254 research outputs found

    ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems

    Get PDF
    Smart energy solutions aim to modify and optimise the operation of existing energy infrastructure. Such cyber-physical technology must be mature before deployment to the actual infrastructure, and competitive solutions will have to be compliant to standards still under development. Achieving this technology readiness and harmonisation requires reproducible experiments and appropriately realistic testing environments. Such testbeds for multi-domain cyber-physical experiments are complex in and of themselves. This work addresses a method for the scoping and design of experiments where both testbed and solution each require detailed expertise. This empirical work first revisited present test description approaches, developed a newdescription method for cyber-physical energy systems testing, and matured it by means of user involvement. The new Holistic Test Description (HTD) method facilitates the conception, deconstruction and reproduction of complex experimental designs in the domains of cyber-physical energy systems. This work develops the background and motivation, offers a guideline and examples to the proposed approach, and summarises experience from three years of its application.This work received funding in the European Community’s Horizon 2020 Program (H2020/2014–2020) under project “ERIGrid” (Grant Agreement No. 654113)

    Topics in Electromobility and Related Applications

    Get PDF
    In this thesis, we mainly discuss four topics on Electric Vehicles (EVs) in the context of smart grid and smart transportation systems. The first topic focuses on investigating the impacts of different EV charging strategies on the grid. In Chapter 3, we present a mathematical framework for formulating different EV charging problems and investigate a range of typical EV charging strategies with respect to different actors in the power system. Using this framework, we compare the performances of all charging strategies on a common power system simulation testbed, highlighting in each case positive and negative characteristics. The second topic is concerned with the applications of EVs with Vehicle-to-Grid (V2G) capabilities. In Chapter 4, we apply certain ideas from cooperative control techniques to two V2G applications in different scenarios. In the first scenario, we harness the power of V2G technologies to reduce current imbalance in a three-phase power network. In the second scenario, we design a fair V2G programme to optimally determine the power dispatch from EVs in a microgrid scenario. The effectiveness of the proposed algorithms are verified through a variety of simulation studies. The third topic discusses an optimal distributed energy management strategy for power generation in a microgrid scenario. In Chapter 5, we adapt the synchronised version of the Additive-Increase-Multiplicative-Decrease (AIMD) algorithms to minimise a cost utility function related to the power generation costs of distributed resources. We investigate the AIMD based strategy through simulation studies and we illustrate that the performance of the proposed method is very close to the full communication centralised case. Finally, we show that this idea can be easily extended to another application including thermal balancing requirements. The last topic focuses on a new design of the Speed Advisory System (SAS) for optimising both conventional and electric vehicles networks. In Chapter 6, we demonstrate that, by using simple ideas, one can design an effective SAS for electric vehicles to minimise group energy consumption in a distributed and privacy-aware manner; Matlab simulation are give to illustrate the effectiveness of this approach. Further, we extend this idea to conventional vehicles in Chapter 7 and we show that by using some of the ideas introduced in Chapter 6, group emissions of conventional vehicles can also be minimised under the same SAS framework. SUMO simulation and Hardware-In-the-Loop (HIL) tests involving real vehicles are given to illustrate user acceptability and ease of deployment. Finally, note that many applications in this thesis are based on the theories of a class of nonlinear iterative feedback systems. For completeness, we present a rigorous proof on global convergence of consensus of such systems in Chapter 2

    An overview of grid-edge control with the digital transformation

    Get PDF
    Distribution networks are evolving to become more responsive with increasing integration of distributed energy resources (DERs) and digital transformation at the grid edges. This evolution imposes many challenges to the operation of the network, which then calls for new control and operation paradigms. Among others, a so-called grid-edge control is emerging to harmonise the coexistence of the grid control system and DER’s autonomous control. This paper provides a comprehensive overview of the grid-edge control with various control architectures, layers, and strategies. The challenges and opportunities for such an approach at the grid edge with the integration of DERs and digital transformation are summarised. The potential solutions to support the network operation by using the inherent controllability of DER and the availability of the digital transformation at the grid edges are discussed

    Droop control in DQ coordinates for fixed frequency inverter-based AC microgrids

    Get PDF
    This paper presents a proof-of-concept for a novel dq droop control technique that applies DC droop control methods to fixed frequency inverter-based AC microgrids using the dq0 transformation. Microgrids are usually composed of distributed generation units (DGUs) that are electronically coupled to each other through power converters. An inherent property of inverter-based microgrids is that, unlike microgrids with spinning machines, the frequency of the parallel-connected DGUs is a global variable independent from the output power since the inverters can control the output waveform frequency with a high level of precision. Therefore, conventional droop control methods that distort the system frequency are not suitable for microgrids operating at a fixed frequency. It is shown that the proposed distributed droop control allows accurate sharing of the active and reactive power without altering the microgrid frequency. The simulation and hardware-in-the-loop (HIL) results are presented to demonstrate the efficacy of the proposed droop control. Indeed, following a load change, the dq droop controller was able to share both active and reactive power between the DGUs, whereas maintaining the microgrid frequency deviation at 0% and the bus voltage deviations below 6% of their respective nominal values

    Power interface for grid-connected pico-hydro systems using PV inverters

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáThe electrical energy is a contemporaneous paradigm, the demand for electrical energy is evergrowing, and so is the energy supply; By bringing the energy production closer to the end-users, either in urban centers or people in remote areas have a chance to exploit renewable energy resources to produce electrical energy, and become self-sufficient. Hydropower has since long been a reliable power source, as well as being the most cost-effective. Although, it has its issues, e.g., its synchronization to the utility grid depends on the continuous operation mode of the generator. Commercially available low-power inverters, up to 1.5 kW, are designed to be applied in either solar power generation, or wind power generation. These inverters were not designed to be used with hydropower generation. This work evaluates two current-controlled power interface solutions, boost and C´ uk converters, to make a hydropower generator and a commercial photovoltaic inverter compatible. The models, simulations and tests of the proposed power structures along with a commercial photovoltaic inverter emulation are made with Matlab® Simulink®, facilitating the evaluation of the power structure and its controller in a discrete-time domain in a Simulation-in-the-Loop environment, as well as, an implementation using a Real-Time controller board from dSPACE interfacing between the power structure and the controller built-in Simulink® in a Hardwarein- the-Loop test platform with Commercial Phtovoltaic Inverter (CPVI), which allows for rapid prototyping, data acquisition and processing and experimental validation of the proposed solutions

    A Review in Fault Diagnosis and Health Assessment for Railway Traction Drives

    Get PDF
    During the last decade, due to the increasing importance of reliability and availability, railway industry is making greater use of fault diagnosis approaches for early fault detection, as well as Condition-based maintenance frameworks. Due to the influence of traction drive in the railway system availability, several research works have been focused on Fault Diagnosis for Railway traction drives. Fault diagnosis approaches have been applied to electric machines, sensors and power electronics. Furthermore, Condition-based maintenance framework seems to reduce corrective and Time-based maintenance works in Railway Systems. However, there is not any publication that summarizes all the research works carried out in Fault diagnosis and Condition-based Maintenance frameworks for Railway Traction Drives. Thus, this review presents the development of Health Assessment and Fault Diagnosis in Railway Traction Drives during the last decade
    corecore