527 research outputs found

    Optimization Of 5.7 Ghz Class E Power Amplifier For The Application Of Envelope Elimination And Restoration

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2007Rekabetin yoğun olduğu günümüzde tasarımcılar hafif, boyutları daha küçük ve düşük güçle çalışan yüksek performanslı ürün geliştirmenin yollarını aramaktadırlar. RF alıcı uygulamalarında güç kuvvetlendiricileri en fazla güç sarfiyatının olduğu bölümdür. Kablosuz iletişim sistemlerinde güç küvvetlendiricisi verimi maliyeti direkt olarak etkilemektedir. Teorik olarak %100 verim elde edilebilen E-sınıfı güç kuvvetlendiricileri transistorların açık/kapalı durum geçişlerinde güç sarfiyatını minimize edebilmektedir. Ayrıca çıkış gerilimi kaynak gerilimi ile doğrusal değişmektedir. Bu çalışmada E sınıfı güç kuvvetlendiricilerinin tasarım metodları ele alınmıştır. 5.7 GHz de çalışan birinde toplu devre elemanları, diğerinde transmisyon hattı elemanları kullanımış E sınıfı güç kuvvetlendiricileri tasarlanmıştır. Her iki devrede de %50 güç ekli verim (GEV) ve 500mW çıkış gücü elde edilmiştir. Sinyaldeki bozulmayı azaltmak için başvurulan doğrusallaştırma yöntemi Zarf Yoketme ve Tekrar Oluşturma metodudur. E sınıfı kuvvetlendiricinin Zarf Yoketme ve Tekrar Oluşturma yöntemi kullanılarak doğrusallaştırılmasıyla IMD bileşenlerinde 7.5 dB azalmış olup seviyesi gerçek işaretin 20dB altındadır.In today’s competitive, manufactures and product developers are seeking ways to build high performance devices that are lighter in weight, smaller in size and operating at lower power. In transceiver applications one module is responsible for a large portion of the power consumption - the power amplifier. The efficiency of the power amplifier has a direct impact on the cost of the wireless communication system. The class-E amplifier has a maximum theoretical efficiency of 100%. Class E power amplifiers have the ability to minimize power loss during on/off transitions of the transistor. Also, the output voltage varies linearly with the supply voltage. This thesis describes the design and the linearization methodology of the Class E amplifiers. Two class-E amplifiers operating at 5.7 GHz are presented. One of them is a lumped elements based circuit and the other is a transmission lines based circuit. Both circuit show good performance with 50% PAE and have 500mW output power. Envelope elimination and restoration is the linearization method chosen to achieve reduction of signal distortion. Linearization Class E PA using EER system provides an additional 7.5 dB reduction in intermodulation distortion products, achieving a minimum distortion level of 20 dB below the fundamental signals.Yüksek LisansM.Sc

    Highly efficient linear CMOS power amplifiers for wireless communications

    Get PDF
    The rapidly expanding wireless market requires low cost, high integration and high performance of wireless communication systems. CMOS technology provides benefits of cost effectiveness and higher levels of integration. However, the design of highly efficient linear CMOS power amplifier that meets the requirement of advanced communication standards is a challenging task because of the inherent difficulties in CMOS technology. The objective of this research is to realize PAs for wireless communication systems that overcoming the drawbacks of CMOS process, and to develop design approaches that satisfying the demands of the industry. In this dissertation, a cascode bias technique is proposed for improving linearity and reliability of the multi-stage cascode CMOS PA. In addition, to achieve load variation immunity characteristic and to enhance matching and stability, a fully-integrated balanced PA is implemented in a 0.18-m CMOS process. A triple-mode balanced PA using switched quadrature coupler is also proposed, and this work saved a large amount of quiescent current and further improved the efficiency in the back-off power. For the low losses and a high quality factor of passive output combining, a transformer-based quadrature coupler was implemented using integrated passive device (IPD) process. Various practical approaches for linear CMOS PA are suggested with the verified results, and they demonstrate the potential PA design approach for WCDMA applications using a standard CMOS technology.PhDCommittee Chair: Kenney, J. Stevenson; Committee Member: Jongman Kim; Committee Member: Kohl, Paul A.; Committee Member: Kornegay, Kevin T.; Committee Member: Lee, Chang-H

    CMOS Integrated Switched-Mode Transmitters for Wireless Communication

    Get PDF

    Doctor of Philosophy

    Get PDF
    dissertationHigh speed wireless communication systems (e.g., long-term evolution (LTE), Wi-Fi) operate with high bandwidth and large peak-to-average power ratios (PAPRs). This is largely due to the use of orthogonal frequency division multiplexing (OFDM) modulation that is prevalent to maximize the spectral efficiency of the communication system. The power amplifier (PA) in the transmitter is the dominant energy consumer in the radio, largely because of the PAPR of the input signal. To reduce the energy consumption of the PA an amplifier that simultaneously achieves high efficiency and high linearity. Furthermore, to lower the cost for high volume production, it is desirable to achieve a complete System-on-Chip (SoC) integration. Linear amplifiers (e.g., Class-A, -B, -AB) are inefficient when amplifying signals with large PAPR that is associated by high peak-to-average modulation techniques such as LTE. OFDM. Switching amplifiers (e.g., Class-D, -E, -F) are very promising due to their high efficiency when compared to their linear amplifier counterparts. Linearization techniques for switching amplifiers have been intensively investigated due to their limited sensitivity to the input amplitude of the signal. Deep-submicron CMOS technology is mostly utilized for logic circuitry, and the Moore's law scaling of CMOS optimizes transistors to operate as high-speed and low-loss switches rather than high gain transistors. Hence, it is advantageous to use transistors in switching mode as switching amplifies and use high-speed digital logic circuitry to implement linearization systems and circuitry. In this work, several linearization architectures are investigated and demonstrated. An envelope elimination and restoration (EER) transmitter that comprises a class-E power amplifier and a 10-bit digital-to-analog converter (DAC) controlled current modulator is investigated. A pipelined switched-capacitor DAC is designed to control an open-loop transconductor that operates as a current modulator, modulating the amplitude of the current supplied to a class-E PA. Such a topology allows for increased filtering of the quantization noise that is problematic in most digital PAs (DPA). The proposed quadrature and multiphase architecture can avoid the bandwidth expansion and delay mismatch associated with polar PAs. The multiphase switched capacitor power amplifier (SCPA) was proposed after the quadrature SCPA and it significantly improves the power efficiency

    Analog dithering techniques for highly linear and efficient transmitters

    Get PDF
    The current thesis is about investigation of new methods and techniques to be able to utilize the switched mode amplifiers, for linear and efficient applications. Switched mode amplifiers benefit from low overlap between the current and voltage wave forms in their output terminals, but they seriously suffer from nonlinearity. This makes it impossible to use them to amplify non-constant envelope message signals, where very high linearity is expected. In order to do that, dithering techniques are studied and a full linearity analysis approach is developed, by which the linearity performance of the dithered amplifier can be analyzed, based on the dithering level and frequency. The approach was based on orthogonalization of the equivalent nonlinearity and is capable of prediction of both co-channel and adjacent channel nonlinearity metrics, for a Gaussian complex or real input random signal. Behavioral switched mode amplifier models are studied and new models are developed, which can be utilized to predict the nonlinear performance of the dithered power amplifier, including the nonlinear capacitors effects. For HFD application, self-oscillating and asynchronous sigma delta techniques are currently used, as pulse with modulators (PWM), to encode a generic RF message signal, on the duty cycle of an output pulse train. The proposed models and analysis techniques were applied to this architecture in the first phase, and the method was validated with measurement on a prototype sample, realized in 65 nm TSMC CMOS technology. Afterwards, based on the same dithering phenomenon, a new linearization technique was proposed, which linearizes the switched mode class D amplifier, and at the same time can reduce the reactive power loss of the amplifier. This method is based on the dithering of the switched mode amplifier with frequencies lower than the band-pass message signal and is called low frequency dithering (LFD). To test this new technique, two test circuits were realized and the idea was applied to them. Both of the circuits were of the hard nonlinear type (class D) and are integrated CMOS and discrete LDMOS technologies respectively. The idea was successfully tested on both test circuits and all of the linearity metric predictions for a digitally modulated RF signal and a random signal were compared to the measurements. Moreover a search method to find the optimum dither frequency was proposed and validated. Finally, inspired by averaging interpretation of the dithering phenomenon, three new topologies were proposed, which are namely DLM, RF-ADC and area modulation power combining, which are all nonlinear systems linearized with dithering techniques. A new averaging method was developed and used for analysis of a Gilbert cell mixer topology, which resulted in a closed form relationship for the conversion gain, for long channel devices

    The digital predistorter goes multi-dimensional: DPD for concurrent multi-band envelope tracking and outphasing power amplifiers

    Get PDF
    Over at least the last two decades, digital predistortion (DPD) has become the most common and widespread solution to cope with the power amplifier's (PA's) inherent linearity-versus-efficiency tradeoff. When compared with other linearization techniques, such as Cartesian feedback or feedforward, DPD has proven able to adapt to the always-growing demands of technology: wider bandwidths, stringent spectrum masks, and reconfigurability. The principles of predistortion linearization (in its analog or digital forms) are straightforward, and the linearization subsystem precedes the PA (a nonlinear function in a digital signal processor in the case of DPD or nonlinear device in the case of analog predistortion and counteracts the nonlinear characteristic of the PA. Some excellent overviews on DPD can be found in [1]-[4]. Let us now look at the challenges that DPD linearization has faced and will continue to face in the near future with 5G new radio (5G-NR).This work has been supported in part by the Spanish Government and FEDER under MICINN projects TEC2017-83343-C4-1-R and TEC2017-83343-C4-2-R and by the Generalitat de Catalunya under Grant 2017 SGR 813

    Radio-Communications Architectures

    Get PDF
    Wireless communications, i.e. radio-communications, are widely used for our different daily needs. Examples are numerous and standard names like BLUETOOTH, WiFI, WiMAX, UMTS, GSM and, more recently, LTE are well-known [Baudoin et al. 2007]. General applications in the RFID or UWB contexts are the subject of many papers. This chapter presents radio-frequency (RF) communication systems architecture for mobile, wireless local area networks (WLAN) and connectivity terminals. An important aspect of today's applications is the data rate increase, especially in connectivity standards like WiFI and WiMAX, because the user demands high Quality of Service (QoS). To increase the data rate we tend to use wideband or multi-standard architecture. The concept of software radio includes a self-reconfigurable radio link and is described here on its RF aspects. The term multi-radio is preferred. This chapter focuses on the transmitter, yet some considerations about the receiver are given. An important aspect of the architecture is that a transceiver is built with respect to the radio-communications signals. We classify them in section 2 by differentiating Continuous Wave (CW) and Impulse Radio (IR) systems. Section 3 is the technical background one has to consider for actual applications. Section 4 summarizes state-of-the-art high data rate architectures and the latest research in multi-radio systems. In section 5, IR architectures for Ultra Wide Band (UWB) systems complete this overview; we will also underline the coexistence and compatibility challenges between CW and IR systems

    Design and implementation of an ETSI-SDR OFDM transmitter with power amplifier linearizer

    Get PDF
    Satellite radio has attained great popularity because of its wide range of geographical coverage and high signal quality as compared to the terrestrial broadcasts. Most Satellite Digital Radio (SDR) based systems favor multi-carrier transmission schemes, especially, orthogonal frequency division multiplexing (OFDM) transmission because of high data transfer rate and spectral efficiency. It is a challenging task to find a suitable platform that supports fast data rates and superior processing capabilities required for the development and deployment of the new SDR standards. Field programmable gate array (FPGA) devices have the potential to become suitable development platform for such standards. Another challenging factor in SDR systems is the distortion of variable envelope signals used in OFDM transmission by the nonlinear RF power amplifiers (PA) used in the base station transmitters. An attractive option is to use a linearizer that would compensate for the nonlinear effects of the PA. In this research, an OFDM transmitter, according to European Telecommunications Standard Institute (ETSI) SDR Technical Specifications 2007-2008, was designed and implemented on a low-cost Xilinx FPGA platform. A weakly nonlinear PA, operating in the L-band SDR frequency (1.450-1.490GHz), was used for signal transmission. An FPGA-based, low-cost, adaptive linearizer was designed and implemented based on the digital predistortion (DPD) reference design from Xilinx, to correct the distortion effects of the PA on the transmitted signal
    corecore