k = x̂−k + Kk(z̃k) = x̂−k + Kk(zk − ẑk) = x̂−k + Kk(zk −Hx̂−k )

= (I−KkH)x̂−k + Kkzk ,

and

PXkXk
= E

[
(Xk − x̂k)(Xk − x̂k)

]
= PX−

k X−
k

+ KkHPX−
k X−

k

with Kalman gain Kk = PX−
k X−

k
HTP−1

Z̃kZ̃k
and innovation covariance

PZ̃kZ̃k
= E

[
Z̃kZ̃

T
k

]
= E

[(
(Zk − ẑk)− 0

)(
(Zk − ẑk)− 0

)T ]
(= PZkZk)

= E
[
(H(Xk − x̂k) + Vk)(H(Xk − x̂k) + Vk)T

]
= HPXkXk

HT + Rk .

2.2 Extended Kalman Filter

In the case of non-linearities in the system and measurement models, the state and
measurement equation are given by

Xk+1 = f(Xk,Wk)

Zk = h(Xk,Vk) .

In the most of the cases, additive noise model is assumed so that

Xk+1 = f(Xk) + Wk

Zk = h(Xk) + Vk .
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The Extended Kalman Filter approximates the non-linear functions f and h using
Taylor series expansion around the current mean estimate. Truncation of the Tay-
lor series after the first element leads to a linear function, which can be used for
propagation of the Gaussian distribution as in the linear case. The a-priori estimate
for the system state and expected measurement can be obtained directly using both
nonlinear functions. When propagating state covariance and computing Kalman
gain, Jacobians Fk−1 and Hk are used:

Prediction: x̂−k = f(x̂k), PX−
k X−

k
= Fk−1PXk−1Xk−1

FTk−1 + Qk

Correction: x̂k = x̂−k +Kk(zk − h(x̂−k )), PXkXk
= (I−KkHk)PX−

k X−
k

with

Kk = PX−
k X−

k
HT
kP
−1

Z̃kZ̃k

PZ̃kZ̃k
= HkPX−

k X−
k
HT
k + Rk

and the Jacobians

Fk−1 =
df

dx

∣∣∣∣
x̂k−1

and Hk =
dh

dx

∣∣∣∣
x̂−
k

.

2.3 Iterative Extended Kalman Filter

The Extended Kalman Filter linearizes the measurement function around the a-
priori state estimate x̂−k although a better state estimate is given after the inte-
gration of the current measurement. Linearization around the a-posteriori state
estimate x̂k may improve the estimation. This potential is exploited in the it-
erative version of the EKF, the Iterative Extended Kalman Filter (IEKF). IEKF
iteratively repeats the correction step with the recalculated linearization of the
measurement model until a termination constraint is fulfilled. For ensuring non-
recurrent integration of the measurement zk during the iterations, a correction term
H

(i)
k (x̂−k − x̂

(i)
k ) is used in each iteration i:

x̂
(i+1)
k = x̂−k + K

(i)
k (zk − h(x̂

(i)
k )−H

(i)
k (x̂−k − x̂

(i)
k ))

K
(i)
k = PX−

k X−
k

(H
(i)
k )T (P

(i)

Z̃kZ̃k
)−1

with

H
(i)
k =

dh

dx

∣∣∣∣
x̂

(i)
k

and start value x̂
(0)
k = x̂−k .
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3 Data association

In order to correctly perform the update step, statistical state estimators such as
the Kalman Filter assume a correct assignment of measurements to tracks. A cor-
rect assignment means that in each time step each track is associated with a single
measurement that has been originated from the corresponding object. The prob-
lem of assigning measurements to the existing tracks is called the data association
problem. Data association is not always a trivial process. Given multiple active
tracks and multiple detections, there are often several assignment possibilities be-
ing more or less probable. Figure 3.1 illustrates the data association ambiguity in
case of three objects and four measurements.

?

?
? ?

?

?

Figure 3.1: Illustration of a possible data association ambiguity in case of three
tracks and four measurements. The three expected measurements are visualized
by blue circles, the actually obtained – by red triangles.

Further uncertainties are introduced through the fact that a measurement may be
evoked not only by a real object but may emerge due to concentration of noise in
the data (clutter) or may be missing due to weaknesses of the sensors or of the
subsequent data processing algorithms. And, finally, in some systems an object
may evoke multiple measurements and several objects may give a joint measure-
ment. This makes unambiguous assignments difficult or even impossible. In case
of extended targets this is even worse since object observability represents another
uncertainty source. Partial and full occlusions result in incomplete and missing
detections and make data association even more challenging.

There exists a number of algorithms for solving the data association problem in
multi-target applications. Hereby, a differentiation between the so-called single
scan algorithms (also referred to as Single Hypotheses Tracking (SHT)) and mul-
tiscan algorithms (also referred to as Multi-Hypotheses Tracking (MHT)) is done.
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While single scan algorithms consider only data of the current frame (scan), mul-
tiscan algorithms simultaneously evaluate multiple hypotheses maintaining them
throughout several frames in anticipation that the new data will allow to resolve
emerging conflicts [Rei79, CH96]. In practice, single scan algorithms are often
preferred due to their simplicity and low computational cost. In the following, al-
gorithms assuming that the number of tracks is known and a detection corresponds
to a single track and vice versa will be presented.

3.1 Nearest Neighbor Algorithms

One of the simplest data association algorithms is the Nearest Neighbor algo-
rithm (NN). It is a typical single scan algorithm since it considers only mea-
surements belonging to the current data frame (scan). NN algorithm considers
only one data association hypothesis, assigning for each track the closest mea-
surement. As shown in Figure 3.2 (a), in multi-target tracking scenarios, the NN
algorithm is not optimal since it might assign a single measurement to multiple
tracks despite the presence of other measurements. There exists an iterative version
of the NN algorithm which prohibits multiple selections. It sequentially choses
track-measurement pairs with the closest distance and excludes them from further
consideration. This algorithm is suboptimal too, since it minimizes the track-to-
measurement distances sequentially and thus may miss the global minimum as
shown in Figure 3.2 (b). This problem can be solved by the Global Nearest Neigh-
bor algorithm (GNN) which seeks for the globally optimal solution with respect to
track-to-measurement distances (Figure 3.2 (c)).

3.2 Probabilistic Data Association (PDA)

Nearest Neighbor algorithms make a hard decision by minimizing distances be-
tween the predicted and real measurements. This decision might be optimal with
respect to the distances in the current frame, however it may be still suboptimal
with respect to the whole measurement sequence. Especially in applications where
missing detections or obtaining clutter-based detections is possible, the Global
Nearest Neighbor algorithm may lead to severe tracking errors. This problem
was studied thoroughly in the radar tracking literature and led to development of
statistical methods based on the idea of the probabilistic data association.

The main idea of such methods is weighting of different association hypotheses
according to their probabilities thus minimizing the association error. Similarly
to NN and GNN, PDA-based methods consider at each point in time only cur-
rently incoming measurements, i.e., they are single scan algorithms. However,
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(a) Association by means
of the simple Nearest
Neighbor algorithm

(b) Association by means
of the iterative NN al-
gorithm

(c) Association by means
of the Global Nearest
Neighbor algorithm

Figure 3.2: Illustration of Nearest Neighbor data association.

when updating a track, instead of choosing a single measurement with highest
association probability they evaluate multiple association hypotheses and use all
neighboring measurements weighting them according to the probabilities of the
corresponding hypotheses (All-Neighbours Data Association). Due to this soft de-
cision approach, PDA-based methods suffer less from data association errors and
are thus better suitable for applications with clutter-based and missing detections.
Although PDA-based methods work with multiple association hypotheses they are
also referred to as single hypotheses tracking algorithms since the hypotheses are
combined to a single hypothesis prior to innovation. The remainder of this section
addresses basics of the Probabilistic Data Association algorithm (PDA) proposed
by Bar-Shalom et. al. [BST75, BS78].

The PDA considers each track separately. Let the considered track be denoted by
x with Xk ∼ N (x̂k,PXkXk

) as in (2.2). Under Gaussian distribution assumption,
the a-priori probability density of the predicted measurement position is given by

fZx
k

= f(zxk |Zx
1:(k−1)) = N (zk; ẑxk ,P

x
ZkZk

) ,

with

ẑxk = Hx̂−k and Px
ZkZk

= HPX−
k X−

k
HT + R .

For preventing associations with too far lying and thus too improbable measure-
ments a selection region referred to as the gating region or validation gate Γx

k is de-
fined around ẑk with volume V x

k . Associations are only performed with measure-
ments falling inside the gating region. The probability of the correct measurement
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zk to lie inside the gating region is given by

Pxk
G = P (zk ∈ Γx

k) =

∫
V x
k

fZx
k

dzk . (3.1)

The a-priori probability density function that accounts for gating is thus defined
as:

p(zxk |Z1:(k−1)) :=

{
1
PG
fZx

k
for zxk ∈ Γx

k

0 for zxk /∈ Γx
k

.

Often, validation gates are defined as hyper-ellipsoidal regions around ẑxk such that
Pxk
G = PG is a constant. This is done by choosing

Γx
k(γ) = {z : (z− ẑxk)T (Px

ZkZk
)−1(z− ẑxk) ≤ γ} (3.2)

with a constant parameter γ. As the measurements are normally distributed, it
holds that

(Z− ẑxk)T (Px
ZkZk

)−1(Z− ẑxk) ∼ χ2
nz

⇒ PG = P (zk ∈ Γx
k(γ)) = χ2

nz
(γ) ,

with nz being the dimension of the measurement z. Defining a constant PG leads
to certain γ, which can be obtained from the quantile tables of the nz-dimensional
chi-square distribution (γ = χ2

nz,PG
). This allows for determination of Γx

k =
Γx
k(γ) as well as V x

k = V x
k (γ) which is given as

V x
k (γ) = cnzγ

nz
2

∣∣∣Px
ZkZk

∣∣∣ 1
2

,

where cnz is the volume of the nz-dimensional unity sphere (c1 = 2, c2 = π, c3 =
4
3π, c4 = 1

2π
2, · · · ).

The set of mx
k measurements falling into the gating region of a track x at time

step k is denoted by Zx
k : Zx

k = {zk,1, . . . , zk,mx
k
} ∈ Γx

k . For better readability,
the superscript x in mx

k will be omitted in the following. For each measurement
zk,j ∈ Zx

k a hypothesis is formed, where this measurement is assumed being
correct while all other mk − 1 measurements in the gate are assumed to be caused
by clutter. This hypothesis is denoted as θx→zj

k with j ∈ {1 . . .mk}. θx→z0

k

denotes the hypothesis of none of the mk measurements in gate being correct, i.e.,
that all of them stem from clutter or are false alarms.

In the innovation step of the Bayesian state estimator, estimates produced by each
hypothesis are weighted with the weighting factors βx→zj

k (with j ∈ {0 . . .mk})
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that are defined as

β
x→zj
k = P (θ

x→zj
k |Zx

1:k)

with Zx
1:k = {Zx

1 , . . . ,Zx
k } and

∑mk
j=0 β

x→zj
k = 1 . The weighting factors are

calculated using Bayes’ theorem:

β
x→zj
k = P (θ

x→zj
k |Zx

1:k) = P (θ
x→zj
k |Zx

k ,mk,Zx
1:(k−1))

=
1

ck
p(Zx

k |θ
x→zj
k ,mk,Zx

1:(k−1))P (θ
x→zj
k |mk,Zx

1:(k−1))

with ck being the normalization factor. Assuming a Gaussian measurement
distribution, the likelihood of the true measurement zk,j (j 6= 0) is given by

p(zk,j |θ
x→zj
k ,mk,Zx

1:(k−1)) = 1
PG
fZx

k
= 1

PG
N (zk,j ; ẑ

x
k ,P

x
ZkZk

)

= 1
PG
N (zk,j − ẑxk ; 0,Px

ZkZk
) = 1

PG
N (z̃xk,j ; 0,Px

ZkZk
)

= 1
PG
· |2π ·Px

ZkZk
|− 1

2 · e−
1
2 (z̃x

k,j)
T (Px

ZkZk
)−1z̃x

k,j

with innovation z̃xk,j = zk,j − ẑxk .

Clutter measurements are assumed to be independent from the correct measure-
ment. Their position is assumed to be independent and identically distributed over
the whole gating region with uniform distribution on Γx

k . Under these assumptions,

p(zk,i|θ
x→zj
k ,mk,Zx

1:(k−1)) =
1

Vk
j 6= i .

The likelihood of the entire measurement set Zx
k falling into the gating region of

the track x at time step k given that either all of them are false alarms (θx→z0

k )
or the measurement j is the correct measurement and all other measurements are
false alarms (θx→zj

k , j = 1...mk) is given by

p(Zx
k |θ

x→z0

k ,mk,Zx
1:(k−1)) =

mk∏
i=1

p(zk,i|θx→z0

k ,mk,Zx
1:(k−1)) =

1

V mkk

,

p(Zx
k |θ

x→zj
k ,mk,Zx

1:(k−1)) =

mk∏
i=1

p(zk,i|θ
x→zj
k ,mk,Zx

1:(k−1))

=
1

V mk−1
k

1
PG
N (z̃k,j ; 0,Px

ZkZk
) , j = 1, · · · ,mk .



Data Association for Multi-Target-Tracking 177

The probability mass function of the hypothesis θx→zj
k conditioned on mk and

Zx
1:(k−1) is given by

P (θ
x→zj
k |mk,Zx

1:(k−1)) = P (θ
x→zj
k |mk)

=
P (mk|θ

x→zj
k )P (θ

x→zj
k )∑mk

j=0 P (mk|θ
x→zj
k )P (θ

x→zj
k )

, (3.3)

where P (θ
x→zj
k ) (with j = 1...mk) denotes the a-priori probability that the

measurement zj originated from track x, P (θx→z0

k ) denotes the a-priori prob-
ability that none of the measurements in the gate has been evoked by track x
and P (mk|θx→z0

k ) and P (mk|θ
x→zj
k ) denote the probabilities for receiving mk

measurements given that either none or one of them stems from track x.

P (θx→z0

k ) is obviously given by

P (θx→z0

k ) = 1− PDPG , (3.4)

where PD is the probability that the track evokes a measurement (detection proba-
bility), and PG is the probability of the measurement to fall into the gating region
as defined in (3.1).

Under the assumption that each of the mk measurements in the gate has equal
probability of being evoked by track x, the a-priori association probability
P (θ

x→zj
k ) for j = 1...mk is given by

P (θ
x→zj
k ) =

1

mk
PDPG ∀j = 1, ...,mk .

The probability of the number of measurements being mk given one of the associ-
ation hypotheses θx→z0

k or θx→zj
k is equivalent to the probability of the number of

false measurements being mk or mk − 1 correspondingly:

P (mk|θx→z0

k ) =µF (mk) ,

P (mk|θ
x→zj
k ) =µF (mk − 1) (3.5)

with µF (m) being the probability mass function for the number of clutter-based
measurements. µF (m) can be modeled in different ways. The number of the
clutter-based measurements can be assumed either to have Poisson distribution
(parametric model) or to be equally distributed over the set {0, · · · , N − 1} with
N being the maximal number of clutter-based measurements (non-parametric
model).
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Parametric model: Poisson distribution

µF (m) = e−m̂k
m̂m
k

m!
= e−λVk

(λVk)m

m!
, m ∈ N0 ,

with λ being the mean clutter density and m̂k := λVk being the expected
number of clutter measurements in the gating region. If λ is a-priori not
known, m̂k can be estimated by using m̂k = mk − PDPG.

Non-parametric model: Uniform distribution

µF (m) =
1

N
, m = 0, 1, . . . , N − 1 ,

where N can be chosen as a great enough arbitrary number since it will be
canceled in P (θ

x→zj
k |mk,Zx

1:(k−1)).

Using (3.4) - (3.5) in (3.3) leads to

P (θ
x→zj
k |mk,Zx

1:(k−1)) =


µF (mk)(1−PDPG)

µF (mk)(1−PDPG)+mk·µF (mk−1)
PDPG
mk

j = 0

µF (mk−1)
PDPG
mk

µF (mk)(1−PDPG)+mk·µF (mk−1)
PDPG
mk

j = 1, ...,mk

and thus to

P (θ
x→zj
k |mk,Zx

1:(k−1)) =


(1−PDPG)λVk

PDPGmk+(1−PDPG)λVk
j = 0

PDPG
PDPGmk+(1−PDPG)λVk

j = 1, . . . ,mk

for the parametric model and to

P (θ
x→zj
k |mk,Zx

1:(k−1)) =


(1− PDPG) j = 0

1
mk
PDPG j = 1, . . . ,mk

for the non-parametric model.

This leads to the following weighting factors βx→zjk :

β
x→zj
k =


b

b+
∑mk
i=1 ei

j = 0

ej
b+

∑mk
i=1 ei

j = 1, . . . ,mk
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with

ej = e−
1
2 (z̃x

k,j)
T (Px

ZkZk
)−1z̃x

k,j

and

b = λ|2πPx
ZkZk

|
1
2

(1−PDPG)
PD

=


(

2π
γ

)nz
2

λVkcnz
(1−PDPG)

PD
, parametric model

(
2π
γ

)nz
2

mkcnz
(1−PDPG)

PD
, non-parametric model.

For each hypothesis, the corresponding state estimate is given by

x̂
zj
k = E[Xk|θ

x→zj
k ,Zx

1:k] =

{
x̂−k j = 0

x̂−k + Kk(zk,j − ẑxk) j = 1, . . . ,mk .

When considering all hypotheses, this leads to the following composite state
estimate for the track x:

x̂k =E[Xk|Zx
1:k] =

mk∑
j=0

E[Xk|θ
x→zj
k ,Zx

1:k] · P (θ
x→zj
k |Zx

1:k)

=

mk∑
j=0

x̂
zj
k β

x→zj
k =

mk∑
j=0

β
x→zj
k x̂−k + Kk

mk∑
j=1

β
x→zj
k (zk,j − ẑxk)

=x̂−k + Kk

mk∑
j=1

β
x→zj
k z̃xk,j (3.6)

with composite innovation z̃xk,Comp :=
∑mk
j=1 β

x→zj
k z̃xk,j .

Although the equation (3.6) seems to be linear, this is not the case as the weighting
factors βx→zj

k depend on z̃xk,j .

The covariance matrix PXkXk
is calculated according to

PXkXk
= βx→z0

k PX−
k X−

k
+ (1− βx→z0

k )PcXkXk
+ P̃k

with

PcXkXk
= (I−KkHk)PX−

k X−
k

and

P̃k = Kk

(mk∑
j=1

β
x→zj
k z̃xk,j(z̃

x
k,j)

T − z̃xk,Comp(z̃xk,Comp)T
)
KT
k .
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Hereby, the predicted covariance matrix PXkXk
is weighted with the factor

βx→z0

k , which is related to the case of none of the obtained measurement being
correct. PcXkXk

is the covariance matrix calculated under the assumption that the
innovation is performed with the correct measurement, i.e., without association er-
ror. It is weighted with the factor (1− βx→z0

k ). Since it is not known which of the
mk measurements is the correct one, the state covariance is increased by means of
the matrix P̃k which incorporates the measurement association errors.

3.3 Joint Probabilistic Data Association (JPDA)

In the PDA, each track is considered separately. This justifies the assumption that
either all or all but one measurements falling into the gating region of a track are
due to clutter. In the presence of multiple closely spaced targets this assumption
may be invalid since true measurements of one target may fall into the gating re-
gion of another target causing permanent non-random interference. This issue is
accounted for in the extension of the PDA called Joint Probabilistic Data Associ-
ation (JPDA) proposed by Bar Shalom et al. [FBSS83]. Instead of considering
each track separately, JPDA considers association configurations, the so-called
joint events. A joint event Θk(T ) is defined as an conjunction of associations
θ
xtj→zj

k between measurements zj and possible causes xtj that can be given by
either an existing track (tj 6= 0) or clutter (tj = 0):

Θk(T ) =

mk⋂
j=1

θ
xtj→zj

k , T = (t1, ..., tmk), tj ∈ {0, . . . , nk} ,

with nk being number of currently tracked targets. T are ordered sets of mk

(possibly repeating) track numbers including 0, which represents the clutter
source.

For reduction of complexity, tracks are partitioned into independent clusters and
joint events are built for each cluster separately. A cluster is defined as a set of
tracks which share no measurements with tracks that do not belong to the cluster.

For easier clutter handling, clutter measurements are considered to be identically
distributed over the whole cluster volume V independently of the gating regions
of the tracks. This implies that each measurement should be able to be associated
with each track in the cluster and hence PG = 1. However, this would also imply
usage of too far lying measurements for update of a track. In order to avoid this, a
binary validation matrix Ωk is defined:

Ωk = [ωji]k, j = 1, · · · ,mk; i = 0, 1, · · · , nk
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with

ωji =

{
0 if zj /∈ Γxi(γ)

1 if zj ∈ Γxi(γ) ,

and gating regions Γxi(γ) as defined in (3.2). The first column (i = 0) of Ωk
stands for association with no track, i.e., indicates that a measurement j stems
from clutter. As mentioned above, this can be applicable to each measurement in
cluster, hence ∀j : ωj0 = 1.

Each joint event Θk(T ) can be represented through a binary matrix Ω̂(Θk(T ))
with

Ω̂(Θk(T )) = [ω̂ji(Θk(T ))], j = 1, · · · ,mk; i = 0, 1, · · · , nk

and

ω̂ji(Θk(T )) =

{
1 if θ

xi→zj
k ⊂ Θk(T )

0 else .

In JPDA, a joint event Θk(T ) is considered to be “feasible” under following
conditions:

• A measurement may have only one origin:

nk∑
i=0

ω̂ji(Θk(T )) = 1, j = 1, · · · ,mk

• A track may evoke at most one measurement:

mk∑
j=1

ω̂ji(Θk(T )) ≤ 1, i = 1, · · · , nk .

A matrix Ω̂ defining a feasible event Θk(T ) can be built from the validation matrix
Ωk by picking out elements in a way such that each row and each column contains
at most one “1”. The only exception is made for the first column which may
contain multiple non-zero entries since more than one measurement may be due to
clutter. The set of all feasible joint events in the following is denoted by Ξk with∑

{Θk(T )∈Ξk}

P (Θk(T )) = 1 .
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For better readability, in the following three auxiliary entities ϑi(Θk(T )),
τj(Θk(T )) and φ(Θk(T )) are defined for a joint event Θk(T ):

ϑi(Θk(T )) :=

mk∑
j=1

ω̂ji(Θk(T )), i = 1, · · · , nk

τj(Θk(T )) :=

nk∑
i=1

ω̂ji(Θk(T )), j = 1, · · · ,mk

φ(Θk(T )) :=

mk∑
j=1

(1− τj(Θk(t)))

ϑi(Θk(T )) indicates whether in Θk(T ) the ith track has been assigned a measure-
ment. τj(Θk(T )) indicates whether the jth measurement has been assigned to a
track. Finally, φ(Θk(T )) specifies the number of the clutter based measurements
in Θk(T ).

The weighting factors β
xi→zj
k (i = 1, · · · , nk; j = 0, · · · ,mk) can be

calculated as follows:

β
xi→zj
k := P (θ

xi→zj
k |Z1:k) =

∑
Θk(T )∈Ξk

P (Θk(T )|Z1:k) ω̂ji(Θk(T )) .

The a-posteriori probability of a joint event Θk(T ) conditioned on all received
measurements including the current measurement set can be calculated using the
Bayes’ rule:

P (Θk(T )|Z1:k) = P (Θk(T )|Zk,mk,Z1:(k−1)) (3.7)

= 1
ck
p(Zk|Θk(T ),mk,Z1:(k−1))P (Θk(T )|mk,Z1:(k−1))

with ck being the normalization constant.

Similar to the calculations in the PDA, the likelihood of a measurement zk,j given
that it stems from a track xtj with tj 6= 0 or from clutter (tj = 0) is given by

p(zk,j |θ
xtj→zj

k ,Z1:(k−1)) =

{
N (zk,j ; ẑ

xtj
k ,P

xtj
ZkZk

) for tj 6= 0 ,
1
V for tj = 0 .

Under the previously mentioned independence assumption of the clutter-based
measurements and the true measurements, this leads to the following expression
for the likelihood of the current measurement set Zk conditioned on a joint event
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Θk(T ) and number of measurements being mk:

p(Zk|Θk(T ),mk,Z1:(k−1)) =

mk∏
j=1

p(zk,j |θ
xtj→zj

k ,Z1:(k−1))

=
1

V φ(Θk(T ))

mk∏
j=1

(
N (zk,j ; ẑ

xtj
k ,P

xtj
ZkZk

)
)τj(Θk(T ))

where φ(Θk(T )) is the number of the clutter-based measurements in the joint event
Θk(T ) and τj(Θk(T )) serves for picking out the likelihoods of the measurements,
that in Θk(T ) have been declared as being non-clutter.

The a-priori probability P (Θk(T )|mk,Z1:(k−1)) of a joint event Θk(T ) ∈ Ξk
in (3.7), conditioned on the number of received measurements is equivalent to the
probability of assigning the tracks according to ϑi(Θk(T )) and getting additionally
φ(Θk(T )) clutter-based measurements:

P (Θk(T )|mk,Z1:(k−1))

= P
(
Θk(T ), ϑ(Θk(T ))1, . . . , ϑnk(Θk(T )), φ(Θk(T ))|Z1:(k−1)

)
= P

(
Θk(T ) |ϑ(Θk(T ))1, . . . , ϑnk(Θk(T )), φ(Θk(T ))

)
· P
(
ϑ1(Θk(T )), . . . , ϑnk(Θk(T )), φ(Θk(T ))|Z1:(k−1)

)
.

An expression for the computation of the first factor follows from combinatorics
with an assumption that each of the joint events Θk(T ) has equal a-priori probabil-
ity. It is given as a reciprocal of the number of all events that assign measurements
to the tracks as defined by ϑi(Θk(T )) for i = 1, . . . , nk and have φ(Θk(T )) clutter
measurements:

P (Θk(T )|ϑ1(Θk(T )), ..., ϑnk(Θk(T )), φ(Θk(T ))) =

(
mk!

φ(Θk(T ))!

)−1

=
φ(Θk(T ))!

mk!

The second factor is given by

P (ϑ1(Θk(T )), . . . , ϑnk(Θk(T )), φ(Θk(T ))|Z1:(k−1))

=

nk∏
i=1

(
(Pxi
D )

ϑi(Θk(T )) · (1− Pxi
D )

1−ϑi(Θk(T ))
)
· µF (φ(Θk(T )))

with Pxi
D being the probability for the track xi to be detected and µF (φ(Θk(T )))

being the probability mass function for the number of clutter-based measurements
that can be modeled as described in Section 3.2 (see page 177).
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This leads to

P (Θk(T )|Z1:k) = φ(Θk(T ))!
ckmk!

µF (φ(Θk(T )))

V φ(Θk(T ))

mk∏
j=1

(
N (zk,j ; ẑ

xtj
k ,P

xtj
ZkZk

)
)τj(Θk(T ))

·
nk∏
i=1

(
(Pxi
D )

ϑi(Θk(T ))
(1− Pxi

D )
1−ϑi(Θk(T ))

)
and hence to

P (Θk(T )|Z1:k) = λφ(Θk(T )) e−λV

ck ·mk!

mk∏
j=1

(
N (zk,j ; ẑ

xtj
k ,P

xtj
ZkZk

)
)τj(Θk(T ))

·
nk∏
i=1

(
(Pxi
D )

ϑi(Θk(T ))
(1− Pxi

D )
1−ϑi(Θk(T ))

)
for the parametric model of clutter distribution and to

P (Θk(T )|Z1:k) =
1

c̃k

φ(Θk(T ))!

V φ(Θk(T ))

mk∏
j=1

(
N (zk,j ; ẑ

xtj
k ,P

xtj
ZkZk

)
)τj(Θk(T ))

·
nk∏
i=1

(
(Pxi
D )

ϑi(Θk(T ))
(1− Pxi

D )
1−ϑi(Θk(T ))

)
for the nonparametric model of clutter distribution.

4 Conclusion and Outlook

This report has presented basics of the state-of-the-art methods for tracking of mul-
tiple objects in cluttered environments. An overview and a detailed description of
the basic state-of-the-art approaches for data association and dynamic state estima-
tion has been given. However, all described data association approaches consider
existence of the tracked targets as given. Track initiation and maintenance has to
be done outside of scope of the tracking algorithms. In practice, target existence is
often subject to uncertainties due to great amount of clutter and missing detections.
An elegant way of modeling those uncertainties has been proposed by Mušicki et
al. The Integrated PDA (IPDA) and Joint Integrated PDA (JIPDA) algorithms
proposed in [MES94, ME02] are extensions of the PDA and JPDA algorithms re-
spectively. Additionally to the expressions for data association probabilities they
provide expressions for computation of the track existence probabilities that are
directly accounted for (integrated) when computing the association probabilities.



Data Association for Multi-Target-Tracking 185

Track existence is modeled as a Markov process with the constant state transition
probabilities between the states “track exists” and “track does not exist”. The ob-
servability aspect can be also accounted for by using three states (“track exists and
is observable”, “track exists but is not observable” and “track does not exist”).

Estimation of the track existence probability offers a solid basis for track initiations
and terminations and allows for better handling of clutter and missing detections.
However, in some applications such as vision-based object tracking, corrupted
measurements due to split, merged and incomplete detections bear an additional
source for problems. Here, the above-mentioned approaches have to be extended
in order to be able to cope with the introduced effects. Low-level information,
which can be obtained by robust re-identification and tracking of dedicated fea-
ture points in the image, offers great potential for solving such problems. An ap-
proach that utilizes such information and allows for handling of incomplete, split
and merged detections has been proposed in [GOB09]. It is called Feature-Based
Probabilistic Data Association and Tracking Algorithm (FBPDA).
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Abstract: Modern autonomous systems are performing complex tasks in a
real-world environment. This requires a comprehensive overview on the en-
vironment, for which the mere storage and retrieval of acquired information
is not sufficient. Sophisticated cognitive processing like situation recognition
or proactive planning can be realized on the basis of consistent and efficient
world modeling. Since autonomous systems have to cope with uncertain and
incomplete information, probabilistic information management mechanisms
are additionally required.

This contribution introduces new information management mechanisms
for environment modeling. The proposed system uses a three pillar informa-
tion architecture consisting of a prior knowledge, world model, and sensor
data. The described Bayesian framework formalizes the information man-
agement, including information representaton by means of Degree-of-Belief
(DoB) distributions with instantiation, deletion, and fusion mechanisms. In
this contribution, a special focus is given to observation-to-instance mapping
and decision mechanisms for creating a new instance or updating already
existing instances in the model.

1 Introduction

Modern autonomous systems are performing more and more complex tasks in a
real-world environment. The rise of planning and cognition requirements demands
more sophisticated information management systems, which are able to handle
probabilistic descriptions, abstraction levels, multiple semantic relations as well
as other complex problems. This contribution proposes an intelligent information
management system applicable to a wide variety of types of autonomous systems.
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The primary application of the system is a humanoid service robot, developed
within the DFG SFB 588 “Humanoid robots” project [SFB].

The proposed information management system is designed in a three pillar struc-
ture consisting of a prior knowledge, world model, and sensor data, as described in
Section 2. The world model is the central component of the system that describes
current state of the environment and acts as an information hub to all other mod-
ules. Sensor data provides new information to the model. The prior knowledge
pillar represents pre-defined information about the real world.

Besides the pillar architecture, the proposed system employs Progressive Mapping
information architecture and semantic networks, as described in [Bel10, KBS+10].
The Progressive Mapping allows for dynamic object updating with incoming infor-
mation. All object attributes are modeled as probability distributions in a Degree-
of-Belief (DoB) interpretation. This gives a possibility of developing of an in-
formation management and fusion system based on a Bayesian framework and
data association mechanisms, as described in Section 3. Commonly used ap-
proaches for the modeling of information comprise semantic networks, predicate
logic and formal languages [GRS03], ontologies, object-oriented and probabilis-
tic approaches, e.g. [SM98, MA02, Bau09, GHB08, PBB08, HGLB10]. How-
ever, previously published approaches are domain specific and not transferable
to other applications. Moreover, the existing world modeling systems provide no
data association mechanisms, which are vital for updating object descriptions upon
probabilistic observation-to-object assignments.

Data association is one of the main topics in tracking [HL01]. The exact Bayesian
data association solution is in general incalculable. Thus, different approximations
are employed, e.g. Joint Probabilistic Data Association Filter (JPDAF) [BSDH09]
or Markov Chain Monte Carlo (MCMC) [Nea93]. One of the simplest methods for
data association is the Nearest Neighbor Filter [RLBS96] that assigns each obser-
vation to the most probable object. The more complex procedure JPDAF performs
a weighted update of all objects within some gating region according to association
probabilities. JPDAF can be extended for instantiation and deletion mechanisms,
handling existence probabilities of objects with Markov models [ME02]. A gen-
eral Bayesian formalization of multi-target tracking with existency management
was given in [VMB05, HM09].

At the end of this contribution, the application and the experimental set up of
the modeling system is given in Section 4, followed by the Conclusion and
Bibliography sections.
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2 Three Pillar Architecture

The three pillar information management is designed to separate the domains of
the information workflow into prior knowledge, world model, and sensor data
(Fig. 2.1). In the following, objects, attributes and relations are considered as
pieces of information. Each information piece is characterized by its uncertainty
in form of a Degree-of-Belief (DoB) distribution [GHB08, HGLB10, KBS+10,
Bey99, BHSG08].

…

…

…

…

…

…

…

…

…

…

…

…

…

…

Prior Knowledge

pre-defined

concepts

World Model

dynamic

objects

Sensor Data

raw

data

probabilistic matching information acquisition

prior knowledge complementing request for information

Figure 2.1: Three pillar information management structure.

World Model The world model represents information the autonomous system
has at hand about its current environment (short term memory). The information
is represented in form of dynamic objects with attributes and relations by means of
Progressive Mapping and semantic networks as described in [Bel10, KBS+10].
Object attributes can be descriptive or non-descriptive. The only modeled non-
descriptive attribute is the existence expressed in the probability that the corre-
sponding environment element exists in the real world. Examples for descriptive
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attributes are type, position, or size. The attribute type is also represented by a
DoB distribution thus it removes limitations of the classification approach.

As soon as new information comes from sensor modules, it is being compared to
modeled objects in the world model. If no appropriate match was found, the so-
called “blank object” is created representing existence of something. Starting with
blank objects, the world model is updated in top-down and bottom-up ways.

The top-down update implies complementing of the world model by associating
acquired information to existing objects [Bel10, KBS+10]. In Fig. 2.1, this way is
outlined by the arrow “information acquisition”.

The bottom-up update implies referencing prior knowledge for complementing
the world model. In Fig. 2.1, this is outlined by the arrow “prior knowledge
complementation”.

The information management consists of three steps:

• Creation of new objects upon new sensor data by means of Bayesian fusion,
considering existence probability of the object. If the posterior probability is
higher than a creation threshold, a new object is inserted in the world model
[GHB08, KBS+10, HGLB10].

• Information update upon new sensor data or prior knowledge complementa-
tion. The update is performed by means of Bayesian fusion using common
prediction-correction strategy: The prediction step propagates the informa-
tion from one time step to the next one using known evolution dynamic (e.g.
distribution dispersions). In most cases, the entropy of the DoB distribution
increases [Ber03]. The correction step fuses the prior information of the pre-
diction step with the new information interpreted as a likelihood function.
If no new information is provided from one time step to another, a func-
tion correlative to the Maximum Entropy distribution is used as the default
likelihood function.

• Deletion of instances by reaching of some deletion threshold by the exis-
tence probability.

The exact description of creation, update and deletion steps is given in Section 3.

Parallel to management steps, additional checks are performed to ensure model
correctness:

• Validity checks assure that the world model fulfills formal restrictions (for
example, DoB distributions are valid);
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• Consistency checks ensure that basic physical rules are satisfied, (e.g.
objects are not hanging in the air or overlap with each other);

• Relevance checks assure that a correct abstraction level is chosen for the
given task;

• Actuality checks ensure that the information is always up to date, (e.g.
triggering exploration upon reaching re-confirmation threshold by existency
probability).

Prior Knowledge A second pillar (left in Fig. 2.1) is the prior knowledge (long
term memory). It contains prior information of two types:

• Pre-defined concepts in a form of ontology (classes, attributes, specific ob-
jects, relations, and rules). The attributes and relations are represented by
DoB distributions generated as a result of statistical analysis of the envi-
ronment. These DoBs describe elements that might be encountered in the
real world. The ontology can also contain information about specific en-
vironment elements known a priori (e.g. “person Andrey” or “white tea
cup”);

• Dynamically learned knowledge (e.g. specific environment elements ob-
served during explorations).

Sensor data The third information pillar (right in Fig. 2.1) represents sensor
data.

Abstraction Levels Different reactive and proactive tasks require different de-
grees of detail of information. Thus, the information in the world model has
to be accessable on different abstraction levels (Fig. 2.2) [GHB08]. For exam-
ple, a path planning task requires geometry information of the environment (e.g.
topology, position and dimension of things). Other tasks, for example grasping,
demand detailed information regarding form, grasp possibilities, footprints, etc
[Bel10, KBS+10, GHBB10].



192 Andrey Belkin

coarse
information
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detailed instances
mug, clock

Figure 2.2: Abstraction pyramid.

3 Data Management

3.1 Probabilistic Description

Each information piece is given in form of a DoB distribution. The advantages
of DoB distributions are described in [GHB08]. In the following the Bayesian
framework is formalized as in [BGB+10b, BGB+10a].

An object i at time step k is presented as a DoB distribution p(eik,a
i
k), where

eik ∈ {0, 1} specifies whether the object exists (eik = 1) or not exists (eik = 0), and

aik :=
[
tik, ai,1k , . . . , ai,nak

]T
is a vector that is composed of the discrete type tik of the instance i, and na (discrete
or continuous) descriptive attributes ai,1k , . . . ,ai,nak . As in JPDAF, attributes of
different objects are supposed to be independent.

In the case new sensor data does not match any object of the model, a new object
is created. The decision is based on the posterior probability that a new existing
environment element is detected at time step k, which has to exceed a creation
threshold p(eik = 1) > γi.

On the other hand, an object is deleted from the world model, if the existence
probability goes below the deletion threshold p(eik = 1) < γe, with γe < γi.
The relation between γe and γi is necessary for ensuring a hysteresis, i.e., created
instance should not be immediately deleted (Fig. 3.1).

An additional threshold γr with γe < γr < γi is employed to explicitly trigger the
re-confirmation of the existence, before the deletion decision is taken.
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γe γi 1 p(eik = 1)

eik = 0

eik = 1

eik

deletion initialization

Figure 3.1: Hysteresis for the instantiation and deletion of objects.

3.2 Observation Model

A fusion of observations into the world model requires an observation model that
relates the observation to an object. This observation model has to deal with the
uncertainty of the object existence and the observation-to-object matching as in
[VMB05, HM09]. The following fusion mechanism is presented as a special case
of multiple tracks data association with the assumption that at each time step k, a
single observation is received with regard to an arbitrary object.

The connection between the observation and the object is modeled with the asso-
ciation variable dk ∈ {0, 1 . . . , Nk}. The probability that the observation at time
step k regards the object dk is p(dk|ek), with ek :=

[
e1
k, . . . , e

Nk
k

]T
and Nk is

the number of objects in the model. An observation that regards a new object, is
represented with dk = 0.

existence

detection/
object association

p(eik = 1)

p(eik = 0)

eik = 0

eik = 1 dk = i

dk 6= i

pE

1− pF

pF

1− pE

Figure 3.2: Schematic dependencies between the existence and observation of
objects.
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Fig. 3.2 shows four conditional DoBs regarding the observation and existence of a
particular object i [DHS04]:

• p(dk = i|eik = 1) = pE describes the situation that the object i exists at the
time step k and is observed;

• p(dk 6= i|eik = 1) = 1− pE describes the situation that the object i exists at
the time step k but it is not observed;

• p(dk = i|eik = 0) = pF describes the situation that an object i does not exist
at the time step k but an observation is made;

• p(dk 6= i|eik = 0) = 1− pF describes the situation that the object i does not
exist at the time step k and it is not observed.

The observation probability which regards object i is

p(yi
k
|ai,1k , . . . ai,nak , tik, e

i
k, dk = i) := p(yi,1

k
|ai,m1

k )·. . .·p(yi,r
k
|ai,mrk )·p(Mk|tik),

where yi
k

:=
[
yi,1
k
, . . . , yi,r

k
,Mk

]T
is the observation vector, with yi,1

k
, . . . , yi,r

k
as

observations of r given attributes andMk =
⋃
sms is the index set of observed

attributes. The observation model for an attribute is given by p(yi,s
k
|ai,msk ), where

ms marks the attribute observed by yi,s
k

. The DoB p(Mk|tik) models the DoB of
observing the attributesMk, when the type of the instance is given.

The observation model for new objects is given by DoB

p(yi
k
|ai,1k , . . . ai,nak , tik, e

i
k = 1, dk = i).

3.3 Bayesian fusion

The observations to objects information fusion supposes calculation of the ex-
istence probabilities p(eik = 1|ŷ

1:k
) and the DoB distribution of descriptive at-

tributes p(aik|eik = 1, ŷ
1:k

) for all objects i. This is performed with prediction-
correction scheme of Bayesian state estimation.

The Prediction Step propagates the state of the environment model at time step
k − 1 to the next time step k, which results in the predicted existence p(eik =
1|ŷ

1:k−1
) and the predicted attributes p(aik|eik = 1, ŷ

1:k−1
) for all instances i.
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The propagation is defined such that probabilities are altered according to some
dynamic model, e.g. they decrease over the time. The predicted existence prob-
ability is calculated by using an exponential decreasing function, which results in
the Markov model

p(eik = 1|eik−1 = 1) = βi,

p(eik = 1|eik−1 = 0) = 0,

where 0 < βi ≤ 1 is a constant. The predicted existence probabilities can be
computed according to

p(eik = 1|ŷ
1:k−1

) = βi · p(eik−1 = 1|ŷ
1:k−1

).

The predicted attribute probabilities result from the Chapman-Kolmogorov equa-
tion

p(aik|eik = 1, ŷ
1:k−1

) =

∫
p(aik|aik−1) · p(aik−1|eik = 1, ŷ

1:k−1
)daik−1

with the dynamic model p(aik+1|aik) for descriptive attributes.

The Correction Step fuses the predicted state for time step k and the observa-
tion ŷ

k
. The updated probabilities for attributes can be written according to the

Law Of Total Probability as a mixture

p(aik|eik = 1, ŷ
1:k

) =
∑
dk

p(aik|eik = 1, ŷ
1:k
, dk) · p(dk|eik = 1, ŷ

1:k
),

where the first term is the posterior distribution for a given association

p(aik|eik = 1, ŷ
1:k
, dk) ∝ p(ŷdk

k
|eik = 1, aik) · p(aik|eik = 1, dk, ŷ1:k−1

).

The updated probability for the existence is

p(eik = 1|ŷ
1:k

) =
∑
dk

p(eik = 1, dk|ŷ1:k
).

In order to compute p(eik = 1, dk|ŷ1:k
) and p(dk|eik = 1, ŷ

1:k
), we need the joint

DoB of the updated existence and association variable

p(ek, dk|ŷ1:k
) ∝ p(ŷ

k
|ek, dk, ŷ1:k−1

) · p(ek, dk|ŷ1:k−1
),
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Figure 3.3: Example of the life-cycle of an instance. The red dashed line de-
scribes the propagation resulting from the aging mechanism, if no new observa-
tion is available. The continuous line describes the course of the DoBs when the
existence of the entity is reconfirmed at the time steps k = 6 and v = 10.5.

where

p(ŷ
k
|ek, dk, ŷ1:k−1

) =

∫
p(ŷdk

k
|eik, aik, dk, ŷ1:k−1

) ·p(aik|eik, dk, ŷ1:k−1
)daik

and

p(ek, dk|ŷ1:k−1
) = p(dk|ek) · p(ek|ŷ1:k−1

).

Creation of New Objects If the probability that the observation ŷ
k

matches a
new object exceeds the threshold γe: p(dk = 0|e0

k = 1, ŷ
1:k

) > γe, the ob-
servation cannot be assigned to one of the existing objects. Thus, a new object[
eNk+1
k aNk+1

k

]
is created. If such instantiation was wrong (e.g. the object al-

ready exists), the deletion mechanism will remove this redundant “ghost” object
after a while. Fig. 3.3 shows a typical example for the life-cycle of an instance
according to the maximum of the DoB distribution for the attribute existence.
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acquisition of
sensorial informationinference processes

quality assurance

Figure 4.1: Humanoid robot in a test environment.

4 Realization

The three pillar information architecture was developed within the DFG project
SFB 588 “Humanoid Robots – Learning and Cooperating Multimodal Robots”
[SFB]. The project goal is to design humanoid robot assisting in household ap-
plications with learning and cooperating capabilities. Such complex systems re-
quire a comprehensive description of the environment. The described information
management architecture has been developed and engaged. Fig. 4.1 shows the hu-
manoid robot in a kitchen test area. Development and implementation details are
given in [Bel10, KBS+10].

5 Conclusion

The present contribution proposes an information management architecture for
autonomous systems. The separation into three pillars (prior knowledge, world
model, sensors) allows for an efficient information processing. The world model
contains a comprehensive description of the surrounding environment. Other com-
ponents provide sensor data and pre-defined prior knowledge. The world model
acts as an information hub for all other modules of the autonomous system. The
main advantage of the proposed architecture is the probabilistic approach based
on the Bayesian framework. This includes mechanisms for instantiation, deletion,
and update of objects as well as check mechanisms. Additionally, the notion of
the abstraction pyramid enables retrieving information with different degrees of
detail.
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Abstract: Deflectometry has developed to the standard method for the
inspection of specular surfaces, which usually defy inspection by optical
metrology methods. Current research on deflectometry focuses on improv-
ing the technology for the challenges in industrial quality assurance. Addi-
tionally, deflectometric inspection will be made available to a broader range
of materials. In this technical report, we will provide an overview of this
research and give examples for future applications of deflectometry.

1 Introduction

Topological metrology plays an important role in industrial quality assurance. Es-
pecially methods based on optical sensors are used, because they allow for a fast
and contactless inspection. By now there are optical sensors for nearly every vi-
sual inspection task, where the inspection of specular surfaces take up an special
position. Considering the ubiquity of specular surfaces on objects in our environ-
ment, one might expect that there are established inspection methods. However,
in practice the usual optical inspection methods are unsuitable for this task, due to
the mirror-like reflecting properties of these surfaces. A perfect reflecting surface
is virtually invisible and thus not directly observable.

This is where deflectometric methods excel. By including the surface to be ex-
amined within the imaging chain, deflectometric methods infer the geometry of a
surface indirectly from the distortion it induces. Besides enabling the inspection
of specular surfaces, the main difference to other methods is that they measure the
slope of the surface instead of its height. Thereby deflectometric methods imitate
the way a human observer examines a specular surface by looking at the reflection
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of a structured pattern on such a surface. This allows for an objective evalua-
tion how possible surface defects would be perceived by a human, making it an
appropriate tool for the quality assurance of consumer goods.

The first publication of the underlying function principle dates back to the work of
Sanderson et al. [SWN88]. But only recently the first products became available,
implementing deflectometric inspection for the application in industrial production
lines. Nonetheless, these systems are still not using the full potential of deflectom-
etry. Despite the easy function principle, is its practical application is still subject
of ongoing research. In this technical report we are going to point out some of the
work done at the KIT Vision and Fusion Lab to improve deflectometry for practical
application.

The remaining part of the report is divided into four sections, each covering one
research topic within the field of deflectometry. Section 2 introduces a novel ap-
proach for calibrating deflectometric sensors. Section 3 then briefly discusses
the reconstruction of 3D data from multiple deflectometric measurements. Sec-
tion 4 describes the possibility to extent deflectometric inspection into the infrared
spectrum. Finally, we conclude the topic in Section 6.

2 Sensor Calibration

In order to take measurements with a camera system prior calibration is necessary.
Only this makes the objective evaluation in terms of metric interpretation possible.

Although a typical deflectometric sensor consists of standard components for
which there are already established calibration methods, their application in de-
flectometry has proven to be difficult. Figure 2.1 shows a setup in use at the
KIT Vision and Fusion Lab. Main components are the monitor as pattern gen-
erator and a standard industrial camera for image acquisition. Even large scale
specular surfaces can be examined, by mounting the sensor setup on an industrial
robot. For the calibration of such a system at first the intrinsic parameters of the
camera have to be determined, which is a trivial task using existing calibration
techniques [Bou03, Zha99].

Knowing the cameras parameters, the challenging task is to determine the rela-
tive positions of each component. Figure 2.2 illustrates the geometry of a de-
flectometric sensor. Important for the interpretation of the measured data is the
transformation HLCD between monitor and camera.

The inspection of larger objects with multiple measurement positions requires
knowledge of the relative movement between each position. Provided that the
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Control 
computer

Camera
LC-Display

Figure 2.1: Measurement setup for deflectometric inspection of specular surfaces.
Attaching the sensor to a robot arm enables flexible positioning in relation to the
object under test.

object under test is steady relatively to a world coordinate system, this informa-
tion can be derived from the respective camera position Hworld. In case of the
setup in Figure 2.1 this information is provided by the robot system. This requires
additional so-called hand-eye calibration [TL89] between robot and camera.

A simple approach for a full system calibration would be the consecutive calibra-
tion of the single components and calculating the needed information from those,
as previously done in [BWB07]. But this is a time consuming process which po-
tentially needs assistance by an operator. In addition, special calibration patterns
are required in each step. Considering the utilization in an industrial environment,
where speed and autonomous operation are essential, this approach is not feasi-
ble. Therefore, we developed a new calibration procedure which integrates most
of the necessary steps and handles them without special calibration patterns. The
calibration procedure is presented in detail in [HWB10] and [Wer10].
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Figure 2.2: Geometry of the deflectometric sensor. The camera only sees a virtual
image π′L of the monitor. Its real image plane πL and the mirror plane πS are
unknown beforehand.

2.1 Calibration Procedure

The functional principle of deflectometry requires an arrangement where the mon-
itor is commonly outside the cameras field of view, since the camera looks at the
reflection of the monitor on the surface to be examined. Thus, it is obvious to
use a mirror to establish a line of sight between them for the calibration process.
Apart from a plane mirror the aim for the new calibration technique is to forego
additional auxiliaries. With this in mind, we introduce the concept of the virtual
monitor, which refers to the reflected image π′L of the real monitor (see Figure 2.2).
Based on this concept we will deduce the mirror plane πS and the monitor plane πL
from those virtual positions. Altogether the calibration of the sensor is subdivided
into three tasks:

1. Calibration of the cameras intrinsics,

2. Calculating the Monitor/Camera-transformation,

3. Hand-Eye-calibration between robot and sensor.



Developments in the Field of Deflectometry 205

Camera calibration Basis for our camera calibration is the work of
Zhang [Zha99], which obtains the cameras intrinsic and extrinsic parameters from
multiple views of a planar pattern. As replacement for the omitted calibration pat-
tern we use the monitor plane of the deflectometric sensor. But instead of just
displaying the calibration pattern, we employ the position-coding normally used
for the deflectometric measurement. This allows us to determine the position PL
on the monitor plane πL corresponding to every camera pixel, with sub-pixel ac-
curacy. Compared with the usual checker-board pattern used for camera calibra-
tion, we obtain more reliable data this way. There is no need for an otherwise
error-prone detection of the pattern.

For the calibration we take NPos deflectometric measurements of the planar mir-
ror and apply the standard camera calibration algorithms on the obtained data.
This provides us with the extrinsic position of the calibration pattern and the in-
trinsic parameters of the camera. In our case, those positions correspond to the
positions of the virtual monitor plane π′L, which gives us one plane π′L,k for each
measurement position k ∈ {1, ..., NPos}.

Camera/Monitor-transformation Based on this positions, the next step is to
derive the mirror positions π′S,k for each measurement and with that the real mon-
itor plane π′L which has a fixed position in relation to the camera. Each virtual
monitor plane

π′L : 〈n̂′L|xC〉 − d′L = 0

provides us with four parameters: its normal vector n̂′L and distance d′L to the
camera’s coordinate origin. We utilize the fact that the real monitor plane πL is the
reflection of each virtual monitor π′L,k plane about the corresponding mirror plane
πS,k:

πL,k = ReflπS,k(π′L,k), (2.1)

where ReflπS,k denotes the reflection about the plane πS,k. These mirror planes
are initially unknown. Using equation (2.1), we can now construct a system of
linear equations:

ReflπS,j (π
′
L,j) = ReflπS,k(π′L,k), (2.2)

with (j, k) ∈ {1, ..., NPos}× {1, ..., NPos} and j 6= k. From every equation (2.2)
we obtain four constraints for the equation system. Given the data from at least
three measurements, we can solve the equation system and get the mirror positions
πS,k. Any of those gives us the real monitor plane by inserting in equation (2.1)
and therefore the wanted transformation HLCD.



206 Sebastian Höfer

Hand-eye calibration The last step is the hand-eye calibration to obtain the
transformation Hworld. This allows to combine the measurements in a world co-
ordinate system. Tsai and Lenz described this calibration procedure in [TL89].
Hand-eye calibration requires knowledge of the robots position and the corre-
sponding movement of the camera. While the robot’s position is provided by its
control system, the measurement of the camera’s movement proves to be difficult
in our calibration setup. The reflection in the mirror exhibits invariance towards
translation and rotation in the mirror plane, i.e., movements of the camera parallel
to the mirror plane result in the same reflection. Therefore, an additional marking
or pattern on the mirror is necessary in order to obtain the camera’s movement with
all degrees of freedom. With this information we can now employ the algorithm
from [TL89] which yields the transformation Hworld.

Although we can not sustain our self-imposed restriction to the solitary use of a
mirror for calibration, our new technique reduces the calibration effort substan-
tially. At the same time, we make optimal use of the deflectometric systems ca-
pabilities. In the next section, we show a practical application which enables the
combination of multiple measurements for the reconstruction of larger surfaces
using a fully calibrated deflectometric sensor.

3 Reconstruction of Specular Surfaces

Once a deflectometric measurement of a surface is obtained one will desirably de-
rive as much information as possible from this data. A common task in computer
vision is the extraction of 3D shape from the acquired data. Due to the deflec-
tometric principle, the raw data only contains the relation between the cameras
rays-of-sight and the corresponding position on the sensor’s monitor plane. Using
the calibration from Section 2 and the law of reflection it is easy to extrapolate
from this data to the surface normal for each rays-of-sight.

However, the normal field received is not a unique solution. Instead a whole set of
possible surfaces is returned, each of which could have evoked the observed mea-
surement. This ambiguity requires some kind of regularization to choose the real
surface from the set of possible surfaces, by incorporating additional information.
This additional information can arise from various sources: distance measurement
through additional sensors, evaluation of surface properties like shading or polar-
ization, fusion of the data from multiple measurements, to name but a few. A
detailed survey can be found in [Wer10].
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Figure 3.1: Principle of deflectometric stereo. Only at the position of the true
surface the disparity between the normal fields attains a minimum.

As for the inspection of larger surfaces it seems natural to use the information from
multiple measurements. Here, the redundant information in overlapping measure-
ments is used for regularization while at the same time the measuring field is ex-
tended. Figure 3.1 illustrates the regularization for this case. Knowing the camera
positions for both measurements, the proposed normal fields are superimposed.
Only at the position of the true surface the disparity between the normal fields
attains a minimum.

Following preparatory work in [Bal08] and [Wer10], we proposed in [BHWB10]
a new approach for stereo reconstruction of specular surfaces. Therein we present
a framework for reconstructing a surface under a strict data consistency constraint,
while evaluating secondary information from multiple measurements. Our current
research focuses on extending the reconstruction of large scale surfaces and will
be subject of future publications.
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By omitting additional sensors, the deflectometric setup is kept simple and
lightweight. Thus enabling flexible construction and reconfiguration of the sensor,
while providing the ability to inspect large surfaces.

4 Infrared-Deflectometry

The main advantage of deflectometry compared to other surface inspection meth-
ods is the ability to inspect specular surfaces. At the same time, this advantage is
deflectometry’s greatest disadvantage, because a specular reflection is indispens-
able for its function principle. Unfortunately, this limits the field of application
for deflectometry to surfaces like polished metal, clear coating or glass, which
all exhibit good reflective properties. This limitation arises only from the optical
properties of the surface, more precisely, the reflectivity of the material and the
roughness of the surface. Since the effect of these properties depends on the wave-
length of the incident light it is obvious to adapt the deflectometric principle to
operate in a more appropriate wavelength. This was first proposed by Horbach et
al. in [HK05] and [Hor07], where they suggest the use of the far-infrared spectrum
for deflectometric inspection.

In the following, we show how the deflectometric inspection benefits from this
enhancement and what the problems in its practical implementation are.

4.1 Reflectivity of Rough Surfaces

Modeling the reflective properties of a surface can be a complex task. A com-
mon specification for these properties is the bidirectional reflectance distribution
function (BRDF). Here, for the sake of simplicity, we will concentrate on the two
properties with the biggest impact for our case.

Material First there is the reflectivity of the material itself. Every material dis-
plays a different spectral response to incident light. Depending on the wavelength
parts of the spectrum get reflected, absorbed or pass through the material, whereby
no energy gets lost. In the visible light spectrum this wavelength-depended proper-
ties are perceived as color. Beyond the visible spectrum, especially metal surfaces
reveal different reflective properties. While showing only moderate reflectivity in
visible light, they become entirely specular with increasing wavelength. This ef-
fect is especially advantageous for the inspection of raw metal surfaces like, for
example, car body parts before varnishing.
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Roughness Besides the material itself the micro-structure of its surface also af-
fects the reflective properties. It is impossible to find a descriptive model which fits
all kind of surfaces. However, a good approximation of the reflective behavior is
the Rayleigh criterion. Given a surfaces roughness, the Rayleigh criterion allows
for an estimate of the minimal wavelength where the surface exhibits specular re-
flection. For that, the surface roughness is denoted by σ, its root mean square
roughness. The angle of incidence is specified by θ. The Rayleigh criterion states
that the wavelength λ of the incident light has to exceed the roughness σ by at least
eight times to achieve a specular reflection:

λ > 8σ cos (θ).

The term cos (θ) accounts for the fact that the reflectivity increases for shallow
angles. Reflections with a wavelength below the limiting wavelength λ, are con-
sidered diffuse reflections, while they change to specular reflections above this
limit. This effect is caused by interference when the light is reflected on different
parts of the surface structure. Differing lengths between the light paths lead to
constructive or destructive interference depending on the wavelength.

Both above-mentioned effects facilitate specular reflections with increasing wave-
length. Compared to the visible light spectrum (400 - 700nm) the long wavelength
of the far-infrared spectrum in the range of 6 to 15µm allows inspection of surfaces
with a surface roughness one magnitude higher.

4.2 Preliminary Material Tests

A set of preliminary tests were conducted to confirm the theoretical advantage of
the infrared spectrum. Figure 4.1 shows some examples of the results. First, the
reflection of an illuminated resolution test pattern is observed on different sample
materials in the visible spectrum. The same experiment is repeated in the infrared
spectrum with a thermal imaging camera and the resolution test pattern printed
on a heated copper plate. Since the imprinted pattern exhibit a different thermal
emission compared to the copperplate the pattern clearly stands out in the thermal
image.

Particularly, test images with metal samples exhibit promising results. While the
reflection in the visible spectrum displays a blurred image where the pattern is
no longer recognizable, the infrared spectrum reveals a unblurred reflection of
the thermal pattern. An untreated copper surface in Figure 4.1(a) looks like a
perfect mirror and even milled aluminium with slight grooves on the surface (in
Figure 4.1(b)) displays usable results.
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(d) Copper (e) Aluminium (f) Mirror

(a) Copper (IR) (b) Aluminium (IR) (c) Mirror (IR)

Figure 4.1: Comparison of reflectiveness of metals between the visible (d)-(f)
and infrared (a)-(c) spectrum. The images show the reflection of a resolution test
pattern with a comparable setup for both spectra.

Attention has to be be paid to materials that exhibit a high amount of absorption.
Although most materials exhibit no perfect black body characteristics, they emit
light in the far-infrared spectrum, depending on their temperature. Since the ab-
sorbed energy heats up the material, the emission of infrared radiation increases
as well. This emission can possibly superimpose the reflection of the deflectomet-
ric measurement. If this effect can not be avoided, these disturbances have to be
considered in the subsequent image processing.

4.3 Deflectometry in the Infrared-Spectrum

In theory, the deflectometric principle can be applied to the infrared spectrum in
the same way as to the visible spectrum. Only the sensor composed of camera and
monitor has to be adapted. While cameras for this spectrum are purchasable, there
is practicably no replacement for the monitor in the infrared spectrum.

The camera can be replaced by an off-the-shelf thermal camera with a spectral
sensitivity up to 14µm. Although these cameras feature a comparatively low image
resolution, they are still suitable for the application in deflectometry. However, the
high prices of these devices increase the costs for the entire sensor.
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The problem with transferring the deflectometric principle to the infrared spec-
trum is the lack of a monitor or other of dynamic pattern generators. Today, there
is no purchasable technology for this function, apart from unavailable military de-
velopments. Future work in the field of infrared deflectometry will focus on the
development of a suitable pattern generator. A simple approach would be the use
of static patterns like we used for our tests in Section 4.2, as well as Horbach et al.
for their measurements in [HK05]. However, a static pattern complicates the posi-
tion coding which is necessary for the measurement. Dynamic pattern generators
can base on different basic approaches:

1. An array of individually separated thermoelements, like resistors or peltier
elements, which create the pattern pixel-wise,

2. Indirect pattern creation through optical absorption, e.g. writing the pattern
with laser light onto a projection surface,

3. Switching a static pattern for every image of the code sequence,

to name but a few. It remains to be evaluated which approach is best suited for the
application in infrared deflectometry.

5 Conclusion

We discussed three topics of current research in the field of deflectometry: A
simplified calibration, which can be utilized for autonomous self calibration, new
approaches which potentially enables deflectometry for large scale surface recon-
struction and the extension of the deflectometric principle to the infrared spectrum,
which enables the inspection of more surface materials.

All these developments aim towards an industrial application of deflectometric
metrology. Further research will consolidate this preparatory work and extend
deflectometry to a broad range of surface inspection tasks.
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Abstract: In order to implement a holistic image exploitation process for
detecting, tracking and classifying maritime objects, it is necessary to under-
stand the prospects and profits of the information coded directly in a single
image. In this work, a big variety of features is extracted from given detection
results. These features are analyzed automatically for their separability and
benefit for classification tasks. This allows the innovation of a generic system,
which is able to work independent of important properties such as perspec-
tive, object appearance, image quality and environmental condition. In two
application examples, the scope and limits of this work are demonstrated and
further ideas are outlined for improving the current results.

1 Introduction

Detection and classification of maritime objects with image exploitation algo-
rithms especially in high distances can be very helpful for surveillance of fish-
ery zones, ship monitoring, prevention of illegal immigration or piracy, and any
similar request. Up to now, border protection agencies mostly use helicopters, air-
planes or ships to observe wide maritime areas, but this process is very expensive
and can hardly achieve satisfying spatial and temporal coverage. A useful sup-
port for human operators can be given by surveillance systems that use infrared
or Synthetic Aperture Radar (SAR) image data of sensors located on unmanned
buoys, unmanned aerial vehicles (UAVs) or satellites. They can take over the part
for automatic detection and classification of suspicious objects around-the-clock.



214 Michael Teutsch

This work considers the classification step of such systems. Preliminary obtained
detection results are given for example as bounding boxes and features are ex-
tracted from them and analyzed for their capability to distinguish between desired
object classes. There is no main focus on a specific feature or classifier type, but
on the generality of the extracted features with respect to robustness, reliability,
and to be independent of sensor perspective, object appearance, image quality and
environmental condition. The temporal information available when considering
image sequences is not utilized, yet. Just single images are used to extract the
features.

1.1 Related work

The related work presented in this report centers on examples, where feature ex-
traction is one of the main topics and is used to separate different object classes
such as ship types (e.g., cargo ship, tanker, cruiser, carrier) or to identify suspi-
cious objects (e.g., small boats). In most cases, the authors aim to determine ship
types, but only few of them try to find suspicious objects [YA09], [LKF06]. Im-
portant criteria also are sensor type (visual-optical, infrared, SAR), perspective
(buoy/ship/on-shore, airborne, spaceborne) and the extracted features themselves.

In images coming from a buoy, ship or on-shore camera, objects often have to be
quite close to the sensor in order to analyze edges, shape or contour. In [AHR04],
infrared images are processed by extracting edge-histograms and Hu moments. A
neural network classifies different ship types. The authors in [LW08b] refer to the
importance of a precise segmentation and use Hu moments and a Support Vector
Machine (SVM) to gain better results than [AHR04]. The necessity of a good seg-
mentation is one of the main topics in [YA09] and [LKF06], too. Both authors aim
to identify suspicious – mainly small – boats either by using the Principal Compo-
nent Analysis (PCA) [YA09] or by extracting region-based shape descriptors and
using a k-Nearest-Neighbor (k-NN) classifier in visual-optical images [LKF06].
On similar data, in [FMS07] Scale-Invariant Feature Transform (SIFT) is used to
extract class-specific object information.

Bird’s eye view images generated by airborne or spaceborne sensors contain less
information about object contours. However, the object distance is approximately
known and, thus, mostly physical features like length, width, central axis can be
extracted. This is the case in [SGHZ10] with an airborne visual-optical sensor,
in [GK98] with an airborne SAR and finally in [ETP+09] and [CHY+06] with
a spaceborne SAR sensor. Moreover, in [CHY+06] also 3D scatter features are
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Figure 2.1: General processing overview.

used to specify a detected object. In [LW08a], precise segmentation, calcula-
tion of Zernike moments and classification with k-Nearest-Neighbor are applied
to determine ship types in visual-optical images of an airborne camera.

1.2 Structure

The article provides the following organization: After a short general system
overview in Section 2, the whole feature analysis process including feature ex-
traction, normalization, evaluation and dimensionality reduction are presented in
Section 3. Example applications for this method of feature extraction and the ben-
efit for two different classification tasks are demonstrated in Section 4. Finally, a
conclusion and an outlook to future work are given in Section 6.

2 General overview

The components for a classification process in the context of this work are shown
in Fig. 2.1. As the focus lies on the generality of the extracted features, the in-
put data should be as flexible as possible. Thus, different kinds of images such
as visual-optical, infrared or even SAR can be processed. During the detection
step, object hypotheses are generated using various approaches which will not be
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discussed in detail in this paper. Tracking can deliver temporal information and
is used to verify object hypotheses, extract temporal features or reliable physical
features. However, since only single images are considered here, tracking will not
be specified in the follow-up. More attention will be paid to the pre-processing,
where the segmentation plays a very important role as already mentioned in the
related work. Main topic will be the classification module and particularly the
feature analysis. The two examples in Section 4 will also provide the setup and
comparison of classifiers as well as the choice of object classes.

3 Feature analysis

The classification process consists of an offline-stage for feature analysis and clas-
sifier training, and an online-stage for testing and processing. The feature analysis
contains a pre-processing module, where precise segmentation of object pixels is
performed, the feature extraction, where a high-dimensional feature vector with
concatenated information of several feature classes is created, and finally the fea-
ture evaluation, where the features are normalized and tested for their separability
of given classes in order to use only the best feature combination and reduce the
feature vector’s dimensionality for faster computation time. While pre-processing
and feature extraction are also part of the online-stage – with an already reduced
set of features and a feature vector of low dimensionality – the feature evaluation is
a special sub-process of the feature analysis and conducted only in the offline-stage
for initially setting up the feature vector.

3.1 Pre-processing

It is assumed, that the preceding detection or tracking module determines regions
of interest (ROI) in the image, where objects are supposed to be, creates object
hypotheses and passes them to the feature analysis for closer investigations. Each
object hypothesis can be represented by a bounding box for example. As some of
the features to be extracted need object segmentation first, background subtraction
based on a single intensity-threshold is conducted:

The histograms of the ROI and the whole image are generated. By using an empir-
ically determined scale-factor, the whole image histogram is downscaled bin-wise
to adjust both histograms to each other. Now, the whole image histogram is sub-
tracted bin-wise from the ROI one and the first bin of the difference histogram con-
taining enough elements is taken as gray-value threshold. Some other histogram-
based approaches have been analyzed, but this one proved to be most robust against
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unequal distributions of sea and sky as well as background irregularities like strong
waves.

3.2 Feature extraction

With no specific expectation concerning the given data, the extraction of a big,
but very generalized set of features has been implemented. Hence, no prior or
background knowledge about the target class like characteristic contour, edge con-
stellation, expected texture, scaling, distance, size, direction or any kind of model
was considered. In this way, each kind of specialization shall be avoided to be
as flexible as possible regarding heavy variations of perspective, image type, im-
age quality, object appearance, and environmental condition. There are in total
342 features calculated and divided in several procedural related feature classes
for better organization. The feature vector is created by concatenating all calcu-
lated features. An overview of the so far implemented feature classes is shown in
Fig. 3.1. In the follow-up, these feature classes will be described more detailed:

• Invariant moments: Hu moments [Hu62], [Li92] are calculated for the ROI
image.

• Co-occurrence matrices: Like in [HSD73], the co-occurrence matrices for
the ROI image are calculated and features extracted like variance, contrast,
entropy, sum variance, sum difference.

• Texture analysis: Mainly the same features like for the co-occurrence
matrices are extracted, but directly on the ROI image.

• Kernel analysis: After segmentation, the object blob (kernel) is compared
to its surrounding area (frame). Some clearspace next to the object blob is
left unaffected to avoid merging effects. Feature extraction considers rela-
tions between the kernel and the frame like means difference, means ratio,
variances difference, variances ratio.

• Row analysis: Values like mean, variance and standard deviation are cal-
culated row-wise on the ROI in order to keep the object’s vertical spatial
information. Features are generated e.g. by comparing these values row-
wise or by grouping them to compute ratios between upper and lower half
of the ROI.

• Blob analysis: After object segmentation it is assumed that only the object
blob is left. This object blob is analyzed by computing its mean, variance,
centroid or central moments.
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Figure 3.1: The extracted feature classes.

• Gradient analysis: Filters like Sobel or Normalized Gradients of Gaus-
sians [Kor88] are applied to create absolute and oriented gradient images
as well as Histograms of Oriented Gradients (HOGs). Texture analysis di-
rectly on the gradient image and miscellaneous statistical features of the
HOGs specify the feature extraction process.

• Local Binary Pattern analysis: According to [OPM02], circular and “uni-
form” Local Binary Pattern (LBPs) are calculated. Favored benefit of LBPs
is their invariance towards gray-values, rotation and scale. Texture ana-
lysis directly on the LBP-image and miscellaneous statistical features of
LBP-histograms specify the feature extraction process.

Invariant moments, row analysis, gradient analysis and LBP analysis are per-
formed with and without object pixel segmentation. The resulting feature vector
containing 342 features can now be evaluated.
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3.3 Feature evaluation

During the feature evaluation process, all features are tested towards their separa-
bility in a given classification task. Features with high separability are kept while
features with poor separability are discarded. In this way, both the extraction and
the classification become faster, as not all features have to be calculated and sent
through the used classifier.

For equalization of the influence regarding the classification task, the features are
normalized by downscaling the value range of each feature using its standard devi-
ation. Thus, a bias towards a set of few features with high value range is avoided.
As a Linear Discriminant Analysis (LDA) is applied for feature evaluation later, a
set of labeled training samples has to be available. For normalization, only positive
training samples are considered for autonomously learning a model for the target
object’s expected value range.

Now, in the evaluation process, features with highest variance for given labeled
training data are identified by the LDA. Features with maximum variance between
the two classes have best separability. A greedy algorithm chooses the best fea-
ture combination with respect to maximization of the overall separability and to
guarantee good orthogonality and low covariance between the used features. This
feature set is ready to be directly passed to the following classifier.

4 Applications

In this section, two example applications will be presented in order to demon-
strate the generality of the just introduced approaches and methods. While the first
one considers spaceborne SAR images, side view IR images coming from an un-
manned buoy are processed in the second. Both sets of images contain maritime
objects.

4.1 Ship classification in spaceborne SAR images

In [ST10], the authors aim to analyze SAR signatures in images coming from
TerraSAR-X satellite for ship monitoring tasks such as surveillance of fishery
zones or tracking of cargo ships and detection of offshore artificial objects such
as small ships or lost containers.

Object hypotheses are produced by running pre-processing and detection steps.
During these steps, the 16bit complex SAR data is downscaled to an 8bit gray-
value image. An external land mask is applied to focus only on sea area and fast
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detection based on adaptive thresholding (CFAR) is performed. Finally, each ob-
ject hypothesis is pre-processed for classification by cutting out its ROI, reducing
speckle noise, and rotating the object to be paraxial to the horizontal image axis.

The classifier is trained to distinguish between ships and non-ships, which is a
challenging task since objects and clutter often may appear very similar in the
SAR data as shown in Fig. 4.1. The feature extraction is concentrated on these
two classes, in which non-ships can be clutter, sidelobe effects, buoys, windmills
or all kind of undefined reflections and unknown objects. After feature evaluation
only the feature classes of kernel analysis and LBP analysis are taken for building
up the feature vector as they are proven to offer highest separability. With 3-
Nearest-Neighbor (3-NN) and SVM, two classifiers have been trained and tested
on the available labeled data. The quantitative evaluation can be seen in Table 4.1,
where the SVM outperforms the 3-NN and reaches 92 % of correct classifications
on given data of 221 detection samples. False positives often occur when specific
object classes are confused as ships often look like groins or windmills and vice-
versa. Some examples for correct and incorrect classifications are displayed in
Fig. 4.1.

Table 4.1: Ship classification in spaceborne SAR: Rate of correct classifications.

classifier 3-NN SVM
data set test data all data test data all data

overall rate 88.9 % 91.4 % 95.6 % 91.9 %
ship rate 96.7 % 98.9 % 96.7 % 95.8 %

non-ship rate 73.3 % 69.1 % 93.3 % 78.2 %

4.2 Small boat classification in side view IR images

In [TK10], an infrared camera on an unmanned buoy produces image sequences
performing round-the-clock maritime surveillance to reveal criminal activities
such as illegal immigration, drug trafficking or piracy. Often, small boats are used
for such activities, because they are difficult to detect. Hence, they need to be
identified and discriminated from irrelevant objects such as big boats, ships, buoys
or clutter.

Three different approaches for object detection are applied and fused to guarantee
high robustness which is important due to the strongly varying object appearance,
image quality and weather condition. After a spatio-temporal check for stability
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Figure 4.1: Ship classification in spaceborne SAR: Correct classifications in
row 1 and 2, false positives in row 3 and false negatives in row 4. Different
SAR-data-types can be seen in the different scalings e.g. in row 1 [ST10].
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of the detection result, an alarm hypothesis is generated and passed to the feature
extraction and classification module.

The classification is subdivided into two stages: Separating objects from clutter
in the first stage and suspicious boats from irrelevant objects in the second stage.
A SVM is trained with a customized feature set for each stage. The first stage
is mainly a cross-check of the given alarm hypothesis as it is assumed that clut-
ter is filtered by the alarm generation process. Feature evaluation determined a
combination of eleven features composed from co-occurrence matrices, texture
analysis, kernel analysis, row analysis and gradient analysis to reach best separa-
bility of clutter and objects in first stage. As many different features classes are
involved, low covariance beneath the used features is achieved. Same situation
with the second stage: With a set of seven features coming from co-occurrence
matrices, texture analysis and gradient analysis, high orthogonality of the feature
vector dimensions is guaranteed.

The SVMs were trained on a training data set of 1877 samples in total with 1256
clutter objects, 386 irrelevant objects and 235 suspicious boats. Afterwards, the
evaluation was performed with the test data set of 200 clutter objects, 74 irrele-
vant objects and 54 suspicious boats. As presented in Table 4.2, the two-stage-
classification achieved a correct classification rate of 96.78 %, while the SVM sep-
arating clutter and objects reached 99.10 % and the SVM distinguishing between
irrelevant objects and suspicious boats 97.66 %. Some classification examples are
shown in Fig. 4.2.

Table 4.2: Small boat classification in side view IR: Rate of correct classifications.

classifier SVM 1 (clutter) SVM 2 (objects) 2-stage-SVM
correct rate 99.10 % 97.66 % 96.78 %

false positives 0.90 % 0.00 % 0.54 %
false negatives 0.00 % 2.34 % 2.68 %

5 Conclusion and future work

In this report, the extraction and analysis of a big variety of feature classes in dif-
ferent image types for classification tasks has been presented. Main focus was
laid on the generality of the used features and approaches in order to be as flex-
ible as possible regarding image type, sensor perspective, object appearance, im-
age quality and environmental condition. 342 features of eight different feature
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Figure 4.2: Small boat classification in side view IR: Suspicious boats in red,
irrelevant objects in yellow and clutter in green [TK10].
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classes were extracted including invariant moments, co-occurrence matrices, tex-
ture analysis, kernel analysis, row analysis, blob analysis, gradient analysis and
LBP analysis. By applying normalization and LDA, the features were evaluated
and analyzed with respect to their separability and covariance towards given clas-
sification tasks keeping only the strongest feature combination. Outcome is a low-
dimensional feature vector, which is assumed to be good input for classification
and is subsequently passed to a classifier like SVM.

Two very different applications with spaceborne ship classification in SAR images
and side view classification of small boats in IR images were presented, where
the proposed feature extraction method reaches good results of more than 90 %
correct classifications for given image data in each application. But experiments
also uncovered the fact that the main advantage of this approach simultaneously is
the main limit: The generality. Often, special or background knowledge is neces-
sary especially for difficult classification tasks as mainly seen in the false positives
for ship classification in spaceborne SAR. Groins or windmills often appear very
similar to ships, so it is not possible to reliably distinguish between them auto-
matically. Hence, in most applications a specialized object description e.g., using
expert knowledge will improve the classification process. Nevertheless, the gen-
eral point of view towards feature extraction and evaluation seems to be a good
fundament for gaining first good results and for further specializations.

Future work will basically aim to expanding the existing approach by temporal
and physical features. In the side view IR data, the analysis of image sequences
can deliver temporal information, which can massively support the classification
process. After the introduction of tracking to receive temporal object attributes,
these attributes can be used for calculating temporal features. Furthermore, with
tracking reasonably reliable physical information such as approximate object size,
distance or velocity is accessible, which can be compared to known values from a
prior knowledge database for example.
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Abstract: In this technical report, a conception for adaptive open-world mod-
eling for cognitive information systems is presented. In cognitive systems, a
world model serves as information storage for sensor data and thus represents
an abstract, simplified copy of the observed environment. In order to allow for
a high-level information processing on a semantic layer, the represented ob-
jects are backed by a semantically enriched domain model containing a priori
knowledge. Such prior knowledge generally contains only a fixed number of
object concepts, thus constituting a closed-world model. However, in many
real-life applications, the considered environment is not closed. For coping
with changing environments, a cognitive system must be equipped with an
adaptive world model able to adjust to an observed open environment. For
designing such an open-world model, this report evaluates and summarizes
information fusion and concept learning techniques.

1 Introduction

In modern society, information is prevalent. The developments in sensor technolo-
gies over the last decades allow for an almost universal information acquisition.
The amount of processable data and information is constantly rising. In order to
make beneficial use of all this information, a structured and managed approach is
necessary. On the one hand, data must be gathered, assessed for relevance and, in a
timely manner, disseminated to the requiring authorities, departments and decision
makers. Furthermore, acquired information often has to be persistently stored. On
the other hand, the sheer amount of data can not efficiently be processed by a hu-
man being without appropriate technological support. Here, modern technologies
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like data mining, (semi-)automated image exploitation and video analysis, infor-
mation fusion frameworks, distributed data sharing architectures, or knowledge
management systems can help to efficiently determine and subsequently process
relevant data. The use of such technology allows to provide a more understandable
situational overview based on a vast amount of initially unstructured data.

Information management is thus an important process for providing situation-
related solutions and satisfying specific information requests. It is applicable to
many domains of modern life, ranging from economy and business management
over disaster management, civil security and military operations to areas like en-
vironmental monitoring or health administration. Concrete tasks like security and
safety in public places, maritime and land border surveillance, strategic and tac-
tical reconnaissance, or atmospheric monitoring can all be characterized by pro-
ducing large amounts of data, acquired by multiple sensors which possibly support
heterogeneous sensing modalities.

In information processing, this raw data is transformed into data products by man-
ual or automated exploitation, enriching the data by value in the form of contextual
information and semantics. In order to obtain meaningful information, this single
enriched data element has to be related to other relevant observations by employ-
ing techniques for data or information fusion. As a result of this processing, an
integrated overall picture of the situation at hand is then to be established.

For enhancing the performance of information integration, the processed sensor
data can be combined with a priori knowledge existent for the specific domain
of interest. Such knowledge, established by domain experts, provides a semantic
grounding to evaluate, efficiently classify and consistently integrate sensor obser-
vations into a knowledge base in order to represent the current state of the ob-
served real-world domain. Managing the acquired sensory information with the
objective of providing a sophisticated real world representation is then the task
performed by a world model. A world model thereby serves as a central informa-
tion hub, connecting information acquisition processes to exploitation, integration
and representation systems, as well as providing a persistent information storage
for static and dynamic information elements. The tasks to be performed within
world modeling therefore comprise:

• acquiring and providing access to a priori domain knowledge in an opera-
tional form of representation,

• integrating sensor data and enriched information into the representation of
the current domain state,
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• processing information elements and inferring new information,

• representing the stored information on different abstraction levels.

The ability to represent the current state of a given domain in a world model
strongly depends on the domain model contained in a priori knowledge. This
model generally embodies knowledge acquired from domain experts in combina-
tion with general knowledge and facts from previous experience. It describes all
entities that are likely to be observed and processed in the given domain of interest.
Therefore, the overall expressiveness of a world model is limited by its ability to
internally represent observed real-world objects as a priori modeled concepts. As
a consequence, only a closed and a priori considered world segment can be rep-
resented. To allow for an integration of unforeseen events and entities, the world
model has to be able to dynamically adjust its prior knowledge. This adjustment
then should be based on the current state of the observed domain. An adaptive
world model consequently must be capable of learning yet unrepresented concepts
from real world observations.

The task of concept learning in information management and cognitive system
goes hand in hand with the fusion and abstraction capabilities of a world model. In
an adaptive system, the relevance of newly learned concepts has to be evaluated in
terms of their usefulness for information integration and state representation tasks
in the system. Successfully managing this requirement, an adaptive open-world
model is than able to support human operators in tasks like situation assessment
and decision making. By focusing on task-relevant data and presenting a role-
adapted abstraction level of information, this can be done even in light of large
amounts of sensor data. By integrating new aspects into its knowledge base, the
system can further evolve with and to both its user and the current situation at
hand.

This technical report gives an overview on topics revolving around adaptive open-
world modeling. In Section 2, the concepts and notions of world modeling and
knowledge representation in general are presented. Section 3 then gives a short
introduction to information fusion. Section 4 is concerned with inductive inference
and presents an outline on concept learning. In Section 5 then a conception for
adaptive open-world modeling is introduced.

2 World Modeling

By modeling, one generates an abstract representation of a considered real-world
scenario. A generated model contains abstract, possibly simplified concepts of
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real-world objects and represents these concepts in a structured way, e.g., as math-
ematical or graphical formalization. In this report, the term world model is used to
describe the process of conceptually representing a considered segment of the real
world. The abstractions applied in modeling can for instance be given as constrains
on the spatial extension of the real-world segment, as limitations to the considered
time frame as well as a domain-specific level-of-detail view to the segment.

An important feature of world modeling for cognitive information systems is the
ability to capture semantic relations between real-world objects. These relations
can for instance represent a spatial connection, e.g., a cup standing on a table, or a
functional dependency, e.g., a driver steering a car. Often, the semantics of a world
model are established when a model is build, derived from a priori knowledge
about the considered real-world domain. These semantics then serve as a basis for
information processing, e.g., semantically relating current sensor observations to
each other. A world model as described above thereby consists of several parts.

2.1 Conceptions of World Modeling

The conceptions and notions of world modeling as used in this report are illus-
trated in Figure 2.1. As can be seen, a world model is employed to represent the
considered real world, which here means a spatio-temporal segment of the physi-
cal world, possibly regarded from a domain-specific perspective. The background
knowledge about this real-world segment and the considered domain is formal-
ized in prior knowledge, depicted on the left-hand side. This prior knowledge
initially contains all information that is known a priori, i.e., prior to any sensor
observations, and can therefore be considered as a static model of the real world.

Prior 
Knowledge

World
Model

Sensor
Data

Real
World

Figure 2.1: World modeling conception and notions.

In prior knowledge both the features and semantic relationships of relevant real-
world entities are formalized. A real-world entity, denoting anything existent in
the real world (like tangible objects, abstract concepts, etc.), is thereby mapped
to an entity concept in prior knowledge. A feature of a real world object (e.g.,
its height) is for example mapped to an attribute concept (e.g., height being a
non-negative real-valued variable). A relationship between entities is mapped to a
relation concept (e.g., describing the kind of relationship and the number of entities
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involved). A real-world object with its defining features and relationships is then
represented in prior knowledge as an object concept, i.e., a named set of attributes
and relation concepts.

Observations of the real world are depicted in Figure 2.1 as sensor data. Sensor
data represents a view or projection of the real world according to the sensing
modalities, e.g., the visible electro-magnetic spectrum for imagery data. In world
modeling, sensor data constitutes the input to the dynamic world model. A dy-
namic world model represents the current state (as known from observations) of
the real world, possibly in combination with a history of recent state information.
This world model is time-dependent and therefore is denoted as dynamic. The
state represented in the world model for a given time step is a result of integrating
current sensor data with information drawn from prior knowledge (e.g., semantic
relations) and previously acquired already processed observations.

2.2 Knowledge Representation

In world modeling, acquired information has to be represented, processed and
stored. The subject of information processing is covered in Section 3 by an intro-
duction to information fusion methods. The next two sections deal with the prob-
lem of how to formally represent knowledge and information. First, the notions of
data, information and knowledge should be formalized following [Das08, Ack89].
In Figure 2.3, an information hierarchy is illustrated. At the bottom of the hier-
archy, data is situated. Data represents the most basic unit in information man-
agement, having by itself only little purpose and meaning. Data is just symbols,
for example, the measured values of a physical signal. On the middle level of the
pyramid, information is located. Information constitutes semantically enriched or
processed data, e.g., annotated data. Information is also given by meaningful re-
lationships between data, e.g., the results of data fusion. On the top level of the
hierarchy, knowledge is placed. Knowledge is the possession and application of
data and information, sometimes regarded as a process. Knowledge is thereby in
general subjective and in a certain way connected to consciousness. Furthermore,
data, information and knowledge are especially relevant in the context of commu-
nication (between humans and/or systems) or decision making (and consecutive
actions).

Another set of notions that has to be clarified is given by the terms entity, concept
and symbol. As noted previously, an entity shall represent everything existing
(physically or conceptually) in the real world. In order to exchange information
about entities, these entities have to be uniquely identified, by assigning symbols to
them, e.g., names. Now, derived from previous experience with real-world entities,



232 Achim Kuwertz

Data

Information

Know-
ledge

Figure 2.2: Data, information and knowledge pyramid.

human communication in everyday life works more or less effectively just on the
basis of symbolic names. This means that humans are mostly able to understand
to meaning behind a communicated symbol, due to the fact that the human mind
is able to generalize common entity features and internally has built an abstract
entity model based on its experience. However, in machine communication (either
system-to-system or human-to-system), communication based just on symbols is
not sufficient. Here, a formal definition of the features of a real world entity is
necessary for successfully interchanging information. This definition, constituting
a formal equivalent to the internal human model, is now named a concept.

Concept thus are the formal description of named real world entities. In defin-
ing concepts, two different approaches are possible [Stu09]. The generalization
approach is to find and point out all the common features of a considered set of
entities. This results in an intensional, feature-based concept description. Another
approach is to regard the domain of interest and to build concepts by separating or
partitioning this domain into different classes. This approach foregrounds not the
similarities but the differences of the various concepts. Furthermore, an alternative
way of describing concepts should be noted: rather than describing their features,
a concept can be given by explicitly enumerating all its contained entities. For
information management, the use of concepts is beneficial as they formalize the
meaning of a notion, i.e., a symbol, and in doing so capture its semantics.

Adequately capturing the semantics of a notion generally is an important aspect
of knowledge representation. The problem can be made clear by considering the
so-called semiotic triangle [Stu09], depicted in Figure 2.3(a). As can be seen here,
a symbol (e.g., a notion or entity name, respectively) is standing for a real-world
entity, here called the referent. By being mentioned to a human being, the symbol
induces a certain thought or mental image, linked to human expectations about
the referent. Now, the entity being actually represented by the symbol and the
entity being expected by the human being do not necessarily have to match, as is
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(a) Semiotic triangle [Stu09].

Arrow

(b) Ambiguity of symbols.

Figure 2.3: Semantic knowledge representation.

illustrated in Figure 2.3(b). Thus, only if the meaning of a symbol has been clearly
captured, the symbol is useful for information processing in cognitive systems.

2.3 Ontologies

One way of representing knowledge in a structured manner, with semantics at-
tached to it, is the use of ontologies. The notion of an ontology, being a part of
philosophy for a long time, has become more and more popular recently. Ontolo-
gies, defined as “an explicit specification of a conceptualization” [Gru93], thereby
serve in the process of acquiring and formalizing human knowledge [Stu09]. On-
tologies allow for semantics in information management by formalizing the link
between symbols and expectations. They enable systems and their users to func-
tion in an interoperable way by acting as interfaces between different kinds of
representation [Sch06].

An ontology thus can be considered as a formally ordered representation of a set of
conceptualities (i.e., entities) along with existing relations, for a given domain of
interest. There exist several definitions for ontologies (e.g. [Sch06]). An ontology
can thereby be defined as a tuple

O = ( C,R,H,A,D, I ) ,

where C denotes the set of concepts represented in the ontology, R the set of
relations in between these concepts or their current instances,H a set of hierarchies
or taxonomies on the concepts, andA the set of axiomatic rules used for reasoning.
Furthermore, D represents the domain of interest, and I the current set of actual
instances, i.e., the knowledge base.

Ontologies themselves can be represented in different ways. In this report, two
possibilities will be presented following [Stu09]. As a graphical representation, a
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semantic network can be considered. Based on a graph G = (G, E) with the set of
nodes G and the set of edges E , the set of concepts C is mapped to the set of nodes
N , and the set of relations R is mapped to the set of edges E . Thereby, different
types of edges are allowed in order to represent different kinds of relations. An ad-
vantage of this graph-based representation is that it can be easily used in computer
systems, with many processing algorithms available.
Another way of representing an ontology is given by formal logic. Ontologies in-
herently contain logical axioms in their set of rules A. These axioms e.g. allow
for the integration of universal facts into an ontology and constitute an efficient
way to build complex concepts, as well as enabling deductive inference within the
knowledge base I. Ontologies therefore can be represented by first order predicate
logic. Concepts and relations can e.g. be mapped to unary and binary predicates,
concept instances and attribute values to term variables and constants. Further-
more, a transformation from a semantic network representation to a logic-based
description is possible, for more details see e.g. [Stu09].

3 Information Fusion

In a world model, various kinds of observations, differing for example in employed
sensor modalities, covered area, creation time, abstraction level or content, have
to be combined consistently. In order to enable a consistent handling of acquired
data and information, fusion methods can be employed.
Fusion can be defined as the process of combining potentially heterogeneous data
and information from different sources in order to obtain improved information
of higher value [PLR08]. The actual improvement thereby can consist of more
reliable information with reduced uncertainty or higher precision (e.g., in the case
of combining homogeneous measurements), of a higher area of sensor coverage, or
of an increased number of known object attributes (e.g., in case of heterogeneous
information fusion).
In world modeling, sensor data and derived exploitation information is fused with
facts from prior knowledge and previous observations. The fused information then
gets stored into the dynamic world model, where further fusion processes (e.g., for
abstraction, generalization, or inference) can be applied.

3.1 Fusion Models

Fusion can take place at different levels of information management. For example,
different methodologies for data and information fusion do exist. In order to define
the different levels of fusion processes, several fusion models have been developed.
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Figure 3.1: The JDL data fusion model, from [Whi88].

A prominent one is given by the JDL data fusion model, illustrated in Figure 3.1
[Das08, LBR+04]. In this model, several fusion levels are defined, distinguished
by the kind of information they produce. Data and information from heterogeneous
sources is preprocessed on a signal level, e.g., for noise reduction, alignment, sig-
nal estimation, or feature extraction. On Level 1, sensor data is combined to obtain
an accurate state estimate of a (physical) object, e.g., by estimating its attribute val-
ues. On Level 2, relationships among the determined entities are inferred based on
the previous results, i.e., the entity estimates. Finally, on Level 3, inference on the
current situation is performed in order to predict its possible impacts.

Following [Das08], the notions of data fusion versus information fusion can now
be mapped to the fusion levels of the JDL model. Data fusion thereby denotes all
information processing situated at Level 1 and below, whereas information fusion
takes place on the levels equal to Level 2 or higher. Furthermore, knowledge gets
involved on Level 3.

3.2 Fusion methods

Related to the fusion levels, different fusion methodologies do exists. For data
fusion, probabilistic methods and Bayesian inference can for example be applied.
The well-known Kalman filter belongs to this class of fusion methods. For high-
level information fusion on the other hand, a logic-based approach can be taken.

In world modeling, generally Bayesian as well as logic-based fusion methods are
applied. For estimating attribute values of modeled entities based on observations,
Bayesian inference can be employed, as e.g. in [GHB08]. Here, the attributes are
described by Gaussian densities in a degree-of-belief interpretation, represented by
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their mean values (denoting the assumed attribute values) and variances (express-
ing the uncertainty or belief in the denoted attribute values). Furthermore, several
modeled entities can be combined to higher-level concepts by logic-based fusion
(e.g., by abstracting several vehicles to a convoy). A connection between Bayesian
and logic-based inference is established by methods like Markov-Logic-Networks
[RD06]. Connecting the fusion levels one and two, Markov-Logic-Networks thus
constitute another fusion method applicable to world modeling.

4 Concept Learning

In this report, an approach to modeling an open world is considered. In order to
allow for open-world modeling, the employed model has to be capable of actively
adapting to the environment it perceives. The model thereby has to be able to learn
relevant facts about its environment based on observations. Such a task of trying
to gain abstract information from a limited number of exemplary observations is
known as a learning problem and constitutes a typical example of inductive infer-
ence [BBL04]. Automatically solving learning problems belongs into the realms
of machine learning and computational learning theory. In the following, a brief
overview of inductive inference and concept learning is given.

4.1 Inductive Inference

The term inference generally denotes the process of gaining information either by
concluding from known facts, denoted as deductive inference, or by generalizing
from observed data samples. The latter process is known as inductive inference or
statistical inference. The goal of inductive inference is to find laws and regularities
underlying a given set of observation [Grü07]. These laws can then be used to
gain information about the process generating the data, predict future observations,
make decisions or construct models of relevant features [BBL04].

Inductive inference is a general principle. It is the process successfully employed
by human beings in their everyday life in tasks concerning learning and general-
ization [Mic83]. The ability to learn from only a few examples thereby is regarded
as a core capability of human cognition [Ten99]. On the other hand, seen from
a philosophical perspective, induction does not even constitute a valid method
for logical conclusion since it cannot be properly justified by deductive means
[Hum93]. This problem can be made clear by the fact that inductive inference ex-
tends the knowledge of a system with a non-zero probability of error. This means
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that an inductive inference always allows for the possibility of a wrong conclu-
sion. For example, having seen only apples of green color, one could draw the
conclusion that all apples are green. Nevertheless, induction is one of the most
basic principles for knowledge acquisition as well as learning, and is prominent in
various disciplines, specifically in machine learning.

For the general task of learning from examples, a set of samples or training data
{(x1, y1), (x2, y2), . . . , (xn, yn)} is given, where the xi represent the observable
part of the data and the yi represent a valuation of this data. If a functional relation-
ship between the x- and y-values is to be discovered, this task is called regression
in the statistics domain or supervised learning in the machine learning domain
[Grü07]. The more special case where the y-values are restricted to some finite set
is called classification, or, in computational learning theory, concept learning.

Automatically learning from a small number of examples is a difficult task, espe-
cially when the resulting functional relationship or classifier should also be able to
perform well on previously unseen data, e.g., future observation. For successful
learning in addition to given training samples, further assumptions on the problem
at hand are necessary. These assumption can have a strong influence on the inferred
generalization, and are therefore known as inductive bias [Mit80]. A prominent
example of inductive bias for concept learning is given by the structure of the space
of possible hypotheses. Since inference procedures can only choose from this hy-
potheses space when learning, non-representable concepts therefore are excluded
a priori from being learned.

4.2 Principles of Inductive Learning

As a consequence of inductive bias, one has to carefully choose the assumptions
made during the design process of a learning algorithm. Another problem which
automated learning has to deal with, also being connected to prior assumptions,
is the level of complexity that a learning algorithm can represent. In the case of
regression, a given set of training data might for example have been generated by
a process governed by some cubic law. However, if a learning algorithm can only
represent second degree polynomials, it might never be able to infer an appropriate
model for the given process. On the other hand, considering for example linearly
distributed but noisy data samples, a high-order polynomial learning algorithm
might admittedly be able to accurately reproduce the training data. But it could
possibly fail to perform well on the prediction of future data, since it could have
learned not only the data, but also the inherent noisy. In machine learning, this
phenomenon is known as overfitting.
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Since the success of learning depends on wisely choosing the inductive bias as
well as the complexity of a learning algorithm, several general principles for in-
ductive inference have been proposed. In statistical learning theory, for example,
the structural risk minimization principle has been established [Vap99]. This prin-
ciple tries to simultaneously optimize both the complexity class of functions that
possibly can be learned and the deviation of an actually learned regression to train-
ing data. It thus defines a trade-off between approximation quality for training data
and complexity of the set of possible functions.

A similar approach is taken by the minimum description length (MDL) princi-
ple, as described in [Grü07]. In MDL, learning is understood as finding regular-
ities in data and using them to compress the data. The more a data set can be
compressed by a given algorithm, the more we have learned about the data. To
illustrate this following [Grü07], one can for example consider two lengthy bi-
nary strings, one consisting of randomly drawn “0s” and “1s”, and the other given
as 01001010010100101001010010100101001.... Now, the second string can be
compressed by describing it as the number 01001 repeated for a certain number
of times, as soon as one has identified that kind of regularity in the string. For the
first string, this is not possible, due to its random nature. So, by learning the law
underlying for the second string, it is possible to describe it in a compressed way.

In consequence, MDL regards functions that are to be learned as methods of de-
scribing a given set of data. In this approach, the MDL principle then prefers
hypothesis, i.e., description methods, which achieve a shorter overall description
length [Grü07]. To fairly measure description length, MDL employs a so-called
universal coding, which maps functions to descriptions in a pre-defined way and,
for example, measures the number of bits needed to encode the resulting descrip-
tion. Similarly to structural risk minimization, MDL chooses the hypothesis that
best fits the training data by actually considering both the description length of
the particular hypothesis and the description length of the data when encoded with
the help of that hypothesis [Grü07]. Due to its two parts structure, this approach
inherently protects MDL against overfitting.

The MDL principle further can be seen as an implementation of Occam’s razor,
in which one is generally advised to prefer the most simple explanation for a
considered problem amongst other suitable explanations.

4.3 Classical Concept Learning

For adaptive open-world modeling, prior knowledge must be extensible to incor-
porate new concepts. Furthermore, the modeling system must be equipped with
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a method for learning new concepts based on acquired observations. The clas-
sical approach to concept learning is concerned with learning boolean functions
from examples [Mit97]. A concept is regarded as a boolean function mapping
instances, represented by their attribute values, to a value of 1 (denoting concept
membership) or 0 (denoting extraneousness). The set of possible instances is thus
defined by the outer product of the considered attribute domains, which often are
comprised of discrete values. Each instance in the set of training data is thereby
marked as a positive or negative example of the concept.

In order to learn a target concept, concepts are represented as hypotheses, i.e., con-
junctions of restrictions on allowed attribute values. Thereby, for a given attribute
e.g. any value could be allowed, or just one specific value. The inductive bias of
classical concept learning thus is partially determined by the chosen structure of
hypotheses representation (e.g., if the given target concept is not representable, it
hence cannot be learned).

The task of concept learning then consists of finding a hypothesis that matches the
training data. This task then can be performed as a directed search in hypothe-
ses space by exploiting a preexisting ordering relation, the so-called general-to-
specific ordering of hypotheses. A hypothesis thereby is more general than another
if its set of allowed instances is a superset to the set of instances belonging to the
other hypothesis. Based on this ordering, several concept learning algorithms have
been developed, including the well-known version space algorithm [Mit79].

5 Adaptive Open-World Modeling

In world modeling, combining sensor data to a situation-specific operational pic-
ture is achieved by information fusion based on the concepts stated in prior knowl-
edge. These concepts are originally obtained by a priori modeling the considered
domain, i.e., the process of acquiring and formally representing the knowledge of
domain experts. Prior knowledge, represented for example in an ontology, usually
constitutes a fixed and static set of information. As a consequence, only a fixed
segment of the real world can be modeled a priori, and thus only a closed world
can be (semantically) represented in the dynamic world model.

In order to allow for open-world modeling, i.e., a semantic representation of real-
world entities which originally were not considered during a priori modeling, an
information management system must support adaption of its prior knowledge.
An adaptive open-world modeling thereby automatically should detect the need
for or the usefulness of extensions to its prior knowledge during operation. Fur-
thermore, additions to prior knowledge in form of newly built concepts should be
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Figure 5.1: An adaptive open-world modeling conception.

automatically inferred from the information currently contained in the dynamic
world model as well as from current sensor data. This task of concept learning
shall be performed by an inductive inference technique, applying for example the
MDL principle for deciding on useful concepts.

An overview of adaptive world-modeling is depicted in Figure 5.1. As can be seen,
domain knowledge is employed to initially set up prior knowledge. This modeled
knowledge then serves as a basis for exploiting and fusing newly acquired sensor
data as well as inferring on already stored information. The fusion results as usual
get stored in the dynamic world model, where the modeled entities (as instances
of prior knowledge concepts) semantically represent real-world entities.

The adaptiveness of world-modeling now is given by the learning process connect-
ing the dynamic world model and prior knowledge. The idea behind the adaptive
system is a follows: in usual operational mode, modeled entities in the dynamic
world model are induced from sensor data and mapped to entity concepts. If a
situation occurs in which modeled entities are created that cannot be mapped to
existing prior knowledge concepts, a learning process is started. This process then
extends prior knowledge by inductive inference based on the information from the
dynamic world model, learning necessary new entity concepts.

In order to perform this step, the information stored in prior knowledge can
be operationalized in some way, e.g., it could be transformed into a form of
representation well-suited for logic-based, Bayesian or graphical inference.

For designing an adaptive world model, several questions have to be considered:

• How to recognize to necessity of adaption by creating or reorganizing the
concepts contained in prior knowledge?

• If adaption is necessary, what kind of adaption should be done (reorganiza-
tion versus new concepts)?

• How should the usefulness of different adaption approaches (e.g., different
concept hypothesis) be rated?
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• Should adaption be made persistent in prior knowledge?

• Is there a need for adapting prior knowledge by removing (“forgetting”)
entity concepts?

6 Conclusion

In this technical report, a conception for an adaptive open-world model in cognitive
information systems has been proposed. For this purpose, an overview over sev-
eral aspects of knowledge management, information fusion, machine learning and
inductive inference has been presented. All these areas thereby play an important
role in designing an adaptive system for world modeling.

Future work will be considered with research on suitable methods for adaptive
concept learning, including logic-based information fusion, and implementing an
example application for proof of concept.
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