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We study Maker/Breaker games on the edges of sparse graphs. Maker and Breaker take

turns at claiming previously unclaimed edges of a given graph H . Maker aims to occupy a

given target graph G and Breaker tries to prevent Maker from achieving his goal. We show

that for every d there is a constant c = c(d) with the property that for every graph G on n

vertices of maximum degree d there is a graph H on at most cn edges such that Maker has

a strategy to occupy a copy of G in the game on H .

This is a result about a game-theoretic variant of the size Ramsey number. For a given

graph G, r̂′(G) is defined as the smallest number M for which there exists a graph H with

M edges such that Maker has a strategy to occupy a copy of G in the game on H . In this

language, our result yields that for every connected graph G of constant maximum degree,

r̂′(G) = Θ(n).

Moreover, we can also use our method to settle the corresponding extremal number for

universal graphs: for a constant d and for the class Gn of n-vertex graphs of maximum

degree d, s(Gn) denotes the minimum number such that there exists a graph H with M

edges where, for every G ∈ Gn, Maker has a strategy to build a copy of G in the game on

H . We obtain that s(Gn) = Θ(n2− 2
d ).

2010 Mathematics subject classification: Primary 05C55, 05C57, 91A43, 91A46

1. Introduction

Ordinary Ramsey numbers and a game-theoretic variant. The Ramsey number r(G) of

a graph G is the smallest number N such that, in any two-colouring of the edges of

the complete graph KN , there is guaranteed to be a monochromatic copy of G. It is

well known, for example, that for the complete graph Kn on n vertices we have that

2
n
2 � r(Kn) � 4n, and that, as proved by Chvátal, Rödl, Szemerédi and Trotter [20], for

every graph G on n vertices of maximum degree d (the class of graphs we are focusing on

in this paper), r(G) � cn, where c depends on d but not on n.

A game-theoretic variant of the Ramsey number was introduced by Beck [8]. Two

players, called Maker and Breaker, take turns at claiming one previously unclaimed edge
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500 H. Gebauer

of KN , with Maker going first. Maker’s goal is to build a copy of some fixed graph G in his

graph and Breaker tries to prevent Maker from achieving his goal: Breaker wins if, after

all edges of KN have been claimed, Maker’s graph does not contain a copy of G. Let r′(G)

denote the smallest N such that Maker has a strategy to occupy a copy of G in the game

on KN . A standard strategy-stealing argument shows that r′(G) � r(G). Suppose, for a

contradiction, that r′(G) > r(G). Thus, for N := r(G), Breaker has a strategy SB to prevent

Maker from building a copy of G in the game on KN . Since Maker starts the game he

can ‘steal’ Breaker’s strategy by starting with an arbitrary first move and then following

SB (if this strategy calls for something he occupied previously, he takes an arbitrary edge:

no extra move is disadvantageous for him). The corresponding strategy SM allows Maker

to prevent Breaker from occupying a copy of G. Suppose that Maker and Breaker play

against each other using their respective strategies SM and SB and assume further that

Maker colours his edges red and Breaker colours his edges blue. Due to the properties

of SM and SB , neither player ever occupies a copy of G. Hence, as soon as all edges have

been claimed, we are given an edge-colouring of KN containing no monochromatic copy

of G, and therefore N < r(G), contradicting our choice of N.

Hence, due to the result of Chvátal, Rödl, Szemerédi and Trotter we immediately obtain

that for every graph G of maximum degree d we have that r′(G) � r(G) � c(d)n. Further

progress was made when Beck [10] showed that if N � poly(d)3d · n, then in the game

on KN Maker has a strategy to create a universal graph for the class of graphs on n

vertices of maximum degree d, i.e., a graph that contains all such graphs (‘poly(d)’ denotes

a polynomial factor in d).

Size Ramsey numbers and a game-theoretic variant. The size Ramsey number r̂(G),

introduced by Erdős, Faudree, Rousseau and Schelp [21], is the smallest number M

for which there exists a graph H with M edges such that any two-colouring of the edges

of H yields a monochromatic copy of G. Due to a result of Chvátal (see [21]) it is known

that r̂(Kn) =
(
r(Kn)

2

)
, which equals the number of edges in the complete graph on r(Kn)

vertices. Naturally, for sparse graphs the situation is quite different. For many sparse

graphs G (as cycles and trees of fixed maximum degree) it has been proved that r̂(G) is

linear in n [9, 24, 25]. Conversely, Rödl and Szemerédi [28] showed that there exists a

graph G on n vertices of maximum degree 3 where

r̂(G) � cn log
1
60 n,

refuting the possibility, raised by Beck and Erdős (see [19]), that for every d there is a

constant c = c(d) such that for any graph G on n vertices of maximum degree d, r̂(G) � cn.

The best known upper bound for the class of all graphs with constant maximum degree

is due to Kohayakawa, Rödl, Schacht and Szemerédi [26], who derived that for every

natural number d there exists a constant c = c(d) such that for every graph G on n vertices

of maximum degree d,

r̂(G) � cn2− 1
d log

1
d n. (1.1)

As for the ordinary Ramsey number, there is a game-theoretic variant of the size

Ramsey number: for every graph G we let r̂′(G) denote the smallest M for which there
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Figure 1. (a) A graph G and (b) G2.

exists a graph H with M edges such that Maker has a strategy to occupy a copy of G in

the game on H (by slightly abusing the notion introduced above we also consider games

played on non-complete graphs). By a strategy-stealing argument similar to that above,

we get that r̂′(G) � r̂(G).

We investigate r̂′(G) for graphs G with constant maximum degree d. Clearly, r̂′(G) �
|E(G)|, and thus for connected graphs we have that r̂′(G) is at least linear in n. Conversely,

(1.1) is the best known upper bound (to our knowledge) for r̂′(G). We will close this gap

by showing that r̂′(G) � cn for some constant c depending on d but not on n.

Theorem 1.1. Let d be a natural number. Then there is a constant c = c(d) with the property

that for every graph G on n vertices of maximum degree d there is a graph H on at most cn

edges such that Maker has a strategy to occupy a copy of G in the game on H . In particular,

r̂′(G) � cn.

Let v1, . . . , vn denote the vertices of G and let E(G) denote the edge set of G. The graph

H we will construct in the proof of Theorem 1.1 has the additional property that for

some carefully chosen constant c (depending on d but not on n), we will have H = Gc,

where Gc denotes the graph obtained by replacing every vi with a set Vi of size c, and

connecting two vertices u ∈ Vi and v ∈ Vj with an edge if and only if (vi, vj) ∈ E(G).

Figure 1 depicts such a graph. Note that every edge of G corresponds to c2 edges of H .

Thus, H has c2|E(G)| � 1
2
c2dn edges. Moreover, the strategy we will describe guarantees

that by the end of the game Maker’s graph contains a copy of G spanned by some

w1 ∈ V1, . . . , wn ∈ Vn, where every wi plays the role of vi.

Previous work. Feldheim and Krivelevich [22] considered a related problem. For a given

graph G they investigated the minimum number nround(G) of rounds Maker needs to

build a copy of G in the game on a sufficiently large KN . Applying a theorem of Alon,

Krivelevich, Spencer and Szabó about discrepancy games [6], they derived a strategy for

Maker to occupy every given graph G of bounded degree with n vertices in a linear

number of rounds (in n).

Theorem 1.2 (Feldheim and Krivelevich [22]). Let d be an integer. Then there are constants

c = c(d), c′ = c′(d) such that for every graph G on n vertices of maximum degree d and every

N > cn, Maker has a strategy to occupy a copy of G in the game on KN in at most c′n

rounds.
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502 H. Gebauer

We remark that they actually proved this result for the more general class of d-

degenerate graphs. The values of the constants are c = d1122d+9 and c′ = d1122d+7. In our

proof of Theorem 1.1 we use some of their findings and approaches, and combine them

with several new ideas.

Note that if Maker has a strategy to occupy a copy of G in the game on H then

nround(G) � |E(H)|
2

. Hence r̂′(G)
2

is an upper bound on nround(G), and thus Theorem 1.1

implies Theorem 1.2 (with weaker constants c(d), c′(d)).

Universal graphs. For a given family G of graphs, a graph H is called G-universal if H

contains a copy of every G ∈ G. The construction of sparse universal graphs for several

families of graphs occurs in the study of VLSI circuit design (see [12] and [18]). Universal

graphs for forests, planar graphs, and related classes have been studied in a series of

papers (see, e.g., [11, 15, 16, 17, 24], and [7, 11, 13, 14, 27]). Alon, Capalbo, Kohayakawa,

Rödl, Ruciński and Szemerédi [4] considered the class Gn,d of graphs on n vertices with

maximum degree d. They proved that for every d there exists an ε = ε(d) > 0 such that for

every n there is a Gn,d-universal graph with at most n2−ε edges. Further progress was made

in a series of publications, yielding several deterministic and randomized constructions of

sparse Gn,d-universal graphs (see, e.g., [1, 2, 5]). Finally, Alon and Capalbo [3] found the

following.

Theorem 1.3 (Alon and Capalbo [3]). For every d � 3 there exists positive constants c1, c2

such that for every n there is an (explicitly constructible) Gn,d-universal graph H with at

most c1n vertices and at most c2n
2− 2

d edges.

Theorem 1.3 is tight since it has been shown in [4] that every Gn,d-universal graph

contains at least Ω(n2− 2
d ) edges. For the remainder of this section, we consider d to be a

constant.

Ramsey universal graphs and a game-theoretic variant. For a given family G of graphs, a

graph H is called G-Ramsey-universal if any two-colouring of the edges of H contains

a monochromatic G-universal graph. Clearly, the lower bound Ω(n2− 2
d ) (of [4]) on the

number of edges in a Gn,d-universal graph also serves as a lower bound on the number

of edges in a Gn,d-Ramsey-universal graph. Conversely, Kohayakawa, Rödl, Schacht and

Szemerédi [26] showed that there is a Gn,d-Ramsey-universal graph with at most

O(n2− 1
d log

1
d n) (1.2)

edges, which is a generalization of (1.1). It is a wide open problem whether this upper

bound can be pushed down to O(n2− 2
d ).

As for the ordinary Ramsey property, there is a game-theoretic variant of Ramsey-

universality. For a given family G of graphs, we are interested in those graphs H where

for every G ∈ G, Maker has a strategy to build a copy of G in the game on H . (In other

words, Maker first fixes H and afterwards Breaker chooses G, and then the actual game

starts.) We denote the set of these graphs H by S(G) and investigate the smallest number

s = s(G) such that there exists a graph H in S(G) with s edges.
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Every graph in S(G) is clearly G-universal. Thus, the lower bound Ω(n2− 2
d ) (of [4]) on

the number of edges in a Gn,d-universal graph yields that every graph in S(Gn,d) has at

least Ω(n2− 2
d ) edges. Hence,

s(Gn,d) � Ω(n2− 2
d ). (1.3)

Conversely, a standard strategy-stealing argument yields that if a graph H is G-Ramsey

(i.e., if every two-colouring of the edges of H contains a monochromatic copy of G) then

Maker can build a copy of G in the game on H . Thus, every Gn,d-Ramsey-universal graph

is also in S(Gn,d). Hence (1.2) implies that some graph in S(Gn,d) has at most O(n2− 1
d log

1
d n)

edges. Together with (1.3) this gives that

Ω(n2− 2
d ) � s(Gn,d) � O(n2− 1

d log
1
d n).

Our construction for proving Theorem 1.1 closes the gap between these two bounds: let H

be the graph from Theorem 1.3 and let H ′ = Hc for some carefully chosen constant c. By

construction, |E(H ′)| = c2|E(H)| = O(n2− 2
d ), and, furthermore, H ′ contains Gc for every

G ∈ Gn,d. Thus, by choosing c as in the proof of Theorem 1.1, for every G ∈ Gn,d, Maker

has a strategy to occupy a copy of G. Hence, H ′ ∈ S(Gn,d) and therefore, s(Gn,d) � O(n2− 2
d ),

which together with (1.3) gives that s(Gn,d) = Θ(n2− 2
d ).

Notation. We first define some game-theoretic notions. Following the standard notation,

for a graph property P of N-vertex graphs and a graph H on the vertex set V (H) = V (KN),

we let (E(H),P) denote the game where Maker’s goal is to create a graph which possesses

P . In this paper we investigate the case where P is the property that the graph contains

a copy of a fixed graph G. We call H the base graph or the board. The base graph along

with the sets of Maker’s and Breaker’s claimed edges is called a game position, or just a

position for short. Adopting the notation of [22], to distinguish between vertices of G and

vertices of H we mark the vertices of H with an asterisk.

Throughout this paper we will assume that Breaker starts the game. Otherwise Maker

can start with an arbitrary move, then follow his strategy. If his strategy calls for an edge

he already claimed he takes an arbitrary edge (he can only benefit from extra moves).

By slightly modifying the standard notation, we let a round denote a pair consisting of a

Breaker’s move and the consecutive Maker’s move.

We will also need some graph terminology. Let G be a graph and let u, v ∈ V (G).

The neighbourhood NG(v) of v denotes the set of vertices which are adjacent to v in G.

The distance distG(u, v) between u and v is defined as the number of edges in a shortest

path in G connecting u and v. For a fixed ordering v1, . . . , vn of the vertices of G we let

N−
G (vi) = NG(vi) ∩ {v1, . . . , vi−1}, and N+

G (vi) = NG(vi) ∩ {vi+1, . . . , vn}. For U ⊆ V (G), EG(U)

denotes the set of edges spanned by U and, similarly, for disjoint subsets U,W ⊆ V (G),

EG(U,W ) denotes the set of edges with one endpoint in U and the other in W . When

there is no danger of confusion we sometimes omit the index G. Furthermore, G\U
denotes the graph obtained by taking G and deleting all the vertices of U. The subgraph

induced by U, G[U], denotes the graph obtained by deleting all vertices of V (G)\U in G.

Let D be a directed acyclic graph and let u, v ∈ V (D). If (u, v) ∈ E(D) then v is called

an out-neighbour of u. If there is a directed path of length at least one from u to v in D,
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504 H. Gebauer

then v is called a descendant of u. In other words, the descendants of u are exactly the

out-neighbours of u in the transitive closure of D. Note that according to this convention,

no vertex is considered a descendant of itself.

Ceiling and floor signs are routinely omitted whenever they are not crucial for clarity.

Organization of this paper. In Section 2 we give rough descriptions of the method of

Feldheim and Krivelevich [22], and our contribution. Moreover, we also illustrate the

main structural differences between the respective problems.

A key ingredient of our approach is a carefully specified ordering Π of the vertices of

G. In Section 3 we define Π and point out some of its properties, which will be essential

for Maker’s strategy.

In Sections 4 and 5 we give criteria motivated by [22], and explain how Maker can

make use of them in certain subgames of our strategy. In Section 6 we finally develop an

overall strategy S for Maker and derive that, following S , Maker will eventually win the

game.

2. Sketch of a known result and our contribution

Let G be a graph of maximum degree d and suppose that V (G) = {v1, . . . , vn}. We first

give a rough sketch of Maker’s strategy of [22] for constructing G fast in the game on KN .

Maker processes the vertices v1, . . . , vn one by one. After processing v1, . . . , vi−1 he chooses

a set Wi ⊆ V (KN) of ‘fresh vertices’ (i.e., vertices where no incident edge has been claimed

by Maker or Breaker) where |Wi| is some fixed constant (depending on d but not on n).

Then he starts claiming edges connecting Wi with W1, . . . ,Wi−1, according to an involved

sub-strategy, such that Maker’s graph obtains the following property. For every index

set i1 < · · · < ik < i and every common neighbour vj of vi1 , . . . , vik , vi in {v1, . . . , vi1−1}, it

holds that for every choice w�
i1
, . . . , w�

ik
, w�

i of respective vertices in Wi1 , . . . ,Wik ,Wi there are

relatively many common neighbours in Wj . Naturally, this sub-strategy strongly depends

on the actual outcome of processing v1, . . . , vi−1.

Feldheim and Krivelevich derived that their strategy guarantees that by the end of the

game Maker can find vertices w�
1 ∈ W1, w�

2 ∈ W2, . . . , w
�
n ∈ Wn such that {w�

1 , . . . , w
�
n} span

a copy of G, where every w�
i plays the role of vi.

In our construction for proving Theorem 1.1 we want to economize the number of

edges of the base graph. To this end we choose a suitable constant c and replace KN

with H := Gc. Recall that Gc denotes the graph obtained by replacing every vi with a set

Vi of size c, and connecting two vertices u ∈ Vi and v ∈ Vj with an edge if and only if

(vi, vj) ∈ E(G). Moreover, we set Wi := Vi for every i ∈ {1, . . . , n}. So, in contrast to the

above strategy, the Wi are already determined at the beginning of the game. The method

of processing v1, . . . vn one by one does not carry over to the new situation, since Breaker

could easily occupy all edges incident to Wn before Maker finished processing v1, . . . , vn−1.

The main ingredient of our approach is a carefully chosen ordering of the vertices

combined with a modified strategy for Maker with the property that for every i, Maker

can start processing vi after processing only a certain small subset Ti ⊆ {v1, . . . , vi−1}. We

represent this relation by a directed graph D on the vertex set {v1, . . . , vn}, where we add
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Figure 2. (a) A graph G and (b) D2(G).

an edge from vi to every vertex in Ti. We extend Maker’s strategy as follows. Whenever

Breaker claims an edge in E(W1 ∪ · · · ∪ Wi−1,Wi) before all vertices in Ti have been

processed, then Maker continues processing a descendant of vi in D. We will derive (using

some structural properties of D) that this approach allows Maker to eventually occupy a

copy of G.

3. Defining a suitable ordering of the vertices

Let G be a graph. Using the standard notation, Δ(G) denotes the maximum degree of G

and the chromatic number χ(G) denotes the minimum c such that G is c-colourable. We

will apply the following well-known bound.

Lemma 3.1. For every graph G, χ(G) � Δ(G) + 1.

This can be seen as follows. Let G = (V , E), let V = {v1, . . . , vn} and let

C = {1, . . . ,Δ(G) + 1}

be a set of colours. By colouring the vertices in the order v1, . . . , vn, assigning to vi the

smallest colour of C not already used on a neighbour of vi, we obtain a proper colouring.

For a given graph G = (V , E), we let D2(G) = (V ′, E ′) denote the graph where V ′ = V

and E ′ consists of all pairs (u, v) of vertices where u �= v and u, v have distance at most two

in G. Figure 2 shows an example. Note that, with Δ := Δ(G), the maximum degree of D2(G)

is at most Δ + Δ(Δ − 1) = Δ2. Moreover, every independent set of D2(G) corresponds to

a subset S ⊆ V where every two vertices in S have distance at least three in G. The next

corollary is a direct consequence of Lemma 3.1.

Corollary 3.2. Let G = (V , E) be a graph and let Δ = Δ(G). Then χ(D2(G)) � Δ2 + 1. In

particular, we can colour V with colours {1, . . . ,Δ2 + 1} such that every two vertices of the

same colour have distance at least 3 in G.

Colouring the vertices. From now on we let G be a fixed graph on n vertices of maximum

degree d and we let l : V (G) → {1, . . . , d2 + 1} be the colouring of Corollary 3.2. Figure 4(a)

shows an example. We also fix an ordering v1, . . . , vn of the vertices in V (G) such that

l(v1) � l(v2) � · · · � l(vn). Finally, we assume without loss of generality that d � 2. (Note

that if the maximum degree is at most 1 then we can just consider a supergraph G′ ⊇ G

with maximum degree 2.)
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v3 v4 v5 v6 v7 v8 v9 v10 v11

Figure 3. An example for i = 3 and j = 11. We have S3,11 = {5, 8, 9}.

Let 1 � i < j � n. We say that an index r is neighbourwise sandwiched between i and

j if i < r < j and vr ∈ NG(vi). For every (vi, vj) ∈ E(G) where i < j, we let Si,j denote the

set of indices r which are neighbourwise sandwiched between i and j. Figure 3 shows an

illustration. Moreover, for every index j we let Sj denote the union of all sets Si := {i} ∪ Si,j
where vi ∈ N−

G (vj). Note that all vertices in Sj have distance at most two from vj , thus

|Sj | � d + d(d − 1) = d2. (3.1)

It will turn out that for every j the set of indices Sj play an important role in Maker’s

strategy. Intuitively, it will be the case that he can only process a vertex vj as soon as he

has finished processing all vertices vi where i ∈ Sj (more details will be given below).

For further discussion we aim to express the relation ‘i ∈ Sj ’ with a graph. Let D denote

the directed graph on the vertex set v1, . . . , vn where there is an arc from vj to vi if and

only if i ∈ Sj . Figures 4(b) and 4(c) depict an example. For every arc (vk, vi) ∈ E(D) we

have l(vk) � l(vi) and l(vk) �= l(vi) (because dist(vi, vk) � 2), thus l(vk) > l(vi), and therefore

D is acyclic.

Observation 3.3. For every j ∈ {1, . . . , n} we have that the number of descendants of vj in

D is at most (d2)d
2+1.

This can be seen as follows. By (3.1) and the construction of D, every vertex has at most

d2 out-neighbours in D. Since l(vk) > l(vi) for every arc (vk, vi) in D, the vertices of every

directed path in D have distinct colours. Thus, every directed path in D with start vertex

vj has at most l(vj) � d2 + 1 vertices. So the number of descendants of vj is at most

l(vj )−1∑
i=1

(d2)i � (d2)l(vj ) � (d2)d
2+1

(here we use the assumption that d � 2).

In terms of the intuition formulated above, Observation 3.3 yields that in order to be

able to process a vertex vj , Maker only has to complete the processing of a constant

number of vertices. A precise analysis will be given in Section 6 when we devise Maker’s

overall strategy.

Construction of the board. Recall that we fixed an ordering of the vertices v1, . . . , vn of G

according to the colouring l of Corollary 3.2. Let

cd = d52d+4, and (3.2)

c = dc2
dd

2d2+2 + cd + 2. (3.3)
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11 22 33

(a)

v1 v2 v3 v4 v5 v6

(b)

v1 v2

v3 v4

v5 v6

1

2

3

Label

Label

Label

(c)

Figure 4. (a) A colouring l of a path of length 5 such that vertices with the same colour have distance at

least 3, and (b) an ordering of the vertices according to l. Figure (c) shows the corresponding graph D.

We set

H := Gc. (3.4)

Recall that, by definition of Gc, H is the graph resulting from replacement of every vi
with a set Vi of size c and connecting two vertices u ∈ Vi and v ∈ Vj with an edge if and

only if (vi, vj) ∈ E(G).

4. Candidates and candidate schemes

We introduce the concepts of a candidate vertex and a candidate scheme by stating adapted

versions of Definitions 2.1–2.3 in [22]. Recall that, according to (3.4), V (H) = V1 ∪ · · · ∪ Vn,

and that a position is the base graph H along with the sets of Maker’s and Breaker’s

claimed edges. The intuition behind the Bk ⊆ Vk used in the next definitions is that during

the game, as part of his strategy, Maker will define for every k ∈ {1, . . . , n} an appropriate

subset Bk ⊆ Vk with |Bk| = cd.

Definition 4.1 (vertex candidate with respect to a specific edge). Let H� be a position,

let (vi, vj) ∈ E(G) where i < j, and suppose that Si,j = {k1, . . . , kt−1}. Moreover, for every

k ∈ {i} ∪ {k1, . . . , kt−1}, let Bk ⊆ Vk be a non-empty set. A vertex x� ∈ Vj is called a

candidate with respect to the edge (vi, vj) and the family B = {Bi, Bk1
, . . . , Bkt−1

} if, for every

choice of vertices b�1 ∈ Bk1
, b�2 ∈ Bk2

, . . . , b�t−1 ∈ Bkt−1
, we have

|{b� ∈ Bi : Maker claimed (b�, b�1), . . . , (b�, b�t−1), (b�, x�) in H�}|
|Bi|

� 1

t2t
.

Figure 5 illustrates Definition 4.1. Note that if no index is neighbourwise sandwiched

between i and j (i.e., if t = 1) then a vertex x� ∈ Vj is a candidate with respect to (vi, vj)

and B = {Bi} if and only if x� is connected to at least half of the vertices of Bi in Maker’s

graph.
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b1 b2 x

Bi Bk 1 Bk 2 Vj

Figure 5. An illustration of Definition 4.1 for t = 3. Many vertices in Bi are connected to all three vertices

b�1 , b
�
2 , x

�.

We will now specify those vertices x� ∈ Vj which are candidates for every edge (vi, vj) ∈
E(G) with i < j. Recall that Sj denotes the union of all sets Si := {i} ∪ Si,j where vi ∈
N−

G (vj).

Definition 4.2 (vertex candidate). Let H� be a position, let 1 � j � n and for every k ∈ Sj

let Bk ⊆ Vk . Moreover, let B = {Bk : k ∈ Sj}. A vertex x� ∈ Vj is called a candidate with

respect to the family B if, for every vi ∈ N−
G (vj), x

� is a candidate with respect to (vi, vj)

and {Bi} ∪ {Bk : k ∈ Si,j}.

Note that if N−
G (vj) = ∅ then every x� ∈ Vj is a candidate with respect to the empty

set. Finally, we define a candidate scheme which, as we will see, guarantees that Maker’s

graph contains a copy of G.

Definition 4.3 (candidate scheme). Let H� be a position, and for every 1 � j � n, let

Bj ⊆ Vj with |Bj | � d2d. We say that (B1, B2, . . . , Bn) form a candidate scheme if, for every

1 � j � n and every x� ∈ Bj , x
� is a candidate with respect to {Bk : k ∈ Sj}.

The next lemma, which is a slight adaptation of Lemma 2.1 in [22], shows that a

candidate scheme is sufficient for Maker’s win.

Lemma 4.4 (Feldheim and Krivelevich [22]). Let H� be a position and let (B1, B2, . . . , Bn)

be a candidate scheme. Then Maker’s graph contains a copy of G.

For completeness we reproduce the proof given in [22].

Proof of Lemma 4.4. Our goal is to construct an embedding Φ : {v1, . . . , vn} → V (H)

such that Φ(vi) ∈ Bi for every 1 � i � n, and Φ(v1), . . . ,Φ(vn) span a copy of G in Maker’s

graph. We proceed inductively, starting from Φ(vn) and moving down to Φ(v1). First, we

choose an arbitrary x� ∈ Bn and set Φ(vn) := x�. Let i � n − 1 and suppose that we have

already defined Φ(vi+1), . . . ,Φ(vn) in such a way that they span a copy of G[{vi+1, . . . , vn}]

in Maker’s graph. If N+
G (vi) = ∅ then we choose an arbitrary vertex x� ∈ Bi as Φ(vi):

clearly, Φ(vi), . . . ,Φ(vn) span a copy of G[{vi, . . . , vn}] in Maker’s graph. Otherwise, let

{vk1
, . . . , vkt} = N+

G (vi) and note that by assumption, t � d. We suppose without loss of

generality that k1 < k2 < · · · < kt. Since Φ(vkt ) is a candidate with respect to the edge
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(vi, vkt ) and {Bi, Bk1
, . . . , Bkt−1

}, we get that

|{b� ∈ Bi : Maker claimed (b�,Φ(vk1
)), . . . , (b�,Φ(vkt )) in H�}| � |Bi|

t2t
,

which is at least |Bi|/(d2d) � 1. We choose one of these vertices to be Φ(vi). This implies

that Φ(vi), . . . ,Φ(vn) span a copy of G[{vi, . . . , vn}] in Maker’s graph.

5. Two suitable subgames

Our goal is to devise a strategy which allows Maker to obtain a candidate scheme. To this

end we first analyse two appropriate subgames. We will need the concept of untouched

vertices. Let H� be a position. A vertex x� ∈ Vj is touched if Maker or Breaker has

claimed an edge of the form (y�, x�) where y� ∈ V1 ∪ V2 ∪ · · · ∪ Vj−1. Otherwise x� is

called untouched.

In the first subgame Maker’s goal is to achieve the situation described in Definition 4.1.

Definition 5.1. Let H� be a position, let (vi, vj) ∈ E(G) where i < j, and suppose that

Si,j = {k1, . . . , kt−1}. Moreover, for every k ∈ {i} ∪ {k1, . . . , kt−1}, let Bk ⊆ Vk be a non-

empty set. For every vertex x� ∈ Vj which is untouched in H�, the game GBi,x� with

respect to {Bk1
, . . . , Bkt−1

} is defined as follows. The board consists of the set of edges in

EH (Bi, {x�}), and Maker’s goal is to achieve that x� becomes a candidate with respect to

(vi, vj) and {Bi, Bk1
, . . . , Bkt−1

}.

Note that for some positions H�, the game is hopeless for Maker; e.g., for every

H� where for some 1 � r � t − 1 and some y� ∈ Bkr , all edges in EH (Bi, {y�}) belong

to Breaker’s graph. However, the overall strategy for Maker, which we will describe,

guarantees that the Bk are convenient.

Maker’s goal in the second subgame is that several x� ∈ Vj become a candidate with

respect to all edges (vi, vj) where i < j.

Definition 5.2. Let H� be a position, let 1 � j � n, and for every k ∈ Sj , let Bk ⊆ Vk be

a non-empty set. For every set Bj ⊆ Vj where all vertices of Bj are untouched in H�, the

game GBj
with respect to {Bk : k ∈ Sj} is defined as follows. The board consists of the

union of the edge-sets EH (Bi, Bj) where vi ∈ N−
G (vj), and Maker’s goal is to achieve that

every x� ∈ Bj becomes a candidate with respect to {Bk : k ∈ Sj}.

We will show that Maker has a strategy to determine the Bj in such a way that he

succeeds in every GBj
, which finally allows him to obtain a candidate scheme.

We first express the size of the board of the game GBj
in terms of the sizes of the Bi

where vi ∈ N−
G (vj).

Observation 5.3. Let H� be a position, let 1 � j � n, and for every k ∈ Sj ∪ {j} let Bk ⊆ Vk

be as in Definition 5.2. The size of the board of the game GBj
(with respect to {Bk : k ∈ Sj})

is
∑

vi∈N−
G (vj )

|Bi||Bj |.
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We now use an adaptation of Lemma 2.2 in [22] to show that for an appropriate

choice of the Bk1
, . . . , Bkt−1

, Maker has a strategy to win the game GBi,x� described in

Definition 5.1. Recall that in (3.2) we set cd := d52d+4.

Lemma 5.4. Let H� be a given position, let (vi, vj) ∈ E(G) where i < j, and suppose that

Si,j = {k1, . . . , kt−1}. Moreover, for every k ∈ {i} ∪ {k1, . . . , kt−1}, let Bk ⊆ Vk where |Bk| = cd.

Suppose that for every 1 � r � t − 1 we have that every y� ∈ Bkr is a candidate with respect

to (vi, vkr ) and {Bi} ∪ {Bk1
, . . . , Bkr−1

}. Then, for every x� ∈ Vj which is untouched in H�,

Maker has a strategy to win GBi,x� with respect to {Bk1
, . . . , Bkt−1

}.

As usual, a hypergraph F is a pair (V , E), where V is a finite set whose elements are

called vertices and E is a family of subsets of V , called hyperedges. We consider the game

where Maker and Breaker alternately claim an unclaimed vertex of V until all vertices

are claimed. We will use the following result by Alon, Krivelevich, Spencer and Szabó [6],

extending a previous result by Székely [29].

Theorem 5.5 (Alon, Krivelevich, Spencer and Szabó [6]). Let F be a hypergraph with X

hyperedges, whose smallest hyperedge contains at least x vertices. Then Maker has a strategy

to claim at least

x

2
−

√
x ln(2X)

2

vertices of each hyperedge.

Proof of Lemma 5.4. The proof follows the same lines as the proof of Lemma 2.2 in

[22]. If t = 1 then Maker can win easily: in each of his moves he claims a free edge

connecting x� with a vertex in Bi; this guarantees that by the end of the game half of the

edges in E(Bi, {x�}) belong to Maker’s graph, as claimed. Suppose now that t � 2 and let

F denote the hypergraph where V (F) = E(Bi, {x�}), and E(F) is obtained by adding (to

the initially empty set), for every choice of vertices b�1 ∈ Bk1
, b�2 ∈ Bk2

, . . . , b�t−1 ∈ Bkt−1
, the

hyperedge

eb�1 ,...,b
�
t−1

:= {(b�, x�) ∈ E(Bi, {x�}) : Maker claimed (b�, b�1), . . . , (b�, b�t−1)}.

By interpreting GBi,x� as a game on F , we get that Lemma 5.4 is equivalent to the statement

that Maker has a strategy to claim at least

|Bi|
t2t

=
cd

t2t

vertices of each hyperedge. Our goal is to show the latter. By (3.2) we have that

|E(F)| �
t−1∏
r=1

|Bkr | = cd
t−1 = (d52d+4)t−1.

Let b�1 ∈ Bk1
, . . . , b�t−1 ∈ Bkt−1

be any choice of vertices. We get that |eb�1 ,...,b�t−1
| = |{b� ∈

Bi : Maker claimed (b�, b�1), . . . , (b�, b�t−1)}|. Since (by assumption) b�t−1 is a candidate with
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respect to (vi, vkt−1
) and {Bi, Bk1

, . . . , Bkt−2
}, we obtain that

|eb�1 ,...,b�t−1
| � |Bi|

(t − 1)2t−1
=

cd

(t − 1)2t−1
=

d52d+4

(t − 1)2t−1
.

By Theorem 5.5, Maker has a strategy to claim at least

d52d+4

(t − 1)2t
−

√
d52d+4

(t − 1)2t
ln(2(d52d+4)t−1) (5.1)

vertices of each hyperedge. Further calculations show that the expression in (5.1) is at

least

d52d−t+4

t
=

cd

t2t
.

(Details can be found in [22].) This concludes the proof.

The next corollary is a consequence of Lemma 5.4.

Corollary 5.6. Let H� be a position, let 1 � j � n, and for every k ∈ Sj , let Bk ⊆ Vk where

|Bk| = cd. Suppose that for every vi ∈ N−
G (vj) and every q ∈ Si,j we have that every y� ∈ Bq is

a candidate with respect to (vi, vq) and {Bi} ∪ {Br : r ∈ Si,q}. Then, for every Bj ⊆ Vj where

all vertices of Bj are untouched in H�, Maker has a strategy to win GBj
with respect to

{Bk : k ∈ Sj}.

Proof. We first note that for every vi ∈ N−
G (vj) the conditions of Lemma 5.4 are satisfied

for the edge (vi, vj) and the family {Bk : k ∈ {i} ∪ Si,j}. Indeed, let Si,j = {k1, . . . , kt−1}. By

assumption, for every kr ∈ {k1, . . . , kt−1} we have that all vertices in Bkr are candidates

with respect to (vi, vkr ) and {Bi} ∪ {Bs : s ∈ Si,kr} = {Bi} ∪ {Bk1
, . . . , Bkr−1

}.

Consider the following strategy for Maker. Suppose that Breaker claims an edge

(b�, x�) with b� ∈ Bi and x� ∈ Bj where i < j. Then Maker responds in the game GBi,x�

(with respect to {Br : r ∈ Si,j}).

Since the boards of the games GBi,x� are pairwise disjoint, Maker can treat each game

GBi,x� separately. Thus Lemma 5.4 yields a winning strategy for Maker in GBj
.

The next observation shows that the game GBj
is finished after a reasonably small

number of rounds.

Observation 5.7. Let H� be a position, let 1 � j � n, and for every k ∈ Sj ∪ {j} let Bk ⊆ Vk

be such that the conditions of Corollary 5.6 are satisfied. Suppose also that |Bj | = cd. By

Observation 5.3 the size of the board of the game GBj
(with respect to {Bk : k ∈ Sj}) is∑

vi∈N−
G (vj )

|Bi||Bj | � dc2
d, and hence GBj

lasts at most dc2
d rounds.

6. Obtaining a candidate scheme via the subgames

Equipped with Corollary 5.6 we can now describe a strategy for Maker to obtain a

candidate scheme (which due to Lemma 4.4 guarantees that Maker’s graph contains a
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VjVk

Figure 6. An example of an index k with vk ∈ Desc(vj ). (A thick line indicates that the two corresponding

vertex sets form a complete bipartite graph.)

copy of the target graph G). We first need some more notation. Recall that D denotes the

directed graph where V (D) = {v1, . . . , vn} and E(D) = {(vj , vi) : i ∈ Sj}. For every vertex vj
we let Nout(vj) denote the set of out-neighbours of vj and we let Desc(vj) denote the set

of descendants of vj . (Figure 6 depicts one element of Desc(vj).)

During the game Maker will determine for each j ∈ {1, . . . , n} a subset Bj ⊆ Vj with

|Bj | = cd whose vertices are all untouched at the time of its determination. For a vertex

vj where for every k ∈ Sj ∪ {j} the set Bk has already been determined, we say that vj is

completed if every x� ∈ Bj is a candidate with respect to {Bk : k ∈ Sj}. Note that, as soon

as v1, . . . , vn are all completed, (B1, . . . , Bn) form a candidate scheme, and thus Maker won.

Furthermore, we call a vertex vj ready if every vertex vk where k ∈ Sj is completed. In

other words, vj is ready if all vertices in Nout(vj) are completed. As part of his strategy, for

every 1 � j � n, Maker determines Bj as soon as vj becomes ready. In the following, for

every ready vertex vj we abbreviate by ‘GBj
’ the game GBj

with respect to {Bk : k ∈ Sj}
(note that since vj is ready the Bk are all determined).

Maker’s strategy will have the property that every completed vertex is also ready.

Sometimes we want to find a vertex which is ready but not completed.

Observation 6.1. Let H� be a position and let vj be a non-completed vertex. Then there is

at least one vertex vk ∈ {vj} ∪ Desc(vj) which is ready but not completed.

This can be seen as follows. Let k be the smallest index such that vk is a non-

completed vertex in {vj} ∪ Desc(vj). Every vl ∈ Nout(vk) has the property that l < k, hence

by minimality all vertices in Nout(vk) are completed, thus vk is ready.

Maker’s strategy. At the very beginning of the game, for every vj where Sj = ∅, Maker

chooses Bj to be an arbitrary subset of Vj where |Bj | = cd . (Thus, by definition, vj is

completed.) By slightly abusing notation, we refer to this as round zero. For every vertex

vi which became ready in round zero, Maker also determines an arbitrary Bi ⊆ Vi of size

cd. Maker will proceed in such a way that after each round r the following two invariants

are maintained.

(I1) For every vertex vj which is not yet ready, at least cd + 2 vertices of Vj are untouched.

(I2) Let vj be a vertex which is ready but not completed. Then there is at least one

unclaimed edge in the board of the game GBj
.

At the very beginning of the game (i.e., after round 0) the invariants (I1) and (I2)

clearly hold. Suppose that r − 1 rounds have been played. By induction we can assume

that (I1) and (I2) are fulfilled so far. If all vertices v1, . . . , vn are completed then Maker stops
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playing (because he won). Otherwise the game continues. (I2) together with Observation 6.1

guarantees that there are still unoccupied edges. Assume that in round r Breaker claims

the edge (x�, y�), and suppose that x� ∈ Vi, y
� ∈ Vj and i < j. We distinguish three cases.

Case 1: vj is not ready. Then Observation 6.1 guarantees that there is at least one vertex

vk ∈ Desc(vj) such that vk is ready but not completed. Maker claims an arbitrary free

edge in the board of GBk
. (The existence of such an edge is guaranteed by (I2).)

Case 2: vj is ready but not completed. Then Maker responds in the game GBj
.

Case 3: vj is completed. Then Maker selects some vertex vk which is ready but not

completed (such a vertex can be obtained by selecting a non-completed vertex and

applying Observation 6.1), and claims an arbitrary free edge in the board of GBk
.

In any case, if a vertex vk became ready in round r then Maker chooses a subset S ⊆ Vk

of cd + 2 vertices which were all untouched after round r − 1 (such an S exists due to

(I1)). Note that at most two vertices z�1 , z
�
2 ∈ S became touched in round r. Maker sets

Bk := S\{z�1 , z�2}.

Checking the invariants. We first show that (I1) is satisfied after round r. To this end we

fix a vertex vj which is non-ready after round r. Note that due to his strategy Maker has

not claimed any edge incident to a vertex in Vj so far. We observe that every time a vertex

y� ∈ Vj was touched by Breaker, Maker selected some (ready) vertex vk ∈ Desc(vj) and

occupied an edge in the board of GBk
(here it is crucial that a vertex y� ∈ Vj is only called

touched if some player claimed an edge in E(V1 ∪ · · · ∪ Vj−1, {y�})). We set f(y�) := vk (if

y� was touched several times then we just choose one vk with this property). Then the

number of touched vertices in Vj (after r rounds) is bounded by the number of pre-images

of Desc(vj) under f. We have

|f−1(Desc(vj))| = | ∪vk∈Desc(vj ) f
−1({vk})|.

By Observation 5.3, the board size of every GBk
is at most dc2

d, and thus

|f−1({vk})| � dc2
d.

Hence, by Observation 3.3 we obtain that

|f−1(Desc(vj))| � dc2
d|Desc(vj)| � dc2

dd
2d2+2,

which together with (3.3) and (3.4) implies that at least cd + 2 vertices in Vj remain

untouched. Hence (I1) is fulfilled after round r.

We now show (I2). Let vj be a vertex which is ready after round r, and assume that vj
became ready in round r′ � r. It can be checked that (due to Maker’s strategy and the

definition of readiness) directly after round r′ the conditions of Corollary 5.6 were satisfied

for vj . Note that Maker’s strategy has the property that from this point on, whenever

Breaker claims an edge of the board of GBj
, Maker will respond in GBj

. In this way

Maker can treat each such game separately, following the strategy of Corollary 5.6. This

guarantees that Maker will eventually win GBj
, implying that vj will become completed.

So, as soon as all edges of the board of GBj
are occupied, vj is completed.
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Proof of Maker’s win. We first note that due to (I1), (I2) and Observation 6.1, Maker can

always make a move according to his strategy unless all vertices v1, . . . , vn are completed

(thus he won). Since the board is finite, the latter will eventually occur. This concludes

the proof of Theorem 1.1.

7. Open problems

Degenerate graphs. The famous Burr–Erdős conjecture says that for every d there is

a constant c = c(d) such that every d-degenerate graph G with n vertices satisfies that

r(G) � cn. (Recall that r(G) denotes the ordinary Ramsey number, i.e., the smallest

number N such that, in any two-colouring of the edges of the complete graph KN , there is

guaranteed to be a monochromatic copy of G.) Chvátal, Rödl, Szemerédi, and Trotter [20]

settled it for the class of graphs of maximum degree d. In its full generality the conjecture,

however, is still open. The best known upper bound for the class of all d-degenerate

graphs H , due to Fox and Sudakov [23], is r(H) � 2c(d)
√

log nn.

For the game-theoretic Ramsey number r̂′(G) the situation is similar: Feldheim and

Krivelevich showed that Maker can build a candidate scheme for every ordering v1, . . . , vn
of the vertices where every vertex vi has at most d neighbours in {vi+1, . . . , vn}. Hence

Theorem 1.2 also holds for d-degenerate graphs.

For our proof of Theorem 1.1, which does not only economize the number of rounds

but also the number of edges of the base graph, the situation is different. It is crucial that,

in addition, every vertex vi has at most d neighbours in {v1, . . . , vi−1}: this allows us to

determine an ordering of the vertices where the sets Sj are all small. For d � 2 it remains

open whether Theorem 1.1 can be generalized to the class of d-degenerate graphs.

Open Problem 7.1. Is it true that for every d � 2 there is a constant c = c(d) such that

r̂′(G) � cn for every d-degenerate graph on n vertices?

For 1-degenerate graphs G (i.e., forests) r̂′(G) is at most linear in n, which follows from

a straightforward modification of the proof in [22]. For a direct proof, let H := G2 (recall

that G2 denotes the graph obtained by replacing every vi with a set Vi of size 2, and

connecting two vertices u ∈ Vi and v ∈ Vj with an edge if and only if (vi, vj) ∈ E(G)), and

consider the following strategy of Maker. Whenever Breaker claims an edge (x�, y�) where,

say, x� ∈ Vi, y
� ∈ Vj and i < j, then Maker occupies the remaining edge in E(Vi, {y�}).

This allows Maker to obtain a candidate scheme, which guarantees that by the end of the

game his graph contains a copy of G.

To our knowledge, Open Problem 7.1 remains unsolved even if we restrict to the case

d = 2.

Acknowledgement
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