19 research outputs found

    Positional Games

    Full text link
    Positional games are a branch of combinatorics, researching a variety of two-player games, ranging from popular recreational games such as Tic-Tac-Toe and Hex, to purely abstract games played on graphs and hypergraphs. It is closely connected to many other combinatorial disciplines such as Ramsey theory, extremal graph and set theory, probabilistic combinatorics, and to computer science. We survey the basic notions of the field, its approaches and tools, as well as numerous recent advances, standing open problems and promising research directions.Comment: Submitted to Proceedings of the ICM 201

    Query complexity of Boolean functions on the middle slice of the cube

    Full text link
    We study the query complexity of slices of Boolean functions. Among other results we show that there exists a Boolean function for which we need to query all but 7 input bits to compute its value, even if we know beforehand that the number of 0's and 1's in the input are the same, i.e. when our input is from the middle slice. This answers a question of Byramji. Our proof is non-constructive, but we also propose a concrete candidate function that might have the above property. Our results are related to certain natural discrepancy type questions that -- somewhat surprisingly -- have not been studied before.Comment: 10 page

    Size Ramsey Number of Bounded Degree Graphs for Games

    Get PDF
    We study Maker/Breaker games on the edges of sparse graphs. Maker and Breaker take turns at claiming previously unclaimed edges of a given graph H. Maker aims to occupy a given target graph G and Breaker tries to prevent Maker from achieving his goal. We show that for every d there is a constant c = c(d) with the property that for every graph G on n vertices of maximum degree d there is a graph H on at most cn edges such that Maker has a strategy to occupy a copy of G in the game on H. This is a result about a game-theoretic variant of the size Ramsey number. For a given graph G, r^(G)\hat{r}'(G) is defined as the smallest number M for which there exists a graph H with M edges such that Maker has a strategy to occupy a copy of G in the game on H. In this language, our result yields that for every connected graph G of constant maximum degree, r^(G)=Θ(n)\hat{r}'(G) = \Theta(n) . Moreover, we can also use our method to settle the corresponding extremal number for universal graphs: for a constant d and for the class Gn{\cal G}_{n} of n-vertex graphs of maximum degree d, s(Gn)s({\cal G}_{n}) denotes the minimum number such that there exists a graph H with M edges where, for every G ∈ Gn{\cal G}_{n} , Maker has a strategy to build a copy of G in the game on H. We obtain that $s({\cal G}_{n}) = \Theta(n^{2 - \frac{2}{d}})

    Avoider-Enforcer star games

    Get PDF
    In this paper, we study (1:b)(1 : b) Avoider-Enforcer games played on the edge set of the complete graph on nn vertices. For every constant k3k\geq 3 we analyse the kk-star game, where Avoider tries to avoid claiming kk edges incident to the same vertex. We analyse both versions of Avoider-Enforcer games -- the strict and the monotone -- and for each provide explicit winning strategies for both players. We determine the order of magnitude of the threshold biases fFmonf^{mon}_\mathcal{F}, fFf^-_\mathcal{F} and fF+f^+_\mathcal{F}, where F\mathcal{F} is the hypergraph of the game

    Efficient Splitting of Necklaces

    Get PDF
    We provide efficient approximation algorithms for the Necklace Splitting problem. The input consists of a sequence of beads of n types and an integer k. The objective is to split the necklace, with a small number of cuts made between consecutive beads, and distribute the resulting intervals into k collections so that the discrepancy between the shares of any two collections, according to each type, is at most 1. We also consider an approximate version where each collection should contain at least a (1-?)/k and at most a (1+?)/k fraction of the beads of each type. It is known that there is always a solution making at most n(k-1) cuts, and this number of cuts is optimal in general. The proof is topological and provides no efficient procedure for finding these cuts. It is also known that for k = 2, and some fixed positive ?, finding a solution with n cuts is PPAD-hard. We describe an efficient algorithm that produces an ?-approximate solution for k = 2 making n (2+log (1/?)) cuts. This is an exponential improvement of a (1/?)^O(n) bound of Bhatt and Leighton from the 80s. We also present an online algorithm for the problem (in its natural online model), in which the number of cuts made to produce discrepancy at most 1 on each type is O?(m^{2/3} n), where m is the maximum number of beads of any type. Lastly, we establish a lower bound showing that for the online setup this is tight up to logarithmic factors. Similar results are obtained for k > 2

    Pozicione igre na grafovima

    Get PDF
    \section*{Abstract} We study Maker-Breaker games played on the edges of the complete graph on nn vertices, KnK_n, whose family of winning sets \cF consists of all edge sets of subgraphs GKnG\subseteq K_n which possess a predetermined monotone increasing property. Two players, Maker and Breaker, take turns in claiming aa, respectively bb, unclaimed edges per move. We are interested in finding the threshold bias b_{\cF}(a) for all values of aa, so that for every bb, b\leq b_{\cF}(a), Maker wins the game and for all values of bb, such that b>b_{\cF}(a), Breaker wins the game. We are particularly interested in cases where both aa and bb can be greater than 11. We focus on the \textit{Connectivity game}, where the winning sets are the edge sets of all spanning trees of KnK_n and on the  \textit{Hamiltonicity game}, where the winning sets are the edge sets of all Hamilton cycles on KnK_n. Next, we consider biased (1:b)(1:b) Avoider-Enforcer games, also played on the edges of KnK_n. For every constant k3k\geq 3 we analyse the kk-star game, where Avoider tries to avoid claiming kk edges incident to the same vertex. We analyse both versions of Avoider-Enforcer games, the strict and the monotone, and for each provide explicit winning strategies for both players. Consequentially, we establish bounds on the threshold biases f^{mon}_\cF, f^-_\cF and f^+_\cF, where \cF is the hypergraph of the game (the family of target sets). We also study the monotone version of K2,2K_{2,2}-game, where Avoider wants to avoid claiming all the edges of some graph isomorphic to K2,2K_{2,2} in KnK_n.   Finally, we search for the fast winning strategies for Maker in Perfect matching game and Hamiltonicity game, again played on the edge set of KnK_n. Here, we look at the biased (1:b)(1:b) games, where Maker's bias is 1, and Breaker's bias is b,b1b, b\ge 1.\section*{Izvod} Prou\v{c}avamo takozvane Mejker-Brejker (Maker-Breaker) igre koje se igraju na granama kompletnog grafa sa nn \v{c}vorova, KnK_n, \v{c}ija familija pobedni\v{c}kih skupova \cF obuhvata sve skupove grana grafa GKnG\subseteq K_n koji imaju neku monotono rastu\'{c}u osobinu. Dva igra\v{c}a, \textit{Mejker} (\textit{Pravi\v{s}a}) i \textit{Brejker} (\textit{Kva\-ri\-\v{s}a}) se smenjuju u odabiru aa, odnosno bb, slobodnih grana po potezu. Interesuje nas da prona\dj emo grani\v{c}ni bias b_{\cF}(a) za sve vrednosti pa\-ra\-me\-tra aa, tako da za svako bb, b\le b_{\cF}(a), Mejker pobe\dj uje u igri, a za svako bb, takvo da je b>b_{\cF}(a), Brejker pobe\dj uje. Posebno nas interesuju slu\v{c}ajevi u kojima oba parametra aa i bb mogu imati vrednost ve\'cu od 1. Na\v{s}a pa\v{z}nja je posve\'{c}ena igri povezanosti, gde su pobedni\v{c}ki skupovi  grane svih pokrivaju\'cih stabala grafa KnK_n, kao i igri Hamiltonove konture, gde su pobedni\v{c}ki skupovi grane svih Hamiltonovih kontura grafa KnK_n. Zatim posmatramo igre tipa Avojder-Enforser (Avoider-Enforcer), sa biasom (1:b)(1:b), koje se tako\dj e igraju na granama kompletnog grafa sa nn \v{c}vorova, KnK_n. Za svaku konstantu kk, k3k\ge 3 analiziramo igru kk-zvezde (zvezde sa kk krakova), u kojoj \textit{Avojder} poku\v{s}va da izbegne da ima kk svojih grana incidentnih sa istim \v{c}vorom. Posmatramo obe verzije ove igre, striktnu i monotonu, i za svaku dajemo eksplicitnu pobedni\v{c}ku strategiju za oba igra\v{c}a. Kao rezultat, dobijamo gornje i donje ograni\v{c}enje za grani\v{c}ne biase f^{mon}_\cF, f^-_\cF i f^+_\cF, gde \cF predstavlja hipergraf igre (familija ciljnih skupova). %fmonf^{mon}, ff^- and f+f^+. Tako\dj e, posmatramo i monotonu verziju K2,2K_{2,2}-igre, gde Avojder \v{z}eli da izbegne da graf koji \v{c}ine njegove grane sadr\v{z}i graf izomorfan sa K2,2K_{2,2}. Kona\v{c}no, \v{z}elimo da prona\dj emo strategije za brzu pobedu Mejkera u igrama savr\v{s}enog me\v{c}inga i Hamiltonove konture, koje se tako\dj e igraju na granama kompletnog grafa KnK_n. Ovde posmatramo asimetri\v{c}ne igre gde je bias Mejkera 1, a bias Brejkera bb, b1b\ge 1
    corecore