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Abstract

Centralised energy generation and distribution networks are becoming more vulnerable
to energy security. Closure of fossil-fuelled power plants and an increase in more volatile
decentralised renewable electricity generation is aggravating the situation further. Future
storage technologies will inevitably play a more dominant role during the energy transition.
Paradoxically, as the number of renewables increase, there is a greater reliance on conventional
power sources in providing back-up supply. Demand response is an important instrument
offering a wide range of services how customers can modify their energy consumption when
system reliability is jeopardised. This research focuses on integrated demand response in an
energy system by evolving a decentralised informatics, optimisation and control framework.
The contributions of this research are (1) the development of a low-cost, standalone frequency
measurement instrument, (2) a short-term electricity demand forecasting methodology,
and (3) an optimisation policy that guides the decision-making process by balancing the
building occupant’s comfort, cost (tariff) and the current and predicted states of the system.
Computer simulation and hardware-in-the-loop testing is used to evaluate an energy system
operation. There are three significant findings in this research. First, a prototype frequency
measurement instrument output is shown to be as effective as measured grid data. Second,
a electricity demand forecaster is likely to have a positive influence on the operation and
planning of supply and demand management. Third, the proposed optimisation and control
framework reveals the effectiveness of the new methods in tackling the energy optimisation
problem. This research recommends deployment of the optimisation and control framework,
at scale, as part of a wider integrated demand response scheme for decentralised energy

Systems.
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Chapter 1

Introduction to Research Project

1.1  Problem formulation

This research deals with decentralised closed-loop control and optimisation for energy

(electrical) management.

Until recently, the UK electricity grid was predominately supplied by synchronous fossil-fuelled
power plants connected at the transmission level in a centralised network. Now, an increasing
number of distributed generation resources (e.g., from solar and wind) operating on an
interconnected system, has helped steer the energy sector on a pathway towards a low carbon
future [1]. However, closure of larger traditional fossil-fuelled power plants, driven mainly
by environmental considerations, advances in technology and geopolitical influence, has
highlighted one of the most predominant technical challenges faced by system operators.
Non-synchronous machines are generating an increasing amount of power at the distribution
level, which is reducing system reserve capacity and making power grids less resilient to

frequency imbalances [2, 3].

In conventional power stations, generators provide inertia as they rotate at the same frequency
of the electrical grid. The inertia acts as a short-term buffer against sudden change. However,
the reduced level of inertia provided by synchronous generation is not always sufficient
to maintain system frequency within acceptable operating standards. Therefore, during
periods when generation output from renewable sources ceases, it is more challenging to keep
the frequency within its standard operating range. A decentralised approach offers greater

regional flexibility when balancing supply and demand.

The proposed decentralised, informatics, optimisation and control framework for energy
management has access to different resources that can be made available depending on the

urgency and scale of the imbalance. Integrating elements of smart-grid technologies and
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improved coordination between energy communities and distribution network operator has
the potential to unlock new flexible, decentralised control measures and encourage more

active customer participation in demand side response (DSR) programmes [4].

A recent study concluded that a decentralised approach to energy curtailment by exploiting
thermal inertia in building stock is possible when participating in pro-active demand response
using frequency regulation [5]. A key consideration when taking part in a pre-defined energy
reduction strategy must empower customers to use energy in the lowest price period accessible,
at the same time as offering participation in DSR events. This research provides a novel
perspective by placing the building and its occupants as an integral part of a much more

inclusive energy management system.

This research is centralised around a demand response strategy which proposes to decompose
the overall approach into two main parts. The first uses grid frequency to moderate space
heating in a building. Arresting grid frequency excursions, through load shifting of heating and
cooling units in real-time can have a positive influence on reserve generation capacity without
compromising user comfort. The second part requires knowledge of future electrical demand,
tariff, and user feedback on perceived thermal comfort. A resultant energy optimisation and

control scheme offers primary and secondary demand response for energy management.

This chapter presents an overview of the research study. Aims and objectives of the research
are listed before the methodologies specific to this work are introduced. Details of a computer
simulation for energy management (including its development) indicate the scale of work.
Accordingly, a set of design constraints and limitations are given before the contribution to
knowledge is stated. Finally, this chapter summarises the thesis organisation. Figure 1.1

shows a graphical abstract of the research development.
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Figure 1.1 Research overview

1.2 Research aim

Real-time control and optimisation will play a vital role in future power grids. Decentralised
energy networks and community-driven energy management schemes hold high potentials in

terms of local grid stabilisation and for sustainable energy.

The research aim is to advance integrated demand response in a decentralised energy

system.
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1.3 Objectives

The following objectives form a pathway to fulfilling the declared research aim:

1. Develop a low-cost, standalone grid frequency measuring instrument capable of
working in conjunction with an optimisation and control scheme designed to moderate
space heating in a building based on local needs.

2. Formulate an energy forecast algorithm by analysing demand (electrical) time series
data.

3. Implement integrated demand response in an energy system capable of automatically
arresting the severity of supply-demand imbalances.

4. Use prototype hardware to evaluate a demand response approach with real-world

data.

The findings could be useful to operators of community power systems that aspire to power
a sustainable future. Here, providing decision-making tools to assist in short to medium
term energy planning or as part of an evolving integrated demand response service. Areas
where generation capacity margins are narrowing, or a need to improve the resilience of

power generation systems to help improve the stability of the network.

1.4 Methodologies

This section presents each of the research methodologies identified to achieve the research

study objectives.
Step 1: Literature review

A critical review aims to highlight the significance and originality of the research presented.
At the same time, as justifying work packages listed, a literature review seeks to summarise
the current state-of-the-art in energy management systems for decentralised or small remote
energy communities. The literature review dedicates one section to each of the following
topics: (1) electricity supply and demand, (2) energy consumption, and (3) optimisation

scenarios. The focus will be on identifying existing methodologies and expose gaps in
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knowledge that justify the deployment of decentralised automatic control and optimisation

methods for energy management.

Step 2: Understanding the relationship between grid frequency and

thermostatically controlled loads

As a demand response resource, thermostatically controlled loads can respond to power
fluctuations caused by intermittent distributed renewable energy generators on the network.
When used to provide space heating in buildings, the slow varying thermal inertia means
occupants can remain satisfied with their thermal environment during these short-term

transient excursions.

Decentralised demand side frequency regulation when used in building stock can regulate
short-term frequency excursions in demanded electrical energy. The proposed decentralised
demand response method can operate with no national communication infrastructure but
requires access to a reliable source of grid frequency. Hence, a low-cost microcontroller
platform capable of monitoring and recording grid frequency at the point of connection is
developed. By connecting the device to the grid frequency, a series of hardware-in-the-loop
real-time simulation tests, it is possible to assess the overall impact on thermal comfort due

to fluctuations in measured grid frequency.
Step 3: Understanding energy (electrical) consumption

The aim is to understand daily electricity consumption and develop an algorithm that will
estimate future demand. A forecasting session is constructed initially through analysis of
a chronological sequence of discrete observations. Then, using dimensionality reduction
techniques and piecewise interpolation, an electricity demand forecasting method is created.
Providing energy consumption information can inform the proposed energy management

optimiser.

Step 4: Understanding near real-time closed-loop control and optimisation

for energy management

Complex problems are solved using the proposed optimisation algorithm. The optimality

depends on the problem and the algorithm used to achieve the best performance. This
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research presents an optimisation method that was inspired by Bellman’s Principle of
Optimality [6]. The optimisation process for energy management proposes to influence space

temperature setpoint using a weight-based routing algorithm.

Here, the demand (electrical consumption), tariff and building occupants satisfaction rating of
the thermal environment are tested, and sequence of future actions obtained to optimise energy
consumption and automatically schedule use of energy storage assets. A few assumptions

were made during the development of the optimiser.

Despite the high rate of energy consumption by heating systems in buildings, evidence
suggests occupants are not always satisfied with their thermal environment. Therefore,
this research proposes a framework that considers individual thermal comfort satisfaction.
The method reacts to data collected using smartphone technology. The algorithm learns
aggregated thermal comfort preference profiles, which informs the optimiser. Software
development and hardware-in-the-loop testing validate the smartphone application functional
requirements. Then, computer-based simulation aggregates the single-use application to

replicate multi-user environments.
Step 5: Understanding the resulting implications

Inferential statistical analysis is used during quantitative analysis that sought to collect,
analyse, and interpret grid frequency data. Next, a comprehensive series of computer-based
simulation and experimental tests are undertaken using a prototype platform to test and

evaluate the optimisation and control algorithm in real-time.

1.5 Key contributions of the research

The key contributions of this research are:

e Combining ideas to design and test a low-cost, standalone frequency measurement
instrument to assess the relationship between grid frequency and load disturbance.

Publication: Applied Thermal Engineering, vol. 133, pp. 97-106, 2018.
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o Developing a new mathematical model to calculate the rate of energy (electrical)
consumption. Publication: Energy and Built Environment, vol. 1(2), pp. 178-186,
2020.

e Re-contextualisation of an existing technique, by applying a weight-based routing
algorithm in a new context, using a computer-based simulation to demonstrate
integrated demand response in an optimisation and control framework for energy

systems. Publication: Energies, vol. 13(16), 4191, 2020.

1.6 Scope and limitations

The grid frequency transmitted from a power station in the UK is nominally 50 Hz. Control
activities used during this research are tailored around this value. Therefore, deploying the
software to areas in the world that uses a utility frequency other than 50 Hz will first require

an update.

By design, the optimisation algorithm temperature range works between 15.5 °C and 20.5 °C.

A software update is required to operate outside these parameters.

1.7 Thesis organisation

Figure 1.2 shows an overview of the thesis organisation comprising seven chapters and related

appendices. A summary of each chapter is set out below.

Chapter 1 summarises of the research project. Aims and objectives are listed, and
methodologies introduced. Key contributions of the research are given together with notes

that describe known limitations.

Chapter 2 begins with a critical review of energy management systems. The chapter reviews
the development and application of different approaches developed to improve the efficiency
of energy use, which includes demand response services. The evolution of closed-loop control

and optimisation techniques used to bring benefit are also discussed.
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Chapter 3 follows the development of a grid frequency measurement instrument and
provides information on the proposed prototype hardware platform and software environment.
An insight into univariate time series forecasting that comprises grid frequency is briefly
discussed. The chapter concludes by presenting test results that validate the prototype

frequency measurement tool.

Chapter 4 focuses on implementing the electricity demand forecasting method. An electricity
demand forecasting method is constructed initially through analysis of a chronological
sequence of discrete observations. A series of simple mathematical transformations complete

the process. Test results of the forecasting method are presented.

Chapter 5 first introduces the closed-loop optimisation and control scheme, which is an
important contribution to the demand response strategy. Next, a technical description of a
series of simulation models designed to test a decentralised community energy management
system is presented. The simulation comprises a simplified lumped model for electrical
demand forecasting introduced in Chapter 4, a scheduling subsystem that optimises the
utility of energy storage assets, and an active/pro-active control subsystem. A multi-objective
cost function provides secondary demand response services formulated using a weight-based

routing algorithm. Results of a series of simulation tests are presented.

Chapter 6 performs early deployment activities using prototype hardware in an experiment
designed to test the interaction of energy assets for optimal near real-time closed-loop control
with real-world data. Special attention is given to the control actions that underpin the
effectiveness of the proposed demand response strategy. The chapter begins with a review of
hardware selected to complete experimental testing. Details of a smartphone app designed
to allow building occupants to report relative thermal comfort levels are then presented.
Details of hardware configuration and set-up of the experimental environment are described

before test results are presented.

Chapter 7 summarises significant findings and sets out recommendations for future work.

Sean Williams Teesside University



Page 9

Legend
Literature Review

Technical Development
Results: Validation

Appendices

Chap. 1

Introduction to
Research
Project

Energy
Management
A
Chap. 3 Chap. 4 Chap. 5 Chap. 6
Frequency Electricity Demand Integrated Demand C.as.e St}ldy:
Measurement F G Responsein an Optimisation and
Instrument orecasting Energy System Control
Chap. 7
Conclusions and
Recommendations
Appendix A Appendix B Appendix C
Frequency Frequency
Measurement Measurement Smartphone App
Design and Software Development
Implementation Development
Appendix D Appendix E
Energy
Management Case Study
Technical Software Code
Development

1.8 Thesis Y-shaped matrix diagram

Figure 1.2 Thesis organisation

A matrix diagram that links the different elements of the thesis is shown in Figure 1.3.

The diagram intends to help identify relationships between objectives, chapters (including
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appendices), journal publications and methodologies discussed earlier. Links are graded

primary, secondary, and minor.
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Chapter 2

Energy Management

2.1 Introduction

Nowadays, the challenges and opportunities which are related to energy systems are diverse
and complex. The energy transition is usually defined as a structural change that aims
to bridge the energy divide by delivering low carbon and net zero solutions. Technology
innovations are helping to reduce environmental stress, at the same time as providing greater
flexibility and energy equality. The pressures to mitigate climate change are driven by new
knowledge and growing expectations in society, which are later translated into national and
regional policy change. It is precisely this perspective of diverse complexity that is reflected
in the energy trilemma (see, e.g., [7]). The energy trilemma conceptual framework aims to
balance energy security, energy equality and environmental sustainability [8]. Navigating
the energy transition successfully promotes policy coherence and greater cooperation at the
highest levels, which implies effective management and potential trade-offs. At a national
level, steering towards a sustainable energy future means managing electricity supply and

demand effectively.

Therefore, this chapter begins by introducing the concept of electricity supply and demand.
Then, it examines energy consumption analysis before reviewing different energy optimisation

scenarios.

2.2 Electricity supply and demand

The energy system can be categorised into two divisions, which are usually known as
the supply side and demand side. Traditionally, power generation, conversion, storage,

transmission, and distribution reside in the supply side, whereas the consumers of energy
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reside in the demand side. The supply output supports the highest peak load, which is
because of coincidental usage, driven by end-user groups. To maintain the balance between
load and generation, there is a need to adjust the generating capacity of centralised power
plants constantly. Demand response services can provide benefits when system operators

find it increasingly challenging to align generation and end user demands.

The effectiveness of modern technologies continues to improve energy efficiency. However,
this does not translate to a fall in energy demand [9]. Reduction in energy consumption due
to technology improvements, somewhat paradoxically, causes energy actors to consume more
energy [10]. There is evidence that ongoing trends in energy consumption exist on both the
production (supply) and consumption (demand) side [11]. While policy interventions are
advancing technology and economic growth, this strong coupling is causing environmental
stress [12]. Therefore, it is essential to improve energy access that is sustainable to help
mitigate risks associated with one of the most extraordinary growth paths in modern times.
The ever-increasing presence of sustainable energy supply is lessening harmful emissions from

fossil fuel power plants, which contribute to a rise in greenhouse gases [13].

Nevertheless, the intensified uncertainties associated with modern power systems operating
close to their stability boundaries, means system network operators are facing acute challenges
when maintaining continuity of supply [14]. Demand response is an essential tool in the
energy systems of many developed and industrialised countries. In a future power system,
where the contribution of inertia alone can no longer provide resilience during sudden changes
in frequency, demand response provides an effective mechanism to help balance supply and

demand [15].

Traditionally, electricity markets have evolved on the assumption that electric utilities and
system network operators will supply all power demands whenever they occur [16]. However,
centralised generation and distribution through an ageing infrastructure of high voltage
distribution networks to regional system operators are becoming more vulnerable to energy
security [17, 18]. In 2015, circa 80% of global energy consumption was generated using fossil
fuel [19]. Delivery of low carbon, energy-efficient solutions have become more prevalent
in recent years [20]. The move away from large fossil fuel power plants operating on a

centralised configuration is motivated by greater digitisation, the drive for decarbonisation
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and a need for more customer control in energy management [21]. Therefore, to achieve
carbon reduction goals, an obvious decarbonisation strategy is to extend fuel mix diversity

in the electricity sector while displacing the highest polluting power plants [22].

The accelerated transformations in our energy system are not unique. Similar complex changes
are becoming more noticeable across all sectors in society. The scale and fusion of technologies
are impacting how governments manage the economy, how businesses react to profound
technological innovation and affecting how people live. The so-called Fourth Industrial
Revolution is creating new technologies that form an industry of networks, platforms, and
digital innovations. Technological breakthroughs in areas from big data to information
intelligence promote the efficiency of resources, reduces costs, and improves the quality of

human life [23].

In energy systems, the progress of renewable sources, the innovation of distribution grids,
and investment in energy storage solutions are attributed to Industry 4.0 developments.
These evolving power solutions and the emergence of the prosumer are shaping the energy
markets for innovation [24]. The drive towards a smart and flexible energy system is a crucial
element of modern industrial strategy. Moreover, the integration of industrial development
and alignment of environmental goals have been advocated by several recent reports [25, 26].
Likewise, Liitkenhorst et al. [27] identified that policymakers need to create incentives in
a coordinated way to ensure progress on all fronts simultaneously. If governments invest
in low carbon technologies or other intermittent sources of power, they must also ensure

simultaneous investments in smart grids and energy storage solutions to ensure grid stability.

In the UK, the number of decentralised energy operations is on the increase [28]. These
changes are motivated in part by an increasing political drive in response to environmental
policy priorities. Consequently, this is provoking a shift towards decentralised energy
systems and business models that involve community energy groups simultaneously [29].
Innovations in energy evolution are characterised in part by industrial strategy and relations
to decarbonisation [14]. The fall in the cost of renewables has been significant in the last 10
years, which means generating electrical energy from renewables is cheaper [30]. Nevertheless,
when combined with an increased burden on present-day centralised services, risks associated

with long-term supply security and the drive to be carbon neutral by 2050 are exposed. While
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market signals and shifts in government policy are guiding the energy sector transformation,
system operators have developed many control strategies to preserve equilibrium in grid

frequency during periods of peak demand, including demand response.

The UK government has set ambitious targets for electric cars and electrification of heating
[31]. These bold steps are accelerating the decarbonisation of vehicles and encouraging
innovation in electrification technologies, which will further increase the demand for electrical
power. The recent emergence of smart cities and communities helps population clusters
to become more efficient and, their energy infrastructures more sustainable [32, 33]. By
integrating smart technologies, coupled with a network of sensors and intelligent algorithms,
it is often reported that urban smartness is at the forefront of the sustainability transition
[34]. However, while the development of smart grids is necessary to modernise the electricity
market, many of the reported environmental and security benefits are realised only when
smart technologies are combined with decentralised energy generation [35]. In sustainable
development scenarios, a transition towards low carbon energy will operate on different
geographical scales. Increased customer participation and increased demand require the
decentralisation of energy supply [36]. Smart (energy) cities should not only support local
needs in terms of energy demands but also feature broader regional or national network
demands. However, while the development of smart grids is necessary to modernise the
electricity market, it is only when combined with decentralised energy generation, many of
the reported environmental and security benefits are realised [37]. Besides this, demand for
new building stock continues to accelerate, driven in part by renewed industrialisation and

economic growth [38].

Studies have highlighted that building energy consumption and contribution to greenhouse
gases is significant [39]. In smart energy developments, regulatory control of heating,
ventilating and air conditioning (HVAC) processes in buildings, and other thermostatically
controlled loads, make them exceptionally suitable candidates for providing energy flexibility
to the grid [40]. Many control strategies that aim to improve the operation of heating
systems have been proposed (e.g., see [41-43]). The slow thermal dynamics and rather
stochastic characteristics of buildings (including occupants) mean their power consumption
can be easily shifted as part of a demand response mechanism without causing a significant

short-term impact on space temperatures in controlled environments [44].
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Developing energy efficiency in energy systems is perhaps the most sustainable way to help
reduce carbon emissions [45]. Providing access to electricity brings many socio-economic
benefits [46]. Electricity consumption, particularly by industrial and commercial sectors
and services, is the resource that allows other services (such as education, health, drinking
water and sanitation) to be provided [47]. Various studies have shown how small-scale
distributed renewables are changing people’s lives. However, many island energy communities
fall behind mainland energy network developments when it comes to securing affordable
and sustainable supplies. Community energy networks that operate a small number of
DREG are often more exposed to system vulnerabilities because of their intermittent nature
of energy production [48]. Still, for population clusters dependent on conventional diesel
generators, decentralised developments offer an alternative sustainable clean energy transition
pathway. More recent studies show that low carbon smart energy systems offer interconnected
islands new opportunities for energy independence [49]. Harvesting energy from natural
resources to achieve specific targets of decarbonisation can be realised using smart energy
systems combined with efficient control strategies aimed at balancing the energy demand

and production [50, 51].

The energy market is moving from a linear centralised system to a more flexible, complex,
and decentralised system. A decentralised approach can deliver electricity in a controlled
environment providing network operators access to frequency regulation and balancing
services [52-54]. Flexibility in energy generation and utility becomes prevalent in small
geographical areas. A smart grid approach provides technology infrastructure opportunities
that enable intermittent DREG to connect with local battery energy storage systems.
However, it is important to note that distributed energy installations require coordination
mechanisms, especially when network operators request flexibility in consumer behaviour to

secure operation of the power system.

In small island communities, optimisation and control of decentralised energy systems may
bring economic reward, improve energy security, and offer new opportunities for consumers
to become more active in energy management [55]. Even so, one of the main challenges
integrating several intermittent DREG is the power systems ability to respond to a change
in demand. In the absence of robust communication networks or problems due to latency,

the ability to respond quickly enough is often problematic [56]. In contrast, local direct
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control demand response processes may offer a more reactive approach by redistributing
energy consumption in response to changes in grid frequency measured at source. However,
motivations for decentralisation are not universally consistent, and embracing a carbon
reduction pathway through decarbonisation initiatives is not always the main priority for
instigating change [57]. Therefore, these schemes must not be to the detriment of the end
customers, such as adversely affecting the thermal comfort of building occupants or loss of
essential services [58]. It is important to note that substituting energy from fossil fuels with
suitable sustainable energy sources to meet the needs and expectations of the community,

will help improve the quality of human life [59].

The achievement of a decentralised energy system requires the integration of multiple natural
resources, often supplemented by some form of reserve capacity (e.g., electricity storage
systems for providing ancillary services or diesel generators for back-up power). If the benefits
of low carbon power systems within a decentralised setting are to be achieved, then energy
management mechanisms must be capable of coordinating and managing a flexible set of
services, each characterised by local resources [60]. Alongside the physical transformations,
demand side management becomes the most critical dimension, especially when there is a
tendency to empower consumers to generate their electricity [61]. A recent study highlights
that prosumers are likely to play a crucial and enabling role in a decentralised system [62].
Ultimately, efficiency improvements established using optimisation and control algorithms

(demand side management) will help lower emissions and supply needs.

As a general proposition, the objective for energy planning is to develop a system that
satisfies a dynamic energy forecasting need for community needs and is consistent with
sustainable development scenarios. In contrast, the objective of the optimisation procedure
will be formulated during the analysis of energy potentials and their geographical location.
Such expositions suggest optimisation problems may be categorised as either one-dimensional
or multi-dimensional depending on the pre-defined objectives [63]. However, with energy
efficiency, there is ample evidence that shows that most optimisation problems are defined by
at least two objectives: time and energy. In practice, many real-world problems are defined
as a process of finding a minimal value of an n-dimensional function subject to a set of

constraints that may or may not be related [64].
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The control of power demand in response to variations in grid frequency is an essential part
of the smart grid vision. In demand response, existing research methods can be broadly
divided into two types, where one method focuses on classical demand response programmes
such as direct control, and initiatives that aim to curtail energy consumption during peak
times, usually through financial incentives. Furthermore, robust communication protocols are
needed to supervise interaction between network operators. Islands have often served as test
platforms for distributed smart energy systems [65]. However, for most remote communities
that do not attract the same level of energy technology innovation, such an architecture is

out of reach.

The emergence of community energy has attracted much attention in academia in recent years
[66—68]. The idea that the three predominant categories of energy actors (i.e., community,
state, and private sector) are separated is challenged in a recent study [69]. It is argued,
community energy requires the active participation and support of all actors [70]. There
are many examples in literature that recognise the importance of community engagement
[66, 71]. Entanglement of actors and technologies shows there is a growing need for a new
role that supports energy transition at a community level [72]. Doing so will help establish
shared visions at the same time as forming support networks that shape future technology

innovations.

2.3 Energy consumption analysis

Recent trends toward decarbonisation, digitalisation and decentralisation are seeking to build
out centralised state-owned power assets, focusing instead on investments in energy storage,
demand response and improved energy efficiency [36]. In the energy field, these principles
are often expressed in smart infrastructure initiatives that are focused on increasing the
capacity of low carbon technologies while improving the efficiency and resilience of energy
production [73]. The pattern of growth and expansion of the world human population is
set to increase annually, rising to about 11 billion in 2100 [74]. In other studies, it is shown
human population density peaks in high productivity environments [75]. An analysis of the
casual relationship between the economy and energy showed that electricity consumption is

a critical component of economic growth [76]. The literature on electricity consumption and
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economic growth relations highlights four conflicting hypotheses, including feedback effect,

growth, conservation, and neutral effect [77].

These findings have significant implications for nations planning for an energy transition. For
countries confirming the feedback hypothesis, the implication is that economic growth and
electricity consumption are mutually dependent [78]. In such a case, policymakers should
concentrate on electricity generation policies and economic growth policies that stimulate
each other. However, while shared goals and objectives might motivate a common political
agenda, different policy design for more developed countries should probably be considered.
The data in previous studies that examined the Granger causality relationship (see, e.g., [79])
between energy consumption and real gross domestic product, show energy conservation
policies, if implemented correctly, will have no adverse impact on economic growth in more
developed countries [80]. In other studies which analysed countries homogeneous concerning
their level of development, no casual relations in the group of wealthiest countries were
observed [81]. In contrast, evidence of energy-growth nexus in groups of developing countries

can be found [82].

Constructing energy systems into more sustainable forms means electricity demand forecasting
is necessary. As a broad guideline, research has shown that energy consumption in buildings
accounts for approximately 40% of the world’s energy resources and emits circa one-third of
greenhouse gases [83, 84]. Considering the long lifespans and complex challenges associated
with the regeneration of old building stock, more accessible energy retrofit initiatives to
achieve energy saving targets are needed [85]. Tangible measures that improve energy
efficiency include lifestyle changes, e.g., use of smart meters [86], and distribution system

planning as well as enhancing load and resource forecasting methods and approaches [87].

Time series data analysis is found in many sectors including financial [88], transport [89], retail
[90] and health care [91]. The aim is often focused on identifying underlying components in
data (deterministic and stochastic) including trend, seasonal, cyclical, and calendar variations.
Analysis usually means describing them mathematically and making predictions or forecasts
about what will happen next. Decisions formulated on empirical analysis can help in effective
decisions regarding rail transport planning and management (transport), provide a basis

for distribution and replenishment plans (retail), or allow for a more reliable approach
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to intensive care therapy (health care). In energy consumption analysis, a time series of
demand data can be defined as a set of chronologically ordered points observed over time and
subsequently used for time-based predictions. Knowledge about future electricity demand
ensures supply and demand management decisions help balance the electricity generation

and usage [92].

Many technical barriers make forecasting of electricity demand challenging, especially in areas
that support a combination of different distributed renewable energy generators that lack the
flexibility and capacity offered by centralised energy systems. Analysis of temporal data and
the development of forecasting models are often presented as multivariate time series problems
[93-96]. However, multivariate time series considers simultaneous time-dependent variables
where each variable depends not only on its past values but also has some dependency on other
variables. Thus, a multivariate prediction may prove difficult to extract enough meaningful
information useful for predicting future states. In contrast, a univariate time series with
a single time-dependent variable may offer an improved alternative when prediction time

horizons are small [97].

Research investigating temporal data and the prediction of future values in time series
highlights there is little consensus around the terminology that defines the duration of
each forecasting horizon. However, most time series forecasting problems in literature can
be framed as short-term, medium-term, or long-term, depending on the domain and the
underlying process. For instance, in many economic applications, weekly, monthly, quarterly,
and annual trends are clear. However, estimating annual or quarterly seasonal adjustments
when the number of recent observations used in the estimation is limited to the previous
12 months, will prove problematic. Similarly, one year of daily activity would not estimate
annual seasonality accurately. Therefore, the number of observations used in the estimation
(referred to as the window size) is a crucial issue in forecasting [98]. For stationary and
ergodic processes, a forecast content function is formulated to determine a forecast horizon
beyond which forecasts continue to convey useful information from univariate time series
models [99]. The results provide a characterisation of the conditioning information at different
horizons, which serve as a useful benchmark. It is worthy of mentioning, while traditional
time series methods (e.g., autoregressive integrated moving average (ARIMA), seasonal

ARIMA (SARIMA) and error, trend and season (ETS)) handle single seasonality in a time
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series, more advanced techniques may be required when multiple seasonality components

exist in data [100].

Energy demand models can be classified in several ways, such as static versus dynamic,
univariate versus multivariate and techniques ranging from vanilla method approaches to
hybrid models. A considerable amount of literature has been published on energy consumption
prediction methods, including conventional statistical-based methods, classification-based,

support vector machines (SVM) and artificial neural network (ANN) methods.

ARIMA models and exponential smoothing are amongst the most general form of time series
forecasting techniques. ARIMA models are based on the idea of transforming the time series
to be stationary by first applying differencing operations. In this context, a stationary time
series is when the statistical mean, variance and autocorrelation are all constant over time.
In contrast, exponential smoothing is a time series method for univariate data. Unlike the
ARIMA model where the prediction is a weighted linear sum of recent past observations (or
lags), the exponential smoothing method uses an exponentially decreasing weight of past
observations. There are three main types of exponential smoothing forecasting methods
used in time series. The more advanced method, known as the Holt-Winters exponential

smoothing method, adds support for seasonality to univariate time series [101].

Ediger et al. [102] presented a method to estimate future primary energy demand of Turkey
from 2005 to 2020 using the ARIMA and SARIMA methods. The method integrates each
model by using specific decision parameters related to goodness-of-fit and confidence interval,
the behaviour of the curve, and reserves. The results show that the ARIMA forecasting
of the total primary energy demand appears to be more reliable than the summation of

individual forecasts.

Noureen et al. [103] emphasised the need to apply a differencing operation to non-stationary
process before applying an ARIMA model for forecasting seasonal agricultural loads. The
ARIMA model is based on the behaviour of observed data and completely ignores the
independent variable. The results are reported as competitive; however, comparing results

from different models would benefit the study.
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Taylor [104] considered five exponentially weighted methods when formulating forecasting up
to one day ahead using half-hourly load data. An empirical comparison of univariate methods
tested the forecasting accuracy. The results showed a new singular value decomposition
(SVD) based exponential smoothing formulation outperformed all other methods on load
forecasting applications. The SVD enables a multivariate dataset to be reduced to a dataset

of lower dimension.

Arsenault et al. [105] predicted the total energy demand as a function of the previous year’s
energy demand, price of energy, real income, and heating day for the province of Quebec.
The ordinary least squares technique (OLS) is used, and prediction is made sector-wise,
i.e., residential, commercial, industrial, and street lighting. Yearly data has been used for

demand side projection. Weather data influences energy forecasts.

Machine learning (ML) techniques have recently been proven to be workable and effective
in analysing time series data [106-109]. In the field of deep learning (a subset ML which
deals with neural networks), long short-term memory (LSTM) can be applied to time series
forecasting. Somu et al. [110] developed an energy consumption forecasting model which
uses LSTM and improved sine cosine optimisation algorithm for accurate and robust building
energy consumption forecasting. Experiments reveal that the proposed model outperforms
the state-of-the-art energy consumption forecast models in terms of mean absolute error,

mean absolute percentage error, mean square error, and root mean square error.

Yang et al. [111] recognised the importance of optimal feature selection. The proposed hybrid
model that combines least squares support vector machines (LSSVM) and autocorrelation
function (ACF) selects the optimal input features and predicts half-hourly electricity loads
of the following week. When compared with other benchmark models (Bmean, Bplag, Bpday
and Bpweek), experimental tests provide more accurate half-hour ahead short-term load
forecast (STLF). Despite this, the proposed hybrid model is very time consuming, and the

algorithm is complicated.

Sadaei et al. [112] proposed a multivariate short-term load forecasting method combining
fuzzy time series (FTS) and convolutional neural network (CNN), a class of ML that have
been shown to provide state-of-the-art results on recognition tasks. This novel hybrid

approach to convert multivariate time series into images and then using FTS and CNN
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provided good results for STLF when compared to other benchmark models, including

LSTM.

Al-Musaylh et al. [113] conducted a study that focused on data-driven techniques for
forecasting short-term demand data using several forecast horizons. A single demand data
was used to develop the univariate ARIMA model. When compared to multivariate adaptive
regression spline (MARS) and support vector regression (SVR) methods, normalised model
assessment metrics based on root mean square error (RMSE), mean absolute error (MAE)
and Wilmott’s Index (WI) (see, [114]), show MARS and SVR models are more suitable for
STLF in Queensland, Australia.

Bio-inspired meta-heuristic optimisation algorithms, which can solve difficult optimisation
problems, have gained popularity in the past decade. Some of the latest techniques, such
as Bayesian vector autoregression (VAR), ant colony optimisation (ACO), particle swarm
optimisation (PSO) models, are being used in energy demand analysis. VAR models are
well-liked for their flexibility and rich parameterisation. In recent years, Bayesian VAR
forecasting models have demonstrated considerable success in forecasting macroeconomic
and regional economic variables. Despite this success, these promising forecasting models
have yet to be widely used in energy forecasting. However, drawing on Bayesian VAR
econometric modelling techniques, Njenga et al. [115] developed a mortality model that
allows qualification of parameter uncertainty in a prediction distribution. Comparisons with
other models using univariate techniques show that Bayesian VAR can improve mortality

model fits.

Toksari [116] utilised historical data between 1970 and 2005 to train an ACO electricity
energy estimation model to estimate the electrical energy demand in Turkey in the years
2006 to 2025. The models which are obtained using ACO included four economic parameters,
including population, gross domestic population, import and export. The findings proved

the ACO approach to be a successful energy estimation tool.

Ozerdem et al. [117] modelled the problem of STLF using a proposed optimisation of designed
feedforward neural networks using the PSO algorithm. The system was trained using a
backpropagation (BP) neural network, and the learning rate adjusted until an optimal result

for the network was established. The results obtained within this work showed that both
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particle swarm optimised neural network and BP neural network are suitable for modelling
load forecasting. It is also observed that the required times for training the BP networks are
roughly twice of the particle swarm optimised networks. Therefore, faster models can be

developed with PSO networks.

In a further example that utilises the PSO network, El-Telbany et al. [118] present a method
developed to forecast the Jordanian electricity demand. Results are compared with outputs
from the BP algorithm and autoregressive moving average methods. The PSO intelligent
based load forecasting technique performed better than the BP algorithm. However, the

PSO requires many more function evaluations to find the optimal solution, as compared to

BP.

Time series forecasting algorithms can create models based on historical observations to
estimate future behaviour. Recently, the concept of ‘big data’ has occupied academia
and business. Buildings have not only become more energy-intensive, in the era of smart
technologies, they have also become more data-intensive. The computation time of more
traditional time series methods may increase notably when big data time series is tested.
Techniques more familiar in data mining can play an important role in big data time series.
According to Sumathi et al. [119], data mining can detect and extract hidden relationships,
patterns, and trends by search through extensive data. Alvarez et al. [120] presented a
new approach called pattern sequence forecasting (PSF) to forecast energy time series. The
process utilises the k-means clustering technique to reduce the dimensionality of the database.
Clustering generates a sequence of labels which define a pattern of search, and finally, the
prediction step is defined. This novel approach avoids the use of real values of the time series
until the last step of the prediction process. The algorithm has been successfully applied in

electricity price and demand time series of Spanish, Australian, and New York markets.

Manojlovi¢ et al. [121] proposed a novel time series grouping algorithm that combines
dimensionality reduction, both partitional and hierarchical clustering, and cluster validation
to group time series into an optimal number of clusters based on simple parametric settings.
Case study results on real smart meter data confirm the proposed algorithm achieves high

cluster validity.
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It is well known that the dimensionality curse destructively impacts on the result of time
series data mining. That is, as the number of features grows large, poor generalisation is to
be expected and, training becomes intractable due to high computational and memory costs
(see, e.g., [122]). The most prominent methods used to alleviate the dimensionality curse
include discrete wavelet transform, piecewise aggregated approximation (PAA) (see, [123])
and symbolic aggregated approximation (SAX) (see, [124]). The latter being an extension to

the PAA, which transforms the mean values derived from PAA into discrete string symbols.

Wang et al. [125] extend the idea of PAA by using vector quantised approximation. This
approach allows for a more flexible approximation of each segment, which is represented by a
codeword derived from a codebook of key sequences. Tests using real and simulated datasets
show that the proposed technique generally outperforms traditional PAA methods where the

size of each segment is constant.

2.4 Optimisation scenarios

The design of many engineering solutions often involves many complex processes. A design
often follows an iterative and incremental life cycle, where each end of cycle design is based
on experience, intuition, and perhaps mathematical reasoning. The objective is identifying a
design that is optimal according to a specified statistical optimality criterion. An optimal
design process forces the design engineer to identify a set of design parameters, an objective
function, and any constraints the design must operate [126]. This approach allows engineers to
model systems and make these trade-offs, one of which can integrate regulatory requirements,

or guidelines to make solutions more acceptable to society.

In energy systems, the field of optimisation has received much attention in recent years.
Advances in computing power, availability of user-friendly software solutions and new
approaches to optimisation, has expanded our knowledge in this area of research. For
example, in 1995, inspired by swarm intelligence of fish and birds, and even by human
behaviour, Kennedy et al. [127] developed a modern meta-heuristic algorithm. The diversity
of these nature-inspired algorithms has become increasingly popular, solving hard optimisation

problems in all major branches of science and engineering. When applying machine learning,
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swarm intelligence has been widely applied to feature selection because of its simplicity,

effective search mechanism and natural representation [128].

In statistical analysis, the methods of least squares (LS) try to minimise the sum of residuals,
e.g., see [129]. However, obtaining the LS estimate is cumbersome when the number of
measurements is large. More recently, ML has been used to learn patterns from data and
then make decisions to optimise the deviation between what is observed in data and what
the model predicts. It should be noted that ML does not necessarily guarantee improvements
in performance [130]. When ML was applied to improve time series forecasting accuracy, the
findings of a study showed pure ML methods performed poorly when compared to statistical

methods [131].

Most control and optimisation theories have been developed out of a priori reasoning based on
relatively simple assumptions that the reader can distinguish ’optimal control’. Optimisation is
a key idea that can be applied in many situations. However, any mathematical interpretation
is ultimately a crude (or sophisticated) simplification of any real-world application. In practice,
the optimisation criteria will largely be determined by interpreting the mathematical model
and its associated problem description (e.g., variables, objective function, and constraints).
It is convenient to classify each type of problem as stochastic or deterministic [132]. The
first frames the optimisation problem in the presence of uncertainty, whereas in contrast,
it is appropriate to consider the second optimisation problem as a sequence of operations
over time, each leading to a uniquely determined state. For such an algorithm, there is
some trade-off between accepting the most optimal outcome (cost) at the present stage
against the least total cost incurred from all subsequent stages. Genetic algorithms (GA)

and hill-climbing with random restart serve as good examples of stochastic algorithms [133].

GA is a random search method and can act directly on the offspring of optimisation results.
It is often used in discrete optimisation and life prediction of big data. The leading operators
in GA are cross over, mutation, and selection of the fittest. Liu et al. [134] used GA to
search the optimal value in an online energy management system based on driving status
recognition. When compared to rule based controls, which are not adapt to complex energy

systems, GA methods are regarded as feasible alternative.
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The inherent intermittent behaviour of renewable energies means representing uncertainties
in optimisation problems becomes critical. Interestingly, stochastic optimisation in renewable
energy applications has been shown to deliver accurate representations in capturing the
uncertainties of renewable systems [135]. In a grid that comprises solar and wind generators,
Altintas et al. [136] state deterministic approaches alone cannot capture the dynamics of the
system. To overcome this, a multistage stochastic programming model was formulated to
handle the uncertainties related to renewable generators and evolving economic environment,

[137-139).

Generally, most existing commercial building energy management systems (BEMS) adopt
demand-driven control strategies [140]. In the last three decades, ANNs have been utilised
to solve several architectural and civil engineering problems (see, e.g., [141, 142]). However,
considering the application of the ANN in buildings, Mohandes et al. [143] reviewed the
potential of ANN for prediction of buildings energy consumption. According to studies
performed by Olofsson et al. [144], ANN has a superior performance compared to the other
methods for estimating energy consumption in buildings. Macarulla et al. [145] proposed a
control system based on a neural network that determined the optimum time to turn on
a boiler to achieve comfort levels. Results showed that implementing predictive control in
a BEMS for building boilers can reduce the energy required to heat the building without
compromising the user’s comfort. In another study, Yuan et al. [146] combine LSTM and
PSO to optimise parameters for improved prediction interval of wind power. Unlike the
ANN, LSTM (a form of recurrent neural network) shares parameters across different time
steps because of a recurrent connection on the hidden state. Many contributions in literature

combine forecasting and optimisation methods (e.g., see, [147, 148]).

One drawback of BEMS, when deployed to implement demand side management is the lack
of integration of energy consumption data into actionable information [149]. Pombeiro et al.
[150] compared the performance of two optimisation models to control space heating subject
to economic and thermal constraints. Using a simplified thermal model and step time of 10

min, test results showed that the DP optimisation approach performs better than the GA.

Niu et al. [151] investigated the potential of exploiting building thermal energy and battery

storage. The results highlighted that a linear autoregressive model with exogenous inputs
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could accurately predict thermal load with a 60 min horizon. Besides, a mixed-integer linear
programming (MILP) model was formulated for optimal dispatch of a building energy system.
The results show that the operational costs decreased when using battery energy storage,

and further cost savings are achieved when using building thermal inertia.

Work presented by Short et al. [152] builds on recent MILP models. The short-term
forecasting, along with scheduling and economic dispatch optimisation for small/medium
scaled decentralised combined heat and power plant, was formulated. The results show that
profit is much more sensitive to the accuracy of load predictions when compared to previous

studies in this area.

Recent innovations of case-based reasoning (CBR) model are well documented (see, e.g.,
[153]). Faia et al. [154] proposed CBR approach, uses previous cases of energy reduction in
buildings to suggest ideal levels of energy reduction to be applied in the energy consumption of
houses. Using k-means clustering to search for clusters of similar past cases, the optimisation
process, PSO was utilised to optimise the choice of the variable that characterise each case.
The results show that the combined CBR and PSO approach can identify adequate levels of
energy reduction without compromising the thermal comfort of building occupants. However,
the performance of CBR model is dependent on the number of similar cases. Another
limitation of this model is that a small deviation from the original optimisation problem

requires a significant change.

In a different study, Delgarm et al. [155] formulated a multi-objective optimisation method
for building energy efficiency by integrating an artificial bee colony algorithm with a building
energy simulation tool. Unlike other population-based meta-heuristic models, this global
based approach preformed well noting that lower energy consumption led to increasing

predicted percentage dissatisfaction (PPD) values.

Ghahramani et al. [156] developed a HVAC system energy optimisation using an adaptive
hybrid meta-heuristic. By using a combination of k-nearest neighbour stochastic hill-climbing,
regression decision tree and a recursive algorithm, the knowledge-based approach was used
for determining the initial temperature setpoint. The energy savings analysis presented did
not factor thermal comfort constraints. Besides this, results for different permutations of the

algorithm showed an overall improved energy consumption.
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In many real applications the problem description cannot be adequately represented as a
single objective function. Other studies have also concluded that a multi-objective optimised
design is better than two individual single objective optimised designs [157]. In the context
of multicriteria optimisation, Granat et al. [158] formulated a Pareto-optimal algorithm (see,
[159]) where it became necessary to choose a reasonable solution rather than the best for all
criteria. The contribution of the solution process guides the operator to select a Pareto-optimal
path that best fits their preferences using an interactive graphical representation of a grid
network. There are similarities in this approach and the optimisation problem formulated
using dynamic programming. However, like most multicriteria shortest path problems, if
the polynomial complexity is left unbound the computational effort required to solve such

problems increases exponentially with the size of the problem.

Kapsalis et al. [160] presented an optimal operation scheduling algorithm based on Dijkstra’s
algorithm. The algorithm was designed to control thermostatically controlled devices (electric
water heaters) continuously. Here, user preferences formed part of the multi-objective function,
which influenced the edge weight between successive nodes. The static single source shortest
path algorithm calculates the optimal path for different edge weights. This iterative process
achieves the minimisation of energy costs while ensuring the user thermal preferences are
not jeopardised. In this scenario, the performance was satisfactory, based on the polynomial

complexity was bounded.

Minimising or maximising an objective function helps solve an optimisation problem. Often,
optimum scenarios consist of a mixture of technologies and range of operating modes. In
recent years demand response has become more prominent, especially with the advances
in artificial learning [161]. A critical review of energy system models suggest they can be
separated into four main groups. Advances in technologies have seen the emergence of more
complex approaches. However, while the decisive advantage of artificial intelligence is its
ability to work with noisy or incomplete data, there are distinct disadvantages when compared
to more traditional optimisation approaches. Table 2.1 sets out the main advantages and
disadvantages of the four main groups of energy system models, which includes the dynamic
programming approach. Generally, dynamic programming is a method which can efficiently
deal with linear and non-linear objectives and constraints and output satisfactory optimal

solutions.
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The composition of the energy problem set out in this study is based on the adopted
optimisation criterion involving dynamic programming, which are mainly classified into
problems with discrete and continuous spaces. Mavrovouniotis et. al [162] identified most
practical real-world problems consist of a finite number of solutions, including problems with
network environments. Therefore they can be formulated as discrete optimisation problems.
The dynamic programming method is mainly used to deal with energy management and
optimal control problems of hybrid energy plants [163]. The characteristics are seen as most
suitable given the overall problem solution can easily be translated into a number of smaller
decisions, following the principle of optimality. Also, given the approach simplistic design and
implementation, its diffusion of its use for energy systems and asset scheduling applications
operating as part of a wider integrated demand response framework, ensures an optimal

solution is always found.
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2.5 Summary

Traditionally, a centralised power system is scheduled to generate electrical energy because
most loads are not measurable at the required time resolution. Maintaining frequency
equilibrium is challenging, exacerbated further by a growing number of diverse renewable
power generation operating on the grid. The characteristics of renewable energy often mean
their operation is geographically dispersed, decentralised. Demand response has emerged as
one of the most important instruments to reduce electricity during critical peak periods or
shift the demand to off-peak periods. However, managing this flexibility in future energy
systems requires expansion scenarios that recognise the energy autonomy aspirations at the

community level.

Due to the variability of renewable resources, constructing energy systems into more
sustainable forms means electricity demand forecasting is necessary. Studies in the literature
consider a range of methods using different forecast horizons. Often, the simplicity of
conventional approaches outperform more advanced modern techniques. A critical review
of optimisation methods has shown these can be separated into four main groups. The
advantages and disadvantages of each group shows not one method fits all optimisation
problems. Despite advances in technologies, and increased attention on the development of
energy systems, the advantages set out at Table 2.1 warrant further work to resolve an energy
optimisation problem based on dynamic programming. Also, prior studies that provide an
integrated demand response for community energy systems have not been found provides
further justification for pursuing this area of research. Specifically, this is no evidence
that brings the collective contributions of energy forecasting, active and pro-active demand
response, respecting occupant thermal comfort preferences at the same time as considering
the economic impact as part of a multi-objective optimisation problem. A gap in knowledge

has been identified.
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Chapter 3

Frequency Measurement Instrument

3.1 Introduction

There is a tangible link between economic growth and increased demand in energy for space
heating and air conditioning [164]. Therefore, thermal storage in buildings as a resource is of
growing interest. According to recent studies, energy consumed in residential and commercial
buildings accounts for circa 20% of the globally delivered energy [165]. Building efficiency
strategies can be: (1) passive, i.e., seeking to improve the fabric of buildings, and (2) active,
i.e., encompassing improvements to space heating by decreasing the energy demand of the
building [166, 167]. Balancing services by manipulating the load profile of domestic appliances
or exploiting the amount of thermal mass in a building has received some attention [168, 169].
However, the literature on the provision of similar gains through decentralised pro-active
frequency regulation and optimisation of indoor comfort temperatures in commercial building

stock by exploiting properties that contribute to thermal stability is less apparent [170].

Differences between previous approaches to DR and the one presented in this chapter are
twofold. Firstly the presented method is not dependent upon a national ICT infrastructure
(decentralised control). Secondly, the approach avoids discontinuous (on/off) switching of
loads, thus, avoiding synchronisation and restoration loading issues. The method discussed
here sets out to replicate the primary ‘droop’ control present on supply generators on the
demand side, exploiting electro-thermal couplings. It can operate independently at the
building or block of buildings scale, in either islanded mode or on-grid. Also, it controls
space heating, without compromising occupancy thermal comfort by using a signal set to
change proportionally to grid frequency. Hence, avoiding long-term oscillatory behaviour
[171, 172]. The findings demonstrate that this research offers a simple and viable alternative

to other market mechanisms, such as fast-acting frequency response services.
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Provision of primary frequency control has been discussed extensively in the literature
[173, 111]. However, the drawback, when operating in the context of demand response is
its dependency on a robust communication system [174]. Aggregation of TCLs presents
unique challenges as a reactive control strategy attempts to minimise the synchronisation
phenomenon, usually by dispatching some form of elaborate stochastic switching mechanism.
Concerning existing literature, this work proposes a pro-active decentralised approach to

demand response while preserving the characteristics necessary for primary frequency control.

The main contribution of this work is the development of a prototype low-cost standalone grid
frequency instrument that can be deployed without the reliance on centralised communication
for accurate local frequency measurement. A review of measured frequency and data obtained
from transmission system operators makes a comparison between different solutions and
methodologies more credible. Providing a near real-time grid frequency measurement designed
to operate and output accurate frequency measurements within the locality of the device is

key to supporting a primary control mechanism for pro-active energy management.

3.2  Materials and methods

3.2.1 Methodology

Decentralised demand side frequency control when used in building stock can regulate
short-term frequency excursions in demand electrical energy [175]. The proposed decentralised
demand response method can operate with no national communications network but requires
access to a reliable source of grid frequency measurement. Figure 3.1 illustrates the general
approach. Here, when a power disturbance (APd) is applied to a single area power system
driven by a lumped parameter non-reheat steam turbine, the decentralised frequency control
action can have a positive influence on reserve generation capacity. A change in reserve
generation capacity is achieved by arresting the measured frequency excursion in real-time.
Moreover, a small variance in building (zonal) temperature setpoint will have a negligible

effect on occupant thermal comfort.
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Figure 3.1 A proposed role for DFC-Primary control

3.2.2  Grid frequency

Transmission network operators in the UK are learning the consequences of the open access
paradigm. An elaborate energy landscape means the demands placed on the system in
terms of capacity and diversity are very different from those initially envisaged during its
inception. Excessive stress and sudden natural or malicious physical events on modern power
systems may degrade grid reliability and stability. Frequency stability refers to the ability of
a power system to maintain frequency equilibrium following an imbalance between supply
and demand. Instability occurs in the form of sustained frequency excursions which lead
to tripping of generating units or loads. Therefore, grid frequency measurement provides
system operators with a good indicator of system status and performance. Suppose the
supply is higher than demand, grid frequency measurement increases and vice versa. In the
UK, the ESO is responsible for maintaining a target frequency of the total system, which is
nominally 50 Hz and controlled within the limits of 49.8 Hz to 50.2 Hz [176]. The statutory
requirement permits a variation not exceeding 1% above or below 50 Hz. When the frequency
exceeds these limits due to changes in supply and demand, events occur, which means power

output is altered to correct the imbalances.

Figure 3.2 introduces a typical grid frequency data plot for Great Britain. The example
shown starts 1st January 2018 00:00:00 and plots the measured grid frequency at a re-sampled
rate of 10 min for 4.166 days. Source data is readily available in the public domain at a

sample rate of 1 sec [177].
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Figure 3.2 Grid frequency data for Great Britain

A useful insight into the number of events from 1st January 2015 to 31st December 2019 is
shown in Figure 3.3. The number of frequency excursions less than 49.8 Hz (Lf) and the
number of excursions that exceed 50.2 Hz (Hf) are shown (frequency sample rate is 1 sec).
The associated first-order polynomial trendline (Lf trend and Hf trend respectively) indicate
a progressive increase in the number of events over the 5 yr period. It is observed that there
are no instances where the frequency exceeds the statutory requirement (50 Hz plus or minus
0.5 Hz). The number of registered Hf is notably high in October 2017 and March 2018, and
Lf in July 2019. A similar analysis of frequency events in Great Britain from 2014 to 2018
concluded that the rise in the number of measured events is attributed to an increase in

DREG on the UK grid [178].
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Figure 3.3 Grid frequency events 2015 to 2019

A more granular view of frequency activity is shown in Figure 3.4. Here, frequency measured
at the same time of each day in January 2018 highlights the full extent of frequency deviation.
The dark blue colour squares indicating a more significant departure from the nominal 50

Hz.
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Figure 3.4 Grid frequency distribution in January 2018

To conclude this insight into grid frequency, Figure 3.5 shows grid frequency and demand
data over four days starting 1st January 2018. In the later stages of this research, much work
was carried out investigating the relationship between grid frequency and demand. Here, we
introduce one enquiry that compared a normalised grid frequency infinite impulse response
(ITR) filter output with demand data. Zero crossing points are marked, and calculated
duration (D), mean (M) and area (A) values between successive points are tagged to each

peak above and below 50 Hz (normalised).

Grid Frequency ® IR = Demand ® Zero Cross ® High Pk = Low Pk x10*
5
I I d: 657 min
. M: 0.39
A:2f079
d: 494 min d:'236 min —4.5
M: 0.334 eemn L M025s
A1 \ghs M: 0.223 min - a: dleo1 . d
o5l G A 534 M: 0219 dMlz)zl'A“;” d: 223 min
T d: 61 myghLas d: 111 min d:54) 4
) d: 53 i L A M: 0.12
B A {138 min Al \802 M: 0
5o M: 0.08 . A dogo M 012 Y8 g
38 A dleps & a2 Y =)
¢ o Fnin § & A 35 2
g £ M{l-0.012 M @ g
?-)—z g 001 dodvhin 9 d;16gbhin /13 min A £
2 Mi 0135 d: 30vin A: -0.984-0.115 M:0.119  M:0.08 e
05— d:1epmin g 16 min A:-1.611 M:10.175 A:-1252 A-glL AQ378 3
b tnin M:-0.25 M: -0.197 A5.754 d: S{gr¥hin
M/-0.339 a-a0g min Al -4.466 A:-3529 M:-0.367
Azasen M:-0.434 d: 54§ min SR L
- A -13.882 M: -0.412
A:-22.216
\ \ \ \ \ R
0 100 200 300 400 500 600

Sample (10 minutes)

Figure 3.5 Grid frequency zero crossing

Finally, Figure 3.6 shows another enquiry that utilises techniques more commonly used in
time series data mining. The alternative forms of data representation shown have been
investigated because of the unique characteristics of the grid frequency, such as the large
volume of data (high dimensionality) and non-linear relationships of the data elements.

The time series is represented by piecewise aggregated approximation (PAA) and symbolic
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aggregated approximation (SAX). The objective is to seek patterns in the data structure. A
coded message is used to represent the length of the time series into a collection of strings.
For example, 8LE, where 8 indicates the value is in bin 8, L indicates an increase of +3 from
the previous reading and E indicates the present value duration is equivalent to two-time
units (40 min). String manipulation algorithms are useful when finding patterns which can
then be used for formulating prediction algorithms [179]. These techniques will be used to

advance the work in subsequent chapters further.
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Figure 3.6 Grid frequency patterns

3.2.3 Technical development

On a synchronous generator, the frequency of the interconnected power system is implicitly
instrumented via the generator tachometer, which measures shaft speed locally. At a load
site, however, a dedicated means is required for frequency measurement, unless real-time
communication is employed. However, the reliance on advanced communication networks
to convey this information at sufficient resolution and maintain real-time accuracy at
decentralised nodes is problematic [180, 181]. Many examples of frequency measurement
estimation algorithms and techniques are available in the literature (e.g., [182]). However,
in practice, the implementation of decentralised frequency control is not always favourable
and quite often cost-inhibitive. This research offers a low-cost working prototype using the
zero-crossing detection technique, constructed using an Arduino Mega 2560. The ATmega2560
low power CMOS 8-bit microcontroller based prototype (see, [183]) is designed to measure
and visualise real-time grid frequency at a resolution of 100 mHz at least once every second.
Figure 3.7 illustrates a breakout view of the signal conditioning and frequency measurement

modules.
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Figure 3.7 Frequency measurement instrument breakout

The prototype construction is housed inside a robust protective case for durability. An
image of the prototype is shown in Figure 3.8. The design includes additional features
considered appropriate to assess the performance of the instrument during subsequent
analysis. For example, visual warnings are provided to highlight when specific parameters
exceed set threshold values. As a consequence, the physical size of the protective case
is purposely oversized to accommodate features appropriate to the prototype. Details of
design construction including a catalogue of parts, visual display, and controls layout, wiring

schematics and breakout pinout are documented at Appendix A.

'\i

Figure 3.8 Frequency measurement instrument

The design includes a GPS shield providing a time-base that is synchronised to coordinated
universal time (UTC). In addition to geographical positional information, a GPS 1-pulse per
second digital signal allows highly accurate time-date stamping for data collection, including

self-calibration of the device when a GPS fix is established. The latter is necessary to
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maintain measurement accuracy despite imperfections and temperature sensitivity of the
microcontroller crystal oscillator. A local communications option in the form of a TIA-232
serial data interface allows the device output to be shared with a BEM system. An internal
8 GB micro secure digital (SD) card or external memory device can be used to record and
store information for subsequent analysis. Real-time readout of frequency measurement and

visual warnings are provided using a 16 x 2 matrix LCD and series of LED.

3.2.4 Software code development

An incremental and iterative software development process is followed during software
development, providing a flexible but sufficiently robust framework to allow new features to
be introduced at each stage of development. The Arduino platform connects to a bespoke
integrated development environment (IDE) to upload programs (sketches) and provides access
to a serial monitor console that displays text output by the Arduino software IDE. Creating
requirements is a complex task as it includes a set of processes such as elicitation, analysis,
specification, validation, and management. In this section, we present the services that
describe the interaction of the frequency measurement instrument and external conditions.
The services provide a convenient framework to evaluate the performance of the instrument.
A prototype frequency measurement instrument constructed using low-cost equipment has
been introduced. Construction details are documented in Appendix A. Designed to measure
and visualise real-time grid frequency at a resolution of 100 mHz at least once every second.
The prototype offers and number of services. Software code has been written, which includes

a series of functions designed to deliver each of the services listed in Table 3.1.
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Table 3.1
Arduino software services

Service Description
1 Measure UK grid electrical frequency at 10 mHz or 100 mHz resolution
Write to data log using fixed format at user-defined intervals
Write to Desktop PC Winl0 Pro using PCI-DAS6014 interface
Write to LEM (Ruggedcom RX1400) using TTA-232 serial data interface
Display GPS location (lat/lon/alt) when GPS fix is accepted
Monitor and record grid frequency events
Power-saving features including LCD backlight auto time out
Turn ON/OFF write to micro SD Card
View data log file size (only when writing to SD Card is selected to OFF)
Output display refreshed at 1 sec intervals

© 00 O Ut = W N

—
o

A schematic diagram of the Arduino sketch freq meas_tool.ino development with external

inputs and outputs is shown in Figure 3.9.
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Figure 3.9 Schematic diagram of Arduino sketch development - freq meas_tool.ino
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3.2.5 System output specification

The frequency measurement instrument will deposit data summaries to two devices: (1)
an 8 GB internal standard SD card for off-line data evaluation and analysis, and (2) a
Ruggedcom RX1400 device, which hosts a Local Energy Management (LEM) software
solution!. The LEM should monitor the local grid frequency at a sample rate of 1 sec. The
data is time-stamped and formatted to ISO-8601 standard [184], representing times based on
UTC timezone, for subsequent ingest and processing by the LEM. For consistency, the data
stored to the internal SD card follows the same protocols. The continuous data string output
specification is defined as <yyyy-mm-ddThh:mm:ssZff.ff>, where T and Z are data partition
markers and £f.ff represents the grid frequency measurement at recorded date-time group
yyyy-mm-dd hh:mm:ss. Figure 3.10 shows an extract of the continuous data string output

from the frequency measurement instrument to the LEM.

..<2016-12-14T08:52:12749.98><2016-12-14T08:52:13749.98><2016-12-14T08:52:14749.97>
<2016-12-14T08:52:15749.97><2016-12-14T08:52:16749.97><2016-12-14T08:52:177249.97>
<2016-12-14T08:52:18749.97><2016-12-14T08:53 :40750.00><2016-12-14T08:53 :41749.95>
<2016-12-14T08:53:42749.94>. ..

Figure 3.10 Data string output example

3.2.6 Baseline and performance indices

After construction, inferential statistics is used to test the hypothesis that the Arduino
frequency measurement data is as good as data accessible from the National Grid. To
determine whether the population variances are equal, a two-sample F-test is used for
comparing two population variances O‘% and 0'% when a large sample (at least 30) is randomly

selected from each population and the samples are independent. The test statistic is,

F=— 3.1
(31)

IThe prototype frequency measurement instrument provided grid frequency measurement as part of EU
H2020 funded innovation project: Demand Response in Blocks of Building (DR BOB) Teesside University,
UK demonstration site (Grant Agreement No 696114).
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where s7 and s3 represent the sample variances with s? > s3. The numerator has dfy =n; —1
degrees of freedom and the denominator has dfp = ne — 1 degrees of freedom, where ny is

the size of the sample having variance s and ns is the size of the sample having variance s3.

Also, a two-sample z-test is performed for assessing the difference between two population
means p; and pe when a large sample (at least 30) is randomly selected from each population
and the samples are independent. The test statistic is T1 — %2, and the standardised test

statistic takes the form,

(observed difference) — (hypothesized difference)

standard error

That is,
P (ml_w2)_(/£1_ﬂ2) (32)
Oxq1—xo
where
52 52
P 7711 + nf (3.3)

Given a sample size n =239, s? and s3 have been used in place of o7 and o3.

3.3 Simulation model development

A simulation model to determine the grid frequency response of a simplified linear power
system model is created using Simulink® [185]; sample rate T's = 0.02. For illustrative
purposes, a single area system driven by a lumped parameter non-reheat steam turbine was
implemented [186, 187]. The primary loop of the ALFC system is closed by modeling the
behaviour of the power system assuming the system is operating in its normal state with
complete power balance. The chief objective of the primary ALFC loop using the speed
governing system is to execute the desired regulatory control on the MW output of the
generators. Here, the regulation R may be expressed in per unit as well as in Hz/MW and
is simply the magnitude of the slope of the speed vs. power output characteristic of the

alternator. Therefore,
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R = timal = Jinitia SN PJ; el Yy fp.aa. MW (3.4)
where P, being the generator output power. It is noted a reduction of R results in lower
static frequency drop as well as faster transient response. In addition, a supplementary
loop ensures the restoration of the frequency to the nominal value. This objective is met
by using an integral controller which makes the frequency deviation zero. In this context a
ALFC secondary loop gain is manually adjusted through experimentation to Ki = 0.2 for

satisfactory response in terms of overshoot and settling time.

The simulation model assumes the system is operating initially in its normal state with
complete power balance and that the change in frequency is uniform. In the event of a load
disturbance, it can be inferred that the system operating frequency will be less that the
nominal value at equilibrium. However, from a stability perspective, the secondary loop is
employed to decrease the frequency drift down to zero or to a level acceptable for stable

operation.

The primary control instrument design assumes the control signal from the regulator is
employed to actuate a TCL which either heats or cools the area under consideration. Also,
in the context of this analysis, the control mechanism excludes any additional heat source
that might compensate for any deviations of measured temperature that might otherwise
compromise the occupancy comfort. Detailed models of TCL and building thermal behaviour
can be found in the literature (e.g., [166, 188]). They are usually based on physical principles
of mass, energy and momentum transfer and consist of complex partial differential equations
that capture the building thermal and physical characteristics. However, in practice, simplified
first-order models can perform just as well as more complicated models [189]. Here, the
dynamic relationship between the electrical power delivered to the electro-thermal converter
Pyp(t) and the temperature of the heated zone T'(t), can be very well approximated by
a first-order plus dead time (FOPDT) transfer function. The transfer function describes
deviations away from a nominal input/output steady-state operating point. Using per-unit
representations for Pp,(t) and T'(t) to eliminate the steady-state gain in the model, and

using A to represent deviations, the transfer function for the thermal response becomes:
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O AT(s) e
Gls) = APyy(s)  1+7s (3:5)

where d represents the model delay time and 7 the time constant. The time constant can
be assumed to be 10 to 30 min and the delay time between 0 and 5 min for a typical
building [190]. A PT326 Process Trainer imitates everyday industrial situations in which
temperature control is required [191]. When using this hardware to emulate building thermal
behaviour, delay time (d) and process time constant (7) measurements recorded during an
open-loop step test were used to implement a proportional-integral (PI) controller following
a Lambda tuning methodology [192]. This form of internal model control (IMC) (see, e.g.,
[193]) completes a setpoint change in about 4\ sec when operating in closed-loop mode,
without overshoot, where A = (5 —d)/4.6, settling time ¢s = 50, and d is the TCL (PT326

Process Trainer) calculated transport delay.

The contribution of the proposed DFC-Primary regulator is possible using this simplified
thermodynamic model of a building thermal control system. In this context, assuming that
the action of the speed governor plus the turbine generator is instantaneous compared with
the rest of the system, it is established through experimentation, setting the regulator to
the same value as the speed regulation R works satisfactory in response to a change in
load. To characterise the extent of a simulated secondary DSR in a system complete with a
DFC-Primary regulator, an idealised secondary demand response command event (network

latency is assumed to be zero) was introduced during further tests.

With a computer model of a simplified linear power system and building thermal control
system complete, a contingency load is introduced when the balance in supply and demand is
at equilibrium, and the frequency is at a nominal 50 Hz and steady-state frequency error zero.
In all cases, the simulations were carried out using time constants and other parameters taken
from representative sources, detailed in Table 3.2, under the assumption that a significant
step-change in power distribution (APd) occurred at the beginning of each simulation. For
example, the impact on steady-state frequency deviation (A fss) of -0.01212 p.u. is calculated
at Equation (3.6) when a demand side load (APd) of 75 MW is applied; representing the
loss of a medium-sized generator on the supply side. The model (including DFC-Primary

regulator) is shown in Figure 3.11.
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—APd —0.25
Afss = D 1 = 1
+5%  08+5m:

= —0.01202 p.u. (3.6)

Table 3.2

Decentralised primary frequency control model parameters
Name Parameter
Power system rating 300 MVA
Nominal frequency (f) 50 Hz
Nominal demand load (Pd) 75 MW

ALFC secondary loop gain (K1)
Speed regulator (R)

0.2 p.u. MW/Hz s
0.05 Hz/p.u. MW

Inertia time constant (H) 5 sec
Load damping constant (D) 0.8 sec
Governor time constant (T'g) 0.25 sec
Turbine time constant (7't) 0.60 sec
DFC-Primary regulator (R) 0.05
Thermal load time constant (Th) 9.65 sec
FOPDT thermal load gain (Kh) 1.16
FOPDT transport delay (d) 0.45
TCL controller proportional gain (P) 0.51750
TCL controller integral gain (1) 0.10363
Temperature setpoint (OF'1) 7.5 (~40°C)

Secondary Demand Response gain (SDR) 0.5
Calibration factor (electrical power) (OF2) 0.274

Calibration factor (temperature) (OF3) 0.345
Compensator gain (G1) 20
Compensator gain (G2,G3) 1/G1

In the model illustrated in Figure 3.11, a power system rating of 300 MVA is assumed.
A contingency of 75 MW power disturbance (APd =75 MW, 0.25 p.u.) step response at
t = 750 sec was introduced, allowing time for the system to initialise, before triggering a

change in frequency.
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Figure 3.11 Simulink® model of decentralised primary frequency control

3.4  Experimental test design and setup

Low-level software testing designed to validate specific methods and functions is carried
out during each stage of writing software code. Subsequent integration tests that verify the
interaction with other services is then carried out before attention focuses on performing
functional tests. Here, we test for specific criteria. The final tests aim to replicate user
behaviour with the frequency measurement instrument in its application environment. In

this work, we present two experimental tests:

1. Thermostatically controlled load test. This test removes the simulated thermal
load with hardware designed to heat air that is drawn from the atmosphere by a
centrifugal blower. Afterwards, the warm air is released back into the atmosphere

through a duct which houses a temperature sensor.

2. End-to-end test. End-to-end testing is a methodology that validates an application
workflow from start to finish by simulating real use scenarios. This test expands on the
previous testing and aims to verify data flow and temperature regulation by combining
the process control loops encoded in the simulation model, PT326 Process Trainer and
the frequency measurement instrument. These individual assets are grouped such that
we can monitor a change in temperature when the simple closed-loop control system

reference input is the measured grid frequency data stream.
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The first test is designed to replace the FOPDT transfer function with a PT326 Process
Trainer to simulate the dynamic relationship between the electrical power delivered to
the electro-thermal converter and the temperature of the building. In the second test, a
continuous input stream of real-time grid frequency measurement output from the Arduino
frequency measurement instrument is introduced. An image showing the hardware equipment

configuration setup for both tests is shown in Figure 3.12.
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Figure 3.12 Decentralised frequency control test environment

3.4.1 Thermostatically controlled load

A PT326 Process Training replaces the simulated building thermal dynamics represented by

the transfer function:

Khesd

s) = This) 71 (3.7)
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where Kh=1.16, Th =9.65 and d = 0.45. The PT326 heats air drawn from the immediate
space by a centrifugal blower and is heated as it passes over a heater before it is then released
back to the local space through a duct. A PCI-DAS6014 hardware item is configured to
provide an interface between the on-bench TCL and PI controller (Figure 3.13). The PT326
mass flow air temperature is measured using a thermistor placed at a position such that
the spatial separation between the heater coil and thermistor introduced a transport delay
d = 0.45 into the system. In practice this time delay is much greater, typically 5 to 10 min
depending on a multitude of factors. A secondary advisory temperature measurement taken
from an Arduino compatible temperature and humidity sensor (DHT22) is positioned directly
into the PT326 mass airflow outlet. A 433 MHz RF communication network is established
between the remote DHT22 sensor and Simulink® model to enable the observer to record
temperature data during each test. Here we use an Arduino Nano to interface between the
temperature sensor and a 433 MHz transmitter. To enable the desktop PC to communicate
with the microcontroller a 433 MHz receiver is connected to a universal serial bus (USB) to

universal asynchronous receiver/transmitter (UART) converter.

Desktop PC Win10Pro (MATLAB/Simulink®™)

[Z] RS232 Frequency Power Outlet
o] Measurement
o] T 240Vac 50 Hz
ool
LCD | SD card
=]
I§ UART | 433RX [¢===---~ 433TX | NANO
, : DHT22
1
Data Analog <:> CHO !
Collection Input ch2 -
_____ 15
O :
Analog <::> CHO ' o Bridge
L Output cht 13 —{a] Y
_____ 40
Controller Analog DACO i o 4_E Blower — Heater — Detector "
Input ﬁ ch1 !
L PT326 Process Trainer (TCL)
Software environment Hardware environment

Figure 3.13 Simulation model and PT326 hardware interface

A simulation test to determine the grid frequency and external TCL (PT326 Process Trainer)
temperature response is configured using Simulink® software. A modified simulation model

includes additional library blocks that are designed to provide an interface between the
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model and PCI-DAS6014 (Figure 3.14). After calibration, the PT326 temperature setpoint
(OF1) is set and maintained at 7.5. The temperature gauge registered a value of 40 °C,
i.e., mid-scale. A contingency of 75 MW power disturbance (APd =75 MW, 0.25 p.u.)
step response at t = 750 sec is introduced, allowing time for the system to initialise, before
triggering a change in frequency. Results will show that a simulated frequency response
Af(t), recorded variation in temperature AT'(t) and electrical power AP, (t) delivered to
the electro-thermal converter (Figure 3.11). When combined with experimental tests, these

results demonstrates that the performance of decentralised frequency control is credible.
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Figure 3.14 A modified simulation model for loop frequency test

3.4.2 End-to-end test

The second experimental test requires further modification to the thermostatically controlled
load test (Section 3.4.1). The simulation model (Figure 3.13) is revised. Simulation blocks
that imitate a single area power system driven by a lumped parameter non-reheat turbine
steam turbine are replaced with new blocks that provide an interface between the frequency
measurement instrument and the simulation model. Both the frequency measurement
instrument and PT326 Processes Trainer are now physically connected to the desktop PC.
Connecting the frequency measurement instrument to a standard UK single-phase 3-pin AC
power outlet (240 VAC 50 Hz), measured grid frequency is streamed into the model using
the RS232 connection between frequency measurement instrument and desktop PC. The

FOPDT transfer function representing the building thermal characteristics, substituted for
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the PT326 Process Trainer in earlier tests, remains unchanged. Thus, the Simulink® model
can provide closed-loop control of the heater, which is regulated by the input stream of the

measured grid frequency. Figure 3.15 shows the experimental test configuration set up.
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Figure 3.15 A modified simulation model for end-to-end test

3.5 Frequency control regulation

3.5.1 Microcontroller frequency measurement instrument

A graphical view of frequency data recorded using the microcontroller appears to exhibit
similarities when compared to BMRS data Figure 3.16. However, it is inferential statistics
that provide the necessary toolset to help us draw conclusions about a population (the
collection of outcomes) to verify the device output performance based on probability [194].
In the following sections, tests for homogeneity of variances are adopted when comparing
the normal population using equal size data from two independent samples (Arduino sensor

data sample and BMRS data sample).
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Figure 3.16 Frequency measurement instrument and
BMRS data at 15-Dec-2017 10:16 at 15 sec resolution

Performing two-sample f-test for variance and two-sample z-test for difference between means
was conducted using random sample data recorded at a 15-sec resolution for a 60 min
period commencing 14:23:00 on 14th December 2016. Sample 1 (s1) is derived from the
Arduino microcontroller frequency sensor, and Sample 2 (s2) is historical data of the same
resolution and time-period obtained from BMRS. Both samples consist of 239 recordings.
The objective is to provide quantitative evidence to substantiate a claim that the frequency
measurement recorded using the Arduino based frequency sensor is as good as grid frequency

data accessible from the National Grid.

3.5.2 Two-sample f-test for variance

From Table 3.3 s? = 0.00059703 and s3 = 0.00058566, therefore given s? > s3 we declare
52 and o} can be used to represent the sample and population variances for the Arduino

frequency measurement instrument, respectively.

Table 3.3
Sample variance and standard deviation

Sample Variance (s?) Std Deviation (s)
1 0.00059703 0.0242
2 0.00058566 0.0244
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With the claim ‘The Arduino microcontroller frequency semsor measured mains frequency is
as good as the BMRS grid frequency data’ the null and alternative hypothesis are H, : 03 = 03
and H, : 0? # 03 (claim). Noting the test is two-tailed, given a significance value where
a=0.05, then 1/2a=1/2(0.05) = 0.025, the degrees of freedom dfy =ny —1=239—1 =238,
and dfp = ny —1 =239 — 1 = 238, the critical value is F, = 1.2901. So, the rejection region
is F' > 1.2901, i.e., you would observe values greater than 1.2901, only 5% of the time by
chance. Before deciding to reject or fail, the null hypothesis the test statistic, F' is calculated,
such that F' = (s%)/(s3) = 0.00059703/0.00058566 ~ 1.0194. Because F' is not in the rejection
region, the decision is to fail to reject the null hypothesis. For this reason, it is possible to
claim there is no significant evidence to reject the null hypothesis and therefore conclude

there is no significant difference between the methods presented when measuring mains

frequency.

3.5.3 Two-sample z-test for difference between means

A similar approach is now followed to test the difference between means. The claim ¢ There is
no difference in the mean grid frequency recordings of the Arduino microcontroller frequency
measurement instrument and data from BMRS’ so the null and alternative hypothesis are
H,:p?=p3 and H, : u? # p3. The difference of significance, « is given 1/2a = 1/2(0.05) =
0.025, dfy = 238 and dfp = 238, and the critical value —zg = —1.96 and zg = 1.96 established,
in this instance, by executing MS Excel Data Analysis Tool > z-Test: Two Sample for Means.
Given the rejection regions are z < —1.96 and z > 1.96 and both samples are large (> 30), s2
and s3 can be used in place of o1 and o3 to calculate the standard error oz, _z, ~ 0.002225;
Equation (3.3). This result is used to determine the standardised test statistic such that

z = —1.824472; Equation (3.2).

The graph shown in Figure 3.17 shows the location of the rejection regions and the
standardised test statistic z. Because z is not in the rejection region, there is not enough
evidence at the 5% level of significance to support the claim that there is a difference in
the mean grid frequency recordings of the Arduino microcontroller frequency measurement

instrument and data taken from BMRS. The decision is to fail to reject the null hypothesis.
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Figure 3.17 Rejection regions and standard test statistic z

The results of both hypothesis tests provide enough evidence to support a claim that
there is no difference in the variance and mean frequency sensor values recorded using the
Arduino microcontroller frequency measurement instrument when compared against the
values obtained from BMRS (see Figure 3.18). This interpretation based on inferential
statistical analysis supports the use of the low-cost frequency measurement instrument as

part of the proposed decentralised primary frequency control strategy.
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Figure 3.18 Distribution plot two-sample data with equal df

3.5.4 MATLAB/Simulink® ALFC

As discussed previously, computer-based simulations were performed to validate the behaviour

of a single area non-reheat steam turbine power system ALFC primary and secondary control
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loops. In the first simulation, a demand side load (APd) is applied, and the recorded

frequency response checked against mathematical reasoning.

A power system rated output is 300 MVA at a nominal 50 Hz. The response of this power
system to changes in load demand depends on the value of the speed governor regulator (R)
and the frequency dependency of the load. Considering only the effects of the ALFC primary
loop, given the power system parameters at Table 3.4, shows a calculated steady-state
frequency deviation (Afss) of -0.01202 p.u. when a demand side load (APd) of 75 MW is

applied. In the absence of any frequency sensitive loads, the load damping constant D = 0.

Table 3.4

Power system parameters
Parameter Description Value
H Inertia time constant 5 sec
Tg Governor time constant  0.25 sec
Tt Turbine time constant 0.6 sec
R Regulator 0.05 p.u.
D Damping constant 0.8

The result of Equation (3.6) is equivalent to a decrease in frequency measurement —0.01202 x
50 = —0.601 Hz. Figure 3.19a confirms a steady-state frequency of 49.4 Hz is attained at
t =~ 20 sec. The effects of the ALFC secondary low-gain integrator loop when working in
slow reset mode, adjusts the reference power command, thus eliminating the steady-state
frequency deviation. This gradual adjustment will continue until the frequency error is zero

and typically measured in minutes (Figure 3.19b).
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Figure 3.19 Frequency response

3.5.5 MATLAB/Simulink®® DFC-Primary

A small gain regulator is introduced to the simulation model DFC-Primary loop. The initial
simulation was carried out with no ALFC secondary loop. The results shown in Figure 3.20a
compares the frequency response with no DFC-Primary regulation against the frequency
response of the same model with DFC-Primary control applied. The analysis shows the action
of the DFC-Primary regulator when included in the model not only eliminates the observed
frequency oscillation but also reduces the measured frequency deviation. Figure 3.20b shows
the reduced building temperature with respect to time when a large supply side demand
load (APd =75 MW) is suddenly introduced at ¢t =5 sec. As reflected the thermal inertia
extends the time of change in the simulated temperature until a steady-state is reached.

Clearly, some means of secondary (integral) action is required to restore equilibrium.
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Figure 3.20 ALFC primary loop and DFC-Primary regulator

Results of a further test cycle with ALFC secondary loop included confirms the action of the
small gain integrator is consistent with earlier tests, slowly restoring the frequency deviation
to zero over an extended period. When observing the graphs shown in Figure 3.21, it is
evident that the transient is reduced in magnitude and is less oscillatory. However, the time
taken to reach frequency equilibrium when DFC-Primary regulation is present is marginally
longer when compared to the same frequency response with no DFC-Primary regulation. Also,
the increased damping allows the integrator gain to be increased, lowering the restoration
time without introducing oscillation. Introducing a secondary control in the form of a
small gain integrator adjusting the building temperature setpoint also reduced the settling
time. Figure 3.21b indicates that only a short-lived thermal transient of small magnitude
and approximately twice the duration of the restoration time for electrical frequency was
encountered. A priori knowledge suggests the impact of a small thermal transient such as this
is likely to have little effect upon building thermal comfort. Overall, these results indicate
that the proposed DFC-Primary regulator has the potential to leverage a contribution to
frequency regulation of the power system. Therefore, the approach could be integrated within
a traditional DR scheme, which could be implemented using low-cost embedded hardware

such as an Arduino microcontroller.
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Figure 3.21 ALFC primary and secondary loop and DFC-Primary regulator

3.6 Summary

In this chapter, a decentralised frequency control regulation method has been validated
using a series of conceptual models containing a single area power network, a standalone
frequency measurement instrument and a real controllable thermal load. A FOPDT transfer
function model of the thermal load was initially identified and later substituted for a PT326
Process Trainer during a series of experimental tests. The overall approach was validated
by controlling the temperature evolution (and electrical load) of the trainer initially from a
signal designed to imitate grid frequency, by using it as a reference signal to a closed-loop

controllable load.

Several interesting conclusions can be drawn from the results presented. They suggest that
small excursions in measured temperature from TCL setpoint values will not compromise
indoor comfort temperatures but can contribute to the restoration of frequency equilibrium
during network stress events. These findings mean that the utility of a pro-active decentralised
control strategy directly could close the gap in reserve capacity margins availability by
exploiting coupling technologies such as heat pumps and other TCLs with near-zero

intervention from the consumer.

The construction and software development of a prototype frequency measurement instrument

was configured to stream grid frequency measurements directly from a standard UK
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single-phase power outlet socket (240 VAC 50 Hz) into a simulation model. This chapter has
conclusively established the design and implementation means the frequency measurement
instrument may have real benefit operating in standalone mode supporting demand response

actions as part of a wider decentralised community power system.

Sean Williams Teesside University



Chapter 4

Electricity Demand Forecasting

4.1 Introduction

The world is experiencing a fourth industrial revolution. Rapid development of technologies is
advancing smart infrastructure opportunities. Experts observe decarbonisation, digitalisation
and decentralisation as the main drivers for change. In electrical power systems, a downturn of
centralised conventional fossil fuel-fired power plants and increased proportion of distributed
power generation adds to the already troublesome outlook for operators of low inertia
energy systems. In the absence of reliable real-time demand forecasting measures, effective
decentralised demand-side energy planning is often problematic. In this chapter, we formulate
a simple yet highly effective lumped model for forecasting the rate at which electricity is
consumed. The methodology presented focuses on the potential adoption by a regional
electricity network operator with inadequate real-time energy data who requires knowledge of
the wider aggregated future rate of energy consumption. Thus, contributing to a reduction in
the demand for state-owned generation power plants. The forecasting session is constructed
initially through analysis of a chronological sequence of discrete observations. Historical
demand data shows behaviour that allows the use of dimensionality reduction techniques.
Combined with piecewise interpolation, an electricity demand forecasting methodology is
formulated. Solutions of short-term forecasting problems provide credible predictions for
energy demand. Calculations for medium-term forecasts that extend beyond six months
are also very promising. The forecasting method offers a way to advance a decentralised
informatics, optimisation, and control framework for small island power systems or distributed

grid-edge systems as part of an evolving demand response service.
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4.2 Methodology

The proposed data-driven methodology is divided into three distinct parts (Figure 4.1).
Analysis of a chronological sequence of discrete observations is first performed, and the
composition of the univariate one-dimensional time series is determined. In the second step, a
dimensionality reduction technique is applied before piecewise interpolation is used to smooth
subsequent consecutive polynomial segments. A resultant lookup table provides the necessary
metadata for the forecasting algorithm to model the demand characterisation. The objective
is to maintain an accurate 4 hr electricity demand prediction horizon. However, results show

this can be changed to much more extended periods while maintaining competitive results.
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Figure 4.1 A visual representation of demand forecasting methodology

4.3 Composition of time series

The Electricity System Operator (ESO) in Great Britain publishes historic national demand
data [18]. The data represents the generation requirement, which is derived from National
Grid operational generation metering recorded at 30 min intervals. In this research, analysis
is based on national demand data from 1st April 2005 to 31st March 2019, comprising 245,424
data items. Learning from real data is an essential attribute of most pattern recognition
systems. The performance of the proposed forecasting method is validated against more
recent data. The first task is to extract crucial characteristics. Time series classification is a
prevalent machine learning problem widely accepted in various domains [195-197]. Often,
complex time series values are converted into visual patterns which allow for the problem
to be presented as image recognition problems [198]. In the big data context, pattern

mining techniques such as sequential pattern mining (SPM) (see, e.g., [199]) have gained

Sean Williams Teesside University



Page 62

significant attention to meet the increasing demand for large-scale computing. The underlying
objective is to find correlations in data. A more general-purpose strategy used in this current
research relates to the use of statistical techniques for analysing data measurements to extract
meaningful characteristics. Using statistical pattern recognition is used to justify design
progression. The process involves three stages: (1) data acquisition and preprocessing, (2)
data representation, and (3) decision making [200]. Figure 4.2a shows the complete time

series data set used to create the load forecasting algorithm.

«10% UK ND Trend Estimation (168 months)
T T 1 1 1
Chart Profile
6 ND
MA (monthly)
MA (yearly)
= 5
=
c
s \
5 R 0 0 R,
2
iR,
5 |
= 3 n |
2
1 ! I ! I | | |
2006 2008 2010 2012 2014 2016 2018
Time
(a) Demand data 168 months
«104 UK ND Trend Estimation (168 months) «10* UK ND Trend Estimation (168 months)
6 Chart Profile 6l Chart Profile
ND ND
MA (monthly) MA (monthly)
5t MA (yearly) 5t MA (yearly)
z | 5 2] 5 2 5 2 5 2] z
= =
£4r 1 c4r ,
S e (AN A AR AR i g | Mo oM
<3 s AL UL AL UL LELVAA A
[ jo))
] @ ‘ '
= = J
2F 2F
PR wki1 | wk2  wk3__wk4 | vl TlwlT]FlS]S]

Aug29 Sep05 Sep12 Sep19 Sep26 Oct03

Time 2014

(b) Demand data 1 month

Sep 07 Sep 09 Sep 11 Sep 13 Sep 15
Time 2014

(c) Demand data 1 wk

Figure 4.2 UK National demand data
(01-Apr-2015 to 31-Mar-2019)

A simple moving average of monthly and yearly trend estimations provide a clear image

of the demand data characteristics. Figure 4.2b and Figure 4.2¢ show distinct patterns of
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regularity over a 4 wk and 1 wk periods, noting the marked difference between weekday and

weekend day.

Computing the autocorrelation of the time series identifies the periodicity of the signal.
Figure 4.3 shows the time between each peak is consistent with a typical weekly pattern
consisting of five similar weekday oscillations followed by two weekend day oscillations, also

of similar form.
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Figure 4.3 Composition of demand data

Regression is used to remove fluctuations in the time series and to identify potential seasonal
and cyclic behaviour. The approach used to remove the trend from the time series first
calculates the least squares regression line (see, [201]) before subtracting the deviations
from the least squares fit line from the time series. Given the equation for a straight line is
y = bx +a where b is the slope of the line, and «a is the y-intercept, the best fit line (regression

line) for the points (x1,41),-..,(%n,yn) is given by y — 7 = b(x —T) where,

b=~ D))/ 3 (i~ 7 (4.1)

and the y-intercept is defined as a =3 — bZ. The overbar is used to denote average value.
In the absence of outliners, Equation (4.2) is used to normalise the time series in which
the values are shifted and rescaled so that they end up ranging between a minimum and

maximum input value. It is also known as min-max scaling. In this instance we choose to
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normalise the time series where the lower input range [ = 0 and maximum of input range

u = 100.

/

o' =1+ (2 — Tmin) (v = 1)/ (Tmaz — Tmin) (4.2)

A 9 x 48 x 14 multi-dimensional array characterises 14 distinct weeks, where each week
identified commences on the Monday immediately following the lowest recorded demand
data in each year (2005 to 2019). Measurements recorded at 30 min intervals for each day
are assigned to columns 1 to 48; the mean value of rows 1 to 5 (weekdays) and rows 6 and 7
(weekend days) are assigned to rows 8 and 9 respectively. A mean value of the collective
row 8 and 9 are then computed to enumerate a generalised demand profile shape for any

weekday and weekend day, respectively.

A simple moving average of order n process given at Equation (4.3) smooths the original
demand data y;; where n represents a set number of observations for one month and year,

respectively.

¢

Y = % ' Z Yi (4.3)

i=t—n+1

Analysis reveals, in addition to daily /weekly characteristics, the time series also displays
seasonality and negative secular trend with constant variability. The general idea is to
define a model from historical time series that enumerates the cyclic behaviour and negative
secular trend that can be used as part of the forecasting algorithm. For seasonality, the
mean of each moving average 12 month period is calculated before applying a dimensionality
reduction technique. Furthermore, in this strategy, the negative secular trend is expressed in
mathematical terms using Equation (4.1). Here, the coefficients for a polynomial that is a

best fit (least squares method) of the given set of data are calculated.

The composition of the time series observed is characterised by three seasonal patterns:
weekday, weekend day and month. Given the volume of historical data available, we first
present a method to reduce time series feature dimensionality and then formulate the forecast

prediction algorithm.
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4.4  Dimensionality reduction

Time series analysis is a statistical technique often used to analyse the pattern of discrete
observations over time to forecast future events. When the number of observations is large,
time series analysis becomes time-consuming. Dimensionality reduction techniques can be
used to help improve the classification of big data for time series analysis, thus improving the
efficiency of the forecasting process. Piecewise aggregate approximation (PAA) proposed by
Keogh et al. [20] is a well-known technique that reduces the dimensionality of a time series
and for data representation. We choose to approximate the data with a piecewise coefficient
such that the period between each change point is 2 hr. In this method, the normalised
demand time series window of size n is first divided into k£ segments of equal length. The
average value of the data of the segments is then used as the representative value of each
segment. Therefore, the demand time series PAA representation will be a k-dimensional
vector ®; = T;,...,Tn of the mean values of each segment. The dimensionality reduction

calculation is computed by Equation (4.4).

n -
E’L

J=R(i—1)+1

Simply stated, to reduce the time series dimensionality of length n to k, the data is first
divided into k equally sized segments then the mean value of the data in each segment is
calculated. The subsequent vector of these values represents the reduced dimensionality of
the original dataset. The effect of applying PAA to the demand data where each segment is

2 hr in duration over a 24 hr period (12 equal length segments) is shown in Figure 4.4.
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Figure 4.4 Weekday demand profile with PAA applied

The equation provides the mean of the elements in the equi-sized frames, which makes up
the vector of the reduced dimensional time series. The method is applied to the day and
month features. A numerical investigation comparing different piecewise coefficients confirms
the dimensionality could be reduced at the same time as preserving enough information

about the original data.

After the time series is transformed into segments using PAA technique, the data is discretised,
grouping the continuous input into a finite number of discrete bins. The translation means
the data dimensionality can be reduced further and converted into a symbol string using
symbolic aggregate approximation (SAX), i.e., each region is assigned a symbol according
to the determined change points. In the context of data mining, SAX is comparable to
other techniques, including discrete Fourier transform and discrete wavelet transform while
requiring less storage [21]. This strategy is particularly useful for low-complexity solutions, as
they are less data-intensive than more complex econometric methods and models needed for
forecasting [22]. In this work, the SAX symbol string (symbolic conversion) is a 4-bit binary
representation of the discrete bin the continuous input was assigned after discretisation
(Figure 4.5). In this instance, the length of each SAX segment is not fixed. Instead, it only

changes when the value of each PAA segment exceeds an upper or lower discrete bin value.
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Figure 4.5 Weekday demand profile with SAX applied

In contrast to using techniques based on pattern sequence similarity, we extract singularities
of bin data to create a series of lookup tables (LUT). Given the length of each piecewise
segment, the process of creating a LUT for weekday, weekend day and month PAA or SAX

representations are straightforward.

In this research, we present a LUT based on piecewise coefficient only. The main advantage
of using the PAA approach in this context is that it requires less computational effort
when compared to symbol mapping techniques to achieve visualisation of the time series.
Furthermore, segment centre points are placed at fixed, regular intervals which result in a
cubic interpolation where many of the demand data characteristics are retained during the
transformation. In other words, the higher the reduction ratio is, the worse the performance
of calculated approximation. This combination of findings has important implications for

developing an energy optimisation algorithm.

Given each PAA segment is equivalent to a 2 hr epoch, the time series original 245,424
data items are now reconstructed from just twelve elements for each day and month feature
(Table 4.1). Using PAA opens the possibility to perform forecasting up to one calendar
month based on weekday and weekend day LUT. Extending the time horizon further up to
12 months requires the month LUT. When a seasonal adjustment is included, forecasting

beyond 12 months is achievable. The mathematical representation of seasonal adjustment is
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derived using a straight line approximation of the 12-month moving average, i.e., y =bx+a

where b =0.000442 and the y-intercept a is set to the initial calculated weekday value.

Table 4.1

Piecewise coefficient lookup table

Name Parameter

Weekday [21.00, 10.47, 24.00, 77.11, 95.94, 98.02,

93.98, 94.64, 96.79, 84.46, 73.32, 21.00]
Weekend day  [21.00, 3.80, 3.29, 29.24, 55.42, 60.76,

53.30, 51.31, 59.67, 58.02, 55.84, 21.00]
Month [40.11, 32.81, 30.23, 29.39, 29.00 34.97,

44.18, 57.63, 61.01, 65.00, 63.33, 53.23]

4.5 Piecewise interpolation

When reducing the dimensionality of extensive data using PAA, a compromise must be
reached between how much the dimensionality of the original data can be reduced and the
capacity to maintain competitive results. Cubic interpolation is used to obtain a somewhat
smoother interpretation of the graph first created using the piecewise coefficient lookup table.
Calculating a cubic polynomial that interpolates points of interest helps restore the shape of
the original demand forecast profile. The centre point of each PAA segment defines a set
of evenly spaced nodes. The piecewise function S(z) interpolates all local data points and

hence confines the ill-effects of any erroneous data points, Equation (4.5).

Si(x) = ai+bi(x —ito) + ci(x —i10) + di(z — 1) (4.5)

Where i € [0,1,...,n];z € [lo, hi]; where lo and hi define the start and end data points of each
PAA segment, respectively (see Appendix D for worked example). The cubic polynomial
coefficients are represented by the parameters a;,b;,¢; and d; (Table 4.2). Tuning the first
and end polynomial interpolants helps prevent extreme endpoint behaviour and improves
concatenation of weekday and weekend day demand profiles. A 13 x 4 x 2 multi-dimensional

array defines a new polynomial coefficient structure for weekday and weekend day (Table 4.2).
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Table 4.2
Piecewise cubic polynomial coefficient lookup table
Weekday Weekend Day
a; b; ¢ d; a; b; ci d;

21.000 0 0.512 -0.256 21.000 0 0.750 -0.375
21.000 -1.024 -1.024 0.155 21.000 -1.501 -1.501 0.200
10.470 -1.755 0.841 0.111 3.802 -3.895 0.902 0.010
24.002 10.294 2.171  -0.256 3.296 3.801 1.022 -0.088

77.116  10.563 -2.104  0.160 29.242 77771 -0.029  -0.069
95.942 1.409 -0.185 -0.009 55.425 4.212 -0.861 0.035
98.022  -0.518 -0.297 0.044 60.764 -0.976 -0.436  0.053

93.986  -0.802 0.226  0.004 53.302 -1.901 0.205 0.037
94.648 1.196 0.273 -0.109 51.312 1490 0.643 -0.123
96.800 -1.872 -1.041 0.184 59.670  0.717 -0.836  0.138

84.466  -1.344 1.173 -0.383 58.022  0.675 0.826 -0.283
73.323 -10.360 -3.427  0.687 55.848 -6.283 -2.565  0.490
21.000 -4.814 4.814 -1.203 21.000 -3.309 3.309 -0.827

Figure 4.6 shows the result of applying cubic spline interpolation, using Equation (4.5) and
the coefficient values listed in Table 4.2. The small blue circles mark the centre point of
each of the 12 PAA segments, which yields 13 interpolation line segments. A similar plot is

created for weekend days.
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Figure 4.6 Weekday demand profile with cubic spline interpolation applied
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4.6 Demand forecast function

A key problem is addressed by following the three-stage approach, that is: (1) data analysis,
(2) reduction, and (3) smoothing. Equation (4.5) returns a normalised demand value. Given
12 PAA segments, this yields 13 start (lo) and end (hi) data points over a 24 hr period,
i.e., 7(n)(lon,hin), where n € {0,1,...,13}, and 7(1)(lo1, hi1) = 7(1)(0,2), T(ny1)(4n — 2,4n +
2),...,7(ny(4N —2,4N). The second challenge is to map the start and endpoints to a time.

The function then becomes useful because it can return a time-specific demand value.

Consequently, given any time and date (e.g., Monday 20th January 2020 14:15), calculating
the demand value is relatively straightforward. Furthermore, the approach allows us to
predict demand values over a finite horizon window simply by running the demand function by
repeatedly incrementing the time by a desirable time interval at each iteration. Algorithm 1
shows the pseudocode for the demand forecast function. A full code listing and description

are provided at Appendix D.
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Algorithm 1 Demand forecast function

inputs:

date_time < date time > eee dd-MM-yyyy HH:mm:ss
outputs:

dfv > demand forecast_value

find Monday prior to date_time
h < date_time (HH)
m < date_time (mm)
x = (60h+m)/30 > time_idx
if h=0 then
lo=0
else if h =1 then
lo=2
else
lo=2h—-2
end if
get: number of days from Monday to date_time
get: month number > April=1
require: cubic polynomial coefficient LUT > Table 4.2
set cubic spline interpolation polynomial coefficients
dfv = a; +b;(x — o) + ¢;i(x —10)? + d;(x — lo)?
adjust for seasonality > Month LUT

4.7 Baseline and performance indices

Assessing the accuracy of the demand forecast is an important consideration. In reviewing
the literature, Makridakis and Hibon [202] found that simple forecast methods do as well,
or in many cases better than statistically sophisticated ones like ARIMA and ARARMA
models. For information that contrasts the ARIMA model to the long-range and short range
forecast provided by an ARARMA model, see Parzen [203]. Comparison of the findings with
those from other studies confirms that the simplest benchmark in forecasting literature is
calculated using the random walk. The forecast from a random walk model is equal to the
last recorded observation. Thus the random walk model underpins Naive2 forecasts. That is,
Uy+h|t = Yt, where g p; represents the estimate of y;5 based on the data yi,...,y:. Visual
inspection of the demand time series shows the data contains daily, weekly, and monthly

seasonal patterns Figure 4.3 and, if the dataset extends over years, a 12 month negative
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secular trend with constant variability. Naive2 forecasting model is well suited to seasonally
adjusted data. Therefore, the first benchmark of the proposed methodology will be assessed
using this method. In this analysis, we limit & to 7 days (336 samples) which incorporates
the distinct variation between weekday and weekend day seasonality. Thus, the forecast can

be written as:

A Yetn(t) ,
Gonpe(t) = where h includes days of 1 wk (MTWEFTSS) (4.6)

Yt(h—7) (t)

The second method used to compare the proposed methodology is based upon the simple
notation for forecasts with a seasonal pattern g4, = (ug—1 +v¢—1)S¢—c, where ¢ represents

the weekly seasonality period index (¢ =336), §, ), is the h-step ahead forecast and,

Level us = a(ye/si—c) + (1 4+ a)(up—1+ve-1)
Trend vy = B(ur —ut—1) + (14 B)ve—1 (4.7)

Seasonality s; = y(y¢/ut) + (1 —7)St—c

where «, 8 and gamma are the smoothing parameters. The Holts-Winters additive method,
Equation (4.7), is one of several exponential smoothing methods that can deal with seasonality
and can be easily applied. However, for the Naive2 and Holt-Winters forecasting models to
remain effective, they are required to be re-trained as new observations become available.
The lack of recent demand information for these models is a severe weakness and impacts

the models continued performance.

In this work, four indices are used to evaluate the performance of individual forecasting
progress. These include root mean square error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE) and the coefficient of determination or R Squared (R?).

A calculation that estimates the variance and differences using RMSE is defined as,

RMSE = J izn:(dt —0,)? (4.8)
t=1
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Where n denotes the number of observations, d; are demand forecast predicted values and

O, are observed (actual) values at timestamp t¢.

MAPE is a measure that is widely used when comparing forecasting methods. The forecast
error at time ¢ is e, = Oy —d;. Hence, the percentage error e, = (O; —d;)/O; so that the

MAE for period t is,

n

MAPE = lz

i

Ot—dt

t

x 100 (4.9)

MAE is a scale-independent parameter that is used to demonstrate the efficiency of the

forecasting outcome.

MAE — 2i-1lde =04
n

(4.10)
The coefficient of determination R? is derived using a ratio of explained variation (SSregression)
i.e., how well the regression model represents the actual demand data, to the total variation

(SStotal), i-€., the variation in the observed data,

SS, ;
R2 _ regression 411
SStotal ( )

The process to analyse the prediction performances is described. Several benchmark tests
are performed using a series of nominated test dates. For each specified test date, a new
Holt-Winters estimation model is created using the previous four weeks of in-sample demand
data. The forecast horizon window is set to include one complete week seasonal pattern, i.e.,
h = 336 ahead samples with smoothing parameters o = 0.82, 8 =0 and v =0. The construct
of the proposed forecast model brings a distinct advantage for each forecast session, the
practitioner can specify a start date and forecast horizon window. Therefore, the first set of
tests compares the Holt-Winters benchmark model to forecasts generated using the same
specified dates. Also, a single Nave2 benchmark model created using in-sample demand data

(27th June to 3rd July 2005) is compared to forecasts generated using the same nominated

Sean Williams Teesside University



Page 74

test dates. The Naive2 model functions on the same principle as the proposed forecast model,

i.e., it is not immediately dependent on the availability of newly observed data.

4.8 Electricity demand forecasting

The methodology introduced in Chapter 4 has been applied to the UK electricity demand
data (2005 to 2019). Figure 4.7 shows the following data over a 24 hr period: (1) enumerated
mean demand data after dimensionality reduction technique (PAA) has been applied, (2) the
4-bit binary representation of the bin number that was assigned after symbolic discretisation
(SAX), and (3) a plot of generalised demand data for weekday (MTWTF) and weekend days
(SS).

= MTWTF Profile = PAA ® SAX = SS Profile = PAA ® SAX
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Figure 4.7 24 hr period PAA (2 hr segments) and SAX representations

It can be noticed that the effect of SAX encoding reduces the weekday and weekend day
LUT further from 12 elements to seven. Although discretisation and SAX encoding offers
the potential to reduce PAA dimensionality further, in the context of an energy optimisation
system, a demand forecast based on PAA and piecewise interpolation have the potential to
offer greater benefit. Results showing the cubic interpolants on the clamped discretised PAA
subintervals are shown in Figure 4.8a. The plot compares the following four demand profiles:
(1) actual demand data (Actual) measured over a 24 hr period on Monday 4th July 2005,
(2) calculated cumulative mean value (Cmean) of 14 selected weekday demand profiles over

15 years (2005 to 2019), (3) calculated local mean value (Lmean) of four-weekday demand
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profiles week commencing 4th July 2005, and (4) calculated demand data (Model) using
the methodology described in Chapter 4. Figure 4.8b shows an extended seven day period
which includes concatenated weekday and weekend day demand profiles. A measure how
close the actual and model demand data over this seven day period is calculated R? = 0.95,

RMSE =0.746, and M AE = 7.2262.

= Lmean = Cmean ® Model = Actual " Lmean ® Cmean = Model = Actual
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Figure 4.8 Demand profile representations 4-Jul-2005

A summary of experimental results comparing forecast data against measured demand data

and out-of-sample demand data are detailed in Table 4.3.

The performance of the demand forecast data shown achieves an average R? value greater
than 0.92. The demand forecast and actual plot provide an excellent way to assess the
goodness-of-fit of a regression at a glance. There is evidence the measure of performance is
degrading slightly as time progresses. Figure 4.9a shows the demand profiles for week
commencing 18th August 2014, and Figure 4.9b week commencing 5th August 2019.
Nevertheless, these visual representations demonstrate weekday and weekend day recorded
demand profiles (Actual) remain consistent with the model forecast data (Model). A
generalised shape of the varying rates at which electricity is consumed during each 24 hr

period is maintained.
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Table 4.3

Performance of proposed model
Date RMSE R?
04-Jul-05 0.476 0.950
10-Jul-06 0.445 0.948
09-Jul-07 0.380 0.962
21-Jul-08 0.416 0.958
03-Aug-09 0.335 0.974
19-Jul-10 0.477 0.959
08-Aug-11 0.392 0.967
02-Jul-12 0.368 0.966
24-Jun-13 0.405 0.957
18-Aug-14 0.363 0.960
13-Jul-15 0.682 0.891
08-Aug-16 0.775 0.839
12-Jun-17 0.856 0.803
30-Jul-18 0.944 0.822
05-Aug-19 0.692 0.877
Average: 0.534 0.922

Table 4.4 reports the benchmark test results. Both MAE and MAPE values are presented
when the forecast horizon h = 336 ahead. The figures show the out-of-sample Holt-Winters
exponential smoothing forecasting accuracy is far more competitive than the proposed model,
the MAE and MAPE average figures support this. This result is not unexpected and seems
reasonable since the Holt-Winters model was re-baselined for each of the test dates. A visual
comparison of Holt-Winters method and actual demand data for 18th August 2014 and 5th
August 2019 are shown in Figure 4.9c and Figure 4.9d; a plot showing the model forecast
for the same periods is added for reference. Further test results were derived comparing
the second benchmark standard Naive2 and actual demand data. The results of the Naive2
model for within-week seasonality indicate the proposed model performance has a more

significant benefit than the Naive2 method.

Figure 4.9e and Figure 4.9f show the Naive2 method forecast against the actual demand
data for h = 336 ahead periods commencing 18th August 2014 and 5th August 2019,
respectively. For completeness, the proposed model forecast for the same period is shown.
The corresponding MAPE figures confirm the relative performance of each of the models
used. Predictably the Holt-Winters model outperforms the proposed model, which can be

attributed to regular updates to the estimation data and relatively short forecast horizon
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Figure 4.9 Demand profile representations h = 336 ahead

window. Figure 4.10 compares the MAPE figures derived from each model based on a

single week ahead forecast. The relative performance ranking of the Naive2, proposed
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Table 4.4

Weekly MAE and MAPE (in%) on prediction of forecast horizon h = 336 ahead

Date

04-Jul-05
10-Jul-06
09-Jul-07
21-Jul-08
03-Aug-09
19-Jul-10
08-Aug-11
02-Jul-12
24-Jun-13
18-Aug-14
13-Jul-15
08-Aug-16
12-Jun-17
30-Jul-18
05-Aug-19

Average:

Model
7.226
6.016
5.355
5.765
4.642
6.805
5.882
5.419
6.168
5.223
9.440
11.123
13.027
12.895
10.412
7.693

MAE

Holt-Winters

1.270
0.690
0.670
1.200
1.520
1.000
1.490
0.820
1.070
2.050
1.350
1.740
1.870
1.990
1.970
1.380

Naive2
2.930
10.150
10.780
10.260
9.970
10.440
11.070
10.780
10.110
11.440
13.180
14.070
14.270
17.230
13.730
11.361

Model
19.330
15.490
14.330
16.630
15.280
17.550
23.450
16.240
16.350
28.120
24.330
38.960
36.370
57.060
53.040
26.169

MAPE
Holt-Winters Naive2
3.230 8.860
2.470 30.610
2.470 33.760
3.960 33.430
5.310 35.770
3.860 34.890
5.900 48.160
2.180 41.880
3.000 31.840
6.080 44.590
3.650 49.060
4.900 46.190
4.760 38.690
9.560 84.800
7.010 41.180
4.556 40.247

model and Holt-Winters method is confirmed and consistent with earlier results shown in

Table 4.4. While the proposed model overall performance figures are not equally comparable

to the Holt-Winters results, it is reassuring the proposed model outperforms the widely used

benchmark Naive2 method. Furthermore, given the Holt-Winters model reliance to update

the estimation data for continuous and affective forecasting and the proposed model ability

to output short to medium term forecasts independent of any such updates, the proposed

model will operate more effectively as part of a more comprehensive energy management

system. It must be remembered that the proposed method is conceptualised for operation

without any direct on-line measurement of the demand to be predicted, whereas the other

methods require such measures.
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Figure 4.10 Comparison of MAPE results for h = 336
ahead commencing 5-Aug-2019

4.9 Summary

Knowledge of future electrical demand is essential for operators of community energy systems.
The original contribution to knowledge put forward in this chapter is the methodology
for calculating future electrical demand over a short horizon window. Machine learning
based models designed for forecasting future energy needs are often opaque, difficult to
interpret and require regular data interventions to ensure their usefulness [204]. However,
the simplicity of this novel methodology means it can function without any direct on-line

demand measurement or need to maintain an estimation dataset.

Using popular benchmark models, we have shown that despite the proposed model under
performing when compared with a Holt-Winters seasonal model, the results outperform the
seasonal naive model forecasts. The demand forecast function (demand.m) is the improvement
that further escalates the usefulness of the previous computational efforts. By applying
simple mathematical reasoning, it is possible to establish a demand profile over a short
horizon window. In the context of integrated demand response for community energy systems,

these attributes may bring many benefits in comparison to more sophisticated approaches.
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Chapter 5

Integrated Demand Response in an Energy System

5.1 Introduction

Technology innovation, guided by indicators, such as greenhouse gas emissions, is helping
policymakers understand energy transition. Decarbonisation pathways are transforming
ageing energy (electrical) infrastructures into more flexible decentralised systems. Demand
response provides energy flexibility, which can improve network resilience and stability of
operations. There is growing interest in advancing DR as the momentum for transitions to
low-carbon, decentralised power systems become more mainstream. Studies show thermal
inertia means community buildings have an essential role in demand response. However,
although there is a growing amount of research about smart cities, there have been few
investigations into the impacts of similar technology insertions in more remote community

power systems.

To help fill this gap, this chapter describes the technical development of integrating demand
response services in a community energy system. The main contribution of this of work
is the implementation of a modified Dijkstra’s algorithm, developed to optimise energy
consumption of a heating and cooling system. This is achieved by setting the temperature
setpoint value on a trajectory that follows the shortest-path between the current measured
temperature and predicted temperature setpoint that updates at 10 min intervals over a
short horizon window (nominally 4-h). The temperature setpoint trajectory (the optimal

path) is influenced by the following principle parameters:

e Electrical demand consumption

o Cost (tariff)
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e Occupant perceived thermal comfort

The implementation consists of a simplified lumped model for electrical demand forecasting, a
scheduling subsystem that optimises the utility of energy storage assets, and an active/pro-active
control subsystem. The active control strategy provides secondary demand response services,
through optimising a multi-objective cost function formulated using a weight-based routing
algorithm. In this context, the total weight of each edge between any two consecutive nodes
is calculated as a function of thermal comfort, cost (tariff) and the rate at which electricity is
consumed over a short future time horizon. The pro-active control strategy provides primary
DR services. Furthermore, tertiary DR services can be processed to initiate a sequence of
operations that enables the continuity of related electrical services for the duration of the
demand side event. Later, in subsequent chapters, experimental studies will demonstrate the

real-time operation of the proposed system on a prototype platform.

5.2 Generic framework

A generic decentralised optimisation and control framework can be used as part of an
evolving demand response service; this means both curtailment and generation. This
general arrangement will support primary and secondary DR services through frequency
regulation and optimal control mechanisms, respectively, and tertiary DR events (Figure 5.1).
Here, optimal performance might be described in terms of energy cost, thermal comfort
and predicted future energy demands. A multi-objective cost function formulated using a
weight-based routing algorithm automatically regulates the control of heating to create a
meaningful energy demand reduction by shifting energy consumption to out of peak demand
periods. Thermostatically controlled loads (TCL) can provide auxiliary services [205]. In
this approach, the proposed scheme offers a pro-active control mechanism that changes the
TCL operating setpoint proportionally to measured grid frequency. Following this approach
avoids synchronisation problems that bound the coupling between frequency excursions and
load dynamics that switch when prescribed frequency thresholds are exceeded [54]. An
optimisation algorithm that responds to the real thermal needs of the building occupants is

proposed. To achieve this, individual occupants can report their thermal comfort needs using
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smartphone technology. The feedback reports are processed, and a consensus determined,

which in turn is used to influence the room temperature.

Tertiary DR
GRID

Battery

ctrl_action

Optimiser

-

Frequency

Figure 5.1 A demand response framework block diagram

The inclusion of building occupant feedback is crucial. Recent research has illustrated
that engineers tend to assume occupants will not feel small changes in temperature [58].
This oversight can cause a performance gap between the expected and actual results from
technologies intended to reduce or shift energy consumption in buildings. The inclusion of
occupant feedback ensures that this issue will be avoided in the case of the solution presented

in this research.

This chapter provides a reference basis for further DR applications in decentralised community
based environments. It is particularly relevant to microgrids that are isolated from the grid
as it offers potential for reducing the amount of energy storage required to balance the power
fluctuation on those isolated microgrids. Current research has shown that even in the case of
a single consumer, a microgrid option could be more economical than network renovation
(e.g., provision of underground cabling) to increase the reliability [206]. Therefore, the ability
to reduce the costs further by utilising the approach described in this chapter could offer real

potential for the development of islanded and semi-islanded microgrids in many contexts.
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5.3 General description

The proposed decentralised, informatics, optimisation and control simulation model has been
developed to optimise space heating, schedule utility of energy storage assets and provide
pro-active/active control for primary and secondary DR services. Two groups define the
simulation model data so that system configuration parameters can be differentiated from
local preferences. Ultimately, the simulation model is designed to assess our understanding
of the optimiser and control components in the context of decentralised energy management.
The applicability of the optimiser and control component is further demonstrated in

hardware-in-the-loop (HIL) simulation.

The following outline is provided as an overview of the proposed optimisation and control
strategy. The approach is based on the idea that when the demand for electricity on the
distribution network is high, then the system attempts to reduce the local rate of energy
consumption by reducing the space heating temperature setpoint. Similarly, during periods
of low electricity demand the constraints that govern the temperature setpoint are relaxed,
which in turn, allows, not mandates, an increase in energy consumption by increasing the

space heating temperature setpoint.

When we add a measured response from occupants that describes their collective relative
thermal comfort, the perception is the rate of energy consumption shifts towards being
self-regulatory. For example, if the demand for electricity increases, the system attempts to
reduce the local energy consumption at a rate that is inversely proportional to the predicted
demand. If space remains void of occupants, this approach is satisfactory and local settings
ensure a minimum space temperature is maintained. However, during periods of occupancy,
individuals become eligible participants in the optimisation algorithm. Subsequently, when
individuals report they are feeling cold, and their collective measured response satisfies a set
threshold, then the resultant action is to issue a command that counters the instruction to
reduce the space temperature further. Conversely, this self-regulatory behaviour works equally
well during periods of low demand. Consider now introducing a third data type. Incentivising
energy reduction through financial gain aims to reduce or shift energy consumption during

periods of high demand [207].
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Including information about the cost of energy into the mix introduces an interesting dynamic
to the optimisation and control strategy. Given a time of use tariff that increases at times
when demand is known to peak, the net contribution to the optimiser is to automatically
adjust the energy consumption when the cost of electricity exceeds a user-defined threshold.
Furthermore, the system can be configured to automatically switch to an alternative power
source if demand exceeds a set limit or during periods when the cost of energy makes utilising

an alternative power source more attractive (e.g., energy storage assets).

The immediate outcome attributed to the interaction between the three data types becomes
even more attractive if their behaviours can be predicted over a finite time horizon. The
opportunity to participate in tertiary DR services by making ready the system in response
to a network operator DR instruction becomes feasible. The proposed control algorithm
alters the demand profile trajectory such that it adds bias to the tri-data mix in a way that
promotes a rise in space temperature. The net effect is to provide optimal space pre-heating
in advance to commencing the scheduled DR event. Furthermore, a switching mechanism
denies use of a local energy storage asset for a period leading up to the DR event. Instead,
resources ensure the energy storage asset is set to recharge. Thus, when the DR event period
commences the system power source automatically switches to the energy storage asset.
Previous interventions ensure the energy storage asset capacity is sufficiently charged to
enable it to remain the primary source for the duration of the event or until the asset can no
longer meet the power demand for continued operation. In this instance, the grid becomes

the systems primary power source, and recharging of the energy storage asset is initiated.

The remainder of this chapter describes the technical development of individual systems
that contribute to the optimisation and control framework. Real-time computer simulations
that aim to model the behaviour of physical systems and the mathematical model of the
proposed optimisation and control algorithms are performed using the MATLAB/Simulink®
environment. Level-2 MATLAB System functions have been used extensively during the
design and implementation, providing access to create custom blocks that support multiple
input and output ports. Furthermore, this section describes how desktop simulations
are reconfigured to validate the optimisation and control algorithm using HIL simulation

techniques.
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The desktop simulation model is shown in Figure 5.2. In addition to the optimise and control
block, the model is composed of a catalogue of supporting subsystems: energy, building,
scheduler, date-time (dt) and demand event signal (des). The design and operation of
the energy and building subsystems, which were introduced in earlier chapters, have been
elaborated further in Appendix D. The remaining four subsystems have a more prominent

role in energy optimisation, thus each subsystem contribution is discussed in the following

sections.
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Figure 5.2 Simulink® model of energy optimisation framework

5.4 Technical development

The simulation optimiser is constructed in a piecemeal fashion, progressing sequentially by
solving problems centred on three data types: (1) thermal comfort, (2) electricity demand
forecast, and (3) cost (tariff). In brief, during periods when the system is not responding
to a tertiary DR activity, the process begins by calculating a predicted or actual value for
each data type over a 4 hr horizon window at 10 min intervals. Values are mapped onto
a multi-dimensional array with a fixed number of rows (magnitude) and columns (time).

A Dijkstra’s algorithm is then used to project the predicted values over the 4 hr horizon
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window [208, 209]. The contribution of each data type is then combined before k-means
clustering (see, [210]) is applied iteratively at each 10 min interval. The result yields a
new path that follows the optimal temperature setpoint trajectory over the 4 hr horizon
window. For demand response applications, a model for building design can be successfully
implemented using a simplified FOPDT model [189]. Time constants of 10 to 30 min and
dead-times between 0 to 5 min are typical [211]. Avoiding complex calculations is achieved
by taking a pragmatic approach when determining model control actions. For example, the
proposed optimiser has been configured to update the control action at a sample time 10

min.

Since the control objective is to minimise the deviations from a temperature setpoint,
according to the system and user-defined rules, at discrete points in time, the optimal cost
(shortest path) can be obtained by formulating a Dynamic Programming algorithm that
proceeds backwards in time. The algorithm takes a sequence of k-means centroid points,
where each centroid represents a value that minimises the total intra-cluster variance of all
objects in each cluster. In simple terms, given a time horizon of 240 min, this equates to 24
stages, each separated by a 10 min interval. At each stage, there are 11 objects. A k-means
algorithm is applied to find the centroid of the 11 objects, at each stage. These calculations

result in a series of 24 centroids that contribute to formulating the shortest path.

The objects that belong to each cluster are derived from a series of functions that calculate
occupants’ relative thermal comfort cost (tc), rate of energy consumption (demand forecast
value) cost (dv), and energy cost (ec). Given the deterministic problem can be formulated in
a bounded operating environment G, which can be equivalently represented by a gridmap of
fixed dimension, the problem starts from a source node rs where rs = Ko = G(; 5,), proceed
to r1 € S1 and progresses to the final node k¢ = i, = G(j5,,)- An important characteristic of
this activity is highlighted. In solving the shortest path problem, the source node ks and
target node k; are revealed to the optimiser just before the first transition from Sy +— S
begins. The trajectory of the shortest path from Sy — S; will follow a series of weighted

edges 1 that interconnect successive pairs of nodes, i.e., (ko,k1), (K1,K2),. .., (Kn—1,Kn)-

In the framework of the fundamental problem, minimising the cost in a bounded operating

environment G can be translated into mathematical terms:
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Jn(i):nglqi,gl[c?“]’ i€S,, n=0,1,2,...,24. (5.1)
Where the cost of transition at ¢, is the centroid in a cluster of objects at stage S, from
node ¢ € S, to node k € S,11. For the problem to have a solution, each object centroid is
constructed with a k-means algorithm. Here, after initially assigning a random object within
a cluster as the first centroid, we compute the distance from each remaining object. Based
on the square of these distances, a new centroid is defined. The process repeats until k

centroids are chosen. We formulate the objects in the following paragraphs.

Also, when the network operator issues an explicit DR instruction, the optimiser initiates a
pre-programmed control strategy that changes the trajectory of subsequent control actions in
a period leading up to and during the event window. However, it remains useful if the control

actions continue to respond to facility or occupant needs during this mode of operation.

5.5  Optimise and control subsystem

The optimise and control subsystem (optimise_control) is a user-defined block written
using the MATLAB S-Function application programming interface (API). The proposed
optimisation algorithm calculates the optimal space heating temperature according to the
rate at which electricity is consumed (demand) and cost (tariff). Furthermore, the final
temperature value is impacted by the occupants’ thermal responses to the combined thermal
effect of the environment and physiological variables that influence the relative thermal

comfort.

Figure 5.2 shows the Simulink® optimise and control block includes three input signals: (1)
room temperature (temp_room), (2) current date and time (S0_date), and (3) a demand event
signal that indicates the status of a tertiary DR service (des_mode). The block output signals
provide: (1) a control signal (ctrl_action) that will alter the space heating temperature
setpoint, (2) the current cost of energy usage (tou_tariff), and (3) an indication of the
tertiary DR event duration (des_duration). The internal architecture of the optimise and

control subsystem is shown in Figure 5.3.
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Figure 5.3 Optimise and control internal block diagram

The design presented in this article is configured to operate within a custom-built temperature
range between T},;, = 15.5 °C and T},4, = 20.5 °C. Exception handling ensures temperature
values measured outside this range are mapped to 15.5 °C, or 20.5 °C. Default system
configuration parameters set the forecast horizon window to 4 hr, a demand response
temperature step (Tstep) that instructs the control action to increase the space temperature
by 2 °C over the duration of the forecast horizon window, and the duration of a demand event
to 40 min. Additional system parameters specific to thermal comfort, electricity demand

forecasting and cost (tariff) are described in the corresponding paragraphs that follow.

5.5.1 Thermal comfort

The energy demand of buildings is influenced by the presence and behavioural patterns of
occupants [212]. The thermal comfort element impacts the temperature setpoint by analysing
the measured room temperature (T,o0m) and occupants’ feedback collated at a sample time
of 10 min. Weekdays are divided into seven-time intervals 7(,), configured to mirror a typical
teaching timetable, whereas a weekend day consists of only one-time interval. Changing
the weekend day interval pattern to replicate a weekday is straightforward. By considering
occupant presence is inhomogeneous, for each 7(,,), we choose an algorithm for the simulation

of occupants to be used as an input for current occupant level, ug. In practice, not all
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individuals will report their relative thermal comfort. Therefore the model automatically
creates several feedback reports uy, where uy < wu;. An individual’s response is measured
using a unipolar Likert scale [213, 214]. The question has a five-scale response: too warm,
warm, okay, cold, too cold; scored mathematically using a scale uy € {—2,-1,0,1,2}. To
imitate perceived behaviour patterns, for each time interval the following model parameters
are defined: Upqp = minuf, Umes = maxuy and response threshold ug, (%). The thermal
model weekday parameters are reported in Table 5.1.

Table 5.1
Thermal model parameters

T(n) Umin Umax
1 0 0

2 10 40
3 5 20
4 15 70
5 3 12
6 30
7 0 0

For any given weekday time, the thermal comfort model output is calculated by the following

expression:

U
wnm-—Mo<§:uﬂ”>, up € {-2,-1,0,1,2}, n=1,2,...,7; (5.2)
=1
with respect to:

7'(1) = Uf(3 . 5);
T(2)(7) = us(2:5);

s.t. constraints:

(ur/uyp) x 100 > ugp; (5.4)
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Umin < Uk < Umaz (55)

For weekend days, we assume uy = 0. Hence the model returns a value tcr ) = ur(3). The
variation in 7(,) represents a bias that is configured to reflect a change in outside temperature

over a 24 hr period.

It is noted the seven-time intervals 7, are bounded by a start and stop clock time 7(,)(t1,t2)
such that 7(1)(t1,t2) = 7(1y(00 : 00,20 +7),7(,) (2 +5,2n 4 7); and terminating at 7(x)(2V +
5,23 :59). In practice, if a date and time are specified (e.g., SO_date = Fri 05-Feb-2020
07:23:14), then the task to determine if the date-time element occurs on a weekday or
weekend day is straightforward. Given a date-time SO_date it is possible to formulate an
algorithm that returns a 1 x 25 array ;. = [tco,tc, ..., tcaq] where te, represents a thermal
comfort value over a 4 hr period at 10n min. It should be noted that because the optimiser
is designed to take into consideration occupants’ feedback in real-time at a sample time
of 10 min §(2: 25) =tcy = tcr,,. However, if during the 4 hr horizon window the system
identifies a time interval where u;,q: = 0, i.e., there are no planned occupants, the model
starts a pre-programmed sequence that sets the thermal comfort on a downward trajectory
reducing at a rate of 0.5 °C per 10 min interval until a minimum temperature threshold

value T};Zn is reached. We have by the definition of the 11 x 25 nodemap d;. completed the
data preparation of thermal comfort shown in Figure 5.3. It must be remembered that the
thermal comfort model is formulated for operation within the simulated environment only.
In practice, the implementation proposes occupants’ report thermal comfort to the system

using a smartphone app. This concept is elaborated further in Chapter 6.

5.5.2 Electricity demand forecasting

A data-driven methodology for modelling electricity demand forecasting is proposed [215].
The implication of this novel semi-autonomous simplified lumped model has the potential to
offer decentralised electricity network operators’ knowledge of the more extensive aggregated
rate of future energy consumption. Thus, enabling decentralised energy management systems
to proactively reduce load demand on small island electricity grids or distributed grid-edge

systems as part of an evolving DR service. In this chapter, we integrate the electricity
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demand forecasting model as part of the optimise and control framework. Initially, analysis
of a chronological sequence of 245,424 discrete observations reveals the composition of the
one-dimensional time series is characterised by three seasonal patterns: weekday, weekend
day and month. These findings motivate an effort to reduce the dimensionality using
piecewise aggregated approximation (PAA). Subsequently, calculating a cubic polynomial
that interpolates points of interest yields a 13 x 4 x 2 multi-dimensional array, which in turn
helps restore the shape of the original demand forecast profile. The polynomial coefficient
structure for weekday and weekend day are listed in the array page 1 and 2, respectively.
Given both weekday and weekend day demand profiles recur every 24 hrs, it turns out using
Equation (5.6) a normalised demand forecast value M;(x) can be tagged to a specific time

in any 24 hr period.

Mz(m) =a; + bi(.%' — ilo) + ci(x — ilo)Q + di(l‘ — ilo)s (5.6)

Where i =0,1,...,n;z € [lo,hi], lo and hi correspond to the minimum and maximum data
points of each PAA 2 hr segment respectively, and the cubic polynomial coefficient parameters
are a;,b;,c;, and d;. Moreover, we shall show how the demand forecasting model can be used

to compute a credible demand forecast value for any given date and time.

There are 12 equidistant segments, which equates to 13 periods (p) bounded by a minimum
and maximum points lo and hi, i.e., p,(lo,hi) where the number of periods n =0,1,...,N.
In the first period po(lo, hi) = po(0,4n+2), after that p,(4n —2,4n+2); and terminating at
pN(AN —2.4N). If we adopt the convention that makes 13-time intervals 7,, bounded by a start
and stop clock time 7, (¢1,t2) then 79(t1,t2) = 7,(00 : 00,2n+ 1), after that 7,,(2n —1,2n+1);
and terminating at 75 (2N — 1,23 : 59). Thus, it can be seen, given a date-time SO_date
it is possible to formulate an algorithm that returns a 1 x 25 array day = [dvo,dvy, ..., dva]
where dv,, represents a normalised demand forecast value over a 4 hr period at ¢ = 10n min
starting from the specified date-time. This approach works equally well for both weekdays

and weekend days.
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The normalised demand forecast value dv,, is defined as:

Dvmaa: - Dvmzn

dvnszin+( >><(Nmax—Nmm), dop € [1L,11], n=0,1,....24 (5.7)

where Npip = min Ny, 95), Nimaz = max N, o5y, DVigin = min M;(z), DViya, = max M;(z),
men] ’ mejn] ’ i€[n i€[n)

noting that a nodemap n is a m x n two-dimensional array.

5.5.3 Cost (tariff)

A key consideration when taking part in a predefined energy reduction strategy must empower
customers to use energy in the lowest price period accessible, at the same time as offering
participation in DR initiatives. The cost (tariff) model is configured to integrate a typical
static time of use (TOU) [216]. As shown in Figure 5.4, these tariffs charge cheaper rates

when demand is low but increases for electricity consumption at peak times.

Demand Profile (weekday) [ Mid-Peak (11.99) Demand Profile (weekend day) Off-Peak (4.99)
30 + Daily Fixed Charge (19.31) [l Peak (24.99) 30 Daily Fixed Charge (19.31) [ Mid-Peak (11.99)
Off-Peak (4.99) 140e3 140e3
g 25 § g 25 §
g {35e3 = g {35e3 =
£ 20} ° 220! °
Pt 20 2 b 20 2
S g S §
20 1253 Q 25 {25e3 9
o o
£ g E g
I @ 9] 7
2 10 - 2 K] >
w w
+20e3 +20e3
5F
0 J415e3 4 15e3
oh 6h 16h 1%h 23h
Time (Weekday) Time (Weekend day)
(a) Weekday (b) Weekend day

Figure 5.4 Model static TOU tariff

At a given date-time SO_date, the cost (tariff) simulation model returns a 1 x 25 array
dec = [eCp,ecCt,. .., ecoq] Where ec, represents a normalised cost (tariff) value over a 4 hr

period at t = 10n min starting from the specific date-time.
The normalised cost (tariff) value is defined as:

EC(n)— EChn
Ecmax - Eszn

ecn, = Npin + < ) X (Nmaz — Nmin), ecn €[3,9], n=0,1,...,24 (5.8)
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Where EC(n) is the cost (tariff) at t = 10n min, Npin = 3, Npaz = 9, ECpin = 4.99 and
EC 4. =24.99. The scaling factors are set by design to position de. values in the subsequent
optimise stage such that a change in price to either off-peak or peak has maximum influence
during the optimisation outcome. Furthermore, it will be shown d¢. impacts the operation

of system assets managed by the scheduler system.

5.5.4 Optimisation

The optimisation cycle Figure 5.3 starts on receipt of the input signal SO_date. Subsequent
cycles commence at a block sample time of 10 min (600 sec). Previously, data preparation
for occupants’ thermal comfort, electricity demand forecast and cost (tariff) each returned a
1x 25 array § = [x,,x1,...,T24] Where xz,, represents a normalised data type (tc,dv and ec)
value over a 4 hr period at ¢ = 10n min intervals starting from a specific date-time SO_date.
Before each data type array can be processed, it must be homogenised in a way that
makes it accessible to the optimiser. The data is transformed into a m x n two-dimensional
nodemap N (m,n) such that §(x,)+— N(12—x,t10,). Accordingly, m represents a temperature
T = [Trmaz : —0.5 : Thnin] and n defines 25 stages (S, | n € {0,1,...,24}) each separated by a
10 min time interval for the duration of the 4 hr forecast window (e.g., So = tp and Sy is
linked to the 10 min time interval to39 — t249). The 11 x 25 nodemap N is then transformed

to a 31 x 72 gridmap G by the following function:
N((zp),n) — G(i,3n)k,,G(4,3n+1),,, n=1,2,...,24; (5.9)

where

i=36(zn)— A, Ae{1,2,3) (5.10)

s.t. constraints:

1 if §(xpy1) > 0(xn);

A=92 if §(zne1)=0(n); (5.11)

3 if 0(zpt1) <0(mp)

Sean Williams Teesside University



Page 94

i+3 if A=1;

j=1qi if A=2; (5.12)
i-3 if A=3
2 < §(zy) < 10 (5.13)

When the constraint is not satisfied, A = 2.

The temperature from tg — t19 =Ts,, where T, € {Ts,,Ts, £0.5°C} s.t. Tinin <715y < Trmaz,
however if T's, = Tyyip, then Tg, € {Ts,,Ts, + 0.5 °C}. Furthermore if T'g, = Ty then T, €
{Ts,,Ts, —0.5°C}. Based on this information, this equates to 31 permissible temperature
changes between t,, and t,4+10. If we continue to record the change in temperature AT from
Sn — Sn+1 using blocks of three columns for each cycle, then it is clear a gridmap of size
31 x 72 is created. We refer to the three columns in each block as the source node kg, target

node x; and edge weight A, : ks Iy ey respectively.

Dijkstra’s algorithm computes the shortest path between a specified temperature point given
at Sp and So4. This deterministic problem follows the principle of optimality, which suggests
if the path taken transits from one legitimate node to the next minimises the cost-to-go
from t,, to t,410, then the transition between the collective nodes must be optimal [6]. For
the Dijkstra’s algorithm to solve the shortest path, the 31 x 72 gridmap is first subjected
to a series of simple transformations. The first instruction reshapes the gridmap into a
744 x 3 matrix referred to as the edgelist. Here, following the same convention to identify
columns in the gridmap, the edgelist provides a listed description of all source nodes &,
legitimate target nodes ;1 and their respective connecting edge weights A, : x,, 1, Kn+1,
i.e., its associated cost. A second instruction creates a digraph object that generates an
Edges variable (744 x 2 table) based on the number of source and target nodes extracted
from the 744 x 3 edgelist, and a Nodes variable (275 x 1 table). The 275 value represents
the total number of nodes k975 in the fixed 11 x 25 nodemap. Finally, an equivalent sparse
adjacency matrix representation of the digraph, which includes the edge weights, is created.
Since the graph object we have constructed is a directed graph, the sparse adjacency matrix

is not symmetric. However, we can overcome this by converting the sparse adjacency matrix
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to a full storage matrix. In this instance, the conversion generates a 275 x 275 full storage

matrix.

The data type shape is now in a format required by the Dijkstra’s algorithm. Executing the
Dijkstra’s algorithm will compute the optimal cost which is equivalent to the summation of

all edge weights A, : ks a k¢ on the shortest path from ks to k; between time tg and to49.

The pseudocode describing the mathematical interpretation of the Dijkstra’s algorithm is
listed in Algorithm 2. Here we use w to represent a change in the edge weight that influences
the calculation that solves the shortest path between each valid source vertex (u) and target

vertex (v).

Algorithm 2 Dijkstra algorithm
for all w € W do

w < weight(u,v) > assign distance between each vertex
end for
for all v € V-{s} do

dist[v] < oo > initial distance from source to vertex v is set to infinite
end for
S+ 0
Q<«+V
while Q # 0 do > main loop

u < minimumdist(Q,dist)
S+~ SuUu
for all v € adj[u] do
if dist[v] > dist[u] + w(u,v) then
d[v] < d[u] + w(u,v)
end if
end for
end while

return dist

This process is repeated for each data type. At the end of each transformation the results
are assigned to a specific page of a multi-dimensional array where page 1 (P1) is reserved for
data type comfort, page 2 (P2) demand, and page 3 (P3) cost (tariff). The fourth page (P4)
is reserved for the final stage in the optimisation process, which combines the contributions

assigned to P1 to P3. Here, every third column in the 31 x 72 P4 gridmap is allocated a
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grid centroid value GCpy(j s = 1 where j € {1,2,...,31} and s € {3,6,...,72}, and assigned
to row index j that is equivalent to the k-means cluster centroid index that partitions
the observations in the corresponding column s on P1 to P3. Note, for each data type
c. = GCpayj ), see Equation (5.1). The remaining values in each column are incremented by
one until the row index j has reached its boundary limit, i.e., 1 or 31. When the Dijkstra’s
algorithm subsequently computes the shortest path between the source node rs = GCpq(j1) =1
and the target node k; = GCpy(j71) Where j = GCpyj72) =1, the results yield the optimal
path that transits from Sy — S24. The control action Ts, = N(GCpy(j2),2). Simply stated,
the control action is a fixed temperature value that is linked to the 11 x 25 nodemap N (m,n)
at row index m = GCpq; 2y where N (1,n) =20.5°C,N(2,n) =20.0°C,...,N(11,n) =15.5°C,
where n € {1,2,...,25}. The relationship between the gridmap and nodemap is highlighted
in Figure 5.3. The pseudocode describing the operating principle of the optimise and control

algorithm is listed in Algorithm 3 (initialisation) and Algorithm 4 (main body).

Algorithm 3 Optimise and control: initialisation

inputs:
temp_room = {n|n is pos, and 15.5 <n < 20.5} > Troom (°C)
S0 date < now()
des_mode = {n|n is int, and n € {0,1}} > 0O=normal, 1=event
outputs:

ctrl action; tou_tariff; des_duration
initialise:
visual_mode; gridmap
horizon =4 > duration (h)
des mode = 0
Tstep (°C) ={n|n =2, and n € {2,3}}
des_duration = {n|n = 40, and n € {30,40,50} } > duration (min)
Tnin = {n|n =16.0, and 15.5 <n < 17.5}
dt ={tc, dv, ec, optim}
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Algorithm 4 Optimise and control: main body

for every 10 min interval do
S0 date < S0 date + 10 min
for each dt do
if dt = tc then
Tﬁfm — Tonin > min temp threshold (°C)
prepare comfort values V.Sn = {n|n is an integer, and 0 < n < 24}
else if dt =dv then
require: des_mode; des_duration; Tiiep
prepare demand values V.Sn = {n|n is an int, and 0 <n < 24}
prepare node path
else if dt = ec then
prepare tou values VSn = {n|n is an int, and 0 <n <24}
end if
prepare gridmap
adjacency matrix <— digraph < edgelist < gridmap
optimise using Dijkstra’s algorithm
identify edgepath from start to end node ¥Sn = {n|n is an int, and 0 <n <24}
if dt = optim then
prepare control action > Ts, (°C)
end if
get: visual mode
display: visualisation € {horizon,gridmap,bigpath,biggridmap}
end for

end for

5.6 Demand event signal subsystem

The demand event signal subsystem (des_subsystem) simulates actions in response to a
network operator instigated instruction. These signals are sent to individual customers
enrolled in a campaign designed to deliver aggregated tertiary DR. The Simulink® model
itself is trivial (Figure 5.5); however, the subsequent sequence of events requires further
explanation. Firstly, the objective shifts to making the system ready for a DR event, this
includes setting the control action to increase the room temperature in a measured approach
by a preset value T, (°C) within the 4 hr horizon window. Secondly, to ensure the battery

energy storage system (BESS) is available with enough charge at the start of the DR event.
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Figure 5.5 Simulink® model of demand event signal subsystem

The period of pre-heating is regulated by altering the demand forecast profile. By default,
Tstep = 2 °C. Therefore, the normalised demand forecast value dgy = [dvp,dvy,...,dva] is
recast to €gy = [dveo, dVel, - . . ,dve24] Where €4y(0:4) = dvg, €ay(i: j) = €av(i — 5,7 —5) — 1 where
i€{5,10,...,20},5 € {9,14,...,24} s.t. dvp—1 > 1. This new trajectory increases the last
recorded room temperature by 2 °C at a rate of 0.5 °C every 50 min. At the beginning of
each subsequent optimisation cycle, the trajectory leading up to the DR event is maintained,
i.e., it advances closer to the plus 2 °C temperature at each iteration and towards the DR
projected start time. However, before €4y reverts to dgy, the trajectory is modified further,
this time by reducing the temperature setpoint 2 °C less than the temperature recorded
immediately before the start of the tertiary DR event. The system reinstates dqy immediately

after the DR event terminates.

The des_mode signal triggers the scheduler subsystem to start charging the BESS. The
energy storage asset will continue to charge until the start of the DR event. The battery
will then start to work from this time, reducing the stored charge of the battery while it
continues to provide primary power to the heating system. The heating system will continue
to be supplied from the battery until a state of charge (SOC) minimum threshold has been

reached. The scheduler switches primary power to the grid and the battery to charge.
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5.7 Scheduler subsystem

The scheduler subsystem primary job is to monitor several signals and direct the operation
of an automatic transfer switch between a grid and an alternative backup source of power.
To ensure the appropriate power source is selected, the scheduler requires knowledge of the
current cost (tariff) of electrical energy, whether a tertiary DR event is in progress including
information of the event duration and BESS SOC. The Simulink® model of the scheduler
subsystem is shown in Figure 5.6 and includes three input signals and six output signals.
The output signals are provided for visual indication of various signal status. A simplified
BESS element (ess_subsystem) simulates a battery SOC using a first-order transfer function.
Locally defined parameters SOC_hi and SOC_lo set maximum and minimum SOC values
(expressed as a percentage), which determine when the BESS is declared available for use. In
this context, initial parameter values are defined as 80% and 20% respectively. The model
also includes a self-discharge rate (SDR) which reduces the stored charge of the battery

naturally over time.

olo »( 1)
SOC
DIR »(2)
DIR
DATA |— » DIR
ess_subsystem »{ DATA FIT
tou tariff mode » t_mode
tou_tariff MODE PWRI—(4)
tariff_subsystem . d PWR
@ S
des_duration »(5)
NOT t_mode
A
3) » convert »( 6 )
des_mode.in des_mode.out

Figure 5.6 Simulink® model of scheduler subsystem
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The BESS availability function is represented by Equation (5.14), where SOC_lo is a low-level
SOC threshold (locally defined parameter).

0 if SOC <sS0C_lo
FIT = (5.14)

1 otherwise

Control rules that determine when the primary power source is set to grid or BESS
are illustrated in Figure 5.7. The decision variable t_mode is the cost (tariff) threshold
and automatically switches the power source to BESS when the cost (tariff) is high s.t.
Equation (5.14). Furthermore, when signal des_mode=1 (0=normal, 1=tertiary DR event),
t_mode=0 thus preventing a control action that switches the power source to BESS during
the period leading up to the start of the DR event (nominally 4 hr). Signal CDir reports if
the battery is in charge or discharge (O=discharge, 1=charge); PWR denotes primary power

source (0=grid, 1=BESS); SOC_EC denotes cost (tariff) in use, (0=TOU, 1=BESS).
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Figure 5.7 Scheduler control logic flowchart

The pseudocode describing the operating principle of the scheduler algorithm is listed in

Algorithm 5.
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Algorithm 5 Scheduler subsystem

inputs:
tou_tariff = {n|n is positive, and n € {4.99,11.99,24,99}}
des_duration = {n|n =40, and n € {30,40,50} }
des_mode = {n|n is positive, and n € {0,1}}
outputs:
SOC; CDir; FIT; PWR; t_ mode; des mode.out
initialise:
t_mode € {0,1,2,3}; ETy, < 3; SOC = 0; des_mode.in =1
SOCI = 90%; SOCH, . = 80%; SOCt, = 20%
for every 10 min interval do
t_mode<tou_tariff
require: SOC
if des mode.in = 0 then
enable energy storage asset
if CDir detect increase then
if SOC > SOC! = then
declare energy storage asset available for use
if t mode = ET};, then
set power source to energy storage asset
else
set power source to grid
end if
else
set power source to grid
end if
else
if SOC < SOC!  then

min
declare energy storage asset not available for use
set power source to grid
else
if t mode = ET};, then
set power source to energy storage asset
else
set power source to grid
set energy storage asset self-discharge rate
end if
end if
end if

continued ...

> cost (GBP)
> duration (min)

> O=normal, 1=event

> normal

> on-charge

> FIT=1

> PWR=1

> PWR=0

> CDir detect decrease

> FIT=0
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Algorithm 6 Scheduler subsystem (continued)

else
if CDir detect increase then
if SOC > SOCZZS then
declare energy storage asset available for use
if t mode = ET};, then
set power source to energy storage asset
else
set power source to grid
end if
else
if t_mode = ET};, then
set power source to energy storage asset
else
set power source to grid
enable energy storage asset self-discharge
end if
end if
else
if SOC < SOC!. then
declare energy storage asset not available for use
set power source to grid
else
if t mode = ET};, then
set power source to energy storage asset
else
set power source to grid
end if
end if
end if
end if

end for

> demand event

> on-charge

> on-discharge
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5.8 Date-time subsystem

The Simulink® model of the date-time subsystem (dt_subsystem) is shown in Figure 5.8. The
primary function of the subsystem is to provide a date-time element at a sample time of 10
min. The model has been configured to run in real-time during experimental evaluation. By
default, dt is set to the current date and time, using format dd-mmm-yyyy hh:mm:ss, with
the option to set to any data-time during model analysis. The date time model parameters

are reported in Table 5.2.

Table 5.2

Date-time system parameters
Parameter Value
dt dd-mmm-yyyy hh:mm:ss
Ch 600
C6 1.157412771169e-5

Cé6
1sinc J;—_| P
dt >®—> date2sec —»—\
| >
start_date_time o SO_date
Count >
Up J|mod ‘Pl><> [
=il
SO_date

sample time
n.

Figure 5.8 Simulink® model of date-time subsystem

5.9 Software code development

When considering the surrounding environment, it is useful to categorise factors that initiate

change into three groups: (1) human factor, (2) technical means, and (3) external conditions.
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In the context of energy management, human factor includes actors who make decisions
based on experience, knowledge, and opinion in response to a situation. Their contribution
is reflected in the behavioural change in the interconnected parts, transforming the output
within a prescribed boundary. The technical means refers to those processes that operate
autonomously during computational procedures and alter the decision-making processes that
ultimately change the state of the system. Finally, the external conditions are monitored
and trigger a change in system behaviour when predefined conditions are satisfied. External

conditions remain intact, protected from any direct system change.

The computational study was carried out using the MATLAB/Simulink® environment.
Figure 5.9 shows the computational study software code grouping. The optim_ctrl.m
function is central to this diagram. The modified Dijkstra’s algorithm has evolved to
determine the shortest-path between current measured room temperature and predicted
temperature setpoint (at 10 min intervals over a 4-h horizon window). The role of the
modified algorithm is to optimise the energy consumption based on energy demand, tariff
and user feedback of a short time horizon. A full description of MATLAB® programs
(M-file) (except visualisation programs) are summarised in Table D.4. Code listing for each
item, including the content of each binary MATLAB® file that stores workspace variables
(MAT-file) are provided at Appendix D.
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Technical Means

comfort_data.m
demand_path.m
group_path.m
group_shortestpath.m
individual_shortestpath.m
tou_data.m

Technical Means
<+—| prepare_aux_data.m

External Conditions

demand_info.mat*
demand_initialise.mat*
grid4_1.mat*

initialise.m
optim_ctr]l_model_data.m
tariff mode.m
demo_dtv.m

Technical Means
demand.m —>

A

visualisation

Technical Means

optim_ctrl.m

Technical Means

prepare_comfort_values.m
prepare_tc_gridmap.m
prepare_tou_values.m
prepare_gridmap.m
prepare_digraph.m
dijkstra.m
prepare_edgepath.m
prepare_dv_values.m
date2sec.m

date2vec.m

Technical Means

<4— | soc.m

Human Factor

——lomian |

Figure 5.9 Software code groups

5.10 Computational study

In this section, we report the findings from a computational study (desktop simulation). By

design, the computational study validates the functionality of critical services. In contrast,

the experimental evaluation (Section 6.8) is explicitly directed on proving the interaction

of proposed data types within the optimisation subsystem. The interaction between

decision variables and control actions of individual subsystems is complex. Accordingly, the

computational study validates the functionality of the following vital services:

e Thermal comfort model

e Electrical demand forecasting model

o Cost (tariff) model
e Optimiser

o Tertiary DR activity
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e Pro-active frequency control

A multi-objective cost function formulated using a weight-based routing algorithm is an
essential component and plays a vital role in the energy management system. The importance
of this working correctly justifies special attention. Therefore, we begin by reporting the
test results obtained from the preliminary analysis and implementation of the optimisation

algorithm.

5.10.1 Single source shortest path

As applications get complex and data-rich, a structured engineering design process demands
meticulous attention to detail, coordination of data and a necessity to achieve the best
performance. The energy management problem has been translated into a mathematical
problem, which can be formulated using the dynamic programming approach. The energy
management algorithms are motivated for overall optimisation of the problem, using the
output of a set of smaller sub-problems to optimise a bigger problem. An adaptation of the
single-source shortest path (SSSP) algorithm by Dijkstra is fundamental to the solution.
Therefore, a familiar deterministic problem is chosen to evaluate the optimisation approach,
ensuring the results are entirely predictable before introducing the software code to the

energy management problem.

Figure 5.10a shows seven places of interest marked on a map. A unit distance and permissible
direction of travel between each place (node) are shown. The problem is to find the shortest

path between the nominated start node (A) and target node (F).
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Figure 5.10 Shortest path problem

To solve the shortest path problem mathematically a weighted matrix table (WMT) is
created (Figure 5.11). Starting from node A, the first row shows the distance between node
A and each valid destination. Invalid paths are set to infinity. The boxed values indicate the
shortest possible distance between a start and end node. After the shortest path has been
declared the remaining column entries remain blank. The starting node in the proceeding
row is the node with the shorted path declared in the previous row. If there are multiple
valid nodes, we choose the most left shortest path entry in the table. If the path is found
to be less than the previous entry, this new value is entered into the table followed by the
letter that represents the start node for this leg. The rightmost column details the shortest
path (distance and route) starting from node A. Solving the table identifies the shortest
path between all valid start and end node combinations. The last row confirms the shortest

path from node A to F is A— B — E — G — F. The total distant (cost) is 12 units.
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A B C D E F G | Ato
A 5A 104 00 00 00 00 0
B 10A 11B 8B o 00 5 A-B
E 104 10E co 10E | 8 A—=B=E
C 104| 10E s 10E | 10 A=C
D 10E 16D 10E | 10 A—B—E—D
G 12G | 10F 10 A—-B—E— G
F 12G 12 A—-B—E—-G-F

Figure 5.11 Weighted matrix table

Before the Dijkstra’s algorithm software code can determine the shortest (optimal) path, the
original route map is expressed in mathematical terms using a graph with directed edges

(digraph).

s=[1 1224555 7]
t=[2 3 45 6 3 4 7 6]

w=[5 10 6 3 6 2 2 2 2]

Given A =1, B =2 etc., and s and t are row vectors representing the start and target
nodes of all valid paths (\g), and w is the associated distance (weight) from s to t, i.e.,
Mo = ks = ky. Such that A\ =1 3, 2, Aa=1 10, 3, A3 =2 5 4 and so on. The formal
mathematical definition of this arrangement is an edgelist. The edgelist lends itself to
matrix representation (Figure 5.12), where a full adjacency matrix M = A\i(m,n), where

Ae(m — n) = M\p(ks = K¢) is the shortest path from g to ¢ through {1,---,k}.
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To

From 4 |0 0 O O 0 6 O

Figure 5.12 Full adjacency matrix

Referring to Figure 5.10a, the optimal path between node A(1) and F(6) is confirmed:
A— B — FE— G— F, and the total distance is 12 units. The pseudocode implementation
of the Dijkstra’s algorithm was introduced in Chapter 5, Algorithm 2. The software code
function is defined as [cost, pathl=dijkstra(M,s,t), where M is the adjacent matrix, s
= kg and t = k¢ (see Appendix D.11). The function first creates a weighted matrix table (see,
Figure 5.13a) using the map description encoded in the adjacency matrix before returning
the optimal route (path) and weight (cost) between the preset start and target nodes.
For example, executing the function [cost, path]l=dijkstra(M,1,6) returns cost=12 and

path=[1, 2, 5, 7, 6].

To interpret the MATLAB generated weighted matrix table, row 1 wmt (1,:) reads [A B C
D E F GJ and column 1 wmt(:,1) reads [A A B E C D G|. The values in row 7 columns 2
to 7, i.e., wmt (7,2:7) represent the shortest path from node A(1) to each of the other nodes
identified at row 2 columns 2 to 7. For example, the shortest path (cost) from node A(1)
to node F(6) is wmt (7,6), which is 12. Similarly the cost from node A(1) to node D(4) is
wmt (7,4), which is 10. The process to determine the path is more involved. Here we refer to
Figure 5.13b. Starting at the destination node F then working backwards transiting through
nodes until the starting node A is reached. In simple terms, from the destination node move
in an upwards direction stopping before the next number in the same column changes, then

move to the left most column, that is F — 1 — 2 — G. The digit in the left most column is
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VARIABLE VIEW
HH 7 double
1 2 3 4 5 6 7 8

z 0 5 10 Inf Inf Inf Inf

3 2 5 10 11 3 Inf Inf

4 5 5 10 10 3 Inf 10

5 3 5 10 10 3 Inf 10

6 4 5 10 10 3 16 10

7 7 5 10 10 3 12 10

B v

< >

1 2 3 4 5 6 7 8

i 2 3 4 5 6 7 "
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3 1@—+—= 16 .. O s Inf Inf

4 ® 5@+ 5 19 1 * Inf 10

5 3 5 10 10 8 Inf 10
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7 ©® 710+ 5 16 15 g © 10

8 () () ® .

< >

(b) Shortest path from node A to F

Figure 5.13 MATLAB implementation of Dijkstra’s algorithm
weighted matrix table

the column number where the next leg in the path starts, i.e.; 7. Now, 3 =+ 4 — 5 — E. The
process continues until the starting node is reached (Figure 5.14). The shortest path is now

revealed A - B - E — G — F.
©—0 0 -0
®—@—0—©
© O 0

Figure 5.14 Snake diagram of shortest path deduced from
computer generated weighted matrix table
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A computer generated plot highlighting the calculated shortest (optimal) path between nodes
A(1) and F(6) is shown in Figure 5.10b.

The results obtained from the preliminary analysis of the optimisation algorithm indicate
that the computer code correctly identifies the shortest path between a source and target
node. The next section, therefore, moves on to discuss the results when the same optimisation

algorithm is applied in the context of decentralised energy management.

To begin, we evaluate the data input models. Individual charts created using nodemap data,
and corresponding gridmap data validate the optimisation and control behaviour. In the
second study, the results obtained from a simulated tertiary DR event are discussed. Finally,
we monitor the system behaviour during an imbalance between supply and demand. Here,
the pro-active frequency control reacts to a simulated load disturbance causing a frequency
excursion from the nominal 50 Hz steady-state. The model is initialised using the values

reported in Table 5.3.

Table 5.3
Computational model initialisation parameters
Parameter Description Value
S0_date Stage 0 date time 10-0ct-2019 16:00
des_begin  Notification of DR event 10-0ct-2019 16:40
Tih (°C)  Minimum temperature threshold 16.6
Tstep (°C) Temperature step increase 3
Troom (°C)  Room temperature 18
Horizon (h) Forecast horizon 4
DR; (min)  Tertiary DR event duration 40
SO0C_hi SOC maximum threshold 0.8
S0C_lo SOC minimum threshold 0.2

Occupant thermal comfort feedback is shown in Figure 5.15a. At 16:40 the model reports the
aggregated occupant thermal comfort in a space is “too warm”. This consensus triggers the
optimisation algorithm to set the comfort level gridmap trajectory on a path that reduces the
measured room temperature by 0.5 °C, i.e., S, Iy S where n="Ts,—0.5°C. Also, according
to local settings, the timetable sets the number of occupants in a space to zero at 19:00.
A ‘no occupancy’ status has clearly defined adaptive triggers. Firstly, the comfort signal

values (occupants, response, and comfort) are held at a constant zero, while the number of
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occupants present in a space is zero. Secondly, at 19:00, the optimiser begins to alter the
comfort level gridmap trajectory by reducing the temperature to a minimum temperature
threshold T (local setting) at a rate of 0.5 °C every 10 min. This behaviour is confirmed in
the optimiser gridmap visualisation and subsequent optimiser nodemap shown in Figure 5.16.

Comfort (4 hrs): 10-Oct-2019 16:40 TOU (4 hrs): 10-Oct-2019 16:40

T 11

T T

100 r Comfort Info (16:40)| | ol TOU Info (16:40) | |
90 Occupants | TOU
Response 9 |
80 Comfort
70¢ 1 81 1
o 60r ] o 7T ]
£ £
5 50 1 5 6
@ a0¢ ] ® 5t ]

2 1

16:40 17:10 17:40 18:10 18:40 19:10 19:40 20:10 16:40 17:10 17:40 18:10 18:40 19:10 19:40 20:10 20:40
Oct 10, 2019 Oct 10, 2019
(a) Occupant thermal comfort (b) Cost (tariff)
Demand (4 hrs): 10-Oct-2019 16:40 Weekday Demand Profile
1 T T T T T T T " Current time: Thu 10-Oct-2019 16:40:00
0.9 110
120 ]
08 9
100 [ 1
2070 8 —
g B
o 061 Demand Info (16:40)| 17 o § 80 1
B " « @
e 05l Spline Coefs 16 E o)
> dv (rescaled) z X 60t 1
G 04l dv(gridmap) | |, O 2 Predicted Info (10-Oct-2019)
g ’ g 40 Spline-coefs
0031 4 3 — — — Cumulative Mean
NS O t16:40, ndm: 101.71
0.2 3 Rescale (0.840)
Euclidean: 0.0401
0.1 12 0or 1
0 ‘ ‘ ‘ | ‘ ‘ ‘ 1 ‘ | ‘ ‘ | ‘ ‘
16:40 17:10 17:40 18:10 18:40 19:10 19:40 20:10 20:40 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
Oct 10, 2019 Time (HH:MM)
(¢) Electricity demand (d) Electricity demand forecast

weekday 24 hr

Figure 5.15 Gridmap visualisation of data type function response
at 10-Oct-2019 16:40 over a 4 hr horizon window

The price in the three-tier TOU tariff is translated visually in Figure 5.15b. Initially, from
16:40 to 19:00 the TOU signal value is set to 9, which represents cost 24.99 p/kWh (peak),
reducing to 6 (11.99 p/kWh mid-peak price) at 19:00. The energy cost nodemap data (dec)
transformation to the optimiser gridmap is shown in Figure 5.16. During peak periods, when
the cost of energy is highest, the gridmap interpretation is to influence the control variable

by reducing the temperature setpoint, which in turn reduces the cost of energy. Similarly,
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at 19:00 (mid-peak), the gridmap tou signal is set at mid-scale (nominally 18 °C). The
electricity demand forecast is shown in Figure 5.15d. To help interpret the demand signals
shown, Figure 5.15¢ illustrates the calculated weekday demand profile over a 24 hr period.
The red circle marks the start of the 4 hr horizon window (shaded area). The dv (gridmap)
signal is reconstructed within the optimisation algorithm. The results are consistent with
the modified layout of corresponding digraph object node coordinates, which describes the
relationship between directional edges and connecting nodes shown in Figure 5.16a. The
optimal temperature path is calculated at a sample rate of 10 min. Figure 5.16b highlights
the optimal temperature value over a 4 hr horizon window commencing 16:40. The control
action for the continuing 10 min cycle shown is the temperature value specified at 16:50, that
is Ts, = 16.5 °C. This accords with our earlier occupant thermal comfort feedback report,

which registered a consensus to reduce the room temperature by 0.5 °C.

Optim Data (4 hrs): 10-Oct-2019 16:40 S0 date: 10-Oct-2019 16:40
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(a) 31 x 72 x4 gridmap visualisation (b) Gridmap projected onto 11 x 25 nodemap

Figure 5.16 Optimisation response 10-Oct-2019 16:40

On receipt of a DR event notice (16:40) the normalised demand forecast value, d4y is recast
to €gv. The modified demand profile trajectory is defined by the Dijkstra’s shortest path
algorithm x4 Iy ., where 1N ="Ts,+ Tstep (°C). As can be observed from Figure 5.17, the
change in demand profile at 16:50 increases from 16 °C (Tg,) to 19°C (Ts,,). A sample rate
of 600 sec accounts for the slight delay from the start of the DR preparatory window to
the change in demand profile trajectory. Although the supposed outcome is to promote an
increase in temperature equivalent to Ty (°C) leading up to the start of the DR event, the

projected valued is offset by the continued influence of the thermal comfort (e.) and energy
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cost (€ec) (tou) decision variables. Consequently, in this instance, the optimisation algorithm

set the 4 hr ahead optimal temperature value slightly less than the anticipated 19 °C.

The layout of individual digraph objects and their corresponding nodemap representation,
shown in Figure 5.16 and Figure 5.17 respectively, serve to provide a snapshot of the optimiser
outputs overs a 4 hr horizon window any given time. The benefit of the optimiser is now
translated into Figure 5.18, which plots several decision variables and control actions over a
24 hr period. Between Figure 5.18a and Figure 5.18b, we observe the impact of demand and
tariff data on the temperature setpoint (TS1). Furthermore, the outside temperature (Tout)

as no impact on the measured room temperature during this simulation.
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Figure 5.17 Optimisation response 10-Oct-2019 16:50

The start of the DR preparatory window is recorded at 16:40 and subsequently sets and
holds des_mode = 1 for 4 hr and 40 min (the time leading up to and including the DR event).
The BESS is seen to start a charge period in readiness to the start of the DR event. A tariff
mode signal (t_mode) automatically restricts the use of the BESS until the DR event starts.
At 20:40, the power signal (PWR) switches the primary power source from the grid to BESS.
If the cost of energy is peak tariff immediately after the DR event (t_mode = 3), then the
BESS would continue as the primary power source. However, as can be observed the BESS
SOC signal (SOC) indicates the BESS starts a discharge phase at from the start of the DR
event and continues, in this scenario, to the end of the DR event. At 21:20, the primary

power source reverts to the grid, but the BESS remains available (SOC > SOC’%L).
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Figure 5.18 A simulation study at 10-Oct-2019 16:00 for 24 hr with DR event

The rate at which the energy source naturally discharges has been magnified to evaluate
control actions when SDR exceeds low and high charge threshold values (local settings).
In practice, SDR parameters should be set accordingly. The simulation results show the
calculated electricity demand forecast profile (demand). Its impact on the optimisation
algorithm is clear, when demand is high (06:00 to 22:00) the aggregated effect is to limit
the temperature setpoint (reducing the demand for electricity on the distribution network).
Conversely, when demand is low (22:00 to 06:00), the constraints that govern the temperature
setpoint are relaxed. Here the optimiser allows, not mandates, an increase in energy
consumption by increasing the space heating temperature setpoint. This finding, while
preliminary, suggests the proposed control strategy has the potential to deliberately lessen

peaks in demand (electrical) and fill in the period of low demand.

At 18:20.36, the impact of a simulated load disturbance APd Table D.1 within the power

subsystem is highlighted. The large and rapid decreasing frequency excursion shown in
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the box highlight, signifying an imbalance between supply and demand, is observed more
clearly in Figure 5.19a. The proposed system immediate response is to lower the temperature
setpoint (T, ), reducing the on-site heat source energy consumption and thus providing
a pro-active response to the stability of the electrical distribution network [5]. As can be
observed in Figure 5.19b, and in the broader context in Figure 5.18a, these immediate
interventions have minimal impact on measured room temperature (7yoom ), hence minimising

occupant thermal discomfort.
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Figure 5.19 Frequency response

The accumulative effect of primary frequency regulation and system response to tertiary
DR events can be observed in Figure 5.20. The design of the simulation model allows
a comparison of baseline and simulated optimal behaviour. Here, energy costs follow a
similar trajectory up to the start of a DR event at 20:20. A subsequent reduction in room
temperature setpoint, while maintaining occupant thermal comfort, implies a decrease in
energy consumption during the DR. Furthermore, this demonstrates that energy consumption

has been shifted from the DR window.
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Figure 5.20 Electricity cost during demand event

5.11 Summary

The action of feedback systems cannot be described in terms of the aggregated behaviour of
its forward path alone. According to the eight laws of software evolution, feedback constrains
the behaviour of interconnected components and will modify their individual, local and
collective performance [217]. If the software process fails to take into account change initiated
in the surrounding environment when attempting to predict future outcomes, it is highly
likely that the system will not perform in a manner that is consistent with the design
or expectation. The simulation model technical development approach has observed this
important principle. Reasonable decisions have been taken throughout the process and have
been implemented accordingly. Feedback loops have attempted to deliberately address the
performance gap that exists between building performance and model predicted behaviour.
The shortfalls mentioned above have been considered when developing a new model, which
aims to replicate the stochastic behaviour of building occupants. This contribution to the
optimisation algorithm helps formulate a decision-making process that combines measured
room temperature with other domain data. Collectively they represent the three significant
data inputs to the optimisation algorithm, which is formulated using a weight-based routing
algorithm. The contribution to research set out in this chapter is the development of an
optimisation algorithm modified to support demand response services using three significant
data inputs. A series of tests demonstrates the behaviour of a heating system has been altered

by changing the temperature setpoint over a short horizon window based on the projected
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energy demand, cost (tariff) and thermal comfort. The supporting control mechanisms put
in place involves activities that aim to demonstrate active/pro-active response to changes in

measured grid frequency and tertiary DR services.

Sean Williams Teesside University



Chapter 6

Case Study:

Optimisation and Control

6.1 Introduction

In this chapter, we apply the proposed optimisation and control algorithm described previously.
We perform early deployment activities using prototype hardware in an experiment designed
to evaluate the interaction of energy assets for optimal control with real-world data. Special
attention is given to the control actions that underpin the usefulness of the proposed
optimiser. This study aims to follow the test approach shown in Figure 6.1. The test cycle
must observe the data and maintain the hardware and algorithm synchrony. The closed-loop
testing environment we describe allows transition points between software-in-the-loop and
hardware-in-the-loop activities. These act as the interface and provide a convenient and
necessary breakpoint to complete any rework required. This chapter will begin with a
description of designated hardware-in-the-loop simulations, including a review and selection
of simulation software tools. Details of a smartphone app designed to allow building occupants
to report relative thermal comfort levels are then presented before configuration and set up

of experimental environment is described.

6.2 Experimental test environment design

The prime objective for the development of hardware-in-the-loop simulation is to advance
a form of rapid prototyping that enables a detailed examination of the design problem
(requirements) and move the design towards a satisfactory implementation. Early testing

of the optimisation algorithm demonstrated the performance was adequate. Given the
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Figure 6.1 Hardware-in-the-loop test approach

favourable test performance of previous computer simulations, the experimental evaluation
is seen as a legitimate progression in the overall test approach. During this phase, hardware,
software, network requirements and test data requirements required to support the test
environment are identified. Performance measure requirements and procedures to control the
test configuration and environment are all considered. The primary objectives of performing
tests are: (1) find defects, which may have been created during the development of software
code, (2) gain confidence in the product, and (3) ensure the product satisfies declared test

objectives.

Given one of the significant objectives of testing is to assess the integration of the optimiser
software code by connecting other software and hardware components, a test environment

was designed with the following main requirements in mind:

e The optimiser software module design requires the following data: measured room
temperature, calculated demand (electrical) forecast, tariff (cost), notification of tertiary

demand event and occupant thermal comfort feedback.

e The evaluation test is to be run in real-time.
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Figure 6.2 Abstract of optimisation algorithm and schematic
diagram of the proposed hardware-in-the-loop test environment

A suitable industrial type controller will provide an interface between the optimisation
algorithm host computer and hardware components (e.g., heater, smartphone and

temperature sensor).

o Testing will assess the optimiser response to a tertiary DR event, i.e., from the start of

the DR preparatory window up to and including the demand event.
e Occupants must be able to send a message that describes their relative thermal comfort.

e Functionality that demonstrates switching of primary power source from grid-connected

mode to a battery energy source will be simulated.

e Sampling time to update the optimiser control action signal is 10 min.

6.3 Simulation software and hardware selection

In this study, there is a clear separation between software and hardware environments
(Figure 6.2). MATLAB/Simulink® was used to write software code for the optimisation
algorithm, providing an interface between the simulation and hardware environment, emulating
tertiary DR, and supporting in-test and post-test data analysis and visualisation. In addition,
the open-source Arduino integrated development environment (IDE) was selected to write
code and upload it to the industrial controller and supplementary Arduino products used

during hardware-in-the-loop tests.
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The test environment was designed to include the following major hardware items:

¢ Desktop PC Intel® Core™i5-3470 CPU @ 3.20 GHz 8.00 GB Winl0Pro.

e Industruino IND.I/O controller (Arduino Leonardo ATmega32u4 microcontroller).
e« MDR-20-24 power supply 24 VDC at 1 A.

o Climate King box fan heater 3 kW (HCK-BX3UK).

o CADAMP electronic fan speed controller (EFSC-010).

o Arduino Mega 2560 Rev3 (ATmega2560 microcontroller).

e Arduino Uno Rev3 (ATmega328P microcontroller).

e Arduino components for temperature sensing and data transfer from a remote sensor

to a microcontroller.

e Android smartphone with Bluetooth capability to host thermal comfort feedback app.

6.3.1 Industruino IND.I/O D21G controller

The product hosts a ATmega32ud microcontroller with 32 kB of flash. The 32u4 top board
supports two analog output channels (4 to 20 mA/0 to 10 VDC). Industruino is Arduino
compatible, housed in a DIN-rail mountable case and includes an on-board LCD with
membrane switch panel (Figure 6.3). The baseboard provides a viable solution to bridge
the gap between Arduino and industrial type sensors and actuators. In this study, the
microcontroller is configured to operate as a bridge between the host WinPC and hardware
equipment. The 0 to 10 VDC output regulates the heater airflow and the second channel (4
to 20 mA) is configured (for demonstration purposes only) to provide a visual indication of
measured room temperature. A series of digital pins (CH2, CH3, CH4 and CH5) provide
visual feedback of smartphone status. The microcontroller unit (MCU) connect to USB
UART, 433 MHz RXD (remote temperature sensor) and HC05 (smartphone Bluetooth)
equipment. The Industruino IND.I/O is powered by a separate 20 W 24 VDC single output

industrial DIN-rail power supply.
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Figure 6.3 Industruino IND.I/O D21G

6.3.2 MDR-20-24 power supply

This product features a universal AC input (85 to 264 VAC) and 24 W 24 VDC output.
Protections include short circuit, overload and overvoltage. In this study, the MDR-20-24 24

VDC power supply is used to power the Industruino IND.I/O D21G controller.

Figure 6.4 Mean Well MDR-20-24 power supply

6.3.3 Climate King box fan heater

Climate King box fan heater 3 kW (HCK-BX3UK) (Figure 6.5a). The internal equipment
includes a single-phase shaded pole induction motor (Part No. YZF482175A 25 W 1300 rpm
220 to 240 Vac) which is used to drive a fan to regulate the airflow. The unit allows the
fan to cool the equipment after the heating element has been turned off. A thermostatic
cut-off feature will cut the power if the heater gets too hot for too long. In this scenario, to

regulate the airflow, the factory-installed wiring for the heater control mechanism has been
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modified to allow the external control signal to adjust the shaded pole induction motor, see

Figure 6.5b.

I il
Wyt 4

i?

(b) Modified internal wiring layout

(a) Heater unit

Figure 6.5 Climate King 3 kW box fan heater

6.3.4 CADAMP electronic fan speed controller

CADAMP electronic fan speed controller (EFSC-010). Designed to accept a 0 to 10 VDC
input signal and can control the speed of the heater single-phase shaded pole induction
motor accordingly (Figure 6.6a). Internal wiring is configured to operate using a remote
speed adjustment station (fitting a link between terminals 4 and 5). A 0 to 10 VDC input
control signal originating from the optimisation algorithm is connected to terminals 10 (+I/P)
and terminal 11 (OVI/P). Electrical supply 230 V 1PH 50 Hz input to terminals 1, 2 and
3 respectively and finally terminals 10, 11 and 12 connect to the remote speed adjustment

station (thermostatically controlled load), see Figure 6.6b.
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Figure 6.6 CADAMP electronic fan speed controller

6.4 Arduino software development

The Arduino family of components utilised in this research provide three primary services.
Software code has been developed for each service using the Arduino IDE. Table 6.1 details
each service, its corresponding sketch name and host Arduino board. Code listings are

documented in Appendix C.

Table 6.1
Arduino software services
Service Description Sketch Name
(Board)

1 Interface between MATLAB/Simulink® software control_unit.ino
environment (Desktop PC Winl0Pro) and hardware (Leonardo)
environment

2 Send and receive messages from one Arduino to transmitter.ino
another Arduino board using 433 MHz (Uno Rev3)

3 Provide test stub that simulates the behaviours of mains_frequency.ino
measured grid mains frequency! (Mega 2560 Rev 3)

A schematic diagram of the Arduino sketch control_unit.ino development complete with

external input and outputs and internal outputs is shown in Figure 6.7.

! Arduino software service No.3 is detailed as an optional alternative. The Arduino Mega 2560 R3 (complete
with installed sketch mains_frequency.ino) is designed to output a continuous loop of grid measured frequency
(255 data recorded from BMRS data at sample time equal to 1 sec). It emulates the frequency measurement
instrument described at Appendix A.
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control_unit.ino

define variables initialise IO and ISR
define struct register custom symbols
initialise screen display
set 32u4 pin out

D e outputs
P set LED indicators

Arduino sensors read BT (Android smartphone)
Android smartphone » read COM (MATLAB/Simulink) -
MATLAB/Simulink read 433MHz (Arduino sensor)
output to COM printDataled
output to LED printDataUCO00A
output to LCD (32u4) printDataBT
Android smartphone | write to BT (Android smartphone) greenoff
MATLAB/SIMULINK write to COM (MATLAB/Simulink) redoff
Output

LED
LCD

Figure 6.7 Schematic diagram of Arduino sketch development - control_unit.ino

6.5 Building occupant engagement

Improvements in building energy efficiencies can be attributed to technological advances
in architectural design, material, and technology. However, there is quite often a disparity
between the predicted energy performance of buildings and actual energy usage [218].
According to recent studies, the scale of this so-called performance gap means actual energy
consumption can be up to five times the predicted (computed) value [219]. This discrepancy
is not exclusively attributed to the evaluation of building performance where results are based
on improved physical transformations and formulation of energy-saving standards. Instead,
the main reason is that the prediction models crude (or sophisticated) simplification of the
physical environment. Among these uncertainties, building occupant behaviour has been
identified as one of the significant contributing factors when developing a prediction model
for measuring building performance [220, 221]. Today, thermal comfort is defined as ‘that
condition of mind that expresses satisfaction with the thermal environment’ in the globally
recognised ASHRAE 55 (see, [222]) and ISO 7730 (see, [223]) standards for evaluating indoor
environments. These comfort limits can be expressed by the predicted mean value (PMV) or
predicted percentage of dissatisfaction (PPD) indices. Improved modelling techniques can

help align model behaviour with the physical world. In terms of human behaviour, this can
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translate to knowledge about building occupancy schedules, which provide time-dependent
occupancy details [224]. While this information will help calibrate the prediction model,
additional information is required. Participatory control through occupant feedback has been
a more recent development in predicting building performance. In the optimisation model
offered in Chapter 5, an algorithm was developed to predict an average thermal comfort
sensation of a group of people. This method included knowledge of building occupancy
during a set number of time intervals of each weekday. While this plays an essential role
in improving the optimiser, the most critical development was establishing feedback from

occupants in near real-time.

In recent studies, it is reported that the most common type of interface used for a collection
of thermal comfort feedback was based on basic mobile applications [221]. Utilising these
types of technologies is more compatible with real-life scenarios than methods that make
assumptions of thermal comfort, which are based on more generalised estimates of occupant
preferences [225]. The so-called personal comfort models, where thermal comfort is recognised
as being subjective and a matter of personal preference, are more likely to reflect individual
thermal comfort preferences than generalised group assumptions [226]. The approach used in
this study acknowledges technology-mediated thermal comfort feedback is a valuable energy
management intervention. Different thermal demands and occupants diversified preferences
may lead to low occupant satisfaction rates. However, despite a plethora of research on
this subject, it is difficult to ascertain which factors should be included in personal comfort

models [227].

In this study we aim to remain sensitive to the complex subject of indoor thermal comfort.
However, we are more interested in the contribution of occupant thermal comfort as a
condition of state and its subsequent impact on energy management. More specifically,
using averaged individual thermal comfort reports to influence the optimal path in energy
management. In doing so, the proposed optimisation algorithm has been configured to react
to a model that considers a consensus of multiple individuals when examining indoor thermal

comfort requirements.

In this experimental phase of work, we propose a general conceptual model that emulates a

two-way communication process through Bluetooth to allow processing of information and
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collection of user thermal comfort feedback. This approach lets us focus on the process-nature
of communication with building occupants. Also, it enables us to validate all the input and
outputs branches of each stage, including the related instruments that the technology offers.
The expectation is thermal feedback reports can be submitted at any time. However, a more
compatible strategy is to align data collection on a just in time basis, i.e., at the beginning

of each optimisation cycle at a sample rate of 10 min.

Identifying the best technology from a set of possible alternatives is a technology selection
problem. Several factors need to be considered during any selection process [228]. Advanced
technologies mean selecting the right techniques can be even more challenging. Nevertheless,
since the objective of this experiment is to demonstrate occupant engagement, a smartphone
app was considered a suitable platform to allow occupants to record the condition of individual

thermal preferences.

Table 6.2 lists several basic functional (F) and non-functional (NF) requirements. The
list helps focus on the development progression and build a basic testable and traceable
requirement specification. The smartphone app demonstrator application is strictly limited
to support the experimental study. Therefore maintainability, security, cultural, political,
and legal requirements are not specified.

Table 6.2
Smartphone app basic requirements

Item Type Description

1 F The product shall record an individual’s thermal comfort preference

2 F The product shall send thermal comfort preference to energy management
system

3 F The app shall provide a suitable user interface that allows the individual

to record thermal comfort preference

4 NF  The app user interface shall provide a visual indication of selected thermal
preference, location, and actual room temperature

5 NF  The product will allow individuals to exchange data between fixed energy
management system and mobile device (smartphone) using wireless
technology

6 F The energy management system shall process all received thermal comfort

reports based on the most recent data made available
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6.5.1 Application development

The entire smartphone app was designed to operate on an Android smartphone through the
MIT App Inventor 2, which uses block-based programming language built on Google Blockly
[229] and inspired by languages such as StarLogo TNG [230] and Scratch [231]. Figure 6.8

shows a schematic of the smartphone app model with inputs and outputs.

Wireless network
|- - - T T 007~ { ______ 1

Clockl.Timer ListPickerl.AfterPicking
Room temperature _| global green_state btnGreenFace.Click
Relative humidity "| global red_state btnRedFace.Click

IblIComfortLevel

i 1 |

CallBluetoothClientl list
Received_data

green_state
red_state

Individual preference
Room temperature <
Relative humidity

— e o —

Figure 6.8 Schematic diagram of app model with inputs and outputs

A prototype application user interface design included two 3-stage buttons, which allow the
operator to cycle through different thermal comfort preferences: (1) I'm too cold, (2) I'm
cold, (3) I'm okay, (4) I'm hot, and (5) I’'m too hot. A text banner message reports the
selected condition status. A further button (Bluetooth icon) allows the individual to connect
to the wireless network. An appropriate text banner message confirms the status of the
connection. The app start screen is shown in Figure 6.9a. After network connection has been

achieved, the individual can begin to register their thermal comfort preference. Figure 6.9b.
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(a) App not connected (b) App connected

Figure 6.9 Smartphone app screen images

The program logic (Figure 6.8) is divided into four groups: (1) Initialisation, (2) Interaction,

(3) Data and (4) Communication. The corresponding app block code is listed in Appendix C.

6.6 Experimental test design and set up

A complete wiring diagram of the hardware-in-the-loop test environment is shown in
Appendix C. For the indoor thermal environment measurement, a wireless temperature sensor
is deployed to a suitable fixed position in the room. An image of Arduino components and
smartphone before the positioning of sensors is shown in Figure 6.10. Equipment schematic
and legend are also provided. The diagram excludes major equipment items listed earlier,

i.e., host computer, heater, and electronic fan speed controller.
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(a) Equipment connection (benchtop)

Item Description

Android Smart Phone: Bluetooth TXD

Analog Output 2x CH (4-20 mA/0-10 VDC)

Real Time Clock: RTC DS1307 i2C Module

433 MHz RF: Wireless Data Receiver

HCO05 Serial Pass-through Module: Bluetooth RXD
433 MHz RF: Wireless Data Transmitter

DHT22: Temperature and Humidity Sensor
Arduino UNO Rev3

N
[m]m]
=
[§]=d

© ® N o o &~ W N

Arduino Mega2560: Mains Frequency Test Harness
Controller: Industruino IND.I/O D21G

USB to UART: Data Transfer to MVS

MDR-20-24 Power Supply 24 VDC at 1 A

o

=

-
N

(b) Equipment schematic (¢) Equipment legend

Figure 6.10 Hardware-in-the-loop test environment

6.7 Simulation model update

The desktop simulation model for energy optimisation framework developed in Chapter 5 is

modified to provide a bridge between the software and hardware environments. The revised
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model shown in Figure 6.11a excludes the building and energy subsystems and introduces

two new subsystems: serial in (Figure 6.11b) and serial out (Figure 6.11c).
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Figure 6.11 Computer model modifications for energy management

In addition to the changes made to the Simulink® model block layout, several software
code updates and new functions are required. Table provided at Appendix C.6 summarises

relevant code changes.

6.8 Experimental evaluation

Figure 6.12 shows the results of a preliminary test that was carried out in real-time. The
test started on Monday 6th April 2020 16:00. At 16:40 the start of a DR preparatory

event triggers a preset sequence of control actions designed to prepare the heating services
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in advance to the 40 min DR event, which started at 20:40. The test was run for 5.5 hr,
finishing 10 min after the DR event. Comparison of the findings shown in Figure 6.12 with
those of earlier computation studies confirms the operation of the optimisation algorithm
is consistent with our mathematical arguments, which posits that the interaction between
declared data types can influence an environment space heating. Increasing the temperature
setpoint successively by 0.5 °C at 10 min intervals during the DR preparatory stage increased
the space temperature by 2 °C from the start of the DR preparatory window. Figure 6.13a
confirms a temperature value of 18.5 °C was recorded at approximately 19:10. It can be
observed the temperature then decreased to 17.4 °C at 20:40, which is the start time of
DR event. This behaviour may be explained by the fact that the thermal comfort profile
(Comfort) reduced to an equivalent of 16 °C (T ) at 19:00; which is consistent with an

expected zero occupancy at the same time.

S0_date: 6-Apr-2020 16:50 S0_date: 6-Apr-2020 19:40

21

Gridmap Data Gridmap Data
20 Comfort . 20 F Comfort
Demand Demand
TOU TOU
19r Forecast 191 Forecast
S 187 S 18 1
S S
© k<]
= =
17 o

1 17 \
16 \— 16

151 15
1 N AN A S R S 14 I N N N SR SR
16:50 17:20 17:50 18:20 18:50 19:20 19:50 20:20 20:50 19:40 2010 20:40 21:10 21:40 22:10 22:40 23:10 23:40
Apr 06, 2020 Apr 06, 2020
(a) On receipt of a simulated DR event (b) During the 40 min DR event
signal at 16:50 (20:40 to 21:20)

Figure 6.12 Visual representations of gridmap data showing 4 hr horizon
window of predicted values of each data type and optimised temperature profile

Furthermore, as can be observed in Figure 6.13b, the control action signal utilised in
the earlier computational study has been modified to regulate the physical heat transfer
through flow. Here, the control action signal (Tu), which operates a 0 to 10 VDC EFSC, is
proportional to the difference between the calculated optimal temperature setpoint (TS1) and
the measured temperature (Tr), i.e., Tu x Te, where Te = T's;, — Tyroom- The power switch
signal (PWR) shows the virtual energy storage system is activated at 20:40 and continues

to operate as the heating system primary energy source for the duration of the DR event
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(shaded area). Overall, these results are very encouraging. The experimental evaluation
raises the possibility that the proposed optimisation algorithm may support small island

communities in a decentralised environment with limited access to communication networks.
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(a) Room temperature (Tr), temperature (b) Control action signal (Tu), primary
setpoint (TS1), thermal comfort gridmap data power switch signal (PWR), demand
(tc), demand event signal mode (des_mode) (rescaled) (dv) and DR event

and DR event

Figure 6.13 Experimental evaluation recorded results at 6-Apr-2020
16:00 for 5.5 hr with DR event

6.9 Summary

The test environment offers a low-cost platform to validate the optimisation algorithm in
real-time. For occupant thermal comfort preferences, a prototype smartphone app has been
developed and installed on an Android operating system, which satisfies the requirements
listed in Table 6.2. The computer simulation model has been modified to bridge the gap
between the software and hardware environments. Industrial standard equipment provides an
interface to electronic fan speed controllers, which in turn regulates heater airflow. Feedback
signals inform the optimisation algorithm about room temperature and thermal comfort

preferences.

New developments are required when attempting to explore the use of the proposed
optimisation and control when deploying in-the-field energy management solutions. However,
the functionality and proposed hardware-in-the-loop test environment provide a useful and

meaningful step that aims to validate the technical framework offered. A structured approach
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to equipment selection and testing means that the groundwork is in place to progress to

more challenging user-engagement and large-scale replication.
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Chapter 7

Conclusions and Recommendations

7.1 Introduction

This thesis advances knowledge for demand response services in community energy management.
Changing room temperature in buildings is achieved by framing an optimisation problem
that requires grid frequency measurement, energy forecasting, and knowledge of both spatial
and temporal constraints. This chapter begins by reflecting on aims and methods first
introduced in Chapter 1, summarising main findings and how each significant work activity
has contributed to research objectives. Based on these findings, recommendations for future

research brings this thesis to a conclusion.
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7.2 Demand response in buildings

A decentralised frequency control regulation method has been validated in Chapter 3 using
a series of computer models, a frequency measurement instrument, and a real controllable
thermal load. Here, a demand response approach established regulatory control of room
temperature through mechanisms that automatically respond to measured grid frequency
and in response to explicit tertiary DR event signals. Hypothesis tests provided evidence
that substantiates claims that data collected using the prototype frequency measurement

instrument is as good as data from the National Grid.

Several interesting conclusions can be drawn from the results presented. They suggest that
small excursions in measured temperature from setpoint values will not compromise indoor
comfort but can contribute to the restoration of frequency equilibrium during network stress
events. These findings mean that the utility of a decentralised demand response strategy
could close the gap in reserve capacity margins availability by exploiting coupling technologies
with near-zero intervention from the consumer. Furthermore, the approach presented offers
a viable alternative to more traditional system balancing services that tend to be reactive

(on/off) at set threshold values.

Chapter 4 documented a new mathematical model that uses a series of simple data
transformations to provide a useful representation of demand time series. Designed to operate
independently without the need to maintain an estimation dataset means, the simplicity
of this approach allows for rapid deployment of future modification to the polynomial
coeflicients, thus ensuring its longevity. This finding suggests that the behaviour of existing

energy optimisation technologies may benefit from similar approaches.

7.3 Conclusions from an experimental study

Overall, the results presented are very encouraging. The experimental evaluation raises the
possibility that the proposed optimisation algorithm may support small communities in a
decentralised environment with limited access to communication networks. Comparison

of the findings with other studies confirms the novelty of the proposed demand response
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scheme for energy management. It is encouraging, elements of this research are consistent
with results found in previous work. Eriksson et al. [232] developed a normalised weighted
constrained multi-objective meta-heuristic optimisation algorithm to consider economic,
technical, socio-political and environmental objectives. The results emphasised the application

of a modified PSO algorithm to optimise a renewable energy system of any configuration.

The implementation of the Dijkstra’s algorithm (used in this study) is more prevalent in other
applications (e.g., see [233-235]). Nevertheless, its simplicity makes it a versatile heuristic
algorithm. A shortest path optimisation algorithm was designed to compute an optimal
water heating plan based on specific optimality criteria and inputs [236]. The significant
feature reported of the proposed algorithm was its low computational complexity, which

opens the possibility to deploy directly on low-cost embedded controllers.

In a further study, a strong relationship between optimisation and space heating has been
reported [237]. Here, a neural network algorithm was used to build a predictive model for
the optimisation of a HVAC is combined with a strength multi-objective PSO algorithm.
Although results show satisfactory solutions at hourly time intervals for users with different
preferences, demand response mechanisms have not been considered. However, leveraging
upon the concepts of Industry 4.0, Short et al. [152] demonstrated the potential to dispatch

HVAC units in the presence of tertiary DR programme, can deliver satisfactory performances.

Finally, a more comprehensive study proposed an optimisation model which takes total
operational cost and energy efficiencies as objective functions [238]. Here, a thermal load is
adjusted in the knowledge that a managed change in temperature value has no significant
impact on user comfort. An integrated demand response mechanism is also considered.
Although the results provide a new perspective for integrated energy management and
demand side load management, there is no further exploitation in real-time user engagement

or perspectives on decentralisation.

7.4  Key findings

The aim of this study is to advance an integrated demand response in the decentralised

community energy (electrical) system. So far, most studies have focused on specific
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optimisation problems, more recently using complex algorithms that require uninterrupted
access to data and high computational resources to function. In this study, attention has
shifted more towards optimisation and control of community energy management. The
approach addressed some shortfalls in literature. In doing so, this study emphasises the

following contributions:

1. That the new arrangement reveals something useful, by demonstrating the operation

of a prototype low-cost, standalone grid frequency measurement instrument [215].

2. There is no information available that describes simultaneous active/pro-active control
of thermostatically controlled loads in buildings. The demand response offered provides
active control of room temperature using a multi-objective cost function formulated
using a weight-based routing algorithm [239]. The frequency measurement instrument

provides pro-active demand response [5].

7.5 Recommendations for future work

Energy system integration is considered a crucial element of the European Commission’s
initiative to achieve climate neutrality by 2050. Its recent ’energy system integration strategy’
rests on three pillars: a more circular energy system, with energy efficiency at its core;
electrification of heating and vehicles; and use of low carbon renewable where direct heating

and electrification is not feasible [240]. Here, energy efficiency is highlighted as an essential

contribution to achieving an integrated energy system.

The EU includes more than 550 inhabited islands [241]. Despite access to renewable energy
technologies, many continue to rely on electricity been generated using fossil fuel. The
intermittent behaviour of some RES continues to impact grid stability. This study does not
proclaim to reduce fossil fuel dependency or promote energy self-reliance. However, it may
offer more communities an opportunity to debate an energy transition from a fossil-fuelled

based platform towards a more sustainable low-carbon power system.

Firstly, to deploy the demand response regime, at scale, as part of a wider community-led
energy management scheme is recommended. This action requires training the proposed

demand forecasting algorithms using data from potential new deployment sites.
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Secondly, a decentralised demand response in community energy system must prioritise
the integration of new technological innovations in line with local community needs and
aspirations. Therefore, new work is required that promotes energy citizenship by encouraging
greater participation in community decision-making at the same time as helping foster
sustainable energy use. In this context, validating the design and implementation of consumer
feedback scheme (e.g., smartphone app) that reports user’s participation in any local demand

response initiative.
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Visual display and controls layout

1

3
O

7

Frequency
49.893 Hz s
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@
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2 9

5 6
L

Figure A.1 Visual display and controls layout

Description

Table A.2
Frequency measurement controls legend
Item Type
1 Linear Potentiometer (plus switch)
2 Push Button Switch
3 Indicator LED Yellow
4 Indicator LED Green
5 Indicator LED Red
6 Indicator LED Blue
7 Rocker Switch
8 Push Button Switch
9 Push Button Switch
10 LCD 16x2
11 GPS uFL RF Connector

LCD Back Light DIM (ON)
Screen Cycle

Write to on-board micro SD card
Event - Operational Threshold
Event - Statutory Threshold
GPS Fix

Data Log ON/OFF

Event - Reset

System Reset

Visual Display

Not Shown (side panel)

Sean Williams
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A.3 PermaProto breadboard
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Figure A.3 PermaProto breadboard schematic
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A.4  GPIO breakout board pinout

Enclosure TOP Panel

Enclosure BOTTOM Panel

Figure A.4 GPIO breakout board pinout
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A5 Wiring schematic
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Figure A.5 Frequency measurement wiring schematic
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A.6  Assembly

(c) Internal (base) (d) Internal (Top)

Figure A.6 Frequency measurement assembly

Sean Williams Teesside University



Appendix B

Frequency Measurement Software Development
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B.1 A note about Arduino IDE

The Arduino integrated development environment (IDE) is an open-source programming
tool for writing software code (referred to by Arduino users as a sketch) and uploading
it to one of the Arduino family of microcontrollers. This study offers a sketch for a
frequency measurement instrument written using Arduino IDE version 1.8.8. When uploaded
to a low-cost Arduino Mega2560 microcontroller, this, together with several compatible
external electronic components (shields), forms part of the frequency measurement instrument
architecture. Later, an industrial level input/output fully-featured compatible Arduino board
is introduced. Taking advantage of industrial level output channels of 0 to 10 VDC and 4 to
20 mA, the product offers a low-cost interfacing solution to bridge the gap between Arduino

compatibility and external sensors and actuators during hardware-in-the-loop testing.
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B.2 Arduino IDE sketch flow diagram

START
#include statements
#define statements
SD Card Parameters
LCD Back Light Parameters
Global Frequency Event Threshold Parameters
Variables Frequency ISR and Loop Parameters
PPS ISR Parameters AT
Display Format Parameters
checkFregEvent
Serial & MySerial
SD Card
GPS
Define Pin Mode
Initial Splash Screen .
Set GPS ISR (use timer0 interrupt) getDataString
Initialise Set PPS ISR
Set nfemTrigger ISR
Set nfcmStart ISR
Set nfcmPulse ISR
Set Timer1 ISR (pulse wave) writeDataLog
setDisplayMode \/\
writeSerialData
getGPS
checkScreenBtn
GPS Fix? YES— startppsISR
N‘O checkEventResetBtn
startTimer1ISR ppsBusy=TRUE
checkSDCardBtn
timer1Busy=TRUE Enable gpsFixPin
writeToDisplay

Figure B.1 Arduino IDE sketch flow diagram
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B.4 Arduino sketch: frequency measurement tool

1 /=

2 Title: Frequency Measurement Tool

3 Filename: freq_meas_tool_R5.ino

4 Prepared by: Sean Williams

5 Modified: 11 October 2017

6 Description: Designed to measure UK mains electrical frequency at 1 mHz or 10 mHz resolution.
7

8 Main features include:

9 1. Write to data log (micro SD Card) - fixed format at user defined interval
10 2. Write to external device using RS232 cable - fixed format at 1 Hz

11 3. Display GPS location (lat/lon/alt) when fix acquired

12 4. Monitor and record frequency events

13 5. Power saving features including lcd back light auto time out

14 6. Turn ON/OFF write to micro SD Card

15 7. View data log file size (only when write to SD Card selected to OFF)

16 8. Output display refreshed at 1 second intervals.

17

18 ----- LED indicators -----

19 Yellow - Pulse when write to on-board data log (micro SD Card) .

20 Green - Latch when frequency exceeds low (49.8 Hz) or high (50.2 Hz) operational thresholds.
21 Red - Latch when frequency exceeds low (49.5 Hz) or high (50.5 Hz) statutory thresholds.

22  Blue - Pulse 1 per 15 seconds when gps fix acquired.

24 ----- buttons -----

25 :Screen Cycle > 22 - Momentary push button when depressed will cycle LCD screens (0O to 5)
26 :Event Reset > 42 - Momentary push button when depressed will extinguish Red and Green LED
27 and reset LOW and HIGH counters (screen#1)

28 :LCD Backlight Time On > Al3 - Momentary push button when depressed will illuminated LED
29 back light and display for set time period (default 60 seconds)

30 :Arduino mega 2560 soft reset > RESET - Momentary push button when depressed will instruct
31 Arduino IDE to restart the AVR

32 :Write to micro SD Card > Al4 - Rocker switch to turn ON/OFF write to on-board data

33 log (micro SD Card) .

35 ----- pin out -----

36 GPS RX > TX2(16) Serial2

37 GPS TX > RX2(17) Serial2

38 GPS PPS > EXT.INTO3 (SDA 20)

39 INPUT SIGNAL > EXT.INT04 (RX1 19)
40 SD Card > (5) reserved

41 RS232 > (6) reserved

42 RS232 > (7) reserved

43

44 ----- led pin out ------

45 1 1 2 I 38 14 | 5 16 111112113 114 | 15 | 16

46 VSS | VDD | VO IRSIRW | E ID4I1D51D6 | D7 | K | Pot out

47 GND | +5V | Potin | 30 | GND | 32 | A8 | A9 | AIO | All | Al2 | GND

48 %

49 /

50 String version = "freq_meas_tool_R5"; // write version number to Serial Monitor on startup
51

52  #include <SPI.h>

53  #include <Wire.h>

54 #include <SD.h>

55 #include <Adafruit_GPS.h>

56  #include <Adafruit_GFX.h>

57 #include <Adafruit_SSD1306.h>
58 #include <SoftwareSerial.h>
59 #include <LiquidCrystal.h>

61 #define myGPSSerial Serial2 // define hardware connection GPS TX->RX2(17) & GPS RX->TX2(16)
62 #define GPSECHO false // set false to turn off extra GPS data display

63 #define buttonScreenPin 22 //set pin 22 for screen cycle push button

64 #define buttonResetEventPin 42 // set pin 42 for reset event push button

65 #define logLEDPin 23 // set pin 23 for data log LED

66  #define freqStatLEDPin 25 // set pin 25 for statutory frequency event RED LED

67 #define freqOpLEDPin 27 // set pin 27 for operational frequency event GREEN LED

68 #define debounce 50 // button debounce

69 #define nfcmSample 10 // defines the number of pulse counts in new freq calc method (nfcm)
70 //calculation

71  #define lecdBackLightPin Al2 // set pin Al2 for lcd back light

72 #define buttonLcdPin A13 // set pin Al3 for timed on lcd back light

73  #define writeToLogPin Al4 // set pin Al4 for write to micro SD Card ON/OFF rocker switch
74  #define gpsFixPin 34 // set pin 34 for gps fix LED

75 #define gpsFixInterval 15 // set time interval between each gps fix LED flash (seconds)

77 LiquidCrystal led(30, 32, A8, A9, AlO, All); // set lcd pin out
78 SoftwareSerial mySerial (6, 7); // set pins 6 and 7 for RS232 Serial TX/RX #+DO NOT CHANGE##
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79 // RS232 Shield V2 jumper setting D6(J2J3), D7(J1J2)

80 Adafruit_GPS GPS(&myGPSSerial) ;

81

82 /) ----- SD card parameters -----

83 int writeToLog = 0; // check parameter equals time interval before write to log

84 const int mySDCard = 4; // reserved for SD card #+*DO NOT CHANGE##

85 const int writeToLogInterval = 15; // number of seconds between each write to log (SD card) event
86 boolean writeToLogEnable; // parameter determines whether to write data to micro SD card or not
87 float bytes; // data log file size parameter

88 float kilobytes; // data log file size parameter

89 float megabytes; // data log file size parameter

90 float gigabytes; // data log file size parameter

91

92 /) ----- led back light parameters -----

93 int ledLightOnTime = 60; // set time lcd back light is on after button press (seconds)
94 unsigned int currentlcdBackLightOnStartTime = O;

95 unsigned long ledBackLightOnStart;

96 boolean ledBackLightOn;

97 int ledButtonStatus = 0;

98

9 // ----- frequency event threshold parameters -----

100 const double freqStatutoryLow = 49.5; // set statutory low frequency event threshold
101 const double freqStatutoryHigh = 50.5; // set statutory high frequency event threshold
102 const double freqOperationalLow = 49.8; // set operational low frequency event threshold
103 const double freqOperationalHigh = 50.2; // set operational high frequency event threshold
104

105 /) ----- frequency isr and loop parameters -----

106 volatile int nfcmCount; // new freq calc method (nfcm) counter

107 volatile unsigned long nfcmStartTime; // new freq calc method (nfcm) start time

108 volatile unsigned long nfcmEndTime; // new freq calc method (nfcm) end time

109  volatile boolean startTimerlISR = true;

110 volatile boolean timerlBusy = true;

111  volatile boolean rocofFlag = false; // use rocof algorithm only when true

112 volatile int rocofCount = 0;

113  const int rocofThreshold = 65; // rate of change of frequency threshold

114 float nfcmFreq = 0; // new freq calc method (nfcm) frequency

115 float freqFilter = 50e3;

116 const double alpha = 0.7258; // frequency filter

117 const double cf = 0.999646; // frequency correction factor

118 unsigned int Hz = O;

119  unsigned int mHz = O;

120 int lowFreqCount 0; // low frequency event counter

121 int highFreqCount = 0; // high frequency event counter

122

123 /) ----- pps isr parameters -----

124  volatile boolean ppsStart = false;

125  volatile boolean startppsISR = true;

126 volatile boolean ppsBusy = true;

127  boolean timerOBusy = false;

128  void useTimerOInterrupt(boolean);

129  const byte ppsPin = 20;

130 const byte inputPin = 19;

131 int ppsStartCount = O;

132

133 /) ----- display format parameters -----

134 boolean togglel = true; // write to RS232 indicator on Screen #0 togglel

135 int togglelCount = O;

136 boolean toggle2 = false; // gps fix indicator, flash LED once every 15 seconds

137 int toggle2Count = O;

138

139 boolean locationFormat = true; // set default location format to display:

140 // true = DD (decimal degrees) googlemaps format

141 // false = Lat: DDMM.MVMVM Long: DDDVMM.MVIVM

142 int screen = 0; // default initial screen to display:

143 // Screen #0 Frequency

144  // ff. ff[f] Hz * (option 10mHz or 1lmHz)

145 // (+ = flash when write to serial port RS232)
146 // Screen #1 Low: nn

147 // High: nn

148 // Screen #2 T: hh:mm:ss UIC

149 // D: yyyy-mmdd

150 // Screen #3a Lat: nn.nnnnN if (gps.fix)

151 // Long: n.nmmmwW

152 // Screen #3b No GPS Fix if (!gps.fix) miss out Screen #4
153  // [blank line]

154 // Screen #4 Alt: nnnn.nn if (gps.fix)

155 // [blank line]

156 // Screen #b5a SD File Size if (SD Card Switch ON)

157 // Turn off to read

158 // Screen #5b SD File Size if (SD Card Switch OFF)

159 // nnn.nn [GB] [MB] [KB] [Bytes]

160

161 int bl, b2; // button debounce

162 String dataStringA, dataStringB, dataStringC; // place holders for data string
163 // dataStringA = <yyyy-mmddT

164 // dataStringB = hhimm:ssZ,
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165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

// dataStringC = ff.ff>

String stringYear, stringMonth, stringDay; //dataStringA

String stringHour, stringMinute, stringSeconds, stringMilliSeconds; //dataStringB
String stringFreq; //dataStringC

void setup() {
// ----- initialize Serial & mySerial -----
Serial.begin(9600);
mySerial.begin(9600);
while (! Serial) {
; // wait for Serial port to connect.
}
while (!mySerial) {
; // wait for mySerial port to connect.

}

// ----- initialize SD Card -----

//Serial. println (version) ;

if (!SD.begin (mySDCard)) {
return;

}

// ----- initialize GPS -----

GPS.begin(9600) ;

GPS. sendCommand (PMTK_SET NMEA OUTPUT RMCGGA) ; // set National Marine Electronics
// Association sentence

GPS. sendCommand (PMTK _SET NMEA UPDATE 5HZ) ; // possible to change refesh rate in
// header file

GPS. sendCommand (PGCMD_ANTENNA) ;

useTimerOInterrupt (true) ;

myGPSSerial . println (PMIK Q RELEASE) ;

/] ----- define pin mode -----

pinMode (buttonScreenPin, INPUT); // screen cycle

digitalWrite (buttonScreenPin, HIGH) ;

pinMode (buttonResetEventPin, INPUT); // reset event counters
digitalWrite (buttonResetEventPin, HIGH) ;

pinMode (logLEDPin, OUTPUT); // data log write LED

pinMode (freqOpLEDPin, OUIPUT); // frequency event flag LED
pinMode (freqStatLEDPin, OUIPUT); // exceed frequency threshold LED
pinMode (ppsPin, INPUT); // pps input

pinMode (inputPin, INPUT); // input signal (frequency)

pinMode (buttonLedPin, INPUT); // turn on led back light
pinMode (ledBackLightPin, OUIPUT); // led back light
digitalWrite (lcdBackLightPin, HIGH) ;

ledBackLightOn = true; // turn on led back light

pinMode (writeToLogPin, INPUT); // write to log
writeToLogEnable = true; // enable write to log (micro SD card)
pinMode (gpsFixPin, OUIPUT) ;

/] ----- set timerl interrupt at 1Hz -----

cli(); // stop interrupts

TCCRIA = 0; // set entire TCCRIA register to O

TCCRIB = 0; // same for TCCRIB

TCNT1 = 0; //initialize counter value to O

OCRIA = 15624; // set compare match register for 1 Hz increments = (16%#1076)/(1¥1024)-1
// (must be <65536)

TCCRIB |= (1 << WGMI12); // turn on CTC mode

TCCRIB |= (1 << CS12) | (1 << CS10); // Set CSI12 and CS10 bits for 1024 prescaler

TIMSK1 I= (1 << OCIE1A); // enable timer compare interrupt

sei();//allow interrupts

// ----- initial splash screen -----
led.begin(16, 2);

led . setCursor (3, 0);

led. print ("DTA Energy")

led.setCursor(2, 1);

led. print ("Teesside Uni");

delay(1500);

led.clear () ;

led . setCursor(0, 0);

led. print ("Freq Meas Tool");

led .setCursor (0, 2); led.print("Version: ");
led. print (String (version) .substring (15, 17));
delay(3000);

led. clear () ;

// LED check

digitalWrite (logLEDPin, HIGH) ;
digitalWrite (freqOpLEDPin, HIGH) ;
digitalWrite (freqStatLEDPin, HIGH) ;
digitalWrite (gpsFixPin, HIGH) ;
delay (2000);

digitalWrite (logLEDPin, LOW);
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249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
200
291
292
293
294
205
206
297
208
209
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

}

digitalWrite (freqOpLEDPin, LOW) ;
digitalWrite (freqStatLEDPin, LOW) ;
digitalWrite (gpsFixPin, LOW);
delay (2000);

attachInterrupt(digitalPinToInterrupt (inputPin), nfemTrigger, FALLING); // start isr

void loop () |

}

setDisplayMode () ; // fn to control led back light

getGPS(): // fn to get gps data

// if gps fix then use pps as time stamp to carry out the following, else use timerl
// set at 1 second intervals as time stamp:

// 1. get frequency

// 2. check frequency against set threshold limits

// 3. set data into correct format in advance to data logging and RS232 serial output
// 4. write data to on-board micro SD card

// 5. write data to external via RS232

if (GPS.fix) {
if (startppsISR) attachInterrupt(digitalPinToInterrupt(ppsPin), pps, FALLING);
if (!ppsBusy) {
if (nfemCount == nfcmSample) {
if (toggle2Count == gpsFixInterval) { // set gps fix LED ON if at set time interval
digitalWrite (gpsFixPin, HIGH) ;
toggle2Count = 0;

toggle2Count++;

getFrequency (); // fn to get calculate frequency
checkFreqEvent () ; // fn to check frequency against event thresholds
getDataString () ; // fn to format date time group and frequency
writeDataLogger(); // fn to write data to SD card
writeSerialData () ; // fn to write data to RS232 serial output
attachInterrupt(digitalPinTolnterrupt (inputPin), nfemTrigger, FALLING); // start isr
ppsBusy = true; // set ppsBusy to prevent if -else loop running until next pps interrupt
digitalWrite (gpsFixPin, LOW);
}
}
}
else {
// start isr
if (startTimerlISR) attachInterrupt(digitalPinToInterrupt (inputPin), nfcmTrigger, FALLING) ;
if (!timerlBusy) {
if (nfemCount == nfcmSample) {
getFrequency(); // fn to get calculate frequency (correction factor and filter applied)
checkFreqEvent(); // fn to check frequency against event thresholds
getDataString () ; // fn to format date time group and frequency
writeDataLogger(); // fn to write data to SD card
writeSerialData (); // fn to write data to RS232 serial output
attachInterrupt(digitalPinTolnterrupt (inputPin), nfemTrigger, FALLING); // start isr
}
timer1Busy = true; // set timerlBusy to prevent if -else loop running until
| // mext timerl interrupt
}
checkScreenBtn () ; // check status of screen cycle button
checkEventResetBtn () ; // check status of event reset button
checkSDCardBtn () ; // check status of sd card on/off button
writeToDisplay () ; // write data to the lcd display

void setDisplayMode () { // fn to turn on lcd back light for set period of time (ledLightOnTime)

}

lcdButtonStatus = digitalRead (buttonLcdPin) ;
if (ledButtonStatus == HIGH) {
ledBackLightOnStart = millis () ;
currentlcdBackLightOnStartTime = O;
lcdBackLightOn = true;
digitalWrite (lcdBackLightPin, HIGH) ;
led. display () ;
}

else {
if (ledBackLightOn) {
currentlcdBackLightOnStartTime = millis () - lcdBackLightOnStart;
if (currentledBackLightOnStartTime > (ledLightOnTime * 1e3)) {
lcdBackLightOn = false;
digitalWrite (lcdBackLightPin, LOW) ;
} led . noDisplay () ;
}
}

void getGPS() { // fn to get GPS data

if (!timerOBusy) {
// read data from the GPS in the 'main loop'
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334 char ¢ = GPS.read () ;

335 // if you want to debug, this is a good time to do it!

336 if (GPSECHO)

337 if (¢) Serial.print(c);

338 }

339 // if a sentence is received, we can check the checksum, parse it...
340 if (GPS.newNMEAreceived ()) {

341 if (!GPS.parse(GPS.lastNMEA())) // this sets the newNMEAreceived () flag to false
342 return;

343 }

344 }

345

346 void getFrequency () { // fn to calculate frequency
347 nfcmFreq = (1le6 * nfcmCount) / (2 * (nfcmEndTime - nfecmStartTime)); // calculate frequency

348 nfemCount = 0; // reset the input signal pulse counter

349 nfcmFreq = nfcmFreq * cf * 1e3; // apply correction factor and change format (le3)
350 // limit value of new frequency to previous value if rate of change exceeds rocofThreshold
351 // start rocof algorithm only after 4th recorded frequency after power on

352 if (rocofFlag) {

353 if (abs(freqFilter - nfcmFreq) > rocofThreshold) { // rate of change threshold
354 nfcmFreq = freqFilter; // if rocof greater than rocofThreshold set frequency
355 // to previous value

356 }

357 }

358 freqFilter = (alpha * freqFilter) + ((1 - alpha) * (nfcmFreq)); // apply filter

359 // set flag to start rocof algorithm after 4th recorded frequency after power on.
360 if (rocofCount < 4) rocofCount++;

361 if (rocofCount > 3) rocofFlag = true; // set flag to start rocof algorithm

362 }

363

364 void checkFreqEvent() { // fn to turn on led if frequency exceeds set threshold values
365 if (((freqFilter / 1le3) < freqStatutoryLow - 0.4) ||

366 ((freqFilter / 1e3) > freqStatutoryHigh + 0.4)) {

367 freqFilter = 50e3; // if threshold exceeded set paremeter to 50e3

368 digitalWrite (freqStatLEDPin, HIGH); // set Statutory threshold LED (RED) ON

369 }

370 else if ((freqFilter / 1le3) < freqOperationalLow) { // detect low Operational threshold
371 // frequency event

372 lowFreqCount++; // increment Operational threshold counter

373 if (lowFreqCount > 99) lowFreqCount = O;

374 digitalWrite (freqOpLEDPin, HIGH); // set Operational threshold LED (GREEN) ON

375 return;

376 }

377 else if ((freqFilter / 1e3) > freqOperationalHigh) { // detect high Operational threshold
378 // frequency event

379 highFreqCount++; // increment Operational threshold counter

380 if (highFreqCount > 99) highFreqCount = O;

381 digitalWrite (freqOpLEDPin, HIGH); // set Operational threshold LED (GREEN) ON

382 return;

383 }

384 }

385

386  void getDataString() { // fn to set data into correct format
387 // dataString defined by dataStringA, dataStringB and dataStringC

388

389 // dataStringA: <yyyy-mmddT

390 stringYear = ("20") + String (GPS.year) ;

391 stringMonth = GPS.month;

392 if (stringMonth.length () == 1) stringMonth = "0" + stringMonth;
393 stringDay = GPS.day;

394 if (stringDay.length() == 1) stringDay = "0" + stringDay;
395 dataStringA = "";

396 dataStringA += "<";

397 dataStringA += stringYear;

398 dataStringA += "-";

399 dataStringA += stringMonth;

400 dataStringA += "-";

401 dataStringA += stringDay;

402 dataStringA += "T";

403

404 // dataStringB: hhmmm:ssZ,

405 // ss is set in pps and timerl

406 stringHour = GPS.hour;

407 if (stringHour.length () == 1) stringHour = "0" + stringHour;
408 stringMinute = GPS.minute;

409 if (stringMinute.length() == 1) stringMinute = "0" + stringMinute;
410 dataStringB = "";

411 dataStringB += stringHour; dataStringB += ":";

412 dataStringB += stringMinute; dataStringB += ":";

413 dataStringB += stringSeconds; dataStringB += "Z,";

414

415 // dataStringC: ff.ff>
416 stringFreq = (freqFilter / 1e3);
417 dataStringC = "";

418 dataStringC += stringFreq;
419 dataStringC += ">";
420 '}
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421

422 void writeDataLogger() { // fn to write data string to micro SD card

423 if (writeToLogEnable == HIGH) { // only write if writeToLogEnable is true

424 if (writeToLog == writeToLogInterval) { // only write to log at set time interval set
425 // by writeToLog

426 // data string format: "yyyy-mmddThh:mm:ssZff. ff"

427 if (dataStringA.length () == 12) { // test dataString for correct format '<yyyy-mmddT",
428 // if fail dont write to log

429 digitalWrite (logLEDPin, HIGH); // set data logger led to ON

430 File dataFile = SD.open("freqlog.txt", FILE WRITE); // file name on microSD card is
431 // "freqlog.txt"

432 // if the file is available, write to it:

433 if (dataFile) {

434 dataFile. print (dataStringA) ;

435 dataFile. print (dataStringB) ;

436 dataFile. println (dataStringC); // include carriage return at end of each data
437 // log entry

438 dataFile.close () ;

439 } digitalWrite (logLEDPin, LOW); // set data logger led to OFF

440

441 // if the file isn't open, pop up an error:

442 else {

443 //Serial. println (F("error opening freqlog.txt"));

444 }

445 }

446 writeToLog = O;

447 }

448 writeToLog++;

449 }

450 }

451

452 void writeSerialData() { // fn to write data to external equipment via RS232 cable
453 if (dataStringA.length () == 12) { // test dataString for correct format yyyy-mm-dd=
454 if (togglelCount == 1) { // set rate of write Serial Data indicator on Screen #0
455 togglel = !togglel;

456 togglelCount = 0;

457 }

458 mySerial. print (String (dataStringA)); //write <yyyy-mm-ddT

459 mySerial. print (String (dataStringB)); //write hhmm:ssZ,

460 mySerial. println (String (dataStringC)); //write ff.ff>

461

462 // next three lines writes to Serial Monitor, aim to read from USB into MATLAB
463 Serial.print(String (dataStringA)); //write <yyyy-mmddT

464 Serial.print(String (dataStringB)); //write hhmm:ssZ,

465 Serial.println (String (dataStringC)); //write ff.ff>

466

467 togglelCount++;

468 }

469 }

470

471 void checkScreenBtn() { // fn to change lcd screen display (16x2) when depressed:
472 if (!tdigitalRead (buttonScreenPin) &% !bl) { // check screen cycle button status
473 led.clear () ; // clear lcd display

474 screen++;

475 if ((!GPS.fix) &% (screen == 4)) screen = 5; // do not display Screen #4 if no gps fix
476 if (screen == 6) screen = 0; // reset cycle to start at Screen #1

477 bl = debounce;

478 }

479 if (!'bl == 0) bl--;

480 '}

481

482 void checkEventResetBtn() { // fn to reset event led and counter when depressed

483 if (!digitalRead (buttonResetEventPin) &% !b2) { // check event counter reset button status
484 led.clear () ;

485 lowFreqCount = 0; // reset low frequency counter to zero

486 highFreqCount = 0; // reset high frequency counter to zero

487 digitalWrite (freqOpLEDPin, LOW); // set event trigger led to OFF

488 digitalWrite (freqStatLEDPin, LOW); // set threshold led to OFF

489 b2 = debounce;

490 }

491 if (!'b2 == 0) b2--;

492 }

493

494  void checkSDCardBtn() { // check status of write to micro SD Card button
495 writeToLogEnable = digitalRead (writeToLogPin); // read write to micro SD card button (ON/OFF)
496 }

497

498  void writeToDisplay () { // fn to set each screen display content
499 switch (screen) {

500 case 0: // display frequency

501 lcd . setCursor(0, 0);

502 led . print ("Frequency ")

503 led .setCursor(0, 1);

504

505 // Uncomment next 4 lines to display frequency ff.fff Hz
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Hz = (freqFilter / 1e3);

mHz = freqFilter - (Hz * 1e3);
led.print (Hz); led.print('.");
print3digit(mHz, 'O'); lecd.print(" Hz");

// uncomment next 1 line below to display frequency ff.ff Hz
//lcd . print (freqFilter/1e3); lcd.print(" Hz");

led.setCursor(15, 1); // write to Serial Data RS232 symbol ON/OFF at 1 Hz
if (togglel) led.print("+");

if (!togglel) led.print(" ");

break;

case 1: // display number of Low and High statutory events

lcd . setCursor(0, 0);

led.print("Low: "); led.print(lowFreqCount) ;
lcd .setCursor(0, 1);

led.print ("High: "); led.print(highFreqCount) ;
break;

case 2: // display date and time in UIC (reverts to RIC if no GPS fix)

led . setCursor(0, 0);

led.print("T: "); led.print(dataStringB.substring (0, 8));
lcd .setCursor (13, 0);

led . print ("UTC") ;

led.setCursor (0, 1);

led.print("D: "); led.print(dataStringA.substring(1l, 11));
break;

case 3: // display location

if (GPS.fix) { // if gps fix then display lat/lon
if (locationFormat) { //Location format: DD.DDDDDD (Google Maps)
led.setCursor(0, 0):
led.print("Lat: "); led.print (GPS.latitudeDegrees, 4); lcd.print(GPS.lat);
led.setCursor (0, 1);
led.print("Lon: "); led.print(GPS.longitudeDegrees, 4); lcd.print(GPS.lon);

else { //Location format: DDDVMM.MMVM (NSWE)
led.setCursor (0, 0);
led.print (F("Lat: ")); led.print(GPS.latitude, 4); lcd.print(GPS.lat);
led.setCursor(0, 1);
led. print (F("Lon: ")); led.print(GPS.longitude, 4); led.print(GPS.lon);

}
else { // if no gps fix
led . setCursor (0, 0);
led. print (F("No GPS fix"));

break;

case 4: // if gps fix then display altitude otherwise goto Screen #5

led.setCursor (0, 0);
led.print (F("Alt: ")); led.print(GPS. altitude); led.print(" m");
break;

case 5: // read SD card and report back free capacity

lcd.setCursor(0, 0);

led. print (F("SD File Size"));

led . setCursor (0, 1);

if (writeToLogEnable == HIGH) {
led. print (F("Turn OFF to read"));

else {
File dataFile = SD.open("freqlog.txt");
if ((dataFile.size() / 1024) < 1) {
bytes = dataFile.size () ;

else { // determine file size of data log file on micro SD Card
kilobytes = dataFile.size() / float(1024);

megabytes = kilobytes / float(1024);

gigabytes = megabytes / float(1024);
}
// Serial.print("GB: ");Serial.println (gigabytes ,DEC); // debug only
// Serial.print ("MB: ");Serial.println (megabytes ,DEC); // debug only
// Serial.print ("KB: ");Serial.println (kilobytes ,DEC); // debug only
// Serial.print ("Bytes: ");Serial.println (bytes ,DEC); // debug only
// Serial. println (dataFile. size ());

led.setCursor (0, 1);
if (gigabytes > 1) {
led. print (gigabytes) ;
led. print (" GB ")

else if (megabytes > 1) {

Sean Williams

Teesside University



Page 185

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

led . print (megabytes) ;
led. print (" MB ")

else if (kilobytes > 1) {
led. print (kilobytes) ;

led. print (" KB ")
else {

led . print (bytes) ;

led.print (" Bytes "),

dataFile.close () ;
}
break;
}
}

void print3digit(int n, char leadingchar) { // fn to display a three digit number with
// padding if necessary
if (n < 100) led.print(leadingchar);
if (n < 10) lecd.print(leadingchar);
led . print(n);

SIGNAL (TIMERO_COMPA vect) { // isr: GPS interrupt
// Interrupt is called once a millisecond, looks for any new GPS data, and stores it
char ¢ = GPS.read () ;
// if you want to debug, this is a good time to do it!

#ifdef UDRO
if (GPSECHO)
if (c) UDRO = c;
// writing direct to UDRO is much much faster than Serial.print
// but only one character can be written at a time.
Tendif

void useTimerOInterrupt(boolean v) { // isr: GPS interrupt
if (v) {

// timerO is already used for millis () - we'll just interrupt somewhere

// in the middle and call the "Compare A" function above

OCROA = OxAF;

TIMSKO |= _BV(OCIEOA) ;

timerOBusy = true;

else

// do not call the interrupt function COMPA anymore

TIMSKO &= — BV(OCIEOA) ;

| timerOBusy = false;

}

void pps() { // isr: use pps interrupt as time stamp when gps fix
// do this only once to set counters, avoid spurious first pulse outcomes
if (!ppsStart) {
ppsStartCount++;
if (ppsStartCount == 1) ppsStart = true;
attachInterrupt(digitalPinToInterrupt (inputPin), nfcmTrigger, FALLING) ;
return;
}
stringSeconds = GPS.seconds; // grab gps seconds for accurate time stamp
if (stringSeconds.length () == 1) stringSeconds = "0" + stringSeconds;
ppsBusy = false;
startppsISR = false;
}

void nfemTrigger() { // isr: initial isr, enable the start isr
startTimer1ISR = false;
attachInterrupt(digitalPinTolnterrupt (inputPin), nfecmStart, FALLING);

void nfemStart() { // isr: record the start time and enable the pulse isr
nfemStartTime = micros () ;
attachInterrupt(digitalPinTolnterrupt (inputPin), nfcmPulse, FALLING) ;

void nfecmPulse() { // isr: record the end time and increment the count
nfcmEndTime = micros () ;
nfcmCount++;

if (nfcemCount == nfcmSample) detachInterrupt(digitalPinToInterrupt (inputPin));
}

ISR(TIMER1_COMPA vect) { // isr: timerl interrupt 1Hz
//generates pulse wave of frequency 1Hz/2 = 0.5kHz (takes two cycles for full wave)
stringSeconds = GPS.seconds; // grab gps seconds for accurate time stamp
if (stringSeconds.length () == 1) stringSeconds = "0" + stringSeconds;
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675 timer1Busy = false;

Listing B.1 freq__meas_tool_Rb5.ino
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B.5 HMI design

Screen #0 |

Frequency

Screen #1 |
Low: ©

Screen#2 |

T: 14:34:27 uTcC
D: 2016/12/04

Asterisk will flash when write to
external serial monitor at 1 Hz.
49.893 Hz Option to display at 10 mHz resolution.

Counters increment every time
. frequency exceeds Low (49.8) and
ks © High (50.2) statutory thresholds.

DDMM.MMMM

DD.DDDDDD

Lat: 54.5722N
Lon: -1.123491E

Screen #4 |
Alt: 198.

Screen #3b]

Lat: 54 34.332N

Lon: 1 7.409W

Screen #3c|

No GPS fix

SD File Size
Turn off to read

Screen #5b|

243.87 KB

SD File Size

Figure B.2 Frequency measurement HMI design
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B.6 Software change log

This change log contains a curated, chronologically ordered list of notable changes for
each version of software designed for the Frequency Measurement Tool. Software has been

developed using the Arduino IDE.

Frequency Measurement Tool R1

Filename: freq__meas_tool_Rl1.ino

Arduino IDE:  1.6.12

Modified: 18-05-2017

CR Title: N/A

Description: Designed to measure UK mains frequency at 1 mHz or 10 mHz resolution.

Main features include:

o Write to data log (micro SD Card) - fixed format at user defined
interval <yyyy-mm-dd*hh:mm:ss.sss,ff.ff#>.

e Write to external device using RS232 cable fixed format at 1 Hz.
o Display GPS location (lat/lon/alt) when fix acquired.

e  Monitor and record frequency events.

e Power saving features including LCD back light auto time out.

e Turn ON/OFF write to micro SD Card.

o View data log file size (only when write to SD Card selected to
OFF).

e  Output display refreshed at 1 second intervals.

Outcome: Initial formal release.
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Frequency Measurement Tool R2

Filename:
Arduino IDE:
Modified:
CR Title:

Description:

Outcome:

freq__meas tool R2.ino

1.6.12

06-06-2017

CR1 - DataFormat

CR2 - writeSerialData

Version freq__meas_tool_R1 writes data to the RS232 port and USB
(Serial Monitor). This change amends Fn(5) getDataString() which
defines the format of the data string output to the RS232 port.

The existing format is: <yyyy-mm-dd*hh:mm:ss.sss,ff.ff#>. This
change request requires the existing format is changed to the following
new format: <yyyy-mm-ddThh:mm:ss:ssZff.ff>.

The function Fn(5) getDataString() is defined by dataStringA, dataStringB
and dataStringC, where:

e dataStringA: yyyy-mm-ddT

e dataStringB: hh:mm:ssZ
e dataStringC: ff.ff

Changes to function Fn(5) getDataString() that define the data string
output to RS232 port implemented. Visual tests carried out monitoring
RS232 port using Serial Monitor, all indications found to be be correct.

Updates to Frequency Measurement Plotter also carried out and tested.
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Frequency Measurement Tool R3

Filename:
Arduino IDE:
Modified:
CR Title:

Description:

freq__meas tool R3.ino

1.6.12

22-06-2017

CR3 - ROCOF

Mains frequency is calculated at 1 second intervals using the Arduino
mega 2560 internal clock (or GPS PPS if GPS fix), by sampling 10 (user
defined) pulses input on an external interrupt pin (Arduino mega 2560).
A passband filter is applied. A function checkFreqEvent () is then called,
checking filtered mains frequency value. If frequency value exceeds the
National Grid defined statutory threshold + 1, the filtered mains frequency
value is set to 50 and a red LED will illuminate on the control panel. In
addition, if the filtered mains frequency value exceeds the National Grid
operational threshold (50.25 < F, < 49.8) a green LED will illuminate
on the control panel and either a HIGH or LOW counter will increment
by one (this is displayed on screen#1 on the LCD display - Figure B.2).
Both red and green LED can be extinguished and counters reset to 0 only
when the Event Reset button located immediately below the green LED is
depressed. The LCD display screen#0 has been set to display frequency at
100 mHz resolution whereas the USB, Serial Port and data log (on-board
SD Card) output at resolution of 10 mHz.

During periods when the Frequency Measurement Tool has been monitoring
mains frequency the red LED has been seen to illuminate, indicating
the recorded frequency value has exceed the thresholds described above.
Further testing revealed the Frequency Measurement Tool recorded six
instances (Figure B.3) when the frequency value exceeded 51.40 during a
period 2017-06-20 12:28:51 to 2017-06-22 07:15:54.

A review of function Fn(4) checkFreqEvent() assessing whether to
decrease the threshold values at which point measured frequency would be
set to 50 concluded this approach would not resolve the underlying issue.
An alternative approach was therefore taken; introduction of a Rate of
Change of Frequency (ROCOF) algorithm. Further analysis confirmed 6
occasions where the value exceeded 51.50 exhibited a ROCOF in excess
of 1.4 whereas the ROCOF for the remaining time period (153597 data
entries) was < 0.02 (Figure B.4).

Function Fn(3) getFrequency was modified to monitor the calculated
frequency rate of change. The same function also includes a correction
factor (cf) and bandpass filter. Additional code was introduced to ensure
the ROCOF algorithm started after the 4th frequency measurement was
recorded; this would allow sufficient time for the Frequency Measurement
Tool to stablise.
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Outcome: Changes to function Fn(3) getFrequency () implemented.

Initial tests demonstrated the measured frequency output is stable and the
sample of data analysed does not include any readings that would have
resulted in the red LED illuminating. A visual test comparing sample
data captured using the Frequency Measurement Tool against a sample
extracted from the BMRS reporting facility for the same period of time was
carried out. Instances where a ROCOF > 0.065 was observed the frequency
data remained unchanged until the calculate ROCOF frequency data
was < 0.065. A total of four occurrences when the calculated frequency
remained constant (indicating ROCOF limits had been reached) was
observed during the 3 d 18 h 46 min 32 s test period commencing 2017-06-22
13:43:30:

2017-06-23 05:28:05 1 h

2017-06-25 14:52:10 2 h 50 min
2017-06-26 00:00:34 54 min

2017-06-26 01:30:43 6 min

A 24-hour time period 2017-06-23 07:45:00 to 2017-06-24 07:45:00 where
the calculated ROCOF was within limits is illustrated at Figure B.5.

Recommend to continue monitoring recorded output on visual display and
set write to on-board micro SD Card switch to ON; providing option to

review recorded frequency data at a later date.

515 i
— Recorded Frequency Data

N
L 51.0F b
>
)
c
[o)
] L -
g 50.5
-

MWWWWWMWW

| | | | |

Time

Figure B.3 Recorded frequency data
(2017-06-20 12:28:51 to 2017-06-22 07:15:54)
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— Calculated ROCOF

Time

Figure B.4 Calculated ROCOF
(2017-06-20 12:28:51 to 2017-06-22 07:15:54)

1 void getFrequency () { // fn to calculate frequency

2 nfcmFreq = (1e6 * nfemCount) / (2 * (nfcmEndTime - nfemStartTime)); // calculate frequency
3 nfemCount = 0; // reset the input signal pulse counter

4 nfemFreq = nfemFreq * cf * 1e3; // apply correction factor and change format (1e3)

5 // limit value of new frequency to previous value if rate of change exceeds rocofThreshold
6 // start rocof algorithm only after 4th recorded frequency after power on

7 if (rocofFlag) {

8 if (abs(freqFilter - nfcmFreq) > rocofThreshold) { // rate of change threshold

9 nfcmFreq = freqFilter; // if rocof greater than rocofThreshold set frequency
10 // to previous value

11 }

12 }

13 freqFilter = (alpha * freqFilter) + ((1 - alpha) * (nfcmFreq)); // apply filter
14 // set flag to start rocof algorithm after 4th recorded frequency after power on.
15 if (rocofCount < 4) rocofCount++;

16 if (rocofCount > 3) rocofFlag = true; // set flag to start rocof algorithm

17}

Listing B.2 getFrequency()

&

S

S
T

—BMRS i
— Arduino

Frequency [Hz]
N (4] (2]
© S S
© o -
T
1 |

oS
©
[ee]
T
|

L L L
0 4 8 12 16 20 24
Time [Hours]

Figure B.5 Comparing frequency data
(2017-06-23 07:45:00 to 2017-06-24 07:45:00)
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C.1  Arduino sketch: control unit

oo~ ULk W=

51
52
53
54
55
56
57
58
59
60
61
62
63
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65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

/%

Title: Control Unit
Filename: control_unit.ino
Prepared by: Sean Williams
Modified: 03 May 2018

Description: Designed to support testing of smart phone app for thermal comfort.

Main feature include:

Support BT interface between smart phone and Arduino platform
TXRX remote temperature and humidity data via 433MHz

Interface to MATLAB/Simulink Model (USB)

Support data transfer to MVS (UART)

Chl provide 0-10V crtl_action cmd

Ch2 4-20mA output to LCD, brightness proportional to room_temp
LED and LCD visual feedback

Nooh RN~

32u4 > UCOOA R3 > USB > PC (used for data transfer)
PC > 32u4 (used for #.ino loading only, not used for data transfer)

32u4 UCO00A 32u4 HC5 32u4 433RXD
DO/RX -> TX1 D14 -> TXD D7 -> DATA
D1/TX -> RX1 D15 -> RXD +5V -> +5V
+5V > +5V +5V -> +5V GND -> GND
GND -> GND GND -> G\D

MEGA2560 RTC UNO 433TXD UNO  -> DHT22
SDA20 -> SDA D12 -> DATA D4 -> 2
SCL21 -> SCL +5V -> +5V +5V -> 1

+5V > +5V GND -> GND GND -> 4

GND -> GND

32u4 Analog 2x CH Output

Chl 0-10V ctrl_action

Ch2 4-20mA LED yellow (room_temp)

32u4 Digital 8x CH Input/Output

Ch2 24V LED red (smart phone: 'I'm warm ')

Ch3 24V LED red (smart phone: 'I'm too warm')
Ch4 24V LED green (smart phone: 'I'm cold ')
Chb 24V LED green (smart phone: 'I'm to cold ')

Change History:

[05-05-2018] Attempt to use mySerial on pins D6 and D7 and connect HCO5. Didnt work.
Confirmed with IND I/O Pin Out datasheet D6 and D7 does not support change interrupts
Changed D6 and D7 to D14 and D15 respectively.

[10-05-2018] Attempt to introduce RXD from N1 (Nano) into IND I/O.

Using RXDSerial (10, 11). This approach is not valid. Use instead single

digital pin to receive data. Nominated D7.

11-05-2018] Changes to data received from N2 TXD. Constraints to data before

output to BT, USB to UART and 32u4 LCD.

[10-03-2020] Changes required to support revised Smart Phone app and HIL
[12-03-2020] Serial.read ctrl_action 0-10V at Chl to EFCU-010

*

/

#include <Indio.h>
#include <Wire.h>

#include <VirtualWire.h>
#include <SPI.h>

#include <UC1701.h>
#include <SoftwareSerial.h>

SoftwareSerial mySerial(14, 15); //RX, TX (UCOOA USB to UART converter)

const int receive_pin=7; //pin to connect 433MHz RXD data pin
const int redled1Pin=2;
const int redled2Pin=3;
const int grnled1Pin=4;
const int grnled2Pin=5;

float val = 0.0;
char temperatureChar[10];
char humidityChar[10];

struct

{
float temperature = 0.0;
float humidity = 0.0;

} data;

//typedef struct package Package;
//Package data;

static const byte ledPin = 13;
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86 // The dimensions of the LCD (in pixels) ...

87 //static const byte LCD_WIDTH = 128;

88 //static const byte LCD_HEIGHT = 64;

89

90 // A custom "degrees" symbol...

91 static const byte DEGREES CHAR = 1;

92 static const byte degrees_glyph[] = {0x00, 0x07, 0x05, 0x07, 0x00};

93

94 // A custom "O" blank symbol...

95 static const byte BLANK CHAR = 2;

96 static const byte blank_glyph[] = {OX7E, 0x42, 0x42, 0x42, Ox7E};

97

98 // A custom "O" filled symbol...

99 static const byte FILL_CHAR = 3;

100  static const byte fill_glyph[] = {OXx7E, Ox7E, Ox7E, Ox7E, Ox7E};

101

102  static UC1701 lcd;

103

104 //variables

105 int i=0;

106 int BTReceived = O;

107 int UARTReceived = O;
ed =

108 int MATLABReceivt 0;
109 int red_state = O;

110 int green_state = O;

111 float MVSReceived = 0.0;

112 float anOutChl = O;
113 float anOutCh2 = O;

114 float room_temp=0;

115 float MATLABvalue=0;

116 char numStr[6];

117  String MATLABString="";
118  String inString=String () ;

119

120  void setup() {

121

122 led.begin () ;

123 //clears lcd screen

124 for (int y=0; y < 7; y++){
125 for (int x=0; x < 128; x++){
126 led.setCursor(x, y);

127 led.print (" ");

128 }

129 }

130

131 Serial.begin(9600);

132 // while (!Serial) {

133 // ; // wait for serial port to connect. Needed for native USB port only
134 //

}
135 Seriall .begin(9600);
136 mySerial.begin(9600);

137

138 // Initialise the IO and ISR

139 vw_set_rx_pin(receive_pin);

140 vw_setup(500) ; // Bits per sec

141 vw_rx_start () ; // Start the receiver PLL running

142

143 // Set IND.I/O CHI and CH2 mode [10V | mA]

144 Indio.analogWriteMode (1, V10); // Set Analog-Out CHI to 10V mode (0-10V).
145 Indio.analogWriteMode (2, mA); // Set Analog-Out CH2 to mA mode (0-20mA) .
146

147 // Register the custom symbol...

148 lcd . createChar (DEGREES CHAR, degrees_glyph);
149 led . createChar (BLANK CHAR, blank_glyph);
150 lcd . createChar (FILL_CHAR, fill_glyph);

152 // Initial screen display

153 led.setCursor (0, 0);

154 led.print ("T: ");

155 led.setCursor (0, 1);

156 led.print("H: ");

157 led.setCursor (0, 2);

158 led. print (" = Thermal Comfort *");
159 led . setCursor (0, 3);

160 led. print ("CHI1: 0.00V");

161 led . setCursor(0, 4);

162 led. print ("CH2: 0.00mA") ;

163 led.setCursor(0, 5);

164 led. print ("Green: ");

165 led. println ("\002\002 ");

166 led.setCursor(0, 6);

167 led . print ("Red: ")

168 led. println ("\002\002 ");

169

170 // Set 32u4 pinout

171 Indio. digitalMode (redled1Pin, OUIPUT) ;

172 Indio. digitalMode (redled2Pin, OUIPUT) ;
173 Indio . digitalMode (grnled1Pin, OUTPUT) ;
174 Indio . digitalMode (grnled2Pin, OUIPUT) ;
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175
176
177
178
179
180

pinMode (ledPin, OUTPUT) ;

// Set Chl to OV and Ch2 to OmA

Indio.analogWrite(1, O, false); //Set CHI to OV ("true" will write value to EEPROM ...

// of DAC, rstoring it after power cycle).
Indio.analogWrite(2, 0, false); //Set CH2 to OmA

// Turn off all LED indicators

Indio. digitalWrite (redled1Pin ,LOW) ;
Indio. digitalWrite (redled2Pin ,LOW) ;
Indio. digitalWrite (grnled1Pin ,LOW) ;
Indio. digitalWrite (grnled2Pin ,LOW) ;

void loop () {

uint8_t buf[sizeof(data)];

uint8_t buflen = sizeof(data);

//Serial.println("149");

if (vw_get_message(buf, &buflen)){ // Is there a packet for us?
memcpy(&data,&buf, buflen) ;

// Serial.println("153");

if ((data.temperature > 10.0 &k data.temperature < 65) &&

(data.humidity > 5 & data.humidity < 60)) {

String temperatureString = String(data.temperature,1);
temperatureString. toCharArray (temperatureChar,10) ;
String humidityString = String(data.humidity,1);
humidityString . toCharArray (humidityChar,10) ;
room_temp=data.temperature;
// print data to 32u4 lcd display
printDatalcd (temperatureString, humidityString) ;
// Write data to on board RX/TX (UCOOA USB to UART Converter)
printDataUCOOA (temperatureString, humidityString, room_temp) ;
// Write data to bluetooth (HC-05 to Android Smart Phone)
printDataBT (temperatureString, humidityString) ;

// output to Port COM (Leonardo) 23.40;B;cr/In where B=BTReceived in {0,1,2,3,4}
Serial.print(data.temperature) ;
Serial.print(";");
Serial.print (BTReceived) ;
Serial.println(";");
}
}

// read from MATIAB ctrl_action, covert and display to LCD and set Chl output to
//same value. Data received [data_ctrl_action]=round(data_ctrl_action*100,0)

digitalWrite (ledPin, LOW) ;
if (Serial.available () >0){ //Serial is data from MATLAB

for (int i=0;i<6;++1i){

numStr[i]=Serial.read () ;

}

numStr[6]="'\0";

inString=num$Str;

MATLABvalue=inString. tolnt () ;

led . setCursor (0, 3);

led . print ("CHI: "),
led. print (MATLABvalue/100);
led. print ("V ")

anOutCh1=MATLABvalue/100;
Indio.analogWrite(1, anOutChl, false); //Set CHl to anOutChlV
//("false" will not write value to EEPROM of DAC).
}

if (mySerial.available () >0){ //mySerial is data from BT
BTReceived = mySerial.read () ;
}

if (Seriall.available () >0){ //mySerial is data from USB-UART
UARTReceived = Seriall .read () ;
}

//Turn Green and Red LED OFF

if (BTReceived == '0'){
greenoff () ;
redoff () ;
Indio. digitalWrite (redled1Pin ,LOW) ;
Indio. digitalWrite (redled2Pin ,LOW) ;
Indio. digitalWrite (grnled1Pin ,LOW) ;
Indio. digitalWrite (grnled2Pin ,LOW) ;
led.setCursor(0, 2);
led.print(" It's warm enough ");

}

//Turn on Green LED dim after pressing Cold face once
if (BTReceived == '1"){

redoff () ;

Indio. digitalWrite (redled1Pin ,LOW) ;
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263
264
265
266

268
269
270
271
272

275

344
345
346
347
348
349
350

Indio. digitalWrite (redled2Pin ,LOW) ;
Indio. digitalWrite (grnled1Pin ,HIGH) ;
led.setCursor (0, 2);
led. print (" It 's cold ")
led.setCursor (0, 5);
led. print ("Green: ");
led. println ("\0O03\002 ");

}

//Turn on Green LED bright after pressing Cold face twice consecutively
if (BTReceived == '2'){

Indio. digitalWrite (grnled2Pin ,HIGH) ;

lcd . setCursor(0, 2);

led. print (" It's too cold ")

lcd . setCursor(0, 5);

led.print ("Green: ");

led. println ("\003\003 ");
}

//Turn on Red LED dim after pressing Hot face once
if (BTReceived == '3'){
greenoff () ;
Indio. digitalWrite (grnled1Pin ,LOW) ;
Indio. digitalWrite (grnled2Pin ,LOW) ;
Indio. digitalWrite (redled1Pin ,HIGH) ;
led.setCursor (0, 2);

led. print (" It 's warm ")
led . setCursor (0, 6);
led. print ("Red: ")

led. println ("\003\002 ");
}

//Turn on Red LED dim after pressing Hot face twice consecutively
if (BTReceived == '4"'){

Indio. digitalWrite (redled2Pin ,HIGH) ;

led . setCursor(0, 2);

led. print (" It's too warm ")
led . setCursor(0, 6);
led . print ("Red: ")

led . println ("\0O03\003 ");
}

delay(1000);
}

void printDatalcd (String temperatureString, String humidityString) {
// Print temperature (using the custom "degrees" symbol) and humidity data
// "T: 23.45'C "
// "H: 22.85% "

lcd . setCursor(0, 0);

led. print("T: ");

led. print (temperatureString) ;

led. println ("\001C ")

led.setCursor (0, 1);

led. print ("H: ");

led . print (humidityString) ;

led. print ("% ")
}

void printDataUCOOA (String temperatureString, String humidityString, float room_temp) {

// Write data to on board RX/TX (UCOOA USB to UART Converter)

// "T,23.4,H,22.8" & vbCrLf & "T,23.4,H,22.8"

// Len is 16 characters
anOutCh2=1+(((room_temp-15)+(18-1)) /(24-15)) ;
Indio.analogWrite(2, anOutCh2, false); //Set CH2 to anOuCh2mA

//("false" will not write value to EEPROM of DAC).
lcd . setCursor(0, 4);
led . print ("CH2: ")
led. print (anOutCh2) ;
led. print("mA ");

Seriall .write ("T,");

Seriall.print (temperatureString) ;

Seriall.print(" ,H,");

Seriall.println (humidityString) ;
}

void printDataBT(String temperatureString, String humidityString) {
//Write data to bluetooth (HC-05)
//"23.4122.8 & vbCrLf & 23.4122.8"
mySerial. print (temperatureString) ;
mySerial. print("1");
mySerial. println (humidityString) ;
}

void greenoff () {
lcd.setCursor (0, 5);
led. print ("Green: ");
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led. println ("\002\002 ");

void redoff () {
led . setCursor (0, 6);
led. print ("Red: ")
led. println ("\002\002 ");
}

Listing C.1 control_unit.ino

Sean Williams Teesside University



Page 199

C.2  Arduino sketch: mains frequency

/*

Title: Mains Frequency
Filename: mains_frequency.ino
Prepared by: Sean Williams
Modified : 13 May 2018

Description Designed to emulate Frequency Measurement tool

Main features include:
1. Continuous stream of loop pre-recorded mains frequency
2. Format <yyyy-mmrddThh:mm:ssP, ff.ff>, no carriage return

) © 00 IO U W N

11

12 Change History

13 [13-May-2018] Start to add rtc functionality and array data which is an extract from
14 BMRS site. Nano low memoray restricing number of data items (frequency value) in array.

15 Uno has same capacity so stay with Nano. Invest import from txt file or introduce SD

16 Card data logging.

17 [16-05-2018] Changes output string to include flag that will be used in MVS to

18 indicate if test data is test harness or not.

19 [21-05-2018] Change output string back to previous format but make change to one element
20 so that can keep MVS the same except for new line that will test for this one element.
21 =/

23  #include "RTClib.h"

24 int secondCount;

25 int i = O;

26 float randNumber;

27 //255 data entry from BMRS data, equates to 1 reading per second gives 4 minutes and 15 seconds
28 float freqData_1[]={

29 50.01, 50.02, 50.01, 50.01, 50.01, 50.02, 50.02, 50.02, 50.00, 49.98, 49.99, 49.99,
30 49.98, 50.00, 50.00, 49.99, 50.00, 50.00, 49.98, 50.00, 49.99, 49.99, 49.99, 49.98,
31 49.97, 49.95, 49.96, 49.97, 49.98, 49.96, 49.96, 49.97, 49.96, 49.97, 49.98, 49.97,
32 49.96, 49.97, 49.96, 49.98, 49.99, 49.97, 49.97, 49.99, 49.98, 49.97, 49.97, 49.97,
33 49.97, 49.98, 49.99, 49.99, 50.00, 49.97, 49.98, 49.98, 49.98, 49.98, 49.98, 49.97,
34 49.98, 49.96, 49.98, 49.97, 49.98, 49.97, 49.96, 49.95, 49.95, 49.95, 49.96, 49.94,
35 49.94, 49.96, 49.95, 49.95, 49.94, 49.95, 49.96, 49.96, 49.96, 49.98, 49.97, 49.96,
36 49.95, 49.94, 49.94, 49.95, 49.95, 49.95, 49.92, 49.93, 49.94, 49.95, 49.95, 49.93,
37 49.93, 49.95, 49.96, 49.95, 49.96, 49.97, 49.97, 49.97, 49.96, 49.95, 49.95, 49.97,
38 49.96, 49.96, 49.97, 49.96, 49.97, 49.94, 49.94, 49.96, 49.97, 49.98, 49.96, 49.98,
39 49.97, 49.97, 49.97, 49.96, 49.98, 49.99, 49.98, 49.97, 49.99, 49.99, 49.99, 50.01,
40 49.98, 49.98, 49.99, 49.99, 49.99, 49.99, 50.00, 50.02, 50.02, 50.03, 50.03, 50.00,
41 50.00, 49.99, 50.02, 50.02, 50.01, 50.01, 50.01, 50.03, 50.04, 50.06, 50.06, 50.08,
42 50.10, 50.09, 50.09, 50.10, 50.12, 50.11, 50.09, 50.08, 50.08, 50.06, 50.05, 50.03,
43 50.04, 50.05, 50.04, 50.02, 50.00, 49.99, 50.00, 49.99, 49.97, 49.95, 49.93, 49.94,
44 49.93, 49.97, 49.94, 49.92, 49.93, 49.93, 49.92, 49.90, 49.91, 49.92, 49.93, 49.93,
45 49.94, 49.94, 49.94, 49.93, 49.93, 49.91, 49.93, 49.93, 49.95, 49.97, 49.95, 49.96,
46 49.96, 49.98, 49.96, 49.97, 49.98, 49.99, 49.98, 49.98, 49.99, 49.99, 50.02, 50.00,
47 49.99, 49.98, 49.99, 49.98, 50.01, 49.99, 49.98, 50.03, 50.02, 50.03, 50.02, 50.02,
48 50.01, 50.00, 50.02, 50.02, 50.02, 50.03, 50.04, 50.01, 50.02, 50.01, 50.01, 50.00,
49 50.03, 50.02, 50.01, 50.02, 50.02, 50.03, 50.02, 50.03, 50.03, 50.04, 50.02, 50.02,
50 50.05, 50.04, 50.03, 50.01, 50.01, 50.01, 50.03, 50.02, 50.03, 50.05, 50.05, 50.05,
51 50.06, 50.05, 50.03, 50.05, 50.04, 50.05, 50.03, 50.04, 50.06, 50.06, 50.05, 50.04,
52 50.03, 50.02, 50.04, 50.06, 50.06, 50.06, 50.06, 50.07, 50.06, 50.07, 50.05, 50.05,
53 50.07, 50.09, 50.09, 50.10, 50.10, 50.10, 50.09, 50.08, 50.08, 50.07, 50.07, 50.09,
54 50.09, 50.08, 50.08, 50.07, 50.07, 50.05, 50.02, 50.02, 50.03, 50.05, 50.06, 50.06,
55 50.06, 50.08, 50.08, 50.08, 50.10, 50.08, 50.06, 50.10, 50.10, 50.08, 50.10, 50.10,
56 50.11, 50.11, 50.11, 50.09, 50.06, 50.07, 50.07, 50.09, 50.10, 50.10, 50.10, 50.09,
57 50.13, 50.11, 50.10, 50.09, 50.08, 50.09, 50.07, 50.10, 50.11, 50.11, 50.10, 50.10,
58 50.07, 50.06, 50.08, 50.04, 50.05, 50.04, 50.03, 50.03, 50.05, 50.04, 50.04, 50.02,
59 50.01, 50.03, 50.01, 49.99, 50.01, 50.01, 49.97, 49.99, 49.98, 49.97, 49.98, 49.97,
60 49.96, 49.94, 49.94, 49.96, 49.95, 49.95, 49.97, 49.95, 49.93, 49.95, 49.94, 49.93,
61 49.94, 49.94, 49.95, 49.95, 49.93, 49.92, 49.93, 49.92, 49.91, 49.92, 49.91, 49.92,
62 49.92, 49.94, 49.92, 49.92, 49.92, 49.90, 49.91, 49.92, 49.93, 49.91, 49.92, 49.92,
63 49.90, 49.90, 49.90, 49.88, 49.88, 49.86, 49.85, 49.84, 49.86, 49.84, 49.86, 49.91,
64 49.95, 49.95, 49.96, 49.96, 49.95, 49.96, 49.96, 49.96, 49.98, 49.98, 49.99, 50.00,
65 50.02, 50.02, 50.03, 50.04, 50.05, 50.05, 50.04, 50.05, 50.05, 50.07, 50.06, 50.07,
66 50.08, 50.05, 50.05, 50.07, 50.08, 50.08, 50.07, 50.08, 50.10, 50.07, 50.06, 50.04,
67 50.06, 50.07, 50.07, 50.06, 50.06, 50.07, 50.05, 50.06, 50.06, 50.06, 50.06, 50.04,
68 50.04, 50.05, 50.06, 50.10, 50.07, 50.07, 50.05, 50.03, 50.04, 50.03, 50.02, 50.02,
69 50.02, 50.01, 50.02, 50.02, 50.03, 50.01, 50.00, 49.99, 49.99, 49.98, 49.99, 49.99,
70 50.01, 50.03, 50.01, 50.01, 50.00, 49.99, 49.99, 49.99, 50.02, 50.00, 50.02, 50.02,
71 50.05, 50.03, 50.03, 50.01, 50.02, 50.02, 50.00, 50.02, 50.01, 50.02, 50.01, 50.02,
72 50.03, 50.01, 50.02, 50.01, 50.02, 50.01, 50.00, 50.01, 50.03, 50.03, 50.02, 50.00,
73 49.99, 49.99, 50.00, 50.03, 50.01, 50.03, 50.01, 50.03, 50.03, 50.02, 49.99, 50.00,
74 49.99, 50.01, 50.02, 50.04, 50.02, 50.04, 50.04, 50.04, 50.05, 50.06, 50.03, 50.06,
75 50.06, 50.07, 50.08, 50.09, 50.08, 50.06, 50.09, 50.09, 50.07, 50.04, 50.04, 50.04,
76 50.06, 50.05, 50.06, 50.05, 50.07, 50.05, 50.01, 50.01, 49.99, 50.00, 50.02, 50.01,
7 50.02, 50.02, 50.02, 50.04, 50.01, 50.01, 50.00, 50.01, 50.02, 50.02, 49.98, 49.99,
78 50.00, 49.99, 49.97, 49.97, 49.97, 49.97, 49.96, 49.98, 49.96, 49.95, 49.97, 49.98,
79 49.97, 49.97, 49.94, 49.95, 49.95, 49.94, 49.95, 49.93, 49.94, 49.94, 49.93, 49.93,
80 49.90, 49.92, 49.92, 49.93, 49.94, 49.94, 49.95, 49.96, 49.96, 49.96, 49.93, 49.91,
81 49.92, 49.93, 49.92, 49.90, 49.89, 49.88, 49.88, 49.89, 49.89, 49.93, 49.96, 49.95,
82 49.96, 49.96, 49.95, 49.96, 49.96, 49.98, 49.96, 49.96, 49.98, 49.97, 49.98, 49.97,
83 49.97, 49.97, 49.96, 49.96, 49.96, 49.95, 49.94, 49.93, 49.93, 49.92, 49.93, 49.93,
84 49.94, 49.92, 49.91, 49.92, 49.92, 49.89, 49.90, 49.92, 49.91, 49.93, 49.94, 49.95,
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85
86
87
88
89
90

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

109
110
111

int dataCount = sizeofl freqData_1/sizeof freqData_1[0]; // get size of

String dataStringA, dataStringB, dataStringC; // place holders for data string

49.94, 49.95, 49.93, 49.94, 49.95, 49.96, 49.96, 49.97, 49.97,
49.97, 49.98, 49.99, 49.99, 49.96, 50.00, 50.03, 50.05, 50.06,
50.06, 50.06, 50.07, 50.06, 50.08, 50.07, 50.07, 50.07, 50.05,
50.08, 50.10, 50.08, 50.06, 50.06, 50.05, 50.04, 50.02, 50.00,

// dataStringA = <yyyy-mmddT

// dataStringB
// dataStringC

hh:mm: ssP,
ff. ff>

String stringYear, stringMonth, stringDay; //dataStringA

String stringHour, stringMinute, stringSeconds, stringMilliSeconds; //dataStringB

String stringFreq; //dataStringC

RTC_DS1307 rtc;

char daysOfTheWeek[7][12] = {"Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"};

void setup () {

}

Serial.begin(9600);
if (! rte.begin()) {
Serial.println ("Couldn't find RTC");
while (1);

}

if (! rtc.isrunning()) {
//Serial.println ("RTC is NOT running!") ;

// following line sets the RIC to the date & time this sketch was compiled
rtc.adjust(DateTime (F(__DATE_ ), F(__TIME__
// This line sets the RTC with an explicit date & time,

// January 21, 2014 at 3am you would call:

1))

// rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));

void loop () {

}

randNumber = (float (rand())/float ((RAND MAX) ) *2)+49;

getDataString () : // fn to format date time group and frequency

Serial.print (dataStringA) ;
Serial.print (dataStringB) ;
Serial.print (dataStringC) ;
delay(1000);

void getDataString() { // [n to set data into correct format

}

DateTime now = rtc.now() ;

// dataString defined by dataStringA, dataStringB and dataStringC

// dataStringA: <yyyy-mmddT
stringYear = String (now.year());
stringMonth = now.month () ;

if (stringMonth.length () == 1) stringMonth = "0" +stringMonth;
stringDay = now.day () ;

if (stringDay.length () == 1) stringDay = "0" +stringDay;
dataStringA = "";

dataStringA = "<";
dataStringA += stringYear;
dataStringA += "-";
dataStringA += stringMonth;
dataStringA += "-";
dataStringA += stringDay;
dataStringA += "T";

// dataStringB: hhmmm:ssP, 'P' replaces 'Z’'

// ss is set in pps and timerl

stringHour = now.hour () ;

if (stringHour.length () == 1) stringHour = "0"
stringMinute = now.minute () ;

in this version

+ stringHour;

= "Q"

+ stringSeconds;

if (stringMinute.length () == 1) stringMinute = "0" + stringMinute;
stringSeconds = now.second () ;

if (stringSeconds.length () == 1) stringSeconds

dataStringB = "";

dataStringB += stringHour:; dataStringB += ":";
dataStringB += stringMinute:; dataStringB += ":

dataStringB += stringSeconds; dataStringB +=
dataStringC = "";

s
"

P,

dataStringC = String(freqData_1[i]) + dataStringC + String(">");

i++;
if (i > dataCount-1) i=0;

Listing C.2 mains_ frequency.ino

for example to set

49.95, 49.95, 49.98,
50.07, 50.06, 50.07,
50.06, 50.09, 50.07,
49.99, 50.01, 50.02};

test array freqData_1
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C.3  Arduino sketch: transmitter

1 /=

2 Title: Transmitter

3 Filename: transmitter.ino

4 Prepared by: Sean Williams

5 Modified: 16 May 2018

6 Description Designed to TX data from remote node to master.
7

8 Main features include:

9 1. Continuous stream of temperature and humidity data
10 2. Sample rate 2sec

11 3. Compatable for Nano or Uno

12

13 Change History

14

15 =/

16

17  #include <DHT.h>
18 #include <VirtualWire.h>

20 #define DHTPIN 4
21  #define DHTTYPE DHT22

23 const int led_pin = 13;
24 const int transmit_pin = 12;

26 struct package

27

28 float temperature ;
29 float humidity ;
30 ks

31

32  typedef struct package Package;
33 Package data;

34

35 DHT dht (DHTPIN, DHTTYPE) ;

36

37 void setup()

38 {

39 // Initialise the IO and ISR

40 vw_set_tx_pin (transmit_pin);

41 vw_set_ptt_inverted (true); // Required for DR3100
42 vw_setup(500) ; // Bits per sec

43 pinMode (led_pin, OUTPUT);
44 Serial.begin(9600);

45 Serial.println ("Transmitter") ;

46 }

47

48  void loop ()

49 {

50 readSensor () ;

51 if ((data.temperature > 10) &% (data.humidity >10)) {

52 digitalWrite (led_pin, HIGH); // Flash a light to show transmitting
53 vw_send ((uint8_t =)&data, sizeof(data));

54 vw_wait_tx () ; // Wait until the whole message is gone

55 digitalWrite (led_pin, LOW);
56 delay(2000);
}

57

58 }

59

60 void readSensor ()
61

62 dht.begin () ;
63 delay(1000);
64 data.humidity = dht.readHumidity () ;

65 data.temperature = dht.readTemperature () ;
66 Serial.print (data.temperature) ;

67 Serial.print(" ");

68 Serial.println (data.humidity) ;

69 }

Listing C.3 transmitter.ino
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C.4 MIT App Inventor 2 Block Code

initialize global () to 1| create emply list

initialize global |

initialize global [(F[=1 o | @
initialize global | o | @

Figure C.1 App block code: initialisation

when [ Timer

0@ ) BluetoothCiient1 - I IsConnected -
then | (o) if i v v
BluetoothClient1 * [ IsConnected ~ Jland - ISR E | CiooinGliontt + B e e e

>~ 10

then set' global Received data = [ == 8 BluetoothClient1 * BMIE==I7[=5¢
numberOfBytes cal EMESENEENTIES BytesAvailableToReceive
21 global list + FGRUN split + BEAEEGET global Received_data +
at (| s

length of list list | get CEEIEES EE3 @A
3 . = - I waiting... B

then

fo select list item list | get RELENE RS
index .ﬂ
o select list item list =1 global list * |
index #3

Figure C.2 App block code: interaction

LUACHN binGreenFace » JRele \ULEDN binRedFace + Mele
a Y globai green state + J| = - Ii{0] O il giobal red state - (=~ Bf0)

=0 ST global green state + [ =1 global red_state + 1)
-\ global red_state - |/ 1 global green_state * |

set [ . : ! set [
==|\N BluetoothClient! + B =18 BluetoothClient1 + BELIE

(. L -

else if else if (=1 global red state + || = * |
then LIRSS global red_state © R

else if else if

B global green_state © G LB global red_state « B68

set e . ay & set |

= §| BluetoothClient1 « |

| - | -

Figure C.3 App block code: data
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when _AfterPicking
do | (%] if ‘o= N BluetoothClient1 » Bl
address | (ESEEEIIN -
(0 B ListPickert + M Elements + R BluetoothClient! - | AddressesAndNames - |
'@ I BuetootnClient1 -+ I IsConnected -
L= R biBluetoothStatus ~ I Text + WO Connected |

CE W IbiBluetoothStatus » M TextColor ~ WG 1E [l | make alist [
102

- BEEN IbiBluetoothStatus + M Text ~ WGBS Not Connected |

set atus v [extColor
(-

Figure C.4 App block code: communication
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C.5 Hardware-in-the-loop test wiring diagram
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Figure C.5 Hardware-in-the-loop test wiring diagram
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C.6  Simulation model code updates

In addition to the changes made to the Simulink® model block layout, several software code

updates and new functions are required. The table below summarises the relevant code

changes, indicating if the code has been updated (U) or if it is a new (N) addition to the

catalogue of existing code listings.

Table C.1

HIL software code

Code Name Status  Description

optim__ctrl.m U New input port InputPort(2) .Data for Sitcv

optim__ctrl__model data.m

prepare_ tc_ gridmap.m

read_ serialdata.m

readdata.m

Sitcv variable is passed to function
prepare_tc_gridmap.m

The following sections have been deleted:
e Set Outdoor Temperature Variation
o Set Building Parameters
o Set Power Systems Parameters
Modified Set Date Time:
e Delete references to daily_temp
¢ Include ifelse statement at end of section

Case 1-6 date_time remains unchanged
The following code changes have been documented:

e« Code change enables signal from single

smartphone to interact with Simulink model

e tc at Sl is set to feedback from smartphone
irrespective of planned occupancy. Code that

sets response for S2 to 524 remains unchanged
e Include Sltcv as input parameter

e tcv(3) (calc_mode) at S1 set to Sitcv (user
themal comfort feedback)

Function reads room temperature and thermal
comfort from serial port

Room temperature and thermal comfort routed from
Industruino using USB connected to serial port with
room temperature from remote Arduino Uno and
DHT22 sensor using wireless connection and thermal
comfort from Android smartphone using Bluetooth
connection

Sampling time is set to 5 min (300 sec)

continued ...
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... continued
Code Name Status  Description
soc.m U The following code changes have been documented:
¢ Delete all references to path_2
« Building subsystem removed from Simulink®
model
te2u.m N Function sets temperature setpoint (control action)

depending on measured temperature. System limited
to operate in temperature range 15.5 °C (minimum)
to 20.5 °C (maximum)

write_ serialdata.m N Enable data transfer data_ctrl_action parameter
is multiplied by 100 and rounded before TX
Industruino RX divide by 100 to restore value

writedata.m N Write control action value to serial port. Sample rate
is 5 min (300 sec)
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D.1 Simulink model: energy subsystem

Decentralised DR frequency regulation, when used in building stock, can regulate short-term
frequency excursions in demanded electrical energy [5]. The contribution of a decentralised
frequency regulator has been analysed [5]. Results presented suggest that small excursions
in measured temperature from a TCL setpoint value will not compromise indoor comfort
temperatures but can contribute to the restoration of frequency equilibrium during network
stress events. In this chapter, we integrate the implied linear power system and frequency
regulator as part of the optimise and control framework. The model (energy subsystem)
shown in Figure D.1 replicates a power system rating of 300 MVA. Initial conditions assume
the balance in supply and demand is at equilibrium, measured frequency is 50 Hz and the
steady-state frequency error is zero. The energy subsystem model parameters are reported
in Table D.1.

<
<
<

i apd
—Ki |Secondary Speed Regulator Fen2
K ALFC Loop of Governor

APd (MW)
% 1 _ 1
Tg-s+1 APg Tt-s+1

x| =

_ 1 ol Fen3 of
OPt-OPd-APhp 2« Hs+ D cn

Governor Turbine Power System s.Af
Inertia
,—> Fenl f
T lorce DFC-P &J APd
R |Regulator Optimise
* Aw
Figure D.1 Simulink® model of energy subsystem
Table D.1
Energy model parameters
Parameter Description Value
Ki Secondary ALFC integral gain 1.667e-3
R Governor speed regulator 0.05 Hz/pu MW
Tg Governor time constant 0.25 sec
Tt Turbine time constant 0.60 sec
H Inertia time constant 5 sec
D1 Load damping constant 0.8 sec
C1 Constant 10e6
APd Contingency load 75 MW
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D.2  Simulink model: building system

The building subsystem model (building subsystem) shown in Figure D.2, is a simplified
thermostatically controlled (on/off) heating system with feedback loops which typically
maintains the air temperature at a set level. The model emulates building thermodynamics

(building), calculating variations in temperature based on heat flow, H(t), and heat losses,
Hloss (t)

Troom_Tout
Hypgs(t) = —1oom — —out D.1
oss(1) = (D.1)
ATheater 1
Toheater — _Z (H(t) — Hypss(t D.2
ReAter — - (H(t) = Hiows (1)) (D.2)

A series of embedded lookup tables representative of seasonal variation are used to model
outside air temperature over a 24 hr period at a sample rate of 30 min [242]. In practice,
the local outdoor temperature is measured using sensors and input into the system. Energy
cost (EC [p/kWh)]) is calculated as a function of time and heat flow and is expressed in the

following equation:

tn

EC = ¢ <(Th€at€7‘ - Troom)Mc) 5ec (l‘t(n)) (DS)
0

Where M [kg/hr] denotes mass air flow rate through the heater; ¢ = 1005.4 is the specific
heat at constant air pressure and, dec(7(n)) [p/kWHh] is the energy price at time #(n). The

building subsystem model parameters are reported in Table D.2.

Table D.2

Building model parameters
Parameter Value
C2 3.6e3
C3 0.0199
c7 15
Cs8 1800
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Cc3 > )
. ff :
(a tariff D ey,
ESS Cost kWh .
o . heat_flow
0 s.tariff
»| x 5 > 1 EC
ESS Cost Enable o o e » X P 3 T_room ”| [:]
C)z T_out 4
tou_tariff s.building
+ »|On/Off
T SP A heat_flow »| heater
- Thermostat »{T_room T_room —
—»{T_out
Heater
Building
T_out
Daily Temp
Variation
(D)

T_room
nm

(a) Building subsystem

thermostat_command

(@) >
on/off *
heat_switch heat_flow *
ca - 1/(M*)
T_room ] heater
- heat_gain
req
heat_air T_out
temperature heat_loss -
= nm
(b) Heater (c) Building
c7
Avg Temp Out
v,
Daily Temp dtv_sim
Variation T_out_sim
[date_time_option] 0 T ~-_>B=\
date_time_option select T out > T_out
Count . I
Up mOd—»Do—»lnc C%”p“tcm ;I > F2C <
c8 dtv_actual
timer_int [daily_temp]
(secs) daily_temp

(d) Daily temperature variation

Figure D.2 Simulink® model of building subsystem
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D.3 Piecewise function worked example

A piecewise function has been developed to calculate a demand value at any time over a 24-h
period (weekday or weekend day). The function demand.m has been configured to calculate
demand values over a 24-h period by repeatedly using the piecewise function S(x). The

following table details parameters for weekday cubic spline interpolation only.

Table D.3

Piecewise function weekday data
Start Stop Si  lo hi ai bi ci di X Y
00:00 01:00 O 15.344 0.000 0.241 -0.120 2 15.34
01:00 03:00 1 15.344 -0.482 -0.482 0.074 6 10.47
03:00 05:00 2 10 10470 -0.763 0.412 0.156 10 24.00
05:00 07:00 3 10 14 24.002 10.028 2.286 -0.368 14 77.12
07:00 09:00 4 14 18 77.116 10.634 -2.135 0.163 18 95.94
09:00 11:00 5 18 22 95942 1.391 -0.176 -0.010 22 98.02
11:00 13:00 6 22 26 98.022 -0.517 -0.301 0.044 26 93.99
13:00 15:00 7 26 30 93.986 -0.790 0.233 0.002 30 94.65
15:00 17:00 8 30 34 94.648 1.145 0.251 -0.101 34 96.80
17:00 19:00 9 34 38 96.800 -1.682 -0.958 0.152 38 84.47
19:00 21:00 10 38 42 84.466 -2.056 0.864 -0.262 41 79.01
21:00 23:00 11 42 46 73.323 -7.703 -2.276 0.470 42 73.32
23:00 00:00 12 46 48 36.162 -3.361 3.361 -0.840 48 36.16

The centre point of each PAA segment defines a set of evenly spaced nodes. The piecewise
function S(x) interpolates all local data points and hence confines the ill-effects of any

erroneous data points, Equation (D.4).

Sl(l') =a; + bl(l’ — ilo) + Ci(l‘ — ilo)2 + dz(l’ — ilo)g (D.4)

Where ¢ € [0,1,...,n];x € [lo,hi]; where lo and hi define the start and end data points of
each PAA segment, respectively. The cubic polynomial coefficients are represented by the

parameters a;,b;,c; and d; (Table D.3).

To calculate demand value at 20:30h for weekday,

S10(41) = 84.466 — 2.056(41 — 38) + 0.864(41 — 38)% — 0.262(41 — 38)> = 79.01  (D.5)

where x = 41 is equivalent to 20:30h.
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D.4 A note about MATLAB® and Simulink®

The MATLAB® and Simulink® platform [185] is optimised for solving complex engineering
problems. It has been the tool of choice throughout this research study. The vast library
of pre-built toolsets has enabled efforts to focus on broader issues relating to the chosen
subject. Where pre-built toolsets are not available, then custom blocks with multiple input
ports and output ports capable of handling any signal produced by a Simulink® model have
been created. Level-2 MATLAB S-functions with callback methods defines the properties
and behaviour of custom blocks. The MATLAB® and Simulink® release used during this
research is R2018b (9.5.0.944444).
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D.6

1

2

3 %
4 %
5 %
6 %
7 %
8 %
9 %
10 %
11 %
12 %
13 %
14 %
15 %
16 %
17 %
18 %
19 %
20 %

comfort 2.m

function [cv] = comfort_2 (cn_date, info)
99@QOMFORT Computes thermal comfort value to minimise the objective function.

Construction:

[0, R, M] = COMFORI(DATE,INFO[N]) for given time O is the number of
occupants, R is the number of responses and M is the mode comfort value
that is dependant on number of occupants.

The total number of occupants is between a minimum and maximum
threshold depending on time of day. Mode is calculated only if number
of response from total number of occupants exceeds minimum response
threshold. Occupant response is biased depending on representative
change in outdoor temperature (summer profile).

Option to display comfort information is set by logic operator INFO
[TRUE]/ False ,

Example (Publish):
>> comfort=comfort_2('12-Nov-2019 13:30:00,1)

maxoccupants: 70

occupants: 15

response: 12

response_percent: 80

response_threshold: 40
threshold_exceeded: 'Yes'

outdoor_temperature: 4
cn: 13:30:00

BonzZ

calc_mean: -0.5000
calc_median: -1
calc_mode: 1

comfort = 70 12 -1
where 15

12
-1

number of occupants
number of responses
thermal comfort (mode)

45 9% Additional Information

21 %
22 %
23 %
24 %
25 %
26 %
27 %
28 %
29 %
30 %
31 %
32 %
33 %
34 %
35 %
36 %
37 %
38 %
39 %
40 %
41 %
42 %
43 %
44

46 %
47 %
48 %
49 %
50 %
51 %
52 %
53 %
54 %
55 %
56 %
57 %
58 %
59 %
60 %
61 %
62 %
63 %
64 %
65 %
66

Weekday Profile

Time Period ul u2 u4 v
00h-09h 1 0 0 1 012
09h-11h 2 10 40 2 -1 012
11h-13h 3 5 20 3 -1 01
13h=15h 4 15 70 4 -2 -1012
15h-17h 5 3 12 5 -2 -1 0
17h-19h 6 7 30 3 -1 01
19h-24h 7 0 0 2 -1 012
Weekend Profile

Time Period ul u2 u4 v
00h-24h 1 0 0 1 012

ul=minimum occupancy
u2=maximum occupancy
u4=relative outdoor temperature
v=bias range

67 % Check number of inputs.
68 if nargin > 2

69 error ( 'myfuns:nd:TooManylnputs ',
70 'requires at most 2 inputs');
71  end

72

73 % Fill in unset optional values.
74 switch nargin

case 1
info = 0;
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89
90
91
92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

end

%6 MATLAB Function Description

%

% Title: Thermal Comfort

% Filename: comfort_2.m

% Prepared by: Sean Williams

% Date: 24-10-2019

%

% MATIAB function computes thermal comfort value for Energy Control
% and Optimisation Framework (ECOF) .

%

9% Change History

% # [06-08-2019] Initial.

% # [06-09-2019] Introduce option to determine if zero occupancy at time
% now plus cn_date minutes.

% # [24-10-2019] Replace stime cariable to set datetime, instead use

%  SO_date and Sn_date combination inline with demand and tou functions.
%  Additional change implemented that checks if date time is weekend or
%  weekday. Refer to Addition Information for weekend and weekday

%  occupancy profile. Assumes no planned occupancy at weekends.

%6 Initialise Variables

% format function input date time
ccen_date=datetime (cn_date, 'ConvertFrom ', 'datenum ') ;

% extract time of day from cnn_date
cn=timeofday (ccn_date) ;

% minimum number of occupants for each period (1-7)
ul=[0 10 5 15 3 7 OJ;

% maximum number of occupants for each period (1-7)
u2=[0 40 20 70 12 30 OJ;

% minimum number of forced responses for each period (1-7)
u3=ceil (ul.*0.5);

% relative outdoor temperature (summer) range
u4=[1 2 3 4 5];

% set minimum number of responses required before responses are effective
responsethreshold=40;

% set relative outdoor temperature bias

v1=0:2;
v2=-1:2;
v3=-2:1;

% check if weekend/week day (refer to Additional Information for occupancy
% profile
if (isweekend (ccn_date))
minoccupant=ul(1);
maxoccupants=u2(1) ;
minresponse=u3(1) ;
outdoortemp=u4(1);
else
% set parameters depending on time of day
if (en>'00:00:00")&&(cn<'09:00:00 ")
minoccupant=ul(1);
maxoccupants=u2(1) ;
minresponse=u3(1) ;
outdoortemp=u4(1) ;
elseif (cn>'09:00:00")&&(cn<'11:00:00")
minoccupant=ul (2) ;
maxoccupants=u2(2) ;
minresponse=u3(2) ;
outdoortemp=u4(2) ;
elseif (en>'11:00:00')&&(cn<'13:00:00")
minoccupant=ul(3) ;
maxoccupants=u2(3) ;
minresponse=u3(3) ;
outdoortemp=u4(3) ;
elseif (cn>'13:00:00 ")&&(cn<'15:00:00")
minoccupant=ul (4) ;
maxoccupants=u2(4) ;
minresponse=u3(4) ;
outdoortemp=u4(4) ;
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159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
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184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

elseif (cn>'15:00:00")&&(cn<'17:00:00")
minoccupant=ul (5) ;
maxoccupants=u2(5) ;
minresponse=u3(5) ;
outdoortemp=u4(5) ;

elseif (en>'17:00:00')&&(cn<'19:00:00")
minoccupant=ul(6) ;
maxoccupants=u2(6) ;
minresponse=u3(6) ;
outdoortemp=u4(3) ;

elseif (cn>'19:00:00 ") &&(cn<'23:59:59 ")
minoccupant=ul(7) ;
maxoccupants=u2(7) ;
minresponse=u3(7) ;
outdoortemp=u4(2) ;

end

end

% force minimum number of responses to minimum number of occupants if
% minimum number of reponses is greater than minimum number of occupants
if (minresponse>minoccupant)
minresponse=minoccupant;
end

% set number of occupants to be within or equal to lower and upper
% threshold vslues
occupants=randi ([ minoccupant maxoccupants]) ;

% set number of returned responses between minimum number of expected
% responses and less than or equal to the total number of occupants
response=randi ([ minresponse occupants]) ;

% compute percentage of returned responses; if zero occupants set
% percentage to zero
if (occupants>0)
percent=ceil (response/occupants*100);
else
percent=0;
end

% set outdoor temperature bias array. Length of array is fixed to total
% number of responses. Each array element is in a set defined by vector
% (vl, v2 or v3). The range of each vector is defined.
% Example >> set=vl(randi(3,response,1))
% For each response set the variable 'set' with a randomly selected
% element from array vl.
switch outdoortemp
case 1
set=vl(randi(3,response,1));
case 2
set=v2(randi(4,response,1));
case 3
set=v2(randi(3,response,1));
case 4
set=v3(randi(4,response,1));
case 5
set=v3(randi(3,response,1));
end

9% Compute Comfort Value

% compute average (mean, mode or median) if total number of responses has

% exceeded threshold (nominally minimum of 40%). If threshold condition has

% not been satisfied force average to zero.

if (percent==100)&&(occupants==1)
minth=char([89 101 115]);
calc_mean=set (1) ;
calc_mode=set (1) ;
calc_med=set(1);

elseif (percent>responsethreshold)
minth=char([89 101 115]);
calc_mean=mean(set) ;
calc_mode=mode(set) ;
calc_med=median(set) ;

else
calc_mean=0;
calc_mode=0;
calc_med=0;
minth=char([78 111]);

end
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241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

%% Comfort Information

% display to command window comfort information
if (info)

end

% CREATE STRUCT FOR COMFORT INFO
S=struct ( 'maxoccupants ' ,maxoccupants, ...

'occupants ',occupants, ...

'response ', response, ...

'response_percent ',percent, ...
'response_threshold ' ,responsethreshold, ...
'threshold_exceeded ' ,minth, ...
'outdoor_temp ',outdoortemp, ...

‘en',cn, ...
'HN' ,sum(set==-2), ...
'N' ,sum(set==-1), ...

'Z' ,sum(set==0), ...
'P',sum(set==1), ...

'HP' ,sum(set==2), ...
‘calc_mean ' ,mean(set), ...
'calc_median ' ,median(set), ...
‘calc_mode ', calc_mode) ;

disp(S);
assignin( 'base’', 'comfort_info',S);

%% Assign Variables to the Workspace
cv(:,1)=occupants;
cv(:,2)=response;
cv(:,3)=calc_mode;

end

Listing D.1 comfort_ 2.m
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D.7 date2sec.m

00 1O UL WO N =

9

11
12
13
14
15
16
17
18
19
20

22

function [YVEC] = date2sec(Y)

9MOATE2SEC Rounds date and time to nearest second

%

% [YVEC] = date2sec(Y) rounds date and time to nearest second. The
% output Y is serial date number.

%% MATLIAB Function Description

%

% Title: date2sec

% Filename: date2sec.m

% Prepared by: Sean Williams

% Date: 19 Dec 2019

%

% MATIAB function rounds date time to nearest second
%

%% Change History

%

% 1. [19-12-2019] Initial
%

YVEC=datenum (dateshift (datetime (datestr(Y)), 'start ', 'second', 'nearest'));

Listing D.2 date2vec.m

Sean Williams

Teesside University



Page 223

D.8 date2vec.m

00 1O UL WO N =

9

11
12
13
14
15
16

function [YVEC] = date2vec(Y)
9DATE2VEC Converts date and time to vector components
%

% [YVEC] = date2vec(Y) converts date and time to vector components.
% output represents the date and time components of hours, minutes,

% seconds, day, month and year. Y is serial date number.

%6 MATLAB Function Description
%

% Title: date2vec

% Filename: date2vec.m

% Prepared by: Sean Williams
% Date: 1 Aug 2019

% MATLAB function converts date and time to vector components

9% Change History

% 1. [01-08-2019] Initial

%% Convert date and time to vector component

[yy .mm dd,hh,mn, se]=datevec (Y) ;
YVEC(1,1)=hh;
YVEC(1,2)=mn;
YVEC(1,3)=se;
YVEC(1 ,4)=dd;
YVEC(1,5)=mm;
YVEC(1,6)=yy:

Listing D.3 date2vec.m

The
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D.9 demand.m

function [dv] = demand(dn_date, info)
9%DEMAND computes demand value for EOS

1

2

3 %
4 %
5 %
6 %
7T %
8 %

DEMAND (DATE, INFO[N]) uses cubic spline coefficients to compute demand value
based on analysis of chronological sequence of discrete observations.
Polynomial coefficient structure in computed directly from observations
after piecewise aggregated approximation has been applied. Separate
structures for week day and weekend day are prepared. Monthly

variations (seasonal adjustments) are applied using PAA Look Up Table

9 % (LUT) . The demand value returned has been optimised (rescaled) for use
10 % with an Energy Optimisation System (EOS). The option to display demand
11 % information (including plot) is set by logic operator INFO [TRUE]/False
12 % for example the following instruction computes the demand value at

13 % Wed 6th March 2019 at 07:00:00, demand info is selected OFF by default.
14 %

15 % Example:

16 9% demand=demand('06-Mar-2019 07:00:00',1)

17 %

18 % current time: Wed 06-Mar-2019 07:00

19 % horizon_hrs: 4

20 % ai: 98.0220

21 % bi: -0.5180

22 % ci: -0.2970

23 % di: 0.0440

24 % time_idx: 22

25 % lo: 22

26 % nd_value: 98.0220

27 % nd_value_month_ndm: 111.1464

28 % nd_value_month_rescale: 0.9102

29 % Euclidean_Distance: 0.0401

30 % RMSE: 4.0076

31 % MAE: 2.8321

32 %

33 % demand=0.9102

34 %

35 % For loop calculation using dijkstra algorithm use:

36 % SO0_date=now;

37 % n=0; % sets multiple of 10 minutes ahead

38 % Sn_date=datetime (SO_date, 'ConvertFrom', 'datenum') +minutes(10=n) ;
39 % [dv]=demand (Sn_date) % display demand info and chart optional

40 %

41

42 % Check number of inputs.

43 if nargin>2

44 error ( 'myfuns:nd: TooManylnputs ',

45 'requires at most 2 inputs');

46  end

47

48 % Fill in unset optional values.

49  switch nargin

50 case 1

51 info=0;

52  end

53

54 98 MATLAB Function Description

55 %

56 % Title: National Demand

57 % Filename: demand.m

58 % Prepared by: Sean Williams

59 9% Date: 17-07-2019

60 % MATIAB function computes national demand value with monthly variation
61 % for Energy Optimisation Solution (EOS) algorithm

62 % Perquisite: demand_initialise.mat, demand_info.mat

63

64 986 Change History

65 %

66 % # [17-07-2019] Initial

67 % # [23-07-2019] Bug fixes: correct month identified at end of month

68 % calcs. plus improvements to plot if selected to display demand info.
69 % # [25-07-2019] Compute Euclidean Distance (doubled-scaled), RMSE and
70 % MAE and include in struct demand_info.

71 % # [08-08-2019] Introduce new set of spline coefs for concurrent days
72 % when calling fcn from Simulink model. dn_date format compatible with
73 % Simulink model (Serial Date Number). Removed |mtwtfPAAvall and |ssPAAvall
74 % from Ind_demand_info_data.matl ; these have been replaced with updated
75 % array that suports concurrent days. Introduced two external data files:
76 % Compute parameters |demand_initialise.matl and Create plot
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150
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% |demand_info.mat | .

% # [27-08-2019] Set demand_initialise.mat variable horizon=0 (previously
% 4). Updated description to detail format of function to calculate time
% now plus 10 minutes ahead.

% # [11-01-2020] Option to change performance evaluation indices to

% calculate Euclidean, RMSE and MAE for specific date time (set in

% dn_date). See note a L222.

%6 Initialise Variables

% set start date time variable
dn_date = datetime (dn_date, 'ConvertFrom ', 'datenum');

% load data required to compute parameters, including:
% > cubic spline coefs

% > horizon

% > monthLUT

data=load ('demand_initialise.mat");

%% Compute Demand Value

% format date time
current_time=datetime ((dn_date) , 'Format', 'eee dd-MVMyyyy HH:nm:ss ') ;

% set date time plus horizon
horizon_time=current_time+duration (data.horizon,0,0);

% find Monday prior to start date
ml=dateshift (horizon_time, 'dayofweek ', 'Monday', 'previous ');

% find hour & minute elements of time, choose to ignore seconds
[hh,mm, —]=hms(horizon_time - dateshift (horizon_time, 'start', 'day'));

% compute time index based on current hour. The time index is used to set
% the coefs_idx (row), i.e. which set of polynominal coefs (ai bi ci di) to
% use to calculate the demand value.

time_idx=(hh#*2) +(2+1m/60) ;

% compute lo value required for polynomial
% s(x)=ai+bi(x-lo)+ci(x-1o)”"2+di(x-10)”"3; where x=nd_value

else
lo=2#((hh- fix (hh/2) -1)+hh- fix (hh/2)) ;
end

% compute s(x) coefficient, i.e. which row of coeff matrix
if (hh>0) &% (hh<1)
coefs=1;
elseif (hh>1)&&Mhh<23)
coefs=hh-fix (hh/2)+1;
elseif (hh>23)
coefs=hh-fix (hh/2)+1;
end

% calculate number of days from Monday to start date
Aday=caldays (between (ml, horizon_time, 'days '))+1;

% calculate month number (April=1)
Amonth=mod (calmonths (between (' 1-April-2005 "' ,horizon_time)),12)+1;

% set cublic spline interpolation polynomial coefficients
switch (Aday)
case num2cell(1:4) % cubic spline polynomial coefs weekday: MIWT

cscoefs=data.coeff(:,:,1);
cscoefs(14:16,:)=data.coeff(1:3,:,1);
type=1;

case 5 % cubic spline polynomial coefs weekday: F
cscoefs=data.coeff(:,:,1);
cscoefs(14:16,:)=data.coeff(1:3,:,2);
type=1;

case 6 % cubic spline polynomial coefs weekend day: Sa
cscoefs=data.coeff(:,:,2);
cscoefs(14:16,:)=data.coeff(1:3,:,2);
type=2;

case 7 % cubic spline polynomial coefs weekend day: Su
cscoefs=data.coeff(:,:,2);
cscoefs(14:16,:)=data.coeff(1:3,:,1);
type=2;

end

% assign coefficent values
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ai=cscoefs (coefs,1);
bi=cscoefs (coefs ,2);
ci=cscoefs (coefs,3);
di=cscoefs (coefs ,4);

% compute demand at current time plus horizon (excluding Month LUT)
nd_value=ai+bi*(time_idx-1o)+ci*(time_idx-10)"2+di*(time_idx-10)~3;

% compute national demand at current time plus horizon (inc. Month LUT)
nd_value_month=nd_value+data .monthLUT(Amonth) -data .monthLUT(1) ;

% resample nd_value_month
nd_value_month_rescale=rescale (nd_value_month,0,1, 'InputMin ', ...
data.cs365_min, 'InputMax',data.cs365_max) ;

9% Demand Information

% display to command window comfort information and plot output
if (info)

% load parameters required to create plot

info=load ( 'demand_info.mat"');

X4=current_time+duration (data.horizon,0,0);
D4=duration (str2double (strsplit (datestr (X4, HH:MM:ss '), ':')));

switch type
case 1
PAA_data=info . mtwtfPAA_data;
C_data=info . mtwtfdata;
chart_label="Weekday ';
pos='southeast';
case 2
PAA_data=info .ssPAA_data;
C_data=info.ssdata;
chart_label="Weekend day';
pos='northeast';
end

% CLAMPED SPLINE INTERPOLATION PLOT
y=cat(1,PAA data(1,1),PAA_data);
y=cat(1l,y,PAA data(end,1));

qy=spline (info.t4,[0 y' 0O]);
gx=linspace(0,47,48);

ge=ppval(qy.qgx) ;

qe=qge+data.monthLUT (Amonth) -data . monthLUT(1) ;

% COMPUTE DOUBLE-SCALED EUCLIDEAN DISTANCE

% scaling it into a range defined by O through to maximum possible
% distance obseravle between the two variables:

% qe=cubic spline interpolation

% C_data=cumulative mean data (either weekday or weekend day)

% determine the maximum possible squared discrepancy for each variable
% comparison using the mdi_min and mdi max values:

mdi_min=0;

mdi_max=100;

mdi=(mdi_max-mdi_min) *2;

% compute the sum of squared discrepancies per variable, dividing

% through the squared discrepancy for eah variable by the maximum

% possible discrepancy for that variable. Then take the square root of
% the sum to produce the scaled variable Euclidean distance:

% Note: option to calculate performance at specific point (that is as

% defined by date time stamp) rather than for whole plot data

% (default). To set for specific date time insert <time_idx> as index

% refernce from parameters: gqe and C_data. Also need to change divide by
% value to just 1. Same applies for rmse and mae.

dl=sum/(((qge - (C_datatdata.monthLUT (Amonth) -data .monthLUT(1))).”~2)/mdi) ;

% compute the scaled value by dividing by the square root of the number
% of variables:

d2=sqrt (dl) /(sqrt(size(qe,2)));

% COMPUIE RMISE

rmse=sqrt (sum((qge - (C_data+data.monthLUT (Amonth) -data .monthLUT(1))).~2) /(size(qe,2)));

% COMPUIE MAE

mae=sum (abs (qe - (C_data+data . monthLUT (Amonth) -data.monthLUT(1)))) /(size (qe,2)) ;

% CREATE NEW FIGURE
figure ( 'Name', 'Demand Data Info ', 'NumberTitle', 'off');

% pl=plot clamped spline interpolation based on piecewise polynomial qe - color blue
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241 pl=plot(info.D48,qe, 'b- ', 'LineWidth',1.2);

242 hold on

243 p2=plot (info .D48, C_data+data.monthLUT (Amonth) -data .monthLUT(1) , 'm-- ') ;
244 % create marker showing demand value (month) and placeholder required
245 % for legend X, Y and d (demand value month rescaled).

246 p3=plot (D4,nd_value_month, 'wo', 'LineWidth',1.5, 'MarkerSize ',9, 'MarkerFaceColor ', 'w');
247 p4=plot (D4,nd_value_month, 'wo', 'LineWidth ',1.5, 'MarkerSize ',9, 'MarkerFaceColor', 'w');
248 pb5=plot (D4,nd_value_month, 'ro "', 'LineWidth ',1.5, 'MarkerSize ' ,9);%, 'MarkerFaceColor', 'w') ;
249

250 hold off

251

252 % chart format

253 1gd={ 'Spline - coefs ', 'Cumulative Mean',['t: ',char(D4, hhmmm'), ...

254 ', ndm: ',num2str(nd_value_month, % .2f"')], ...

255 [ 'Rescale (\bf',num2str(nd_value_month_rescale, % .3f'), '\rm) '], ...
256 [ 'Euclidean: ', num2str(d2, '%0.4f')1};

257 lgd=legend ([pl p2 p5 p3 p4l.lgd, 'Location',pos);

258

259 title (lgd ,[ 'Predicted Info (', char(datetime (horizon_time, 'Format', 'dd-MVMyyyy')),"')"'1);
260 title ({[char(chart_label), ' Demand Profile '];[ 'Current time: ' char(current_time)]}):
261 xlabel ('Time (HH:MMV) ');

262 ylabel ( 'Demand (Rescaled) ');

263 grid on

264 axis tight

265 ylim([-15 135])

266 xtickformat ( 'hh:mm') ;

267

268 % CREATE STRUCT FOR DEMAND INFO

269 S=struct('current_time',{current_time}, ...

270 'horizon_hrs ' ,{data.horizon}, ...

271 ‘ai' {ai}, ...

272 'bi',{bi}, ...

273 ‘ci' L {cil, ...

274 tdi',{di}, ...

275 "time_idx ' ,{time_idx}, ...

276 ‘o' ,{lo}, ...

277 'nd_value ' ,{nd_value}, ...

278 'nd_value_month_ndm ' ,{nd_value_month}, ...

279 'nd_value_month_rescale ' ,{nd_value_month_rescale}, ...

280 'Euclidean_Distance ' ,{d2}, ...

281 'RMSE' , {rmse}, ...

282 'MAE' ,{mae}) ;

283

284 disp (S)

285

286 assignin( 'base ', 'demand_info',S);

287 assignin( 'base ', 'qe',qe);

288

289  end

290

291 986 Assign variables to the workspace

292

293  dv=nd_value_month_rescale;

294

295  end

Listing D.4 demand.m
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D.10 demo dtv.m

1 function [measured_temp] = demo_dtv(data)

2 99@MEMO DIV Option to use measured outdoor tempaerature variation

3 %

4 % [MEASURED TEMP] = demo_dtv(data) returns measured temperature

5 % variation in degC for selected date.

6 % Where DATA(1,1)=date_time_option indicator, DATA(2,1)=count increments every
7 % Timer_int (sec) [1800] and DATA(2:49,1)=measured outdoor temperature variation
8 % for selected date_time (set in [optim_ctrl_model_data.m]

9

10 986 MATIAB Function Description

11 %

12 % Title: Demonstration Daily Temperature Variation

13 9% Filename: demo_dtv.m

—

% Prepared by: Sean Williams

15 % Date: 24 Dec 2019

16 %

17 9% MATIAB function returns measured temperature variation in degC
18 %

19

20 %% Change History

21 %

22 % 1. [24-18-2019] Initial

23

24 98 Calculate Measured Temperature
25

26 date_time_option=data(1,1);
27  count=data(2,1);
28  daily_temp=data(3:end,1);

29

30 if (ge(date_time_option,3))

31 %daily_temp=data(3:50,1);

32 % convert measured data from degF and degC

33 measured_temp = (daily_temp (count,1)-32)%(5/9);
34  else

35 measured_temp=0;

36  end

Listing D.5 demo_ dtv.m
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D.11 dijkstra.m

1

2

3 %
4 %
5 %
6 %
7T %
8 %

function [cost, path] = dijkstra(G,s,t)
9MDIJKSTRA Computes a gridmap cost and shortest path.

Construction:

[COST,PATH] = DIJKSTRA(G,S,T) computes the cost and shortest path
starting at node S and ending at node T. Where G is a weighted graph
(digraph) that has been converted initially into a sparse adjacency
matrix then into a full matrix. The PATH contains all the nodes on the

9 % shortest path. The weights between each node on the shortest path are
10 % returned as a single value representing the total cost from node S to
11 % node T.

12 %

13

14 98 Additional Information

15 %

16 % Algorithm constructs a weighted matrix table. The start node is stored
17 % in col 1 index O with remaining nodes in col 2 to n; where n is
18 9% number of nodes.

19 %

20 % adjacency matrix

21 % G=[0 5100 0 0 O;

22 % 000 630 0:;

23 % 000 00O O;

24 % 000 006 O;

25 % 002 200 2;

26 % 000 00O O;

27 % 000 002 0];

28 %

29 % [cost, path]=dijkstra(G,1,6)

30 % cost = 12

31 % path = 12576

32 %

33 % weighted matrix table

34 % from | to...

35 % 0(A) 2(B) 3(C) 4(D) 5(E) 6(F) 7(Q)
36 % 0(A) 5 10 inf inf inf inf
37 % 2B) 5 0 11 8 inf inf
38 % 5(E) 5 10 10 8 inf 10
39 % 3(C) 5 10 10 8 inf 10
40 % 4D) 5 10 10 8 16 10
41 % 7(G) 5 10 10 8 12 10
42 %

43 % path A(1) to F(6) is found in reverse order: F<GE<B<A which translates
44 % to A(1)>B(2)>E(5)>G(7)>F(6)

45 %

46

47 986 MATLAB Function Description

48 %

49 9% Title: Dijkstra's Shortestpath Algorithm
50 % Filename: dijkstra.m

51 % Prepared by: Sean Williams

52 % Date: 19-06-2019

53 %

54 % MATLAB function computes cost and shortestest path between nominated
55 % start (S) and end (T) nodes.

56 %

57

58 %% Change History

59 %

60 % # [19-06-2019] Initial.

61 %

62

63 %6 Dijkstra's Algorithm

64

65 % check start and end nodes

66 if s==

67 cost=0;

68 path=s;

69 else

70 % initialise adjacency matrix replace O with inf
71 for i=1:size(G,1)

72 for j=1:size(G,1)

73 if G(i,j)==

74 G(i,j)=inf;

75 end

76 end

Sean Williams
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111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

end

if t==
t=s;
end

% exchange row s for row 1
temp=G(:,1);
G(:,1)=G(:,s);
G(:,s)=temp;

% exchange col s for col 1
temp=G(1,:);
G(1,:)=G(s,:);
G(s,:)=temp;
lenG=size (G, 1) ;

% initialise weight matrix table (wmt)
wmt=zeros (lenG) ;

% populate wmt

for i=2:lenG
wmt(1,i)=1;
wmt(2,1)=G(1,1);

end

% set col 1 as row 1, then col 2 1:1:lenG
node_l=zeros (lenG,2) ;
for i=1:lenG
node_1(i,1)=G(1,i);
node_1(i,2)=i;
end

node_2=node_1(2:length (node_1) ,:);
path=2;

% sort wmt
while le (path, (size (wmt,1)-1))
path=path+1;
node_2=sortrows (node_2,1) ;
k=node_2(1,2);
wmt(path,1)=k;
node_2(1,:)=[];
for i=1:size(node_2,1)
if gt(node_1(node_2(i,2),1),(node_1(k,1)+G(k,node_2(i,2))))
node_1(node_2(i,2),1) = node_1(k,1)+G(k,node_2(i,2));
node_2(i,1) = node_1(node_2(i,2),1);
end
end
for i=2:length (G)
wmt(path, i)=node_1(i,1);
end
end

if t==s
path=1;
else
path=t;
end

% find cost from start to end nodes from wmt
cost=wmt(size (wmt, 1) ,t);

% format dijsktra shortest path (dsp) to read left to right
path=flip (dsp(path,wmt,s,t));

% assign completed wmt to cell in base
assignin ( 'base ', 'wmt' ,{wmt})

function path = dsp(path,wmt,s,t)
% compute path from weight matrix table (or display only)

idx=size (wmt, 1) ;
while gt (idx,0)

if wmt(2,t)==wmt(size (wmt, 1) ,t)
path=[path s];
idx=0;
else
idx2=size (wmt, 1) ;
while gt (idx2,0)
if 1t (wmt(idx2,t) ,wmt(idx2-1,t))
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159
160
161
162
163
164
165
166
167
168

path=[path wmt(idx2,1)];
path=dsp(path,wmt, s, wmt(idx2,1)) ;
idx2=0;

else
idx2=idx2-1;

end

idx=0;

end
end
end

Listing D.6 dijkstra.m
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D.12 initialise.m

1 function [visual_mode, horizon,gridmap,edgepath,tl,temp_step, event_duration] = initialise (SO_date)
2 986 MATLAB Function Description

3 %

4 % Title: Initialise Parameters

5 % Filename: initialise.m

6 % Prepared by: Sean Williams

7 % Date: 6 Nov 2019

8 %

9 % MATIAB function intialises parameters converts date and time to vector components

10 %

11
12 98 Change History
13 %

14 % 1. [06-11-2019] Initial
15 % 2. [27-02-2020] New parameter: visual_mode
16 % 3. [21-02-2020] Change variable names (interval>temp_step)

17 %

18

19 9% Set Model Parameters
20

21 9% Visual Mode
22 9% option to display different combinations of gridmap
23 % visual_mode: [1]=none=

24 % [2]=optim

25 % [3]=demand, optim

26 % [4]=comfort ,demand, tou , optim
27  visual_mode=1;

28

29 9% Time date variable
30 tl=datetime(datestr (SO_date));

32 % Horizon window

33 % option to plot tou data to 4h or 24h

34 % compute gridmap (shortest path) fixed to 4h only
35  horizon=4;

36

37 if horizon==4

38 horizon=25;

39 else

40 horizon=144;

41  end

42

43 % Temperature path: [2]=initial temperature + 2degC
44 % [3]=initial temperature + 3degC
45  temp_step=3;

46

47 % Demand event duration: [1]=30min

48 % [2]=40min

49 % [3]=50min

50 event_duration=2;

51

52 % load gridmap template from compresseed MAT-file; contains both 1-D and
53 % multidimensional array
54  load('grid4_1.mat', 'grid4_0"');

56 % Gridmap to multidimensional array template (31x72x4 double)
57  gridmap=grid4_0;

58

59 % clear edgepath

60 edgepath=[]; % clear edgepath
61

62 % end initialise

Listing D.7 initialise.m
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D.13 optim ctrl.m

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

44
45
47
48
49
50
51
52
53
54
56
57
59
60
61
62

64
65
66
67

69
70
71
72
73
75
76

function optim_ctrl(block)

9% OPTIM_CTRL

%

% Title: Optimisation and Control

% Filename: optim_ctrl.m

% Prepared by: Sean Williams

% Date: 20 Dec 2019

%

% Code tagged to Simulink model block optimise_subsystem. On receipt of
% date/time (sampe rate: 10 minute) code computes new temperature

% setpoint (ctrl_action) using Dijsktra's algorithm which is a function
% of occupant thermal comfort, electricity demand and cost (tariff).

% Code reacts on receipt of demand event signal

%

setup (block) ;
%endfunction: optim_ctrl(block)

function setup (block)
%% Setup Functional Port Properties

% Register number of ports
block.NumInputPorts = 3;
block . NumOutputPorts = 3;

% Setup port properties to be inherited or dynamic
block . SetPreCompInpPortInfoToDynamic ;
block . SetPreCompOutPortInfoToDynamic;

% Override input port properties

block.InputPort(1).Dimensions = 1; % temp_room
block.InputPort(1).DatatypelD = 0; 9% double
block.InputPort(1).Complexity = 'Real’;

block.InputPort(1).DirectFeedthrough = true;

% Override input port properties
block.InputPort(2) .Dimensions = 1; % SO_date
block.InputPort (2) . DatatypelD 0; % double
block.InputPort(2) . Complexity 'Real ';
block.InputPort(2) . DirectFeedthrough = true;

% Override input port properties
block.InputPort(3).Dimensions = 1; % des_mode
block.InputPort (3) . DatatypelD 0; 9% double
block.InputPort (3) . Complexity 'Real ';
block.InputPort(3) . DirectFeedthrough = true;

% Override output port properties
block.OutputPort(1) .Dimensions = 1; % ctrl_action
block . OutputPort (1) . DatatypelD 0; % double
block . OutputPort (1) . Complexity 'Real ';

% Override output port properties
block.OutputPort(2) . Dimensions = 1; % tou_tariff
block.OutputPort(2) . DatatypelD = 0; % double

block.OutputPort(2) . Complexity = 'Real’;

% Override output port properties
block.OutputPort(3) . Dimensions = 1; % des_duration
block.OutputPort (3) . DatatypelD = 0; % double
block.OutputPort(3) . Complexity = 'Real’;

% Register parameters
block . NumDialogPrms = O;

% Register sample times
block .SampleTimes = [600 O];

% Specify the block simStateCompliance to default
block.SimStateCompliance = 'DefaultSimState ';

% Register nethods
block . RegBlockMethod ( 'PostPropagationSetup ', @DoPostPropSetup) ;
block .RegBlockMethod ( 'InitializeConditions ', @InitializeConditions);
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80

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

block . RegBlockMethod ( 'Start ', @Start);

block . RegBlockMethod ( 'Outputs ', @Outputs); % Required

block . RegBlockMethod ( 'Update ', @Update) ;

block . RegBlockMethod ( 'Derivatives ', @Derivatives);

block . RegBlockMethod ( 'Terminate ', @Terminate); % Required

block . RegBlockMethod ( 'SetInputPortSamplingMode ', @SetInpPortFrameData) ;

%endfunction: setup (block)

function DoPostPropSetup (block)

% Initialise the Dwork vectors
block .NumDworks = 4;

% Dwork(1) stores the status of the count_flag [count_flag]

block .Dwork(1) .
block .Dwork(1) .
block .Dwork(1) .
block .Dwork(1) .
block .Dwork(1) .

% Dwork(2)
block .Dwork(2) .
block .Dwork(2) .
block .Dwork(2) .
block .Dwork(2) .
block .Dwork(2) .

% Dwork (3)
block .Dwork(3) .
block .Dwork(3) .
block .Dwork(3) .
block .Dwork(3) .
block .Dwork(3) .

% Dwork (4)
block .Dwork(4) .
block .Dwork(4) .
block .Dwork(4) .
block .Dwork(4) .
block .Dwork(4) .

Name

Dimensions
DatatypelD
Complexity
UsedAsDiscState

stores the value of

Name

Dimensions
DatatypelD
Complexity
UsedAsDiscState

stores the nodepath

Name

Dimensions
DatatypelD
Complexity
UsedAsDiscState

Name

Dimensions
DatatypelD
Complexity
UsedAsDiscState

stores the status of the des_end

'D1';
1;
0; % double
'Real'; % real
true;

the counter [count]
'D2';
1;
0; % double
'Real'; % real
true;

as a vector when a dv event is initiated [dv_event]
'D3";
25;
0; % double
'Real'; % real
true;

[des_end]

'D4"; %des_end
1;
0; % double
'Real'; % real
true;

%endfunction: DoPostPropSetup (block)

function InitializeConditions (block)

%% Set Initial

Conditions

% Set the initial status of the count_flag to zero

block .Dwork(1) .

Data=1;

% Set the initial value of demand event counter to 24
% 24 is baseline counter required for 4 hour ramp time, and before event
% duration counter is applied

block .Dwork(2) .

Data=24;

% Set initial status of des_end to zero
% des_end=0 [no demand event signal]

block .Dwork(4) .

Data=0;

% Set Simulink Model block parameters
set_param ( 'optim_ctrl_model_sim/des_subsystem/des_end', 'Value', '0")

% Set des_duration output signal to zero
block . OutputPort (3) . Data=0;

%endfunction:

function Start(block)
%% Set Start Conditions

InitializeConditions (block)

% Assign Dwork(1) to status of count_flag

block .Dwork(1) .

Data=1;

% Assign Dwork(4) status of des_end
block .Dwork(4) . Data=block . InputPort (3) . Data;

%endfunction :

Start (block)

function Outputs(block)

%% Outputs

% Set Simulink

blck parameters
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159  temperature=block.InputPort(1).Data;

160 des_end=block.Dwork(4) .Data;

161  count_flag=block.Dwork(1) .Data;

162  count=block.Dwork(2) .Data;

163  dv_event=block.Dwork(3) .Data;

164 set_param/( 'optim_ctrl_model_sim/des_subsystem/des_end ', ...

165 'Value', '0'); % reset des_end at end of event

166

167 % set SO_date to 'base' for initial cycle only, then revert to date on Input Port 4
168 if block.InputPort(2).Data<10

169 SO_date=datetime (datestr (evalin( 'base ', 'dt')));

170  else

171 SO0_date=datetime (datestr (block.InputPort(2) .Data));
172  end

173

174 % Diagnostic view [SO_date]

175 %S0_date

176

177 % Initialise model

178  [visual_mode, horizon , gridmap, edgepath,tl,temp_step, event_duration]=initialise (SO_date);
179

180 % Set edgepath for each function

181 % [1] comfort

182 % [2] demand

183 % [3] tou (tariff)

184 % [4] optim (ALL)

185 for edgepage=1:4

186

187 switch edgepage

188

189 case 1 % comfort

190

191 % 1. INITIALISE (LOCAL)

192 %

193 % set local paramaters

194

195 % set minimum temperature threshold

196 % if nil occupancy edge weight will force path to reduce temperature
197 % setpoint until minimum temperature threshold is reached. At which point
198 % edge weight will force maintain minimum temperature threshold

199 mintempthreshold=16;

200

201 % set minimum temperature threshold parameter

202 % translate minimum temperature threshold to equivalent grid map value
203 mintemp=[17.5 17 16.5 16 15.5];

204 mintempvar=[17 20 23 26 29];

205 mintempthresholdparam=mintempvar (mintemp==mintempthreshold) ;

206

207 % define array that describes range of temperatures (nodes) at time tO
208 tOtempSP=[20.5 20 19.5 19 18.5 18 17.5 17 16.5 16 15.5];

209 % tOnodes=1:1:11;

210

211 % 2a. PREPARE COMFORT VALUES

212 %

213 [tempSP]=prepare_comfort_values (temperature) ;

214

215 % 3. PREPARE GRIDMAP

216 %

217 [tev, tevdata , gridmap_c, tOminidx , t240minidx]=prepare_tc_gridmap (tOtempSP, tempSP, . . .
218 SO_date, gridmap, edgepath , edgepage , mintempthresholdparam) ;

219

220 % 4. PREPARE DIGRAPH

221 %

222 [G_c,B]=prepare_digraph (gridmap_c, edgepage) ;

223

224 % 5. DIJKSTRA

225 % ===========

226 [-,path_c]=dijkstra (B, gridmap_c (tOminidx, 1,edgepage) ,gridmap_c (t240minidx,71,
227 edgepage) ) ;

228 [edgepath_c]=prepare_edgepath (gridmap_c, edgepage , path_c) ;

229

230 % 6. VISUALISATION: COMFORT (4H/24H HORIZON WINDOW)

231 %

232 % fixed subplot showing scrolling comfort [1,4,1]

233 if (visual_mode==4)

234 visual_comfort_data (horizon, tcvdata,tl);

235 end

236

237 % 7. VISUALISATION: GRIDMAP INDIVIDUAL SHORTESTPATH

238 %

239 % new figure created for each cycle showing individual gridmap
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240 %fig_name='Comfort Gridmap';

241 %edgepath_color=[153/255 0 0]; % red

242 %visual_individual_shortestpath (fig_name, G_c, edgepage, edgepath_c,tl,edgepath_color) ;
243

244 case 2 % demand

245

246 % 1. INITIALISE (LOCAL)

247 %

248

249

250 % 2a. PREPARE DEMAND VALUES

251 %

252 [dv,dv_gridmap,dv_nodepath, dv_rescale]=prepare_dv_values (horizon, SO_date) ;
253

254 % 2b. PREPARE NODE PATH

255 %

256 if (des_end==1)

257 % on receipt of demand event signal set grid path to increase by 2degC or
258 % 3degC [temp_step] from last recorded temperature over 4hr horizon window at
259 % increments of 0.5degC every 50 min [2degC] or 40 min [3degC].

260 if (count_flag==1)

261 block . OutputPort (3) . Data=0;

262

263 count_flag=0; % set flag to false to ensure loop is executed only once
264 block .Dwork(1) .Data=count_flag;

265 % set node start point (source) temperature

266 node=dv_rescale (1 ,:);

267 %mode=10 % test

268

269 dv_nodepath=[]; % temporary placeholder for new path

270

271 switch temp_step

272 case 2

273 dv_nodepath=zeros(25,1); % initialise variable dv_nodepath
274 % set path for 2degC increase over 4hr period increasing 0.5degC at
275 % 50min intervals

276 for p1=0:5:20

277 for p2=1:5

278 if node-(pl/5)<1

279 dv_nodepath (p2+pl,1)=1;

280 else

281 dv_nodepath (p2+p1, 1)=node-(pl/5);

282 end

283 end

284 end

285 case 3

286 dv_nodepath=zeros(25,1); % initialise variable dv_nodepath
287 % set path for 3degC increase over 4hr period increasing 0.5degC at
288 % approximately 40min intervals

289 for pl1=0:4:25

290 for p2=1:4

291 if node-(pl/4)<1

292 dv_nodepath (p2+pl,1)=1;

293 else

294 dv_nodepath (p2+p1l, 1)=node - (pl/4);

295 end

296 end

297 end

298 % trim dv_nodepath

299 dv_nodepath (1 ,:) =[];

300 dv_nodepath(26:end ,:) =[];

301 end

302 dv_event=dv_nodepath;

303 block .Dwork(3) . Data=dv_event;

304

305 % on receipt of demand event signal, and after inital path showing
306 % increase of either 2degC or 3degC [temp_step] code begins to scroll
307 % grid map horizontally by one-step at each 10 minute cycle.

308 else

309 if (count>1)

310 dv_nodepath(1:count-2,1)=dv_event(size (dv_nodepath, 1) -count+2:
311 end-1,:);

312 if ((dv_event(1l,1)+temp_step)>11)

313 dv_nodepath (count- 1:count+event_duration ,:)=11;

314 else

315 dv_nodepath (count-1:count+event_duration ,:)=dv_event(1)+2;
316 end

317 else

318 if ((dv_event(1l,1)+temp_step)>11)

319 dv_nodepath (1: count+event_duration ,:)=11;

320 else

321 dv_nodepath (1:count+event_duration ,:)=dv_event(1)+2;

Sean Williams Teesside University



Page 237

322 end

323 end

324 count=count-1;

325 block .Dwork(2) . Data=count ;

326

327 % this will trigger use of ESS for duration of
328 % demand side event, try this first then remember
329 % to reset new output back to zero in the next if
330 % loop below

331 if count==

332 block . OutputPort (3) . Data=3;

333 end

334

335 if (count==-event_duration-1)

336 set_param ( 'optim_ctrl_model_sim/des_subsystem/des_end ', ...
337 '"Value ', '1');

338 count_flag=1;

339 block .Dwork(1) . Data=count_flag;

340 count=24; % reset count

341 block .Dwork(2) . Data=count;

342 block .Dwork (4) . Data=0;

343 end

344 end

345 end

346

347 % 3. PREPARE GRIDMAP

348 %

349 [tOminidx , t240minidx, gridmap_d]=prepare_gridmap (dv_nodepath, gridmap, edgepage, ...
350 edgepath) ;

351

352 % 4. PREPARE DIGRAPH

353 %

354 [G_d,B]=prepare_digraph (gridmap_d, edgepage) ;

355

356 % 5. DIJKSTRA

357 % ===========

358 [-,path_d]=dijkstra (B, gridmap_d (tOminidx, 1, edgepage) ,gridmap_d (t240minidx,71, ...
359 edgepage)) ;

360 [edgepath_d]=prepare_edgepath (gridmap_d, edgepage , path_d) ;

361

362 % 6. VISUALISATION: Demand (4H/24H HORIZON WINDOW)

363 %

364 % fixed subplot showing scrolling demand [1,4,2]

365 if (visual_mode==3) || (visual_mode==4)

366 visual_demand_data (horizon ,dv,dv_gridmap, dv_rescale, t1)
367 end

368

369 % 7. VISUALISATION: GRIDMAP INIDVIDUAL SHORTESTPATH

370 %

371 % new figure created for each cycle showing individual gridmap
372 %fig_name='Demand Gridmap';

373 %edgepath_color=[0 112/255 192/255]; % blue

374 %visual_individual_shortestpath (fig_name,G_d, edgepage,edgepath_d,t1,edgepath_color)
375

376 case 3 % tou

377

378 % 1. INITIALISE (LOCAL)

379 %

380 % set local parameters

381 tou_tariff=[0.0499 0.1199 0.2499];

382 period={'00:00:00"', '06:00:00 ', '16:00:00 ', '19:00:00 ', '23:00:00 ', '24:00:00 '};
383

384 % 2a. PREPARE TOU VALUES

385 %

386 [touv_gridmap , touv_nodepath, touv_rescale , touv]=prepare_tou_values (horizon, ...
387 S0_date, period , tou_tariff) ;

388

389 touv_op=touv(1,1);

390

391 % 3. PREPARE GRIDMAP

392 %

393 [tOminidx , t240minidx, gridmap_t|=prepare_gridmap (touv_nodepath, gridmap, edgepage, ...
394 edgepath) ;

395 %gridmap_t=gridmap;

396

397 % 4. PREPARE DIGRAPH

398 %

399 [G_t,B]=prepare_digraph (gridmap_t, edgepage) ;

400

401 % 5. DIJKSTRA

402 % ===========
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403 [-.path_t]=dijkstra (B, gridmap_t (tOminidx, 1,edgepage) ,gridmap_t (t240minidx,71, ...
404 edgepage) ) ;

405 [edgepath_t]=prepare_edgepath (gridmap_t, edgepage, path_t);
406

407 % 6. VISUALISATION: TOU (4H/24H HORIZON WINDOW)

408 %

409 % fixed subplot showing scrolling tou [1,4,3]

410 if (visual_mode==4)

411 visual_tou_data (horizon, touv_rescale , t1)

412 end

413

414 % 7. VISUALISATION: GRIDMAP INDIVIDUAL SHORTESTPATH
415 %

416 % new figure created for each cycle showing individual gridmap
417 %fig_name="TOU Gridmap';

418 %edgepath_color=[204/255 0 153/255]; % magenta

419 %visual_individual_shortestpath (fig_name, G_t, edgepage, edgepath_t,t1,edgepath_color)
420

421 case 4 % optim

422

423 % 1. INITIALISE (LOCAL)

424 %

425 % set local parameters

426 stage_centroid=1;

427 X=zeros(3,2);

428

429 % 2. PREPARE VALUES

430 0fp =================

431 % not required

432

433 % 3. PREPARE GRIDMAP

434 %

435 % set gridmap to multidimensional array template (31x72x4 double)
436 gridmap (: ,:,1)=gridmap_c(:,:,1);

437 gridmap (: ,:,2)=gridmap_d(:,:,2);

438 gridmap (: ,:,3)=gridmap_t(:,:,3);

439 gridmap (: ,: ,4)=gridmap_c(:,:,4);

440

441 for =3:3:72

442 for p=1:(edgepage-1)

443 X(p,1)=find (gridmap (: ,s,p)==min(gridmap (: ,s,p)));
444 X(p,2)=0;

445 [-,c]=kmeans(X, 1) ;

446 id=floor (c(1));

447 end

448

449 gridmap (id , s, edgepage) =stage_centroid;

450 for j=id-1:-1:1

451 gridmap (j ,s, edgepage)=stage_centroid+id-j;

452 end

453 for j=id+1:1:31

454 gridmap (j ,s, edgepage)=stage_centroid+j -id;

455 end

456 end

457

458 tOminidx=find (gridmap (: , 3 ,4)==min(gridmap(: ,3,4)));

459 t240minidx=find (gridmap(: ,72 ,4)==min(gridmap(:,72,4)));
460

461 % 4. PREPARE DIGRAPH

462 %

463 [G_a,B]=prepare_digraph (gridmap, edgepage) ;

464

465 % 5. DIJKSTRA

466 % ===========

467 [-,path_a]=dijkstra (B, gridmap (tOminidx, 1 ,edgepage) , gridmap (t240minidx,71,edgepage) ) ;
468 [edgepath_a]=prepare_edgepath (gridmap, edgepage , path_a) ;
469

470 % 6. VISUALISATION: DATA (4H/24H HORIZON WINDOW)

471 %

472 % not required

473

474 % 7. VISUALISATION: GRIDMAP INDIVIDUAL SHORTESTPATH
475 %

476 % not required

477

478 % 8. CONTROL ACTION

479 %

480 % control action is temperature at tl10, Sl

481 ctrl_stage=2;

482 ctrl_action=tOtempSP (path_a(ctrl_stage) -(11=(ctrl_stage-1)));
483
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484

485

486

487

488

489

490

491

492

493

494

495

496 end
497  end
498

% 9. VISUALISATION: BIG PATH
%
%fixed subplot showing scrolling total cost function [1,4,4]
if (visual_mode==2) || (visual_mode==3) || (visual_mode==4)

visual_group_path(path_c, path_d, path_t, path_a, tl)
end

% 10. VISUALISATION: BIG GRIDMAP SHORTESTPATH
%
% new figure created for each cycle showing individual gridmap

%visual_group_shortestpath (G_c,edgepath_c,G_d,edgepath_d,G_t,edgepath_t,G_a,...

%edgepath_a,tl,horizon)

499 % Update Simulink model output ports

500  block.OutputPort (1) .Data
501  block.OutputPort(2) . Data

502
503

ctrl_action
touv_op;

504  %endfunction: Outputs(block)

505

506  function Update(block)
507 %% Update Dwork

508

509 % Update Dwork(4) to InputPort(3) [SO_date]
510  block.Dwork(4) .Data=block.InputPort (3) . Data;

511

512  %endfunction: Update (block)

513

514 function SetInpPortFrameData (block, idx, fd)

515

516 % Set the sampling of the input ports
517  block.InputPort (idx) . SamplingMode=1d ;
518 for i=1:block.NumOutputPorts

519 block . OutputPort (i) . SamplingMode=fd ;

520 end
521

522  %endfunction: SetInpPortFrameData (block,idx, fd)

523

524 function Terminate (block)

525

526  %endfunction: Terminate (block)

Listing D.8 optim_ ctrl.m
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D.14 optim ctrl model data.m

==
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76

%% MATLAB M- File Description

%

% Title: Optimisation and Control Model Building Parameters

% Filename: optim_ctrl_model_data.m

% Prepared by: Sean Williams

% Date: 24 Oct 2019

%

% MATIAB script tagged to Simulink model 'optim_ctrl_model_sim.slx",
%

%% Change History

%

% 1. [24-10-2019] Initial

% 2. [20-12-2019] New: Set Initialise Parameters, Set Date Time,

% (option to use dtv_sim or dtv_act), Set SOC Model Parameters,
%  Set Outdoor Temperature Variation; Modified: Set Building Parameters.
% 3. [26-01-2020] New: energy_subsystem parameters

%6 Set Initialise Parameters

Al1=1.157412771135569¢-05;
A10=0.006944444445185;

%6 Set Date Time

% Option to select simulated daily temperature variation [112]
% or measured daily temperature [31415]6]
% https://www.wunderground.com <act_temp.xlsx>

date_time_option=4;

switch date_time_option

case 1
date_time="now';
daily_temp=111;

case 2
date_time="'10:00:00";
daily_temp=222;

case 3 % Sunday 10-Feb-2019 00:00:00, 24hrs
date_time="'10-Feb-2019 00:00:00 '; %datenum=737466

% https://www.wunderground.com/history/daily/gb/newcastle -upon-tyne /EGNIT/date/2019-2-10

daily_temp=[39 37 39 39 37 36 36 36 37 37 37 37
36 36 36 36 36 36 37 41 41 43 43 43
43 45 43 41 45 45 41 41 39 39 39 37
36 36 37 37 36 36 36 37 36 36 36 36
36 24 32 34

case 4 % Tuesday 07-May-2019 00:00:00, 24hrs
date_time="'7-May-2019 00:00:00 '; %datenum=737552

% https://www.wunderground.com/history/daily /gb/newcastle -upon-tyne /EGNT/date /2019-5-7

daily_temp=[37 37 37 37 37 37 37 37 37 37 37 37
39 39 41 41 43 43 43 45 45 45 45 43
45 46 45 46 46 46 46 46 45 45 45 45
45 43 43 43 43 43 43 43 43 43 43 43
43 43 43 43];

case 5 % Saturday 3-Aug-2019 00:00:00, 24hrs
date_time="'3-Aug-2019 00:00:00'; %datenum=737640

% https://www.wunderground.com/history/daily /gb/newcastle -upon-tyne /EGNT/date /2019-8-3

daily_temp=[57 55 55 55 55 55 55 55 55 57 57 57
57 57 59 59 61 63 64 66 64 66 66 68
66 66 66 68 68 68 66 66 66 66 64 66
64 64 64 63 63 61 61 61 61 59 59 59
59 59 59 59];

case 6 % Friday 08-Nov-2019 00:00:00, 24hrs
date_time='8-Nov-2019 00:00:00 '; %datenum=737737

% https://www. wunderground.com/history/daily /gb/newcastle -upon-tyne /EGNT/date/2019-11-8

daily_temp=[43 43 43 41 41 41 41 41 41 39 39 41
41 39 39 39 39 39 39 39 39 39 41 41
41 41 41 41 39 39 39 39 39 37 39 39
37 37 37 36 37 37 36 37 37 36 34 34
32 34 32 32[;
end

dt=datenum (datetime (date_time)) ;
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77 assignin('base', 'dt',dt);

79 if (ge(date_time_option,3))

80 set_param ([ 'optim_ctrl_model_sim/building_subsystem/Daily Temp Variation/'...
81 'select_temp_out'], 'Value','0")
82 else
83 set_param ([ 'optim_ctrl_model_sim/building_subsystem/Daily Temp Variation/'...
84 'select_temp_out'], 'Value','1")
85 end
86
87 98 Set Power System Parameters
88
89 R=0.05;
90 Tg=0.25;
91 Tt=0.6;
92  H=5;
93 D=0.8;
94 Ki=0.2;
95  MVA=300;
96 Th=9.65;
97 Kh=1.16;
98
99 %% Set SOC Model Parameters
100

101 SDR=0.017;
102 tau=2000;
103 tou_weekday=[4.99 11.99 24.99 11.99 4.99];

105 986 Set Outdoor Temperature Variation

107 tmd_dt=datetime (date_time) ;

108 tmd_sofd=dateshift (tmd_dt, 'start ', 'day');
109  tmd_a=between (tmd_sofd , tmd_dt) ;

110 tmd_sec=seconds (time (tmd_A)) ;

111  tmd_phase=0.000072722+tmd_sec;

112

113 9% Set Building Parameters

114

115 r2d=180/pi; % converst radians to degrees
116 t1=1;

117

118 % Building

119 lenHouse=30; % House length = 30 m

120  widHouse=10; % House width = 10 m

121 htHouse=4; % House height = 4 m

122 pitRoof=40/r2d; % Roof pitch = 40 deg

123  numWindows=6; % Number of windows = 6

124 htWindows=1; % Height of windows = 1 m

125 widWindows=1; % Width of windows = 1 m

126 windowArea=numWindows*htWindows *widWindows ;

127  wallArea=2+lenHouse*htHouse + 2*widHouse*htHouse +

128 2x(1/cos (pitRoof/2)) *widHouse*lenHouse +
129 tan (pitRoof) *widHouse - windowArea;
130

131 % Insulation

132 % Glass wool in the walls, 0.2 m thick

133 % k is in units of J/sec/m/C - convert to J/hr/m/C multiplying by 3600
134  kWall=0.038+t1l; % hour is the time unit

135 Lwall=0.2;

136 RWall=LWall /(kWall*wallArea) ;

137 % Glass windows, 0.01 m thick

138  kWindow=0.78xt1; % hour is the time unit

139  LWindow=0.01;

140 RWindow=LWindow / (kWindow#*windowArea) ;

142 % Equivalent thermal resistance for the whole building
143  Req=RWall*RWindow/(RWall + RWindow) ;

144 % c = cp of air (273 K) = 1005.4 J/kg-K

145  ¢=1005.4;

147 9% Temperature of the heated air (degC)

148 THeater=50;

149 % Air flow rate Mdot = 1 kg/sec = 3600 kg/hr
150 Mdot=tl; % hour is the time unit

152 % Total internal air mass = M

153 % Density of air at sea level = 1.2250 kg/m"3

154  densAir = 1.2250;

155 M=(lenHouse*widHousexhtHouse+tan ( pitRoof) *widHouse*lenHouse) *densAir;

157 % Cost of energy storage system expressed in tems of energy capacity cost
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158 % (GBP spent per unit of total energy stored as expressed in GBP per

155) % kilowatthours. Assume all electric energy is transformed to heat energy.
160  ess_cost_ kWh=0.0199;

161

162 % Set initial indoor temperature = 18 deg C

163  TinIC=18;

Listing D.9 optim_ ctrl_model_data.m
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D.15 prepare aux data.m

function [ctrl_action]=prepare_aux_data(path)

%6 MATLAB Function Description

%

% Title: Prepare Auxcilary Data

% Filename: prepare_aux_data.m

% Prepared by: Sean Williams

% Date: 6 Nov 2019

%

9 % MATLAB function converts shortest path represented as nodemap (11x25)
10 % index to temperature (control action) for each stage.

11 9% cCalled from fcn visual_group_path to create 4-hour scrolling figure.
12 %

OO U W N —

14 986 Change History
15 %
16 % 1. [06-11-2019] Initial

18 986 Convert Nodemap to Control Action

20 % define temperature range
21  tOtempSP=[20.5 20 19.5 19 18.5 18 17.5 17 16.5 16 15.5];

23 % initialise variable
24 ctrl_action=zeros(1,25);

26 % Set control action for each stage
27  for j=1:size(path,1)

28 for ctrl_stage=1:25

29 ctrl_action(j, ctrl_stage)=tOtempSP(path(j,ctrl_stage) -(11#(ctrl_stage-1)));
30 end

31 end

Listing D.10 prepare_aux_data.m
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D.16 prepare comfort values.m

function [tempSP]=prepare_comfort_values (temp)

1

2 986 MATLAB Function Description
3 %

4 % Title: Prepare Comfort Values
5 % Filename: prepare_comfort_values.m
6 % Prepared by: Sean Williams
7 % Date: 6 Nov 2019

8 %

9

10

11 % 15.5degC (minimum) to 20.5degC (maximum) .
12 %

13

14 986 Change History

15 %

16 % 1. [06-11-2019] Initial
17

18

19

20 98 Set Temperature Setpoint

21

22 if (temp > 12) &X (temp < 15.75)
23 tempSP=15.5;

24 elseif (temp > 15.75) & (temp
25 tempSP=16;

26 elseif (temp > 16.25) & (temp
27 tempSP=16.5;

28 elseif (temp > 16.75) & (temp
29 tempSP=17;

30 elseif (temp > 17.25) & (temp
31 tempSP=17.5;

32  elseif (temp > 17.75) & (temp
33 tempSP=18;

34 elseif (temp > 18.25) &k (temp
35 tempSP=18.5;

36 elseif (temp > 18.75) && (temp
37 tempSP=19;

38 elseif (temp > 19.25) & (temp
39 tempSP=19.5;

40  elseif (temp > 19.75) && (temp
41 tempSP=20;

42 elseif (temp > 20.25) &% (temp
43 tempSP=20.5;

44 end

45

46  %end prepare_comfort_values

% MATIAB function sets temperature setpoint (control action) depending on
% measured temperature. System limited to operate in temperature range

% 2. [21-01-2020] Set upper temperature range to 20.5 irrespective of
%  measured temperature (last line in ifelse block set to 23.00)

Listing D.11 prepare_ comfort_ values.m

<

<

16.

16.

17.
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18.
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20.
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D.17 prepare digraph.m

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

function [G,B]=prepare_digraph (gridmap, edgepage)

%% MATLIAB Function Description

%

% Title: Prepare Digraph

% Filename: prepare_digraph.m

% Prepared by: Sean Williams

% Date: 6 Nov 2019

%

% MATIAB function prepares digraph, transposing gridmap (31x72) to

% edgelist (733x3) before creating sparse adjacency matrix and finally full
% adjacency matrix. The start and end nodes and their respective edge
% weights format is prepared for fcn dijkstra.

%

9% Change History

%

% 1. [06-11-2019] Initial
%% Prepare Digraph

% Convert 31x72 gridmap to a 733x3 edgelist
Y=gridmap (:,1:3,edgepage) ;

for i=2:24

Y=cat(1,Y,gridmap (:,((i*3)-2:i+3),edgepage));
end
% Create array for node names {1,2,...,275}
name={};
for i=1:275

name=cat (2 ,name, num2str(i)) ;
end

% Define s=source, t=target, and w=edge weight
s=Y(:,1) ';
t=Y(:,2) ';
w=Y(:,3)";

% Define digraph G
G=digraph(s,t,w,name) ;

% Convert digraph into sparse adjacency matrix
A=adjacency (G, 'Weighted ') ;

% Convert sparse matrix to full matrix
B=full (A);

%end prepare digraph

Listing D.12 prepare_ digraph.m
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D.18 prepare dv values.m

1 function [dv,dv_gridmap,dv_nodepath, dv_rescale]=prepare_dv_values (horizon, SO_date)
2 986 MATLAB Function Description

3 %

4 9% Title: Prepare Demand Values

5 % Filename: prepare_dv_values.m

6 % Prepared by: Sean Williams

7 % Date: 6 Nov 2019

8 %

9 9% MATLAB function computes demand values for duration of horizon window at
10 % sample rate of 10 minutes; one per stage. Formating for scrolling

11 % figure including rescaled, gridmap and nodepath included.

12 %

13

14 9% Change History

15 %

16 % 1. [06-11-2019] Initial
17

18 %% Compute Demand Values
19

20 % Set rescale parameters

21  lower=1;

22 upper=11;

23 inmin=0;

24 inmax=1;

25 dv=zeros (horizon,1); % initialise array of all zeros

26  dv_rescale=zeros (horizon,1); % initialise array of all zeros

27

28 % Compute demand value (dv) set for each stage. Set includes

29 % dv: Spline Coefs

30 % dv_rescaled: dv(rescaled)

31 % dv_gridmap: dv(gridmap)

32 % dv_nodepath: dv(node path)

33 for n=0:horizon-1

34 Sn_date=datetime (SO_date, 'ConvertFrom ', 'datenum ')+minutes(10#n) ;
35 dv(n+1,:)=demand(Sn_date) ; % Spline Coefs

36 dv_rescale_single=lower+(dv(n+1,1)-inmin) . / (inmax-inmin) . * (upper-lower) ;
37 dv_rescale (n+1,:)=ceil (dv_rescale_single); % dv(rescaled)

38 dv_gridmap=12.-dv_rescale; % dv(gridmap)

39 dv_nodepath=dv_rescale; % dv(node path)

40  end

41

42 %end prepare_dv_values

Listing D.13 prepare_dv_ values.m

Sean Williams Teesside University



Page 247

D.19 prepare edgepath.m

1
2
3
4

6
7
8
9
10
11
12
13
14
15

16

function [edgepath]=prepare_edgepath (gridmap, edgepage, path)

%% MATLIAB Function Description

%

% Title: Prepare Edgepath

% Filename: prepare_edgepath.m

% Prepared by: Sean Williams

% Date: 6 Nov 2019

%

% MATIAB function returns list of numbers that describes edgepath

% between start and end nodes of each stage.

% For each start and end node pair code searches for index from nodemap
% (11x25) at each stage. The intercept is the edgepath; starting from
% Sl to S25.

%% Change History
%
% 1. [06-11-2019] Initial

%% Compute Edgepath

% For each stage, compute edgepath
edgepath =[];
for i=1:24
path_s=find (gridmap (: , (i+3)-2,edgepage)==path(i));
path_t=find (gridmap (: ,(i#3)-1,edgepage)==path(i+1));
int=intersect (path_s, path_t);
edgepath=cat(2,edgepath,sub2ind(size (gridmap(: ,: ,edgepage)) ,int,i)):
end

%end prepare_edgepath

Listing D.14 prepare_ edgepath.m
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D.20 prepare gridmap.m

| function [tOminidx,t240minidx,gridmap] = prepare_gridmap (nodepath, gridmap, edgepage , edgepath)
2 986 MATLAB Function Description

3 %

4 9% Title: Prepare Gridmap

5 % Filename: prepare_gridmap.m

6 % Prepared by: Sean Williams

7 % Date: 6 Nov 2019

8 %

9 % MATIAB function starts with gridmap (31x72x4) template. Maps nodepath
10 % (11x25) onto gridmap (31x72) for each objective function (page):

11 % comfort, demand and tou (tariff).

12 9% At each stage the min value is defined as the stage centroid,

13 % all remaining values are populated, increasing/decreasing in

14 % value moving up/down in the same col (stage). The index where the

15 % min value at tO and t240 is found are stored in tOminidx and t240minidx
16 % respectively.

17 9% Exception handling at boundary upper and lower is included.

18 %

19

20 %% Change History

21 %

22 % 1. [06-11-2019] Initial
2:

24 98 Prepare Gridmap

25

26  i=1; % set count variable (ensure correct increase/decrease in temperature)
27 n=1;

28 col=3; % set column number

29 stage_centroid=1; % set stage centroid value

30  node=nodepath(n,:) ;

32 % calculate start node index
3  nodeidxs=(node*2)+(node-2);

35 % set the target node index the same as the start node index
36 nodeidxt=nodeidxs;

37
38 % dv at S1 to S24
39 9 =========mmm=m=o==

40 % set centroid value for each stage and increase remaining values at stage
41 % moving away from stage centroid until reach min and max boundary

42 % (vertically)

43 for n=1:24

44 node=nodepath (n,:) ;

45 nodeidxs =(node*2) +(node-2) ;

46

47 % if start node index is greater than target node index...

48 if nodeidxs>nodeidxt

49 if (i<2)

50 gridmap (nodeidxt+1,(n-1)+col ,edgepage)=stage_centroid;

51 i=i+1;

52 for j=nodeidxt:-1:1

53 gridmap (j , (n-1)=col, edgepage)=stage_centroid+nodeidxt+1-j;
54 end

55

56 for j=nodeidxt+2:1:31

57 gridmap (j ,(n-1)*col ,2)=stage_centroid+j -nodeidxt-1;

58 end

59

60 % determine value and idx of min value from previous stage
61 [-,idx]=min(gridmap (: , col *(n-1) ,edgepage) ) ;

62 % maintain list of edgepath of shortest path in grid map
63 edgepath (: ,end)=sub2ind(size (gridmap (: ,: ,edgepage)) ,idx,(n-1));
64 end

65 else

66 i=1;

67 end

68

69 % if start node index is less than target node index...

70 if nodeidxs<nodeidxt

71 if (i<2)

72 gridmap (nodeidxt-1,(n-1)*col ,edgepage)=stage_centroid;

73 i=i+1;

74 for j=nodeidxt-2:-1:1

75 gridmap (j ,(n-1)*col ,edgepage)=stage_centroid+nodeidxt-1-j;
76 end
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77

78 for j=nodeidxt:1:31

79 gridmap (j ,(n-1)*col ,edgepage)=stage_centroid+j -nodeidxt+1;
80 end

81

82 % determine value and idx of min value from previous stage

83 [-,idx]=min(gridmap (: , col *(n-1) ,edgepage) ) ;

84 % maintain list of edgepath of shortest path in grid map

85 edgepath (: ,end)=sub2ind (size (gridmap (: ,: , edgepage)) ,idx,(n-1));
86 end

87 else

88 i=1;

89 end

90

91 % if start node index equals the target node index...

92 gridmap (nodeidxs ,n*col ,edgepage)=stage_centroid;

93 for j=nodeidxs-1:-1:1

94 gridmap (j .,n*col ,edgepage)=stage_centroid+nodeidxs-j :

95 end

96 for j=nodeidxs+1:1:31

97 gridmap (j ,n=col ,edgepage)=stage_centroid+j -nodeidxs;

98 end

99 nodeidxt=nodeidxs;

100

101 % determine value (not required) and idx of min value from previous stage
102 [-,idx]=min(gridmap (: , col*n, edgepage)) ;

103 % maintain list of edgepath of shortest path in grid map

104 edgepath=cat(2,edgepath,sub2ind (size (gridmap (: ,: , edgepage)) ,idx,n));
105 end

106

107 % compute value (not required) and index (row number {1,2,...,11}) showing

108 % lowest value at S1 and S24 values are use when plotting shortest path
109 [, tOminidx]=min(gridmap(:,3 , edgepage)) ;

110 [-,t240minidx]=min(gridmap(:,72 ,edgepage) ) ;

111

112 %end prepare gridmap

Listing D.15 prepare_ gridmap.m
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D.21 prepare tc gridmap.m

1 function [tev,tcvdata,gridmap,tOminidx,t240minidx]=prepare_tc_gridmap

2 (tOtempSP, tempSP, SO_date, gridmap , edgepath , edgepage , mintempthresholdparam)
3 9% MATLAB Function Description

4 %

5 % Title: Prepare Thermal Comfort Gridmap

6 % Filename: prepare_tc_gridmap.m

7 % Prepared by: Sean Williams

8 % Date: 6 Nov 2019

9 %

10 % MATIAB function starts with gridmap (31x72x4) template. Maps nodepath
11 % (11x25) onto gridmap (31x72) for each objective function (page):

12 % comort, demand and tou (tariff).

13 % At each stage the min value is defined as the stage centroid,

14 9% all remaining values are populated, increasing/decreasing in

15 % value moving up/down in the same col (stage). The index where the
16 % min value at tO and t240 is found are stored in tOminidx and t240minidx
17 % respectively.

18 % Exception handling at boundary upper and lower is included.

19 %

20 % Similar to prepare_gridmap.m but specific to thermal comfort.

21 %

22

23 9% Change History

24 %

25 % 1. [06-11-2019] Initial

26

27 98 Prepare Thermal Comfort Gridmap

28

29 % Define stage S1 column number used in grid template, multiples of col is
30 % used to calculate S2 to S24
31  col=3;

33 % Find index number of value in array tOtempSP that matches the recorded
34 % temperature measurement
35  node=find (tOtempSP==tempSP) ;

37 % Calculate node index of declared temperature setpoint at tO; (2016<nodeidx=<1)
38 nodeidx=(node*2)+(node-2) ;

39

40 % tc at S1

41 9% ========

42 9% Calculate thermal comfort value (tcv) edge

43 9% tcv=comfort(stime,1) where stime=[10,20,...,n] minutes

44 % no difference if users thermal comfort calc_mean is COOL or COLD. Also no
45 9% difference to control action if users thermal comfort calc_mean is WARM
46 % or HOT. Returns [nl n2 n3] where nl=occupants, n2=response, n3=calc_mode
47  Sn_date=datetime (SO_date, 'ConvertFrom ', 'datenum') ;

48  tcv=comfort_2 (Sn_date,1);

49  tevdata(1,:)=tcv;

51 % Set initial edge weight (S1)

52 % Check number of op. If op=0 then set edge weight to direct path
53 % to reduce tempSP by 0.5degC. Otherwise set edge weight based on
54 % return fcn: comfort value.

55 9% If nil op then set path to reduce tempSP by 0.5degC from SO to Sl
56  if (tev(1)==0)

57 a=1;b=0.5;¢c=0.25;

58 else

59 % tc=-1 or -2 indicating too hot, reduce tempSP. Least value path
60 % is to lower temp

61 if (tev(3)<0)

62 a=1;b=0.5;¢=0.25;

63 % tc=0 indicating okay, maintain tempSP. Least value path is to
64 % same temp

65 elseif (tev(3)==0)

66 a=0.5;b=0.25;c=0.5;

67 % tc-1 or 2 indicating too cold, increase tempSP, Least value path to
68 % higher temp.

69 elseif (tev(3)>0)

70 a=0.25;b=0.5;c=1.0;

71 end

72  end

73

74 % Check for outliner temperature values (20.5 and 15.5) and restrict setting
75 % of edge weights to valid edges, ie not possible to assign edge weight
76 % from 20.5 to 21.0.

Sean Williams Teesside University



Page 251

77 % higher sn<tn (source node is less than targe node)
78 if (nodeidx-1==0)

79 gridmap (nodeidx, col , edgepage) =b;

80 gridmap (nodeidx+1, col , edgepage)=c;

81 % lower sn>tn

82 elseif (nodeidx-31==0)

83 gridmap (nodeidx-1, col ,edgepage)=a;
84 gridmap (nodeidx, col , edgepage) =b;
85 % equal sn=tn

86 else

87 gridmap (nodeidx-1, col ,edgepage)=a;
88 gridmap (nodeidx, col , edgepage)=b;
89 gridmap (nodeidx+1,col , edgepage)=c;
90 end

91

92 % Find row number (tOminidx) listing minimum edge weight at S1 use tOminidx
93 % in dijkstra.mlx to set source node when calculating shortest path
94 [tOvalue, tOminidx]=min(gridmap(:,3,edgepage)) ;

95

96 % tc at S2 to S24

97 % ===============

98 for n=1:23 %23

99 % Display label > 'Stage: n (k)' where n=[2,3,...,24], k=[6.9,...,72]
100 % column number disp ([ 'Stage: ',num2str(n+1),' (',num2str((n=3)+3),"') '])
101

102 Sn_date=datetime (SO_date, 'ConvertFrom ', 'datenum ')+minutes(10#n) ;
103

104 % Calculate tc for next stage

105 tev=comfort_2 (Sn_date,0) ;

106 tevdata (n+1,:)=tcv;

107

108 % Determine value (not required) and idx of min value from previous stage
109 [-,idx]=min(gridmap (: , col*n, edgepage) ) ;

110

111 % Determine the previous stage target node

112 tnode=gridmap (idx , (col#n) -1,edgepage) ;

113

114 % Now declare the start node of next stage the target node from
115 % previous stage

116 snode=tnode;

117

118 % Determine the node index number of min value in previous stage
119 nodeidx=sub2ind (size (gridmap (: ,: , edgepage)) ,idx, col#*n);

120

121 % Find the index numbers of the start nodes in the next stage

122 % (with exception to outliners, there are three values returned)
123 [value ,—]=find (gridmap(: , 1 +(col#n) ,edgepage)==snode) ;

124

125 % Maintain list of edgepath of shortest path in grid map

126 edgepath=cat(2,edgepath,sub2ind(size (gridmap(: ,:,edgepage)) ,idx,n));
127

128 % Check if op>0

129 if (tev(1)>0)

130 % This ensures 1:12 maintains 12:23, 23:34 etc

131 if (value(1l)==1)

132 gridmap (value (1) ,3+(col#n) ,edgepage)=tOvalue;

133 else

134 gridmap (value (2) ,3+(col#n) ,edgepage)=tOvalue;

135 end

136 else

137 % This ensures 1l:n starts to fall when no occupancy

138 if (value(1l)==1)

139 gridmap (value (1) +1,3+(col*n) ,edgepage)=tOvalue;

140 else

141 % Check path exceeds declared minimum temperature threshold value
142 if (idx<mintempthresholdparam)

143 % Continue to force shortest path to lower temperature
144 % if value is less than declared minimum temperature
145 % threshold value

146 gridmap (value (2) +1,3+(col=n) ,edgepage)=tOvalue;

147 else

148 % Maintain shortest path on minimum temperate threshold
149 % value if calculated temperature is less than minimum
150 % temperature threshold value

151 gridmap (value (2) ,3+(col*n) ,edgepage)=tOvalue;

152 end

153 end

154 end

155 end

156

157 % Compute row number showing lowest value at S24
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158 % values are used when plotting shortest path

159 [-,t240minidx]=min (gridmap(:,72 ,edgepage) ) ;

160

161 % Add final node to edgepath list that informs shortest path
162 edgepath(1,end+1)=(23#31)+t240minidx;

163

164  %end prepare tc gridmap

Listing D.16 prepare_tc_ gridmap.m
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D.22 prepare tou values.m

function [touv_gridmap,touv_nodepath, touv_rescale,touv]=prepare_tou_values

N —

(horizon, SO_date, period , tou_tariff)
3 99 MATIAB Function Description
4 %
5 % Title: Prepare Time Of Use Values
6 % Filename: prepare_tou_values.m
7 % Prepared by: Sean Williams
8 % Date: 6 Nov 2019
9 %
10 % MATIAB function computes tou value set for S1 to S24 at every
11 9% 10 minute interval specific to tou tariff and time of day.
12
13 986 Change History
14 %
15 % 1. [06-11-2019] Initial
16
17 9% Prepare TOU Values
18 % Set scale feature parameters
19  lower=3;
20  upper=9;
21 inmin=0.0499;
22 inmax=.2499;
23 % Initialise arrays of all zeros
24 touv=zeros (horizon,1);

25  touv_rescale=zeros (horizon,1);

26 9% Compute tou value (touv) set for each stage. Set includes

27 % (1) touv: tou value, (2) touv_rescale: tou(rescaled),

28 % (3) touv_gridmap: tou(gridmap), (4) touv_nodepath: tou(node path).
29  for n=0:horizon

30 Sn_date=datetime (SO_date, 'ConvertFrom ', 'datenum ')+minutes(10#n) ;
31 tod=timeofday (Sn_date) ;

32 % For each weekend day

33 if (isweekend (Sn_date))

34 if ge(tod,period{1}) &% 1t (tod,period{2})

35 touv(n+1,:)=tou_tariff(1);

36 elseif ge(tod,period{2}) && It (tod, period{5})
37 touv(n+1,:)=tou_tariff(2):

38 elseif ge(tod,period{5}) && 1t (tod, period{6})
39 touv(n+1,:)=tou_tariff(1);

40 end

41 % For each week day

42 else

43 if ge(tod,period{1}) &X 1t (tod,period{2})

44 touv(n+1,:)=tou_tariff(1);

45 elseif ge(tod,period{2}) &% 1t (tod, period{3})
46 touv(n+1,:)=tou_tariff(2);

47 elseif ge(tod,period{3}) &k 1t (tod,period{4})
48 touv(n+1,:)=tou_tariff(3);

49 elseif ge(tod,period{4}) &k 1t (tod,period{5})
50 touv(n+1,:)=tou_tariff(2);

51 elseif ge(tod,period{5}) &% 1t (tod, period{6})
52 touv(n+1,:)=tou_tariff(1);

53 end

54 end

55  end

56 % Apply feature scaling
57  for n=0:size (touv(:),1)-1

58 touv_rescale_single=lower+(touv (n+1,1) -inmin) . / (inmax-inmin) . * (upper-lower) ;
59 touv_rescale (n+1,:)=ceil (touv_rescale_single); % touv(rescaled)
60 end

61 % Define touv gridmap
62  touv_gridmap=12.-touv_rescale; % touv(gridmap)
63 % Define touv nodepath
64 touv_nodepath=touv_rescale; % touv(node path)

66 %end prepare tou values

Listing D.17 prepare_tou_ values.m
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function soc(block)

SOC

Title: State of Charge
Filename: soc.m

Prepared by: Sean Williams
Date: 6 Nov 2019

Code tagged to Simulink model block soc_model.

Operates in 2 Modes: [0] normal operations [1] demand event

Initially SOC assumed O and will start to charge. At high

threshold ESS declared available for use (FIT=1). FIT status revert
back to O when low threshold reached (on discharge).

If SOC available and tariff HIGH (level 3), power switch to ESS (PWR=1).
When tariff LOW (level 1 or 2) power switch to GRID (PWR=0).

On receipt of demand event signal, MODE=0. Priority sets

ESS to charge during 4-hour ramp time before demand event starts and
power switch to GRID (PWR=0). At demand event start power switch to ESS
(PWR=1), ESS begins to discharge. Maintain ESS power for duration of
demand event. At end of demand event revert back to normal operations
(MODE=0). Self-Discharge Rate (SDR) applies on discharge.

setup (block) ;
%endfunction: soc(block)

function setup(block)

Setup Functional Port Properties

% Register number of ports
32 block.NumlInputPorts = 4;
block . NumOutputPorts = 2;

% Setup port properties to be inherited or dynamic

36 block.SetPreComplnpPortInfoToDynamic;

w
3

38

block . SetPreCompOutPortInfoToDynamic;

39 % Override input port properties

40  block.InputPort (1) .Dimensions = 1; % DIR

41  block.InputPort (1) .DatatypelD

8; % boolean

42 block.InputPort (1) .Complexity 'Real ';

43 block.InputPort(1).DirectFeedthrough = true;

45 % Override input port properties

46 block.InputPort(2) .Dimensions = 1; 9% DATA
47  block.InputPort(2) . DatatypelD = 0; % double
48  block.InputPort(2) . Complexity = 'Real';

49  block.InputPort(2) . DirectFeedthrough = true;

50

51 % Override input port properties

52 block.InputPort(3) . Dimensions
53  block.InputPort(3) . DatatypelD

56

1; % t_mode
0; % double

54 block.InputPort(3) . Complexity = 'Real’;

55  block.InputPort(3).DirectFeedthrough = true;

57 % Override input port properties

58 block.InputPort (4) . Dimensions = 1; % MODE
59  block.InputPort(4) . DatatypelD = 0; % double
60  block.InputPort (4) . Complexity = 'Real';

61  block.InputPort(4) . DirectFeedthrough = true;

63 % Override output port properties

64 block.OutputPort (1) . Dimensions =1; % FIT
65  block.OutputPort (1) . DatatypelD = 0; % double
66  block.OutputPort (1) . Complexity = 'Real';

68 % Override output port properties

69  block.OutputPort(2) . Dimensions = 1; % PWR
70  block.OutputPort(2) . DatatypelD = 0; % double
71 block.OutputPort(2) . Complexity = 'Real';

73 % Register parameters
74 block.NumbDialogPrms = 0;

76 % Register sample times
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7

78

79

80
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127
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block.SampleTimes = [30 O];

% Specify the block simStateCompliance to default
block.SimStateCompliance = 'DefaultSimState ';

% Register nethods

block . RegBlockMethod ( 'PostPropagationSetup ', @DoPostPropSetup) ;

block . RegBlockMethod ( 'Start ', @Start);

block . RegBlockMethod ( 'Outputs ', @Outputs); % required

block . RegBlockMethod ( 'Update ', @Update) ;

block . RegBlockMethod ( 'Terminate ', @Terminate): % required

block . RegBlockMethod ( 'SetInputPortSamplingMode ', @SetIlnpPortFrameData) ;

%endfunction: setup (block)
function DoPostPropSetup (block)

% Initialise the Dwork vectors
block .NumDworks = 1;

% DWork(1) store value at input port 2 [DATA] = raw SOC

block .Dwork (1) .Name = 'D1';

block .Dwork (1) . Dimensions = 1;

block .Dwork(1) . DatatypelD = 0; % double
block .Dwork(1) . Complexity = 'Real'; % real
block .Dwork(1) . UsedAsDiscState = true;

%endfunction: DoPostPropSetup (block)

function Start(block)
%6 Set Start Conditions

% Assign Dwork(1) to O
block .Dwork(1) .Data = 0;

%endfunction: Start(block)

function Outputs(block)
%% Outputs

% define model paths
path_1="'optim_ctrl_model_sim/scheduler_subsystem/ess_subsystem/SOC_hold';
path_2="'optim_ctrl_model_sim/building_subsystem/ESS Cost Enable';
path_3='optim_ctrl_model_sim/scheduler_subsystem/ess_subsystem/CD";

% Determine MODE: [O]=normal, [l]=demand event (ramp plus duration)
if (block.InputPort(4).Data==0)
% Normal Operations
set_param (path_1, 'Value', '1")
if (block.InputPort(1).Data==1) % DIR increasing (charge)
if (block.InputPort(2).Data>0.8) % detect SOC > 0.8
block.OutputPort(1) .Data = 1; % FIT=1
if (block.InputPort(3).Data==3) % detect high tariff
block.OutputPort(2) .Data = 1; % PWR=1 (ESS)
set_param (path_2, 'Value','1")
set_param (path_3, 'Value', '0")
set_param (path_1, 'Value','1")
else
block.OutputPort(2) .Data = 0; % PWR=0 (GRID)
set_param (path_2, 'Value ', '0")
set_param (path_3, 'Value','1")
set_param(path_1, 'Value ', '1")
end
else
block.OutputPort(2) .Data = 0; % PWR=0
set_param (path_2, 'Value', '0')
set_param (path_3, 'Value', 'l
set_param (path_1, 'Value ', '1"'

end
else % DIR decreasing (discharge)
if (block.InputPort(2).Data<0.2) % detect SOC < 0.2
block.OutputPort(1) .Data = 0; % FIT=0
block.OutputPort(2) .Data = 0; % PWR =0
set_param (path_2, 'Value', 'O’
set_param (path_3, 'Value ', '1"'
set_param (path_1, 'Value ', '1"'
return
else
if (block.InputPort(3).Data==3) % detect high tariff
block.OutputPort(2) .Data = 1; % PWR=1
set_param (path_2, 'Value ', '1")
set_param(path_1, 'Value','1")

)
)
)
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else
block.OutputPort(2) .Data = 0; % PWR=0
set_param (path_2, 'Value ', 'O’
set_param(path_1, 'Value', 'O
end

)
)

end
end
else
% Demand Event (active for ramp plus duration)
if (block.InputPort(1).Data==1) % DIR increasing (charge)
if (block.InputPort(2).Data>0.90) % detect SOC > 0.95
block.OutputPort(1) .Data = 1; % FIT=1
if (block.InputPort(3).Data==3) % detect high tariff
block.OutputPort(2) .Data = 1; % PWR=1 (ESS)
set_param (path_2, 'Value ', '1")
set_param (path_3, 'Value', '0")
set_param (path_1, 'Value','1")
else
block.OutputPort(2) .Data = O;
set_param (path_2, 'Value ', '0")
set_param (path_3, 'Value ', '1")
set_param (path_1, 'Value', '1")
end
else
if (block.InputPort(3).Data==3) % detect high tariff
block.OutputPort(2) .Data = 1; % PWR=1 (ESS)
set_param (path_2, 'Value','1")
set_param (path_3, 'Value ', '0")
set_param (path_1, 'Value','1")
else
block.OutputPort(2) .Data = 0; % PWR=0
set_param (path_2, 'Value ', '0")
set_param (path_3, 'Value','1")
set_param(path_1, 'Value','1")
end

% PWR=0 (GRID)

end
else % DIR decreasing (discharge)
if (block.InputPort(2).Data<0.2) % detect SOC < 0.2
block . OutputPort(1) . Data 0; % FIT=0
block.OutputPort(2) . Data 0; % PWR =0
set_param (path_2, 'Value', '0")
set_param (path_3, 'Value', '1")
set_param (path_1, 'Value','1")
return
else
if (block.InputPort(3).Data==3) % detect high tariff
block.OutputPort(2) .Data = 1; % PWR=1 (ESS)
set_param(path_2, 'Value ', '1")
set_param (path_1, 'Value','1")
else
block.OutputPort(2) .Data = 0; % PWR=0 (GRID)
set_param (path_2, 'Value ', '0")
set_param(path_1, 'Value','1');
set_param(path_3, 'Value ', '1")
end

end
end
end
%endfunction: Outputs(block)

function Update(block)
%% Update Dwork

% Update Dwork(1) to InputPort(2) [Data] = raw SOC
block .Dwork(1) .Data = block.InputPort(2).Data;

%endfunction: Update(block)
function SetIlnpPortFrameData(block, idx, fd)
% Set the sampling of the input ports
block.InputPort (idx) . SamplingMode=fd ;
for i=1:block.NumOutputPorts

block . OutputPort (i) . SamplingMode=fd ;
end

%endfunction: SetInpPortFrameData (block)

function Terminate (block)
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240  %endfunction: Terminate (block)

Listing D.18 soc.m
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D.24 tariff mode.m
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function [t_mode] = tariff_mode (tariff)
9TARIFF_MODE computes tariff mode value
%

% Construction:

% [T MODE] = TARIFF_MODE (TARIFF) compares tariff at given time of day
% against set criteria. Model set criteria includes two levels:

% Level 1: 4.99

% Level 2: 11.99

% If tariff is greater than zero and less than or equal to Level 1 then
%  set the tariff mode to 1 (t_mode=1).

% If tariff is greater than Level 1 and less than or equal to Level 2
% then set the tariff mode to 2 (t_mode=2)

% If tariff is greater than Level 2 (assumed to be highest tariff band)
% then set the tariff mode to 3 (t_mode=3)

%6 MATLAB Function Description

%

% Title: Tariff Mode

% Filename: tariff mode.m

% Prepared by: Sean Williams

% Date: 1 Aug 2019

%

% MATIAB function compute tariff mode value
%

9% Change History
%
% 1. [01-08-2019] Initial

9% Assign Tariff Mode

if (tariff(1,1)>0) & (tariff(1,1)<tariff(2,1))
t_mode=1;
elseif (tariff(l,1)>tariff(2,1)) &k (tariff(1,1)<tariff(3,1))
t_mode=2;
elseif (tariff(l,1) > tariff(2,1))
t_mode=3;
else
t_mode=0;
end

Listing D.19 tariff mode.m
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D.25 wvisual comfort data.m

function visual_comfort_data (horizon, tcvdata,tl)

%6 MATLAB Function Description

%

% Title: Visual Comfort Data

% Filename: visual_comfort_data.m

% Prepared by: Sean Williams

% Date: 6 Nov 2019

%

% MATIAB function creates scrolling 4-hour window showing comfort data.
% Figure is fixed position: subplot(1,4,1). Data has been formated from
% showing series of static comfort shortest path on gridmap (31x72) plots

— =
HFOOONOUTEWN —

12 % to scrolling gridmap. Data includes:
13 %

14 % # Comfort Data: Number of Occupant
15 % # Comfort Data: Number of Responses
16 % # Comfort Data: Comfort

17 %

18

19 9% Change History

20 %

21 % 1. [06-11-2019] Initial

22

23 %% Visual Comfort Data

24

25 %set (0, 'DefaultFigureVisible', 'on') ;

26 % Create new figure and set view options
27  figure(1)

28 set(figure (1), 'Name', 'Comfort Data', 'NumberTitle', 'off', 'ToolBar', 'none');
29

30 % Set position to top left quadrant

31  movegui(figure(1),[400,580])

32

3

3 % Set time data to x-axis

34  SO_date=datetime (datestr (evalin( 'base’', 'dt')));
35  t5=tl+minutes(230);

36 t45=t1:minutes(10):t5;

37

38 % pl=plot comfort data: number of occupants - color blue

39 pl=stairs (t45, tevdata(:,1), 'color ',[0 102/255 204/255], 'LineWidth',1.2, 'LineStyle ", '-");
40 hold on

41

42 % p2=plot comfort data: number of responses - color green

43 p2=stairs (t45, tevdata(:,2), 'color ',[0 153/255 O], 'LineWidth',1.2, 'LineStyle ', '-');
44

45 % p3=plot comfort data: comfort - color red

46  p3=stairs (t45, tcvdata(:,3), 'color ',[153/255 0 0], 'LineWidth',1.5, 'LineStyle','-');
47  hold off

48 refreshdata

49

50 % Format

51 1gd={'Occupants', 'Response ', 'Comfort'};

52 lgd=legend ([pl p2 p3].lgd);

53 title (lgd,[ 'Comfort Info (', char(tl, HHxm'),"')']);

54 title ([ 'Comfort (' num2str(ceil ((horizon-1)/6)) ' hrs): ', char(tl, 'dd-MMM yyyy HHmm') 1) ;
55  xticks(t45(1:3:end));

56  xtickformat ( 'HH:mm')

57 ylabel( 'gridmap');

58 axis tight

59  ylim([-5 105]);

60 grid on
61  box on
62

63 %end visual comfort data

Listing D.20 visual comfort_ data.m
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D.26 wvisual demand data.m

1 function visual_demand_data (horizon,dv,dv_gridmap, dv_rescale ,tl)

2 986 MATLAB Function Description

3 %

4 9% Title: Visual Demand Data

5 % Filename: visual_demand_data.m

6 % Prepared by: Sean Williams

7 % Date: 6 Nov 2019

8 %

9 % MATIAB function creates scrolling 4-hour window showing demand data.
10 % Figure is fixed position: subplot(1l,4,2). Data has been formated from
11 % showing series of static demand shortest path on gridmap (31x72) plots
12 % to scrolling gridmap. Data includes

13 %

14 % # Demand Value: Spine Coefs (1 y-axis)

15 % # Demand Value: Rescale (r y-axis)

16 % # Demand Value: Gridmap (r y-axis)

17 %

19 9% Change History
20 %
21 % 1. [06-11-2019] Initial

23 9% Visual Demand Data

24 % set (0, 'DefaultFigureVisible ', 'on');

25 % Create new figure and set view options

26 figure(2)

27 left_color = [0.1 0.1 0.1];

28 right_color = [0.1 0.1 0.1];

29  set(figure(2), 'defaultAxesColorOrder',[left_color; right_color], ...
30 'Name ', 'Demand Data ', 'NumberTitle ', 'off ', 'ToolBar ', 'none');

31  movegui(figure(2),[1000 580])

32 % Set time data to x-axis

33 SO_date=datetime (datestr (evalin( 'base ', 'dt')));

34 t5=t1+minutes(240);

35  t45=tl:minutes(10):t5;

36 % pl=plot demand value Spline Coefs - colour green

37 pl=plot(t45,dv(:,1), 'LineWidth',1.5, 'Color',[0.298,0.6,0]);

38 % Format left

39  ylabel( 'magnitude');

40  yyaxis right

41 % p2=plot demand value rescale - colour red

42 p2=stairs (t45,dv_rescale(:,1), 'LineWidth',1.5, 'Color',[0.753,0,0]);

43  hold on

44 % p3=plot demand value gridmap - color blue

45 p3=stairs (t45 ,dv_gridmap, 'LineWidth ',1.5, 'color ',[0/255 112/255 192/255], 'LineStyle ", '-");
46  hold off

47 % Format right

48 ylim([1 11])

49  ylabel( 'gridmap');

50 % Format general

51  yyaxis left

52  xticks(t45(1:3:end));

53  xtickformat ( 'HH:nm')

54 axis tight

55  ylim([0 1]);

56 grid on; box on; hold off

57 lgd={"'Spline Coefs','dv (rescaled)', 'dv (gridmap) '};
58 1gd=legend ([pl p2 p3],1gd);

59  title (1gd,[ 'Demand Info (', char(tl, 'HHmm'),')"']);
60 title ([ 'Demand (' num2str(ceil ((horizon-1)/6)) ' hrs): ' char(tl, 'dd-MVM yyyy HHmm') ])
61

62 %end visual demand data

Listing D.21 visual _demand_ data.m
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D.27 wvisual group path.m

1 function visual_group_path(path_c, path_d, path_t, path_a, t1)

2 986 MATLAB Function Description

3 %

4 9% Title: Visual Group Path

5 % Filename: visual_group_path.m

6 % Prepared by: Sean Williams

7 % Date: 6 Nov 2019

8 %

9 % MATIAB function creates scrolling 4-hour window showing group path.
10 % Figure is fixed position: subplot(1,4,4). Data has been formated from
11 % showing series of static group shortest path on gridmap (31x72) plots
12 % to scrolling gridmap. Group data has been calculated using k-means
13 % method to find optimal shortest path based on comfort, demand and tou
14 % tariff data. Data includes:

16 % # Comfort
17 % # Demand

18 % # TOU

19 % # Group

20 %

21

22 9% Change History

23 %

24 % 1. [06-11-2019] Initial
25

26 98 Visual Group Path

27

28 %set (0, 'DefaultFigureVisible', 'on') ;

29 % Create new figure and set view options

30  figure(4)

31 set(figure(4), 'Name', 'Gridmap Data', 'NumberTitle', 'off ', 'ToolBar', 'none');

33 % Set position to bottom right quadrant
34  movegui(figure (4),[1000,80])

36 % Convert data from gridmap index to temperature values
37 [ctrl_action_c]=prepare_aux_data(path_c(end,:));
38 [ctrl_action_d]=prepare_aux_data(path_d(end,:));
39 [ctrl_action_t]=prepare_aux_data(path_t(end,:));
40 [ctrl_action_a]=prepare_aux_data(path_a(end,:));

s

42 % Set time data to x-axis

43 SO0_date=datetime (datestr (evalin( 'base ', 'dt')));

44 t5=t1+minutes(240);

45 t45=t1:minutes(10):t5;

46

47 % pl=plot comfort data - color red

48 pl=plot(t45, ctrl_action_c(end,:), Color',[153/255 0 O], ...

49 'LineWidth ',1.5);
50  hold on
51

52 9% p2=plot demand data - color blue

53 p2=plot(t45, ctrl_action_d (end,:), 'Color',[0/255 112/255 192/255],...
54 'LineWidth ' ,1.5);

55

56  %p3=plot tou data - color magenta

57 p3=plot(t45,ctrl_action_t(end,:), 'Color',[204/255 0/255 153/255], ...
58 'LineWidth ',1.5);

59

60 %p4=plot group path - color green

61 p4=plot(t45, ctrl_action_a(end,:), 'Color',[34/255 139/255 34/255], ...
62 'LineWidth ',1.5);

63

64 % Format

65  xticks (t45(1:3:end))

66 xtickformat ( 'HH:mm')

67 axis tight

68  ylim([14 21])

69 grid on
70  box on
71  hold off

72  refreshdata

73 1gd={'Comfort', Demand', 'TOU', 'Forecast'};

74 lgd=legend ([pl p2 p3 p4l.lgd);

75 title (1gd, 'Gridmap Data')

76  title ([ 'SO\_date: ' char(tl, 'dd-MMMyyyy HHxm')]);

Sean Williams Teesside University



Page 262
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%end visual big path

Listing D.22 visual group_ path.m
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D.28 wvisual group shortestpath.m

46

function visual_group_shortestpath (G_c,edgepath_c,G_d, edgepath_d,G_t, ...
edgepath_t,G_a, edgepath_a,tl, horizon)

%% MATLIAB Function Description

%

% Title: Visual Group Shortestpath

% Filename: visual_group_shortestpath.m

% Prepared by: Sean Williams

% Date: 6 Nov 2019

%

% MATLAB function creates static image of digraph, format changed to

% show gridmap (31x72) view. Shortestpath for listed data shown.

% If selected to view during Simulink model, new figure is created at end

% of each cycle. To view 4-hour scrolling group data selec to view

% 'visual_group_path' as alternative. Data includes:

% # Comfort
% # Demand
% # TOU

% # Group

9% Change History
%
% 1. [06-11-2019] Initial

%% Visual Static Group Shortestpath (Gridmap Format)

%gridmap_color=[0 0.533 0.8]: % colour - blue
gridmap_color=[0.745 0.745 0.745]; % colour - grey

% Create a figure and specify axis colours using default colour order
figure ( 'Name', 'Optimisation Data', 'NumberTitle', 'off ', 'ToolBar', 'none');

%opl=digraph of comfort gridmap - color red
opl=plot (G_c);

opl.NodeColor=[255/255 0/255 0/255];
opl.EdgeColor=gridmap_color;

hold on

%op2=digraph of demand gridmap - color blue
op2=plot (G_d) :

op2.NodeColor=[0/255 112/255 192/255];
op2.EdgeColor=gridmap_color;

%op3=digraph of toue gridmap - color magenta
op3=plot (G_t);

op3.NodeColor=[204/255 0/255 153/255];
op3.EdgeColor=gridmap_color;

%op4=digraph of group gridmap - color green
op4=plot(G_a);

op4.NodeColor=[34/255 139/255 34/255];
op4.EdgeColor=gridmap_color;

% Plot pseudo gridmap for format only (forces nodes colour grey and
% enables legend to reflect highlighted paths opl to op4.

op5=plot (G_a);

op5. NodeColor=gridmap_color;

op5.EdgeColor=gridmap_color;

% Highlight shortestpath for each data

highlight (opl, 'Edges ' ,edgepath_c, 'Edgecolor',[153/255 0 O], ...
'LineWidth ',2); % red

highlight (op2, 'Edges ' ,edgepath_d, 'Edgecolor',[0/255 112/255 192/255], ...
'LineWidth ' ,2); % blue

highlight (op3, 'Edges ' ,edgepath_t, 'Edgecolor ',[204/255 0/255 153/255], ...
'LineWidth ' ,2); % magenta

highlight (op4, 'Edges ' ,edgepath_a, 'Edgecolor ',[34/255 139/255 34/255], ...
'LineWidth ' ,2); % green

% Change layout of graph
layout (opl, 'layered ') ;
layout (op2, 'layered ') ;
layout (op3, 'layered ')
layout (op4, 'layered ') ;
layout (op5, 'layered ') ;
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=

[
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94

% Format

title

'"TOT Gridmap '

% use rotate to position plot correct left to right

opl.Parent.CameraUpVector=[-1,0,0];

opl.Parent.CameraPosition (3)=opl.Parent.CameraPosition(3) *-1;
op2.Parent.CameraUpVector=[-1,0,0];
op3.Parent.CameraUpVector=[-1,0,0];
op4.Parent.CameraUpVector=[-1,0,0];

op5. Parent . CameraUpVector=[-1,0,0];

title ([ 'Optimisation Data (' num2str(ceil ((horizon-1)/6)) ' hrs):

legend ([opl op2 op3 op4],{ comfort', 'demand’, 'tou', 'forecast'}, ...

char(tl, 'dd-MVM yyyy HHmm') ]) ;

'Location ', 'south ', 'NumColumns ' ,4, 'Box "', 'off"')

%end visual group shortestpath

Listing D.23 visual_group_ shortestpath.m
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D.29 wvisual individual shortestpath.m

1 function visual_individual_shortestpath (fig_name,G, edgepage, edgepath,tl,edgepath_color)
2 986 MATLAB Function Description

3 %

4 9% Title: Visual Individual Shortestpath

5 % Filename: visual_individual_shortestpath.m

6 % Prepared by: Sean Williams

7 % Date: 6 Nov 2019

8 %

9 % MATIAB function creates static image of individual digraph, format

10 % changed to show gridmap (31x72) view. Shortestpath for individual data
11 % shown. If selected to view during Simulink model, new figure is created
12 9% at end of each cycle.

13 % To view 4-hour scrolling group data select to view respective

14 9% ‘'visual_ [data]_data' as alternative; [data]=[comfortl|demandltou].

15 %

16

17 9% Change History

18 %

19 % 1. [06-11-2019] Initial

20

21 %6 Visual Individual Shortestpath (Gridmap Format)
22

23 % Set time data to x-axis
24 tO=evalin( 'base ', 'dt');
25 tO=datetime (datestr (t0))+minutes(10);

27 % Create figure and specify axis colours using default colour order
28 figure ( 'Name',fig_name, 'NumberTitle ', 'off ', 'ToolBar ', 'none ') ;

30 % Create diagram of gridmap, include formatting (greylgrey)
31  opl=plot (G, 'NodeLabel ' ,G.Nodes.Name, 'EdgeLabel ' ,G.Edges.Weight, ...

32 'EdgeFontWeight ', 'normal ', ...

33 'NodeLabelColor ',[192/255,192/255,192/255], . ..
34 'EdgeLabelColor ',[160/255,160/255,160/255]) ;
35

36 % Highlight shortest path - colour specific to data
37 highlight (opl, 'Edges',edgepath, 'Edgecolor',edgepath_color, 'LineWidth',3);

39 % Change layout of graph
40 layout(opl, 'layered ")

42 % Format
43 title ([fig_name ' (p' num2str(edgepage) '): ' char(tl, 'dd-MVMyyyy HH:nm')])

45 % use rotate to position plot correct left to right
46  opl.Parent.CameraUpVector=[-1,0,0];
47  opl.Parent.CameraPosition(3)=opl.Parent.CameraPosition (3)*-1;

49  %end visual_individual_shortestpath

Listing D.24 visual_individual shortestpath.m
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D.30 wvisual tou data.m

1 function visual_tou_data (horizon,touv_rescale , tl)
2 986 MATLAB Function Description
3 %
4 % Title: Visual Time of Use (Tariff) Data
5 % Filename: visual_tou_data.m
6 % Prepared by: Sean Williams
7 % Date: 6 Nov 2019
8 %

9 % MATIAB function creates scrolling 4-hour window showing tou data.

10 % Figure is fixed position: subplot(1,4,3). Data has been formated from
11 % showing series of static tou shortest path on gridmap (31x72) plots
12 % to scrolling gridmap. Data includes

13 %

14 % # TOU Data: Rescaled

15 %

17 986 Change History
18 %
19 % 1. [06-11-2019] Initial

21 9% Visual TOU Data

23  %set (0, 'DefaultFigureVisible', 'on') ;

24 % Create new figure and set view options

25  figure(3)

26 set(figure(3), 'Name', 'TOU Data', 'NumberTitle', 'off ', '"ToolBar ', 'none');

28 % Set position to bottom left quadrant
29  movegui(figure (3),[400 80])

31 % Set time data to x-axis

32 SO_date=datetime (datestr (evalin( 'base', 'dt')));
3 tb5=tl+minutes(250);

34 t45=t1:minutes(10):t5;

36 % pl=plot tou data - color magenta
37 pl=stairs (t45,touv_rescale(:,1), 'LineWidth',1.5, 'Color',[204/255 0 153/255]);
38 refreshdata

40 % Format

41 1gd={'TOU'};

42 1gd=legend ([pl],lgd);

43 title(lgd,[ 'TOU Info (', char(tl, HExmm'),')'1);

44 title ([ 'TOU (' num2str(ceil ((horizon-1)/6)) ' hrs): ', char(tl, 'dd-MVMMyyyy HH:xm')]) ;
45  xticks (t45(1:3:end))

46  xtickformat ( 'HH:mm')

47  ylabel ('gridmap');

48 axis tight

49 ylim([1 11]);

50  grid on
51  box on
52

53 %end visual tou data

Listing D.25 visual_tou_ data.m
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D.31  Workspace variables (MAT-file)

The Simulink® model includes information about the surrounding environment that is useful
to categorise into three groups. External conditions are monitored and trigger change in
system behaviour when predefined conditions are satisfied. The information in the following
tables represents the external conditions category and includes binary MATLAB® file that
stores workspace variables (MAT-file).

Table D.5
Energy management model: grid4_ 1.mat!

Item Name Value Parameter
1 grid4_0 31 x72x4 double -
2 gridd_0_1 31x 72 double -
3 grid_ 0 28 x 72 double -

Table D.6
Energy management model: demand_ info.mat
Ttem Name Value Parameter
1 D48 duration D48=duration(0,0:30:1410,0)"
2 mtwtfPAA_data 12 x 1 double See Chapter 4 Table 4.1
3 mtwtfdata 1x48 double [18.53 16.46  14.12 12.27 11.03 10.75

1039 970 11.34 14.88 27.79 41.98
60.41 73.73  84.61 89.73 94.49 95.84
96.36 97.07  97.79 98.17 98.66 97.47
96.06 94.37  93.33 92.18 91.65 92.99
95.51 98.44 100.00 98.51 95.81 92.88
89.20 85.75 8249 80.42 80.54 T77.86
72.44  62.45 50.63 39.72 30.27 24.04]
4 ssPAA_data 12x 1 double See Chapter 4 Table 4.1
5 ssdata 1x48 double [16.49 1344 10.18 7.38  5.60 4.72
3.37 1.51 044  0.00 4.02 8.72
16.61 24.33  34.15 41.88 49.67 54.28
57.96 59.79  60.86 61.24 61.21 59.75
57.16 54.23 5192 49.89 49.21 49.63
51.59 54.83 5811 59.94 60.43 60.20
9.77 58.07 57.26 56.99 59.07 58.60
56.30 49.43 40.74 31.85 23.72 18.04]
6 t4 1x 14 double {0,2,6,...42,46,48}

1For grid4_ 1.mat each item listed, aside from source node xs and target node k¢, the edge-weight default
value for all index positions is set to 1, i.e., Ay = 1.
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Table D.7
Energy management model: demand__intialise.mat
Item Name Value Parameter
1 coeff 13 x4 x 2 double See Chapter 4 Table 4.2
2 c$369:max 123.1363 -
3 ¢$365,in -10.3966 -
4 horizon 0 -
5 monthLUT 1 x 12 double See Chapter 4 Table 4.1
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E.1  Energy management model: signal inspector

Table E.1 lists all signals defined during the verification workflows. Line styles and colours

are kept consistent for every simulation run.

Table E.1

Energy management model: signal inspector

Signal Name Colour RGB Location

temp_SP dark grey (51,51,0) LO - main

SOC blue (0,102,204) LO - main

DIR orange (255,153,0) LO - main

FIT black (0,0,0) L0 - main

PWR red (255,0,0) L0 - main

t_mode green (0,127,0) LO - main
temp_room olive (204,204,0) building_subsystem
temp_out red (162,20,47) building subsystem
cost teal (153,153,0) building_subsystem
tariff blue (0,14,255) building_subsystem
des_mode magenta  (255,0,255) des_subsystem
des_end red (255,0,0) des_subsystem
des_begin green (0,133,0) des_subsystem
occupants blue (0,102,204) dt_subsystem
response green (0,153,0) dt_subsystem
comfort red (153,0,0) dt_subsystem
demand blue (0,112,112) dt_subsystem

Af grey (128,128,128) energy_subsystem
t_mode* magenta  (255,0,255) scheduler_subsystem
tou_tariff* orange (255,153,0) scheduler_subsystem
demand blue (0,112,112) gridmap: DEMAND
rescale red (192,0,0) gridmap: DEMAND
spline green (76,153,0) gridmap: DEMAND
occupants blue (0,102,204) gridmap: COMFORT
response green (0,153,0) gridmap: COMFORT
comfort red (153,0,0) gridmap: COMFORT
tou magenta  (255,0,255) gridmap: TOU
comfort red (153,0,0) gridmap: GROUP
demand blue (0,112,112) gridmap: GROUP
tou magenta  (255,0,255) gridmap: GROUP
forecast green (34,139,34) gridmap: GROUP
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E.2 hil optim ctrl.m

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21

44
45
16

function optim_ctrl(block)
9% OPTIM_CTRL =HIL
%

% Title: Optimisation and Control (HIL)

% Filename: optim_ctrl.m

% Prepared by: Sean Williams
% Date: 20 Dec 2019

%

% Code tagged to Simulink model block optimise_subsystem. On receipt of

% date/time (sampe rate:

10 minute) code computes new temperature

% setpoint (ctrl_action) using Dijsktra's algorithm which is a function

% of occupant thermal comfort,

electricity demand and cost (tariff).

% Code reacts on receipt of demand event signal

% > HIL

% 1. New input port InputPort(2).Data for Sltcv
% 2. Sltev variable is passed to function prepare_tc_gridmap

% Case 1 Section 3

%

setup (block) ;

%endfunction: optim_ctrl(block)

function setup (block)
9%%6 Setup Functional Port Properties

% Register number of ports
block.NumlInputPorts = 4;
block . NumOutputPorts = 3;

% Setup port properties to be inherited or dynamic

block . SetPreCompInpPortInfoToDynamic
block . SetPreCompOutPortInfoToDynamic ;

% Override input port properties
block.InputPort(1).Dimensions = 1;
block.InputPort (1) .DatatypelD = O;
block.InputPort(1).Complexity =

% temp_room
% double

'Real ';

block.InputPort (1) .DirectFeedthrough = true;

% Override input port properties

block.InputPort(2).Dimensions = 1; % SOtcv
block.InputPort(2).DatatypelD = 0; % double
block.InputPort(2).Complexity = 'Real’;

block.InputPort(2) . DirectFeedthrough = true;

% Override input port properties

block.InputPort(3).Dimensions = 1; 9% SO_date
block.InputPort(3).DatatypelD = 0; % double
block.InputPort(3).Complexity = 'Real’;

block.InputPort (3) . DirectFeedthrough = true;

% Override input port properties

block.InputPort(4) .Dimensions = 1;
block.InputPort (4) . DatatypelD 0;
block.InputPort (4) . Complexity

% des_mode
% double

'Real ';

block.InputPort(4) . DirectFeedthrough = true;

% Override output port properties
block.OutputPort(1) . Dimensions =
block.OutputPort(1) . DatatypelD =
block.OutputPort(1) . Complexity =
% Override output port properties
block.OutputPort(2) . Dimensions =

1; % ctrl_action
0;
'Real ';

% double

1; % tou_tariff

block.OutputPort(2) . DatatypelD = 0; % double

block.OutputPort(2) . Complexity = 'Real’;
% Override output port properties
block.OutputPort(3) . Dimensions = 1; % des_duration

block.OutputPort(3) . DatatypelD = 0; % double

block . OutputPort (3) . Complexity

% Register parameters

'Real ';
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77  block.NumbDialogPrms = 0;

78

79 % Register sample times

80 block.SampleTimes = [600 0];

81

82 % Specify the block simStateCompliance to default

83  block.SimStateCompliance = 'DefaultSimState ';

84

85 % Register nethods

86  block.RegBlockMethod ( ' PostPropagationSetup ', @DoPostPropSetup) ;

87  block.RegBlockMethod ( 'InitializeConditions ', @InitializeConditions);
88  block.RegBlockMethod (' Start ', @Start);

89  block.RegBlockMethod ( 'Outputs ', @Outputs); % Required

90  block.RegBlockMethod ( 'Update ', @Update) ;

91  block.RegBlockMethod (' Derivatives ', @Derivatives);

92 block.RegBlockMethod (' Terminate ', @Terminate); % Required

93  block.RegBlockMethod ( ' SetInputPortSamplingMode ' ,@SetInpPortFrameData) ;

94

95  %endfunction: setup (block)

96

97  function DoPostPropSetup (block)
98

99 % Initialise the Dwork vectors

100  block.NumDworks = 4;

101

102 9% Dwork(1) stores the status of the count_flag [count_flag]

103  block.Dwork(1) .Name = 'Dl1';

104  block.Dwork(1) . Dimensions = 1;

105  block.Dwork(1) . DatatypelD = 0; % double
106 block.Dwork(1) . Complexity = 'Real'; % real
107  block.Dwork(1).UsedAsDiscState = true;

108

109 % Dwork(2) stores the value of the counter [count]
110 block.Dwork(2) .Name = 'D2';

111  block.Dwork(2) . Dimensions = 1;

112 block.Dwork(2) . DatatypelD = 0; % double
113 block.Dwork(2) . Complexity = 'Real'; % real
114  block.Dwork(2) . UsedAsDiscState = true;

115

116 % Dwork(3) stores the nodepath as a vector when a dv event is initiated [dv_event]

117 block.Dwork(3) .Name = 'D3';

118 block.Dwork(3) . Dimensions = 25;

119  block.Dwork(3) . DatatypelD = 0; % double
120 block.Dwork(3) . Complexity = 'Real'; % real
121  block.Dwork(3).UsedAsDiscState = true;

122
123 % Dwork(4) stores the status of the des_end [des_end]
124  block.Dwork(4) .Name 'D4"; %des_end

125  block.Dwork(4) . Dimensions 1;

126 block.Dwork(4) . DatatypelD = 0; % double
127 block.Dwork(4) . Complexity = 'Real'; % real
128 block.Dwork(4) . UsedAsDiscState = true;

129

130  %endfunction: DoPostPropSetup (block)

131

132 function InitializeConditions (block)

133 9% Set Initial Conditions

134

135 % Set the initial status of the count_flag to zero
136  block.Dwork(1) .Data=1;

137

138 % Set the initial value of demand event counter to 24
139 % 24 is baseline counter required for 4 hour ramp time, and before event
140 % duration counter is applied

141  block.Dwork(2) . Data=24;

142

143 % Set initial status of des_end to zero

144 % des_end=0 [no demand event signal]

145  block.Dwork(4) . Data=0;

146

147 % Set Simulink Model block parameters

148 set_param/( 'optim_ctrl_model_sim/des_subsystem/des_end ', 'Value', '0")
149

150 % Set des_duration output signal to zero

151  block.OutputPort(3) .Data=0;

152

153 %endfunction: InitializeConditions (block)

154

155 function Start(block)

156 9% Set Start Conditions

157

158 % Assign Dwork(1) to status of count_flag
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159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

block .Dwork(1) .Data=1;

% Assign Dwork(4) status of des_end
block .Dwork(4) . Data=block . InputPort (4) . Data;

%endfunction: Start(block)

function Outputs(block)
%% Outputs

% Set Simulink block parameters

temperature=block.InputPort(1) .Data;

Sltcv=block.InputPort(2) .Data;

des_end=block .Dwork(4) .Data;

count_flag=block.Dwork(1) .Data;

count=block .Dwork(2) .Data;

dv_event=block .Dwork(3) .Data;

set_param ( 'optim_ctrl_model_sim/des_subsystem/des_end', ...
'Value','0'); % reset des_end at end of event

% set SO_date to 'base’ for initial cycle only, then revert to date on Input Port 4
if block.InputPort(3).Data<10
SO0_date=datetime (datestr(evalin( 'base ', 'dt')));
else
SO0_date=datetime (datestr (block.InputPort(3) .Data));
end

% Initialise model
[visual_mode , horizon, gridmap, edgepath, tl,temp_step,event_duration]=initialise (SO_date) ;

% Set edgepath for each function

% [1] comfort
% [2] demand
% [3] tou (tariff)
% [4] optim (ALL)

for edgepage=1:4
switch edgepage
case 1 % comfort
% 1. INITIALISE (LOCAL)

%
% set local paramaters

% set minimum temperature threshold

% if nil occupancy edge weight will force path to reduce temperature

% setpoint until minimum temperature threshold is reached. At which point
% edge weight will force maintain minimum temperature threshold
mintempthreshold=16;

% set minimum temperature threshold parameter

% translate minimum temperature threshold to equivalent grid map value
mintemp=[17.5 17 16.5 16 15.5];

mintempvar=[17 20 23 26 29];

mintempthresholdparam=mintempvar (mintemp==mintempthreshold) ;

% define array that describes range of temperatures (nodes) at time tO
tOtempSP=[20.5 20 19.5 19 18.5 18 17.5 17 16.5 16 15.5];
% tOnodes=1:1:11;

% 2a. PREPARE COMFORI VALUES
%
[tempSP]=prepare_comfort_values (temperature) ;

% 3. PREPARE GRIDMAP

%

[tev, tevdata, gridmap_c, tOminidx, t240minidx]=prepare_tc_gridmap (tOtempSP, tempSP, ...
S0_date, gridmap, edgepath , edgepage , mintempthresholdparam, Sltcv) ;

% 4. PREPARE DIGRAPH
%
[G_c,B]=prepare_digraph (gridmap_c, edgepage) ;

% 5. DIJKSTRA

0p ===========

[-,path_c]=dijkstra (B, gridmap_c (tOminidx,1,edgepage) ,gridmap_c (t240minidx,71,
edgepage) ) ;

[edgepath_c]=prepare_edgepath (gridmap_c, edgepage, path_c);

% 6. VISUALISATION: COMFORT (4H/24H HORIZON WINDOW)
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240 %

241 % fixed subplot showing scrolling comfort [1,4,1]

242 if (visual_mode==4)

243 visual_comfort_data (horizon, tcvdata,tl);

244 end

245

246 % 7. VISUALISATION: GRIDMAP INDIVIDUAL SHORTESTPATH

247 %

248 % new figure created for each cycle showing individual gridmap

249 %fig_name="'Comfort Gridmap';

250 %edgepath_color=[153/255 0 0]; % red

251 %visual_individual_shortestpath (fig_name,G_c,edgepage,edgepath_c,tl,edgepath_color);
252

253 case 2 % demand

254

255 % 1. INITIALISE (LOCAL)

256 %

257

258

259 % 2a. PREPARE DEMAND VALUES

260 %

261 [dv,dv_gridmap, dv_nodepath, dv_rescale]=prepare_dv_values (horizon, SO_date) ;
262

263 % 2b. PREPARE NODE PATH

264 %

265 if (des_end==1)

266 % on receipt of demand event signal set grid path to increase by 2degC or
267 % 3degC [temp_step] from last recorded temperature over 4hr horizon window at
268 % increments of 0.5degC every 50 min [2degC] or 40 min [3degC].
269 if (count_flag==1)

270 block . OutputPort(3) . Data=0;

271

272 count_flag=0; % set flag to false to ensure loop is executed only once
273 block.Dwork(1) . Data=count_flag;

274 % set node start point (source) temperature

275 node=dv_rescale(1,:);

276 %mode=10 % test

277

278 dv_nodepath=[]; % temporary placeholder for new path

279

280 switch temp_step

281 case 2

282 dv_nodepath=zeros(25,1); % initialise variable dv_nodepath
283 % set path for 2degC increase over 4hr period increasing 0.5degC at
284 % 50min intervals

285 for p1=0:5:20

286 for p2=1:5

287 if node-(pl/5)<1

288 dv_nodepath (p2+pl,1)=1;

289 else

290 dv_nodepath (p2+p1, 1)=node- (pl1/5);

291 end

292 end

293 end

294 case 3

295 dv_nodepath=zeros(25,1); % initialise variable dv_nodepath
296 % set path for 3degC increase over 4hr period increasing 0.5degC at
297 % approximately 40min intervals

298 for p1=0:4:25

299 for p2=1:4

300 if node-(pl/4)<1

301 dv_nodepath (p2+pl,1)=1;

302 else

303 dv_nodepath (p2+pl, 1)=node - (pl1/4);

304 end

305 end

306 end

307 % trim dv_nodepath

308 dv_nodepath(1,:) =[];

309 dv_nodepath(26:end ,:) =[];

310 end

311 dv_event=dv_nodepath;

312 block .Dwork(3) . Data=dv_event;

313

314 % on receipt of demand event signal, and after inital path showing
315 % increase of either 2degC or 3degC [temp_step] code begins to scroll
316 % grid map horizontally by one-step at each 10 minute cycle.

317 else

318 if (count>1)

319 dv_nodepath (1:count-2,1)=dv_event(size (dv_nodepath, 1) -count+2:
320 end-1,:);
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321 if ((dv_event(1l,1)+temp_step)>11)

322 dv_nodepath (count- 1:count+event_duration ,:)=11;
323 else

324 dv_nodepath (count- 1:count+event_duration ,:)=dv_event (1) +2;
325 end

326 else

327 if ((dv_event(1l,1)+temp_step)>11)

328 dv_nodepath (1:count+event_duration ,:)=11;

329 else

330 dv_nodepath (1: count+event_duration ,:)=dv_event(1)+2;
331 end

332 end

333 count=count-1;

334 block .Dwork(2) . Data=count ;

335

336 % this will trigger use of ESS for duration of

337 % demand side event, try this first then remember

338 % to reset new output back to zero in the next if

339 % loop below

340 if count==

341 block . OutputPort (3) . Data=3;

342 end

343

344 if (count==-event_duration-1)

345 set_param ( 'optim_ctrl_model_sim/des_subsystem/des_end ', ...
346 'Value', '1');

347 count_flag=1;

348 block.Dwork(1) .Data=count_flag;

349 count=24; % reset count

350 block .Dwork(2) . Data=count;

351 block .Dwork (4) . Data=0;

352 end

353 end

354 end

355

356 % 3. PREPARE GRIDMAP

357 %

358 [tOminidx , t240minidx, gridmap_d]=prepare_gridmap (dv_nodepath , gridmap, edgepage, ...
359 edgepath) ;

360

361 % 4. PREPARE DIGRAPH

362 %

363 [G_d,B]=prepare_digraph (gridmap_d, edgepage) ;

364

365 % 5. DIJKSTRA

366 % ===========

367 [-,path_d]=dijkstra (B, gridmap_d (tOminidx, 1, edgepage) ,gridmap_d (t240minidx,71, ...
368 edgepage) ) ;

369 [edgepath_d]=prepare_edgepath (gridmap_d, edgepage , path_d) ;

370

371 % 6. VISUALISATION: Demand (4H/24H HORIZON WINDOW)

372 %

373 % fixed subplot showing scrolling demand [1,4,2]

374 if (visual_mode==3) || (visual_mode==4)

375 visual_demand_data (horizon,dv,dv_gridmap, dv_rescale, t1)

376 end

377

378 % 7. VISUALISATION: GRIDMAP INIDVIDUAL SHORTESTPATH

379 %

380 % new figure created for each cycle showing individual gridmap

381 %fig_name="Demand Gridmap';

382 %edgepath_color=[0 112/255 192/255]; % blue

383 %visual_individual_shortestpath (fig_name,G_d, edgepage , edgepath_d,t1,edgepath_color)
384

385 case 3 % tou

386

387 % 1. INITIALISE (LOCAL)

388 %

389 % set local parameters

390 tou_tariff=[0.0499 0.1199 0.2499];

391 period={'00:00:00"', '06:00:00"', '16:00:00 "', '19:00:00 "', '23:00:00 "', '24:00:00'};
392

393 % 2a. PREPARE TOU VALUES

394 %

395 [touv_gridmap , touv_nodepath, touv_rescale , touv]=prepare_tou_values (horizon, ...
396 SO_date, period , tou_tariff) ;

397

398 touv_op=touv(1,1);

399

400 % 3. PREPARE GRIDMAP

401 %
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402 [tOminidx , t240minidx, gridmap_t]=prepare_gridmap (touv_nodepath , gridmap, edgepage, ...
403 edgepath) ;

404 %gridmap_t=gridmap;

405

406 % 4. PREPARE DIGRAPH

407 %

408 [G_t,B]=prepare_digraph (gridmap_t, edgepage) ;

409

410 % 5. DIJKSTRA

411 % ===========

412 [-,path_t]=dijkstra (B, gridmap_t (tOminidx, 1,edgepage) ,gridmap_t (t240minidx,71, ...
413 edgepage) ) ;

414 [edgepath_t]=prepare_edgepath (gridmap_t,edgepage, path_t);
415

416 % 6. VISUALISATION: TOU (4H/24H HORIZON WINDOW)

417 %

418 % fixed subplot showing scrolling tou [1,4,3]

419 if (visual_mode==4)

420 visual_tou_data (horizon, touv_rescale ,t1)

421 end

422

423 % 7. VISUALISATION: GRIDMAP INDIVIDUAL SHORTESTPATH
424 %

425 % new figure created for each cycle showing individual gridmap
426 %fig_name="TOU Gridmap';

427 %edgepath_color=[204/255 0 153/255]; % magenta

428 %visual_individual_shortestpath (fig_name, G_t, edgepage, edgepath_t,t1,edgepath_color)
429

430 case 4 % optim

431

432 % 1. INITIALISE (LOCAL)

433 %

434 % set local parameters

435 stage_centroid=1;

436 X=zeros(3,2);

437

438 % 2. PREPARE VALUES

439 % =================

440 % not required

441

442 % 3. PREPARE GRIDMAP

443 %

444 % set gridmap to multidimensional array template (31x72x4 double)
445 gridmap (: ,:,1)=gridmap_c(:,:,1);

446 gridmap (: ,:,2)=gridmap_d(:,:,2);

447 gridmap (: ,:,3)=gridmap_t(:,:,3);

448 gridmap(: ,:,4)=gridmap_c(:,:,4);

449

450 for $=3:3:72

451 for p=1:(edgepage-1)

452 X(p,1)=find (gridmap (: ,s,p)==min(gridmap (: ,s,p)));
453 X(p,2)=0;

454 [—,c]=kmeans (X, 1) ;

455 id=floor (c(1));

456 end

457

458 gridmap (id , s, edgepage)=stage_centroid;

459 for j=id-1:-1:1

460 gridmap (j ,s,edgepage)=stage_centroid+id-j;

461 end

462 for j=id+1:1:31

463 gridmap (j ,s, edgepage)=stage_centroid+j -id;

464 end

465 end

466

467 tOminidx=find (gridmap (: , 3 ,4)==min (gridmap(: ,3,4)));

468 t240minidx=find (gridmap(: ,72 ,4)==min (gridmap(:,72,4)));
469

470 % 4. PREPARE DIGRAPH

471 %

472 [G_a,B]=prepare_digraph (gridmap, edgepage) ;

473

474 % 5. DIJKSTRA

475 % ===========

476 [-,path_a]=dijkstra (B, gridmap (tOminidx, 1 ,edgepage) ,gridmap (t240minidx,71,edgepage) ) ;
477 [edgepath_a]=prepare_edgepath (gridmap, edgepage , path_a) ;
478

479 % 6. VISUALISATION: DATA (4H/24H HORIZON WINDOW)

480 %

481 % not required

482

Sean Williams Teesside University



Page 277

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505 end
506  end
507

% 7. VISUALISATION: GRIDMAP INDIVIDUAL SHORTESTPATH
%
% not required

% 8. CONIROL ACTION

Y% =================

% control action is temperature at t10, Sl

ctrl_stage=2;

ctrl_action=tOtempSP (path_a(ctrl_stage) -(11#(ctrl_stage-1)));

% 9. VISUALISATION: BIG PATH
%
%fixed subplot showing scrolling total cost function [1,4,4]
if (visual_mode==2) || (visual_mode==3) || (visual_mode==4)

visual_group_path (path_c, path_d, path_t, path_a, tl)
end

% 10. VISUALISATION: BIG GRIDMAP SHORTESTPATH
%
% new figure created for each cycle showing individual gridmap

%visual_group_shortestpath (G_c,edgepath_c,G_d,edgepath_d,G_t,edgepath_t,G. a,...

%edgepath_a,tl,horizon)

508 % Update Simulink model output ports
509  block.OutputPort(1).Data = ctrl_action ;
510  block.OutputPort(2) .Data = touv_op;

511
512

513  %endfunction: Outputs(block)

514

515 function Update(block)
516 98 Update Dwork

517

518 % Update Dwork(4) to InputPort(4) [SO_date]
519  block.Dwork(4) .Data=block.InputPort(4) .Data;

520

521 %endfunction: Update(block)

522

523  function SetlnpPortFrameData(block, idx, fd)

524

525 % Set the sampling of the input ports
526  block.InputPort(idx) .SamplingMode=1fd ;
527  for i=1:block.NumOutputPorts

528 block . OutputPort (i) . SamplingMode=fd ;

529  end
530

531  %endfunction: SetlnpPortFrameData (block,idx,fd)

532

533 function Terminate (block)

534

535  %endfunction: Terminate (block)

Listing E.1 hil optim_ ctrl.m
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E.3 hil optim ctrl model data.m

%6 MATLAB M- File Description *HIL

%

% Title: Optimisation and Control Model Building Parameters (HIL)

% Filename: optim_ctrl_model_data.m

% Prepared by: Sean Williams

% Date: 24 Oct 2019

%

% MATIAB script tagged to Simulink model 'optim_ctrl_model_sim.slx",
%

% >HIL

% 1. The following sections have been deleted:

% Set Outdoor Temperature Variation

% Set Building Paremeters

% Set Power Systems Parameters

% 2. Modified Set Date Time: delete references to daily_temp include
% ifelse statement at end of section. Case 1-6 date_time remains

% unchanged.

%

==
= O W00 ~TO U W N

=
TUR Lo DD

DO = = = =
[eslNeoXo N ko))

%% Change History

%

% 1. [24-10-2019] Initial

% 2. [20-12-2019] New: Set Initialise Parameters, Set Date Time,

% (option to use dtv_sim or dtv_act), Set SOC Model Parameters,

%  Set Outdoor Temperature Variation; Modified: Set Building Parameters
3. [26-01-2020] New: energy_subsystem parameters

% 4. [17-03-2020] Changes required to support HIL

DO DN N DN
=N

R

DO I B
S50
X

28 % 5.

29

30 %% Set Initialise Parameters

31

32 Al=1.157412771135569e-05;

33  Al10=0.006944444445185;

34

35 %k Set Date Time

36

37 % Option to select simulated daily temperature variation [112]
38 % or measured daily temperature [3141516]

39 % https://www.wunderground.com <act_temp.xlsx>

40

41  date_time_option=1;

42

43 switch date_time_option

44 case 1

45 date_time= now';

46

47 case 2

48 date_time="'10:00:00";

49

50 case 3 % Sunday 10-Feb-2019 00:00:00, 24hrs

51 date_time='10-Feb-2019 00:00:00 '; %datenum=737466
52

53 case 4 % Tuesday 07-May-2019 00:00:00, 24hrs

54 date_time="'7-May-2019 00:00:00 '; %datenum=737552
55

56 case 5 % Saturday 3-Aug-2019 00:00:00, 24hrs

57 date_time="'3-Aug-2019 00:00:00 '; %datenum=737640
58

59 case 6 % Friday 08-Nov-2019 00:00:00, 24hrs

60 date_time="'8-Nov-2019 00:00:00'; %datenum=737737
61

62  end

63

64  dt=datenum (datetime (date_time)) ;
65 assignin( 'base’', 'dt',dt);

68 9% Set SOC Model Parameters

70 SDR=0.017;

71 tau=2000;
72 tou_weekday=[4.99 11.99 24.99 11.99 4.99];

Listing E.2 hil_optim_ ctrl_model_data.m
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E.4 hil prepare tc gridmap.m

1 function [tev,tcvdata,gridmap,tOminidx,t240minidx]=prepare_tc_gridmap
2 (tOtempSP, tempSP, SO_date, gridmap , edgepath , edgepage,

3 mintempthresholdparam, S1tcv)

4 9% MATLAB Function Description *HIL

5 %

6 % Title: Prepare Thermal Comfort Gridmap (HIL)

7 % Filename: prepare_tc_gridmap.m

8 % Prepared by: Sean Williams

9 % Date: 6 Nov 2019

10 %

11 % MATIAB function starts with gridmap (31x72x4) template. Maps nodepath
12 % (11x25) onto gridmap (31x72) for each objective function (page):
13 % comort, demand and tou (tariff).

—
>~

% At each stage the min value is defined as the stage centroid,

15 % all remaining values are populated, increasing/decreasing in

16 % value moving up/down in the same col (stage). The index where the

17 % min value at tO and t240 is found are stored in tOminidx and t240minidx
18 % respectively.

% Exception handling at boundary upper and lower is included.

%

% Similar to prepare_gridmap.m but specific to thermal comfort.

%

23 % > HIL

% General: code change enables signal from single smart phone to interact

25 % with Simulink model. tc at S1 is set to feedback from smart phone irrespective
26 % of planned occupancy. Code that sets response for S2 to S24 remains unchanged.
27 % 1. Include Sltcv as input parameter

28 % 2. tev(3) (calc_mode) at S1 set to Sltev (user themal comfort feedback)

29 %

DO DO B =
= O

o
g

30
31 986 Change History
32 %

33 % 1. [06-11-2019] Initial
34 9% 2. [15-03-2020] Changes required to support HIL

35 % 3.

36

37 9%k Prepare Thermal Comfort Gridmap
38

39 % Define stage S1 column number used in grid template, multiples of col is
40 % used to calculate S2 to S24
41 col=3;

43 % Find index number of value in array tOtempSP that matches the recorded
44 % temperature measurement
45 node=find (tOtempSP==tempSP) ;

47 % Calculate node index of declared temperature setpoint at tO; (2016<nodeidx=<1)
48  nodeidx=(node#*2)+(node-2) ;

49

50 % tc at Sl

51 % ========

52 % Calculate thermal comfort value (tcv) edge

53 % tcv=comfort (stime,1) where stime=[10,20,..., n] minutes

54 % no difference if users thermal comfort calc_mean is COLD or TOO COLD.

D0 % Also no difference to control action if users thermal comfort
56 % calc_mean is WARM or TOO WARM.

57 % Returns [nl n2 n3] where nl=occupants, n2=response, n3=calc_mode
58  Sn_date=datetime (SO_date, 'ConvertFrom ', 'datenum ') ;

59  tcv=comfort_2 (Sn_date,1);

61 9% HIL, force tcv(3) (calc_mode) to Sltcv (thermal comfort user feedback)
62  tcv(3)=Sltcv:

64 tcvdata(1,:)=tcv;

66 % Set initial edge weight (S1)

67 % Check number of op. If op=0 then set edge weight to direct path
68 % to reduce tempSP by 0.5degC. Otherwise set edge weight based on
69 % return fen: comfort value.

70 % If nil op then set path to reduce tempSP by 0.5degC from SO to Sl
71 if (tev(1)==0)

72 a=1;b=0.5;c=0.25;

73 else

74 % tc=-1 or -2 indicating too hot, reduce tempSP. Least value path
75 % is to lower temp

76 if (tev(3)<0)
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a=1;b=0.5;c=0.25;
% tc=0 indicating okay, maintain tempSP. Least value path is to
% same temp
elseif (tev(3)==0)
a=0.5;b=0.25;c=0.5;
% tc=1 or 2 indicating too cold, increase tempSP, Least value path to
% higher temp.
elseif (tev(3)>0)
a=0.25;b=0.5;c=1.0;
end
end

% Check for outliner temperature values (20.5 and 15.5) and restrict setting
% of edge weights to valid edges, ie not possible to assign edge weight
% from 20.5 to 21.0.
% higher sn<tn (source node is less than targe node)
if (nodeidx-1==0)
gridmap (nodeidx, col , edgepage)=b;
gridmap (nodeidx+1,col , edgepage)=c;
% lower sn>tn
elseif (nodeidx-31==0)
gridmap (nodeidx-1,col ,edgepage)=a;
gridmap (nodeidx, col , edgepage)=b;
% equal sn=tn
else
gridmap (nodeidx-1, col ,edgepage)=a;
gridmap (nodeidx, col ,edgepage)=b;
gridmap (nodeidx+1,col ,edgepage)=c;
end

% Find row number (tOminidx) listing minimum edge weight at S1 use tOminidx
% in dijkstra.mlx to set source node when calculating shortest path
[tOvalue , tOminidx]=min(gridmap(: ,3 , edgepage)) ;

% tc at S2 to S24

for n=1:23 %23
% Display label > 'Stage: n (k) ' where n=[2,3,...,24], k=[6,9,...,72]
% column number disp ([ 'Stage: ',num2str(n+1),"' (',num2str((n*3)+3),') '])

Sn_date=datetime (SO_date, 'ConvertFrom ', 'datenum ')+minutes(10#n) ;

% Calculate tc for next stage
tcv=comfort_2 (Sn_date,0);
tecvdata (n+1,:)=tcv;

% Determine value (not required) and idx of min value from previous stage
[—,idx]=min(gridmap (: , col*n, edgepage)) ;

% Determine the previous stage target node
tnode=gridmap (idx , (col+n) -1,edgepage) ;

% Now declare the start node of next stage the target node from
% previous stage
snode=tnode;

% Determine the node index number of min value in previous stage
nodeidx=sub2ind (size (gridmap (: ,: , edgepage)) ,idx, col#*n);

% Find the index numbers of the start nodes in the next stage
% (with exception to outliners, there are three values returned)
[value ,—]=find (gridmap(: ,1+(col+*n) ,edgepage)==snode) ;

% Maintain list of edgepath of shortest path in grid map
edgepath=cat(2,edgepath,sub2ind(size (gridmap(: ,: ,edgepage)) ,idx,n));

% Check if op>0
if (tev(1)>0)
% This ensures 1:12 maintains 12:23, 23:34 etc
if (value(l)==1)
gridmap (value (1) ,3+(col+n) ,edgepage)=tOvalue;
else
gridmap (value (2) ,3+(col*n) ,edgepage)=tOvalue;
end
else
% This ensures 1l:n starts to fall when no occupancy
if (value(1l)==1)
gridmap (value (1) +1,3+(col+*n) ,edgepage)=tOvalue;
else
% Check path exceeds declared minimum temperature threshold value
if (idx<mintempthresholdparam)
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158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

% Continue to force shortest path to lower temperature
% if value is less than declared minimum temperature
% threshold value
gridmap (value (2) +1,3+(col+*n) ,edgepage)=tOvalue;

else
% Maintain shortest path on minimum temperate threshold
% value if calculated temperature is less than minimum
% temperature threshold value
gridmap (value (2) ,3+(col+n) ,edgepage)=tOvalue;

end

end
end
end

% Compute row number showing lowest value at S24
% values are used when plotting shortest path
[—,t240minidx]=min (gridmap (: ,72 ,edgepage) ) ;

% Add final node to edgepath list that informs shortest path
edgepath(1,end+1)=(23+31)+t240minidx;

%end prepare tc gridmap

Listing E.3 hil_prepare_tc_gridmap.m
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E.5 hil read serialdata.m

1 function [tO, Sltcv] = read_serialdata

2 99 MATIAB Function Description *HIL

3 %

4 % Title: Read Serial Data (HIL)

5 % Filename: read_serialdata.m

6 % Prepared by: Sean Williams

7 % Date: 15 Mar 2020

8 %

9 % MATIAB function reads room temperature and thermal comfort from serial
10 % port. OOM port connects to Industruino using USB.
11 %

12

13 986 Change History
14 %

15 % 1. [15-03-2020] Initial
16 % 2.

17
18 98 Read Serial Data
19 % set port parameters
20 s=serial ('COMI16'); % USB to Industruino
21  set(s, 'BaudRate',9600);

22 set(s, 'DataBits',8);

23  set(s, 'StopBits',1);

24 set(s, 'Parity ', 'none');

25  set(s, 'Timeout',8):

26  set(s, 'Terminator', 'CR/LF');

28 % disable waning message
29 warning (' off ', '"MATLAB: serial : fscanf:unsuccessfulRead ')

31 % open port

32 fopen(s)

33 s.ReadAsyncMode='continuous ';
34 9%lastwarn('');

35 [a, MSGID] = lastwarn('');

36 try

37 % read data <ff.ff;d;CR/LN>

38 % where ff.ff is room temperature in degC
39 % B is thermal comfort (ascii in {48,49,50,51,52})
40 C=fscanf(s, '%f %+c %d %+c',9)

41

42 if (-isempty (lastwarn))

43 error (lastwarn)

44 end

45  catch err

46 C=[99;438];

47  end

48

49 % close port
50 fclose(s)
51  stopasync(s)

53 % enable warning message
54 warning on verbose

55

56 % set temperature and thermal comfort parameters
57  to=C(1);

58  Sltev=str2num (char(C(2)));

59

60 % set t0=99 if fail read
61 % (strlength (num2str(t0))#4) |1
62 if (—isnumeric(t0)) |1

63 (—isfloat (t0)) |l (size(t0,1)>1) 11
64 (size (t0,2)>1)

65 t0=99;

66 end

67

68 %set Sltcv=0 is fail read

69 if (isempty(Sltev)) |l (—isnumeric(Sltev)) ||
70 (S1tev<0) Il (Sltcv>4)

71 Sltev=0;

72  end

73

74 end
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% end read_serialdata

Listing E.4 hil read_ serialdata.m
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E.6 hil readdata.m

00 1O U WO N =

19

46

o1

53
54
55
56
57
59
60
61

function readdata(block)
986 READDATA =HIL

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

Title: Read Data (HIL)
Filename: readdata.m
Prepared by: Sean Williams
Date: 9 Mar 2020

Read room temperature and thermal comfort values from serial port.
Both data routed from Industruino using USB connected to serial port
with room temperature from remote Arduino Uno and DHT22 sensor using
wireles connection and thermal comfort from Android smart phone
using bluetooth connection.

Function outputs include room temperature plus 2 further options:
1. room temperature -2 degC
2. room temperature -4 degC

Final output is thermal comfort

Data exception handling included
Sample rate is 5min (300s)

setup (block) ;

%endfunction: readdata(block)

function setup (block)
9%%6 Setup Functional Port Properties

% Register number of ports
block . NumInputPorts = 0;
block . NumOutputPorts = 4;

% Setup port properties to be inherited or dynamic

block . SetPreCompOutPortInfoToDynamic;

% Override output port properties
block.OutputPort(1) .Dimensions = 1; % tO: temp

block . OutputPort (1) . DatatypelD

0; % double

block.OutputPort(1) . Complexity = 'Real’;
block . OutputPort (1) . SamplingMode= 'Sample ' ;

% Override output port properties

block . OutputPort (2) . Dimensions
block . OutputPort (2) . DatatypelD
block . OutputPort(2) . Complexity

1; % t1: temp-2
0; % double
'Real ';

block . OutputPort (2) . SamplingMode= 'Sample ' ;

% Override output port properties

block . OutputPort (3) . Dimensions
block . OutputPort (3) . DatatypelD
block . OutputPort (3) . Complexity

1; % t2: temp-3
0: % double
'Real ';

block . OutputPort (3) . SamplingMode= 'Sample ' ;

% Override output port properties

block.OutputPort (4) . Dimensions = 1; % Sltcv: thermal comfort at Stage 1
block.OutputPort(4) . DatatypeID = 0; % double

block.OutputPort (4) . Complexity = 'Real’;

block . OutputPort (4) . SamplingMode= 'Sample ' ;

% Register parameters
block .NumDialogPrms = 0;

% Register sample times
block.SampleTimes = [300 O];

% Specify the block simStateCompliance to default
block.SimStateCompliance = 'DefaultSimState ';

% Register nethods

block . RegBlockMethod ( ' PostPropagationSetup ', @DoPostPropSetup) ;
block . RegBlockMethod ( 'InitializeConditions ', @InitializeConditions);
block . RegBlockMethod ( ' Start ', @Start);

block . RegBlockMethod ( 'Outputs ', @Outputs); % Required
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block . RegBlockMethod ( 'Update ', @Update) :

block . RegBlockMethod ( 'Terminate ', @Terminate); % Required

block . RegBlockMethod ( ' SetInputPortSamplingMode ', @SetInpPortFrameData) ;
%endfunction: setup (block)

function DoPostPropSetup (block)

% Initialise the Dwork vectors
block .NumDworks = 2;

% Dwork(1) stores the value of the last room temperature reading

block .Dwork (1) .Name = 'T1"'
block .Dwork (1) . Dimensions = 1;
block .Dwork(1) . DatatypelD = 0; % double

block .Dwork(1) . Complexity 'Real'; % real

block .Dwork (1) . UsedAsDiscState

nn
-
=
=}
¢

% Dwork(2) stores the value of the last thermal comfort value

block .Dwork (2) .Name = 'Sltev';

block .Dwork(2) . Dimensions =1;

block .Dwork(2) . DatatypelD = 0; % double
block .Dwork(2) . Complexity = 'Real'; % real
block .Dwork(2) . UsedAsDiscState = true;

%endfunction: DoPostPropSetup (block)

function InitializeConditions (block)
block .Dwork (1) .Data=18;

block .Dwork(2) . Data=0;

%endfunction: InitializeConditions (block)

function Start(block)
%% Set Start Conditions

% Assign Dwork(1) to status of last temp
block .Dwork(1) .Data=18;

block .Dwork(2) . Data=0;

%endfunction: Start(block)

function Outputs(block)

9% Outputs

% hold previous temperature value
lasttO=block.Dwork(1) .Data;

% hold previous thermal comfort value
lastS1tcv=block.Dwork(2) .Data;

% read new serial data
[tO,S1ltcv]=read_serialdata

% if temperature data error set new temperature to previous temperature
if (t0 == 99)

t0=lasttO;
end

% if thermal comfort data error set new thermal comfort data to 'O' (user

% reports thermal comfort is 'warm enough')
if (Sltev == 99)

Sltcv=0;
end

% map thermal comfort serial in to tcalc_mode

% thermal comfort serial in tcalc_mode
% it 's warm enough O 0
% its cold 1 1
% it 's too cold 2 2
% it 's warm 3 -1
% it 's too warm 4 -2

tcalc_mode_mapping = [0,1,2,-1,-2];
S1tcv_mode=tcalc_mode_mapping (Sltcv+1)

% set Dwork(1l) to temperature value
block .Dwork(1) .Data=t0;

% set Dwork(2) to thermal comfort value
block .Dwork(2) . Data=S1tcv_mode;

% Update Simulink model output ports
block.OutputPort(1) .Data = tO;
block.OutputPort(2) .Data = t0-2;
block. OutputPort (3) . Data t0-4;
block . OutputPort (4) . Data Sltcv_mode;
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%endfunction: Outputs(block)

function Update(block)
%% Update Dwork

%endfunction: Update(block)
function Terminate (block)

%endfunction: Terminate (block)

Listing E.5 hil readdata.m
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E.7

%
%
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%
25 %
26 %
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DO DO N DO DN —
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hil soc.m

function soc(block)
99 SOC *HIL

Title: State of Charge (HIL)
Filename: soc.m

Prepared by: Sean Williams
Date: 6 Nov 2019

Code tagged to Simulink model block soc_model.

Operates in 2 Modes: [0] normal operations [1] demand event

Initially SOC assumed O and will start to charge. At high

threshold ESS declared available for use (FIT=1). FIT status revert
back to O when low threshold reached (on discharge).

If SOC available and tariff HIGH (level 3), power switch to ESS (PWR=1).
When tariff LOW (level 1 or 2) power switch to GRID (PWR=0).

On receipt of demand event signal, MODE=0. Priority sets

ESS to charge during 4-hour ramp time before demand event starts and
power switch to GRID (PWR=0). At demand event start power switch to ESS
(PWR=1), ESS begins to discharge. Maintain ESS power for duration of
demand event. At end of demand event revert back to normal operations
(MODE=0). Self-Discharge Rate (SDR) applies on discharge.

>HIL
1. Delete all references to path_2: building subsystem removed from
Simulink model.

28  setup(block);

30 %endfunction: soc(block)

32 function setup (block)
33 %k Setup Functional Port Properties

35 % Register number of ports
36 block.NumlInputPorts = 4;
37  block.NumOutputPorts = 2;

39 % Setup port properties to be inherited or dynamic
40 block.SetPreComplnpPortInfoToDynamic;
41  block.SetPreCompOutPortInfoToDynamic;

43 % Override input port properties

44 block.InputPort (1) .Dimensions = 1; % DIR

45  block.InputPort (1) .DatatypelD = 8; % boolean
46 block.InputPort (1) .Complexity = 'Real';

47  block.InputPort(1).DirectFeedthrough = true;

49 % Override input port properties

50  block.InputPort(2).Dimensions = 1; 9% DATA
51  block.InputPort(2) . DatatypelD = 0; % double
52  block.InputPort(2) . Complexity = 'Real';

53 block.InputPort(2).DirectFeedthrough = true;

55 % Override input port properties

56 block.InputPort(3) . Dimensions
57  block.InputPort (3) . DatatypelD

1; % t_mode
0; % double

58  block.InputPort(3) . Complexity = 'Real’;

59  block.InputPort(3).DirectFeedthrough = true;

61 % Override input port properties

62  block.InputPort (4) . Dimensions = 1; % MODE
63 block.InputPort (4) . DatatypelD = 0; % double
64 block.InputPort (4) . Complexity = 'Real';

65  block.InputPort (4) . DirectFeedthrough = true;

67 % Override output port properties

68  block.OutputPort(1) . Dimensions =1; % FIT
69  block.OutputPort (1) . DatatypelD = 0; % double
70  block.OutputPort (1) . Complexity = 'Real';

72 % Override output port properties

73 block.OutputPort(2) . Dimensions = 1; % PWR
74 block.OutputPort(2) . DatatypelD = 0; % double
75 block.OutputPort(2) . Complexity = 'Real';
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% Register parameters
block . NumDialogPrms = 0;

% Register sample times
block.SampleTimes = [30 O];

% Specify the block simStateCompliance to default
block . SimStateCompliance = 'DefaultSimState ';

% Register nethods

block . RegBlockMethod ( 'PostPropagationSetup ', @DoPostPropSetup) ;

block . RegBlockMethod ( 'Start ', @Start);

block . RegBlockMethod ( 'Outputs ', @Outputs); % required

block . RegBlockMethod ( 'Update ', @Update) ;

block . RegBlockMethod ( 'Terminate ', @Terminate); % required

block . RegBlockMethod ( 'SetInputPortSamplingMode ', @SetInpPortFrameData) ;

%endfunction: setup (block)
function DoPostPropSetup (block)

% Initialise the Dwork vectors
block .NumDworks = 1;

% DWork (1) store value at input port 2 [DATA] = raw SOC
block .Dwork (1) .Name 'D1';

block .Dwork(1) . Dimensions = 1;

block .Dwork(1) . DatatypelD = 0; % double
block .Dwork (1) . Complexity = 'Real'; % real
block .Dwork(1) . UsedAsDiscState = true;

%endfunction: DoPostPropSetup (block)

function Start(block)
%%b Set Start Conditions

% Assign Dwork(1) to O
block .Dwork(1) .Data = 0O;

%endfunction: Start(block)

function Outputs (block)
%% Outputs

% define model paths

path_1='optim_ctrl_model_sim/scheduler_subsystem/ess_subsystem/SOC_hold';

path_3="'optim_ctrl_model_sim/scheduler_subsystem/ess_subsystem/CD";

% Determine MODE: [O]=normal, [l]=demand event (ramp plus duration)
if (block.InputPort(4).Data==0)
% Normal Operations
set_param (path_1, 'Value', '1")
if (block.InputPort(1).Data==1) % DIR increasing (charge)
if (block.InputPort(2).Data>0.8) % detect SOC > 0.8
block.OutputPort(1) .Data = 1; % FIT=1
if (block.InputPort(3).Data==3) % detect high tariff
block.OutputPort(2) .Data = 1; % PWR=1 (ESS)
set_param (path_3, 'Value ', 'O’
set_param (path_1, 'Value', 'l
else
block.OutputPort(2) .Data = 0; % PWR=0 (GRID)

)
")

set_param(path_3, 'Value ', '1")
set_param (path_1, 'Value','1")
end
else
block.OutputPort(2) .Data = 0; % PWR=0

set_param (path_3, 'Value', '1")
set_param (path_1, 'Value', '1")
end
else % DIR decreasing (discharge)
if (block.InputPort(2).Data<0.2) % detect SOC < 0.2
block.OutputPort(1) .Data = 0; % FIT=0
block.OutputPort(2) .Data = 0; % PWR =0
set_param (path_3, 'Value ', '1
set_param (path_1, 'Value', '1
return
else
if (block.InputPort(3).Data==3) % detect high tariff

")
")
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block.OutputPort(2) .Data = 1; % PWR=1

set_param (path_1, 'Value','1")
else
block.OutputPort(2) .Data = 0; % PWR=0

set_param (path_1, 'Value', '0');
end
end
end
else
% Demand Event (active for ramp plus duration)
if (block.InputPort(1).Data==1) % DIR increasing (charge)
if (block.InputPort(2).Data>0.90) % detect SOC > 0.95
block.OutputPort(1) .Data = 1; % FIT=1
if (block.InputPort(3).Data==3) % detect high tariff
block.OutputPort(2) .Data = 1; % PWR=1 (ESS)

set_param (path_3, 'Value', '0"'

set_param (path_1, 'Value ', '1"’
else

block.OutputPort(2) .Data = 0; % PWR=0 (GRID)

)
)

set_param(path_3, 'Value ', '1")
set_param (path_1, 'Value', '1")
end
else
if (block.InputPort(3).Data==3) % detect high tariff
block.OutputPort(2) .Data = 1; % PWR=1 (ESS)

set_param (path_3, 'Value', '0")
set_param (path_1, 'Value','1")

else
block.OutputPort(2) .Data = 0; % PWR=0

set_param (path_3, 'Value','1")
set_param (path_1, 'Value', '1")
end
end
else % DIR decreasing (discharge)
if (block.InputPort(2).Data<0.2) % detect SOC < 0.2
block . OutputPort(1) . Data 0; % FIT=0
block.OutputPort(2) . Data 0; % PWR =0

set_param (path_3, 'Value', '1"')
set_param (path_1, 'Value', '1")
return
else
if (block.InputPort(3).Data==3) % detect high tariff
block.OutputPort(2) .Data = 1; % PWR=1 (ESS)

set_param (path_1, 'Value','1")
else
block.OutputPort(2) .Data = 0; % PWR=0 (GRID)
set_param(path_1, 'Value ', '1"’
set_param (path_3, 'Value', 'l
end

)
")
end
end
end

%endfunction: Outputs(block)

function Update(block)
%% Update Dwork

% Update Dwork(1) to InputPort(2) [Data] = raw SOC
block.Dwork(1) .Data = block.InputPort(2).Data;

%endfunction: Update(block)
function SetIlnpPortFrameData(block, idx, fd)
% Set the sampling of the input ports
block.InputPort (idx) . SamplingMode=fd ;
for i=1:block.NumOutputPorts

block . OutputPort (i) . SamplingMode=fd ;

end

%endfunction: SetInpPortFrameData (block)
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241 function Terminate (block)
242
243  %endfunction: Terminate (block)

Listing E.6 hil_soc.m
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E.8 hil te2u.m

00 1O UL WO N =

22

function u =te2u(Te)
%6 MATLAB Function Description *HIL

%
% Title:

Convert Temperature Error to Control Action (HIL)

% Filename: prepare_comfort_values.m
% Prepared by: Sean Williams
% Date: 6 Nov 2019

%

% MATIAB function sets temperature setpoint (control action) depending on
% measured temperature. System limited to operate in temperature range

% 15.5degC (minimum) to 20.5degC (maximum) .

%

%% Change History

% 1. [06-11-2019]

% 3.

Initial
% 2. [21-01-2020] Set upper temperature range to 20.5 irrespective of
%  measured temperature (last line in ifelse block set to 23.00)

9%%6 Convert Temperature Error to Control Action (Te2u)
% map Te to control action voltage (0-10Vdc)

Tu=0;

if (Te > 0) &&

Tu=0;
elseif (Te
Tu=1;
elseif (Te
Tu=2;
elseif (Te
Tu=3;
elseif (Te
Tu=4;
elseif (Te
Tu=5;
elseif (Te
Tu=6;
elseif (Te
Tu=7;
elseif (Te
Tu=8;
elseif (Te
Tu=9;
elseif (Te
Tu=10;
end

u=Tu;

end

>

%

0.

0.

(Te < 0.3)
3) &k (Te
5) && (Te
.0) && (Te
.5) && (Te
.0) && (Te
.5) && (Te
.0) && (Te
.5) && (Te
.0) && (Te
.5)

<

<

<

0.5)

2.0)
2.5)
3.0)

3.5)

% end prepare_comfort_values

Listing E.7 hil_te2u.m
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E.9 hil write serialdata.m

9%%b Write Serial Data

D = = =
QOO Ut~

\V]
—_

data_ctrl_action=round(data_ctrl_action=*100,0);

23 % set port parameters

24 s=serial ('COMI6'); % USB to Industruino
25  set(s, 'BaudRate',9600);

26  set(s, 'DataBits',8);

27 set(s, 'StopBits',1);

28 set(s, 'Parity ', 'none');

29 set(s, 'Timeout',8);

30 set(s, 'Terminator', 'CR');

32 % open port
33  fopen(s)

35 % write data_ctrl_action
36  fprintf(s, %d\n', data_ctrl_action)

38 % close port
39 fclose(s)

41  end
42 9% end write_serialdata

Listing E.8 hil_write_serialdata.m

1 function write_serialdata (data_ctrl_action)
2 99 MATIAB Function Description *HIL
3 %
4 % Title: Write Serial Data (HIL)
5 % Filename: write_serialdata.m
6 % Prepared by: Sean Williams
7 % Date: 15 Mar 2020
8 %
9 % MATIAB function writes control action data to serial port.
10 % OOM port connects to Industruino using USB.
11 %
12
13 986 Change History
%
% 1. [15-03-2020] Initial
% 2

% to enable data transfer data_ctrl_action parameter is multipled by 100
% and rounded before TX. Industruino RX divide by 100 to restore value
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E.10 hil writedata.m

00 1O UL WO N =

12

45
46

50

function writedata (block)

%80 WRITEDATA =HIL

%

% Title: Write Data (HIL)

% Filename: writedata.m

% Prepared by: Sean Williams
% Date: 9 Mar 2020

%

% Write control action value to serial port
% Sample rate is 5min (300s)
%

setup (block) ;
%endfunction: writedata (block)

function setup (block)
%% Setup Functional Port Properties

% Register number of ports
block.NumlInputPorts = 1;
block . NumOutputPorts = 0;

% Setup port properties to be inherited or dynamic
block . SetPreCompOutPortInfoToDynamic;

% Override output port properties
block.InputPort(1).Dimensions = 1; % ctrl_action
block.InputPort (1) .DatatypelD 0; % double
block.InputPort (1) .Complexity 'Real ';
block.InputPort (1) .SamplingMode='Sample ' ;

% Register parameters
block .NumbDialogPrms = 0;

% Register sample times
block.SampleTimes = [300 O];

% Specify the block simStateCompliance to default
block.SimStateCompliance = 'DefaultSimState ';

% Register nethods

block . RegBlockMethod ( 'PostPropagationSetup ', @DoPostPropSetup) ;

block . RegBlockMethod ( 'InitializeConditions ', @InitializeConditions) ;
block . RegBlockMethod ( 'Start ', @Start);

block . RegBlockMethod ( 'Outputs ', @Outputs); % Required

block . RegBlockMethod ( 'Update ', @Update) ;

block . RegBlockMethod ( 'Terminate ', @Terminate); % Required

block . RegBlockMethod ( 'SetInputPortSamplingMode ', @SetInpPortFrameData) ;

%endfunction: setup (block)
function DoPostPropSetup (block)

% Initialise the Dwork vectors
block .NumDworks = 1;

% Dwork(1) stores the value of the last control action reading
block .Dwork (1) .Name 'lastctrl_action ';

block .Dwork (1) . Dimensions = 1;

block .Dwork(1) . DatatypelD = 0; % double
block .Dwork(1) . Complexity = 'Real'; % real
block .Dwork (1) . UsedAsDiscState = true;

%endfunction: DoPostPropSetup (block)

function InitializeConditions (block)
block .Dwork (1) .Data=0;

%endfunction: InitializeConditions (block)

function Start(block)
%6 Set Start Conditions

% Assign Dwork(1) to status of last temp
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block .Dwork (1) .Data=0;
%endfunction: Start(block)

function Outputs(block)

%% Outputs

% hold previous value of data_ctrl_action
lastctrl_action=block.Dwork(1) .Data;

% set data_ctrl_action value to InputPort(1)
data_ctrl_action=block.InputPort(1).Data;

% write data_ctrl_action (ctrl_action) to serial out
write_serialdata (data_ctrl_action)

% set Dwork(1) to current value of data_ctrl_action
block .Dwork(1) .Data=data_ctrl_action;

%endfunction: Outputs(block)

function Update(block)
9% Update Dwork

%endfunction: Update(block)
function Terminate (block)

%endfunction: Terminate (block)

Listing E.9 hil_writedata.m
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