4,079 research outputs found

    Automatic programming methodologies for electronic hardware fault monitoring

    Get PDF
    This paper presents three variants of Genetic Programming (GP) approaches for intelligent online performance monitoring of electronic circuits and systems. Reliability modeling of electronic circuits can be best performed by the Stressor - susceptibility interaction model. A circuit or a system is considered to be failed once the stressor has exceeded the susceptibility limits. For on-line prediction, validated stressor vectors may be obtained by direct measurements or sensors, which after pre-processing and standardization are fed into the GP models. Empirical results are compared with artificial neural networks trained using backpropagation algorithm and classification and regression trees. The performance of the proposed method is evaluated by comparing the experiment results with the actual failure model values. The developed model reveals that GP could play an important role for future fault monitoring systems.This research was supported by the International Joint Research Grant of the IITA (Institute of Information Technology Assessment) foreign professor invitation program of the MIC (Ministry of Information and Communication), Korea

    Advances on CMOS image sensors

    Get PDF
    This paper offers an introduction to the technological advances of image sensors designed using complementary metal–oxide–semiconductor (CMOS) processes along the last decades. We review some of those technological advances and examine potential disruptive growth directions for CMOS image sensors and proposed ways to achieve them. Those advances include breakthroughs on image quality such as resolution, capture speed, light sensitivity and color detection and advances on the computational imaging. The current trend is to push the innovation efforts even further as the market requires higher resolution, higher speed, lower power consumption and, mainly, lower cost sensors. Although CMOS image sensors are currently used in several different applications from consumer to defense to medical diagnosis, product differentiation is becoming both a requirement and a difficult goal for any image sensor manufacturer. The unique properties of CMOS process allows the integration of several signal processing techniques and are driving the impressive advancement of the computational imaging. With this paper, we offer a very comprehensive review of methods, techniques, designs and fabrication of CMOS image sensors that have impacted or might will impact the images sensor applications and markets

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    New Aspects of Fault Diagnosis of Nonlinear Analog Circuits

    Get PDF
    The paper is focused on nonlinear analog circuits, with the special attention paid to circuits comprising bipolar and MOS transistors manufactured in micrometer and submicrometer technology. The problem of fault diagnosis of this class of circuits is discussed, including locating faulty elements and evaluating their parameters. The paper deals with multiple parametric fault diagnosis using the simulation after test approach as well as detection and location of single catastrophic faults, using the simulation before test approach. The discussed methods are based on diagnostic test, leading to a system of nonlinear algebraic type equations, which are not given in explicit analytical form. An important and new aspect of the fault diagnosis is finding multiple solutions of the test equation, i.e. several sets of the parameters values that meet the test. Another new problems in this area are global fault diagnosis of technological parameters in CMOS circuits fabricated in submicrometer technology and testing the circuits  having multiple DC operating points. To solve these problems several methods have been recently developed, which employ  different concepts and mathematical tools of nonlinear analysis. In this paper they are sketched and illustrated.  All the discussed methods are based on the homotopy (continuation) idea. It is shown that various versions of homotopy and combinations  of the homotopy with some other mathematical algorithms lead to very powerful tools for fault diagnosis of nonlinear analog circuits.  To trace the homotopy path which allows finding multiple solutions, the simplicial method, the restart method, the theory of linear complementarity problem and Lemke's algorithm are employed. For illustration four numerical examples are given

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Power supply ramping for quasi-static testing of PLLs

    Get PDF
    An innovative approach for testing PLLs in open loop-mode is presented. The operational method consists of ramping the PLL's power supply by means of a periodic sawtooth signal. The reference and feedback inputs of the PLL in open-loop mode are connected to the clock reference signal or to ground. Then, the corresponding quiescent current, clock output, and oscillator control voltage signatures are monitored and sampled at specific times. When the power supply is swept, all transistors are forced into various regions of operation causing the sensitivity of the faults to the specific stimulus to be magnified. The developed method of structural testing for PLLs yields high fault coverage results making it a potential and attractive technique for production wafer testing

    Field Programmable Gate Arrays Usage in Industrial Automation Systems

    Get PDF
    Tato disertační práce se zabývá využitím programovatelných hradlových polí (FPGA) v diagnostice měničů, využívajících spínaných IGBT tranzistorů. Je zaměřena na budiče těchto výkonových tranzistorů a jejich struktury. Přechodné jevy veličin, jako jsou IG, VGE, VCE během procesu přepínání (zapnutí, vypnutí), mohou poukazovat na degradaci IGBT. Pro měření a monitorování těchto veličin byla navržena nová architektura budiče IGBT. Rychlé měření a monitorování během přepínacího děje vyžaduje vysokou vzorkovací frekvenci. Proto jsou navrhovány paralelní vysokorychlostní AD převodníky (> 50 MSPS). Práce je zaměřena převážně na návrh zařízení s FPGA včetně hardware a software. Byla navržena nová deska plošných spojů s FPGA, která plní požadované funkce, jako je řízení IGBT pomocí vícenásobných paralelních koncových stupňů, monitorování a diagnostiku, a propojení s řídicí jednotkou měniče.This doctoral thesis deals with the usage of Field Programmable Gate Arrays (FPGAs) in a diagnosis of power inverters which use the IGBTs transistors as switching devices. It is focused on the IGBT gate drives and their structures. As long as the transient phenomena and other quantities such as IG, VGE, VCE shows the IGBT degradation during the switching process (turn-on, turn-off), a new IGBT gate driver architecture is proposed for measuring and monitoring these quantities. Quick measurements and monitoring during the IGBT switching process require high sampling frequencies. Therefore, high speed parallel ADC converters (> 50MSPS) are proposed. The thesis is focused on the FPGA design (hardware, software). A new FPGA board is designed for desired functions implementation such as IGBT driving using multiple stages, IGBT monitoring and diagnosis, and interfacing to inverter controller.

    Wearable electroencephalography for long-term monitoring and diagnostic purposes

    Get PDF
    Truly Wearable EEG (WEEG) can be considered as the future of ambulatory EEG units, which are the current standard for long-term EEG monitoring. Replacing these short lifetime, bulky units with long-lasting, miniature and wearable devices that can be easily worn by patients will result in more EEG data being collected for extended monitoring periods. This thesis presents three new fabricated systems, in the form of Application Specific Integrated Circuits (ASICs), to aid the diagnosis of epilepsy and sleep disorders by detecting specific clinically important EEG events on the sensor node, while discarding background activity. The power consumption of the WEEG monitoring device incorporating these systems can be reduced since the transmitter, which is the dominating element in terms of power consumption, will only become active based on the output of these systems. Candidate interictal activity is identified by the developed analog-based interictal spike selection system-on-chip (SoC), using an approximation of the Continuous Wavelet Transform (CWT), as a bandpass filter, and thresholding. The spike selection SoC is fabricated in a 0.35 μm CMOS process and consumes 950 nW. Experimental results reveal that the SoC is able to identify 87% of interictal spikes correctly while only transmitting 45% of the data. Sections of EEG data containing likely ictal activity are detected by an analog seizure selection SoC using the low complexity line length feature. This SoC is fabricated in a 0.18 μm CMOS technology and consumes 1.14 μW. Based on experimental results, the fabricated SoC is able to correctly detect 83% of seizure episodes while transmitting 52% of the overall EEG data. A single-channel analog-based sleep spindle detection SoC is developed to aid the diagnosis of sleep disorders by detecting sleep spindles, which are characteristic events of sleep. The system identifies spindle events by monitoring abrupt changes in the input EEG. An approximation of the median frequency calculation, incorporated as part of the system, allows for non-spindle activity incorrectly identified by the system as sleep spindles to be discarded. The sleep spindle detection SoC is fabricated in a 0.18 μm CMOS technology, consuming only 515 nW. The SoC achieves a sensitivity and specificity of 71.5% and 98% respectively.Open Acces

    Multiprocessing techniques for unmanned multifunctional satellites Final report,

    Get PDF
    Simulation of on-board multiprocessor for long lived unmanned space satellite contro
    corecore