Pozicione igre na grafovima

Abstract

\section*{Abstract} We study Maker-Breaker games played on the edges of the complete graph on nn vertices, KnK_n, whose family of winning sets \cF consists of all edge sets of subgraphs GKnG\subseteq K_n which possess a predetermined monotone increasing property. Two players, Maker and Breaker, take turns in claiming aa, respectively bb, unclaimed edges per move. We are interested in finding the threshold bias b_{\cF}(a) for all values of aa, so that for every bb, b\leq b_{\cF}(a), Maker wins the game and for all values of bb, such that b>b_{\cF}(a), Breaker wins the game. We are particularly interested in cases where both aa and bb can be greater than 11. We focus on the \textit{Connectivity game}, where the winning sets are the edge sets of all spanning trees of KnK_n and on the  \textit{Hamiltonicity game}, where the winning sets are the edge sets of all Hamilton cycles on KnK_n. Next, we consider biased (1:b)(1:b) Avoider-Enforcer games, also played on the edges of KnK_n. For every constant k3k\geq 3 we analyse the kk-star game, where Avoider tries to avoid claiming kk edges incident to the same vertex. We analyse both versions of Avoider-Enforcer games, the strict and the monotone, and for each provide explicit winning strategies for both players. Consequentially, we establish bounds on the threshold biases f^{mon}_\cF, f^-_\cF and f^+_\cF, where \cF is the hypergraph of the game (the family of target sets). We also study the monotone version of K2,2K_{2,2}-game, where Avoider wants to avoid claiming all the edges of some graph isomorphic to K2,2K_{2,2} in KnK_n.   Finally, we search for the fast winning strategies for Maker in Perfect matching game and Hamiltonicity game, again played on the edge set of KnK_n. Here, we look at the biased (1:b)(1:b) games, where Maker's bias is 1, and Breaker's bias is b,b1b, b\ge 1.\section*{Izvod} Prou\v{c}avamo takozvane Mejker-Brejker (Maker-Breaker) igre koje se igraju na granama kompletnog grafa sa nn \v{c}vorova, KnK_n, \v{c}ija familija pobedni\v{c}kih skupova \cF obuhvata sve skupove grana grafa GKnG\subseteq K_n koji imaju neku monotono rastu\'{c}u osobinu. Dva igra\v{c}a, \textit{Mejker} (\textit{Pravi\v{s}a}) i \textit{Brejker} (\textit{Kva\-ri\-\v{s}a}) se smenjuju u odabiru aa, odnosno bb, slobodnih grana po potezu. Interesuje nas da prona\dj emo grani\v{c}ni bias b_{\cF}(a) za sve vrednosti pa\-ra\-me\-tra aa, tako da za svako bb, b\le b_{\cF}(a), Mejker pobe\dj uje u igri, a za svako bb, takvo da je b>b_{\cF}(a), Brejker pobe\dj uje. Posebno nas interesuju slu\v{c}ajevi u kojima oba parametra aa i bb mogu imati vrednost ve\'cu od 1. Na\v{s}a pa\v{z}nja je posve\'{c}ena igri povezanosti, gde su pobedni\v{c}ki skupovi  grane svih pokrivaju\'cih stabala grafa KnK_n, kao i igri Hamiltonove konture, gde su pobedni\v{c}ki skupovi grane svih Hamiltonovih kontura grafa KnK_n. Zatim posmatramo igre tipa Avojder-Enforser (Avoider-Enforcer), sa biasom (1:b)(1:b), koje se tako\dj e igraju na granama kompletnog grafa sa nn \v{c}vorova, KnK_n. Za svaku konstantu kk, k3k\ge 3 analiziramo igru kk-zvezde (zvezde sa kk krakova), u kojoj \textit{Avojder} poku\v{s}va da izbegne da ima kk svojih grana incidentnih sa istim \v{c}vorom. Posmatramo obe verzije ove igre, striktnu i monotonu, i za svaku dajemo eksplicitnu pobedni\v{c}ku strategiju za oba igra\v{c}a. Kao rezultat, dobijamo gornje i donje ograni\v{c}enje za grani\v{c}ne biase f^{mon}_\cF, f^-_\cF i f^+_\cF, gde \cF predstavlja hipergraf igre (familija ciljnih skupova). %fmonf^{mon}, ff^- and f+f^+. Tako\dj e, posmatramo i monotonu verziju K2,2K_{2,2}-igre, gde Avojder \v{z}eli da izbegne da graf koji \v{c}ine njegove grane sadr\v{z}i graf izomorfan sa K2,2K_{2,2}. Kona\v{c}no, \v{z}elimo da prona\dj emo strategije za brzu pobedu Mejkera u igrama savr\v{s}enog me\v{c}inga i Hamiltonove konture, koje se tako\dj e igraju na granama kompletnog grafa KnK_n. Ovde posmatramo asimetri\v{c}ne igre gde je bias Mejkera 1, a bias Brejkera bb, b1b\ge 1

    Similar works