718 research outputs found

    Retinal Vascular Network Topology Reconstruction and Artery/Vein Classification via Dominant Set Clustering

    Get PDF
    The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in terms of diagnosis and treatment of eye disease. However, it is challenging due to their projective ambiguity and subtle changes in appearance, contrast and geometry in the imaging process. In this paper, we propose a novel method that is capable of making the artery/vein (A/V) distinction in retinal color fundus images based on vascular network topological properties. To this end, we adapt the concept of dominant set clustering and formalize the retinal blood vessel topology estimation and the A/V classification as a pairwise clustering problem. The graph is constructed through image segmentation, skeletonization and identification of significant nodes. The edge weight is defined as the inverse Euclidean distance between its two end points in the feature space of intensity, orientation, curvature, diameter, and entropy. The reconstructed vascular network is classified into arteries and veins based on their intensity and morphology. The proposed approach has been applied to five public databases, INSPIRE, IOSTAR, VICAVR, DRIVE and WIDE, and achieved high accuracies of 95.1%, 94.2%, 93.8%, 91.1%, and 91.0%, respectively. Furthermore, we have made manual annotations of the blood vessel topologies for INSPIRE, IOSTAR, VICAVR, and DRIVE datasets, and these annotations are released for public access so as to facilitate researchers in the community

    Advanced Artery / Vein Classification System in Retinal Images for Diabetic Retinopathy

    Get PDF
    Diabetic retinopathy is that the single largest explanation for sight loss and visual impairment in eighteen to sixty five year olds. Screening programs for the calculable 1 to 6 % of the diabetic population are incontestable to be value and sight saving, but unfortunately there are inadequate screening resources. An automatic screening system might facilitate to solve this resource short fall.The retinal vasculature consists of the arteries and veins with their tributaries that are visible at intervals in the retinal images.This paper proposes a graphbased artery vein classification system inretinal images for diabetic retinopathybased on the structural informationextracted from the retinalvasculature. The method at first extracts agraph from the vascular tree and then makes a decision on the typeof each intersection point (graph node).Based on this node types one of the twolabels are assigned to each vessel segment.Finally, the A/V classes are assigned tothe sub graph labels by extracting a set ofintensity features and using artificialneural network. DOI: 10.17762/ijritcc2321-8169.15017

    Computational assessment of the retinal vascular tortuosity integrating domain-related information

    Get PDF
    [Abstract] The retinal vascular tortuosity presents a valuable potential as a clinical biomarker of many relevant vascular and systemic diseases. Commonly, the existent approaches face the tortuosity quantification by means of fully mathematical representations of the vessel segments. However, the specialists, based on their diagnostic experience, commonly analyze additional domain-related information that is not represented in these mathematical metrics of reference. In this work, we propose a novel computational tortuosity metric that outperforms the mathematical metrics of reference also incorporating anatomical properties of the fundus image such as the distinction between arteries and veins, the distance to the optic disc, the distance to the fovea, and the vessel caliber. The evaluation of its prognostic performance shows that the integration of the anatomical factors provides an accurate tortuosity assessment that is more adjusted to the specialists’ perception.Instituto de Salud Carlos II; DTS18/00136Ministerio de Ciencia, Innovación y Universidades; DPI2015-69948-RMinisterio de Ciencia, Innovación y Universidades; RTI2018-095894-B-I00Xunta de Galicia; ED431G/01Xunta de Galicia; ED431C 2016-04

    Digital ocular fundus imaging: a review

    Get PDF
    Ocular fundus imaging plays a key role in monitoring the health status of the human eye. Currently, a large number of imaging modalities allow the assessment and/or quantification of ocular changes from a healthy status. This review focuses on the main digital fundus imaging modality, color fundus photography, with a brief overview of complementary techniques, such as fluorescein angiography. While focusing on two-dimensional color fundus photography, the authors address the evolution from nondigital to digital imaging and its impact on diagnosis. They also compare several studies performed along the transitional path of this technology. Retinal image processing and analysis, automated disease detection and identification of the stage of diabetic retinopathy (DR) are addressed as well. The authors emphasize the problems of image segmentation, focusing on the major landmark structures of the ocular fundus: the vascular network, optic disk and the fovea. Several proposed approaches for the automatic detection of signs of disease onset and progression, such as microaneurysms, are surveyed. A thorough comparison is conducted among different studies with regard to the number of eyes/subjects, imaging modality, fundus camera used, field of view and image resolution to identify the large variation in characteristics from one study to another. Similarly, the main features of the proposed classifications and algorithms for the automatic detection of DR are compared, thereby addressing computer-aided diagnosis and computer-aided detection for use in screening programs.Fundação para a Ciência e TecnologiaFEDErPrograma COMPET

    Towards Complete Ocular Disease Diagnosis in Color Fundus Image

    Get PDF
    Non-invasive assessment of retinal fundus image is well suited for early detection of ocular disease and is facilitated more by advancements in computed vision and machine learning. Most of the Deep learning based diagnosis system gives just a diagnosis(absence or presence) of a certain number of diseases without hinting the underlying pathological abnormalities. We attempt to extract such pathological markers, as an ophthalmologist would do, in this thesis and pave a way for explainable diagnosis/assistance task. Such abnormalities can be present in various regions of a fundus image including vasculature, Optic Nerve Disc/Cup, or even in non-vascular region. This thesis consist of series of novel techniques starting from robust retinal vessel segmentation, complete vascular topology extraction, and better ArteryVein classification. Finally, we compute two of the most important vascular anomalies-arteryvein ratio and vessel tortuosity. While most of the research focuses on vessel segmentation, and artery-vein classification, we have successfully advanced this line of research one step further. We believe it can be a very valuable framework for future researcher working on automated retinal disease diagnosis

    An automatic graph-based method for retinal blood vessel classification

    Get PDF
    In this paper, we present an automatic approach to classify retinal vessels intoartery and vein classes by analyzing the extracted graph from the vasculature treeand deciding on the type of intersection points (bifurcation, crossing or meetingpoints). The results obtained by the proposed method were compared withmanual classification on 40 images of the INSPIRE-AVR dataset

    Retinal vascular segmentation using superpixel-based line operator and its application to vascular topology estimation

    Get PDF
    Purpose: Automatic methods of analyzing of retinal vascular networks, such as retinal blood vessel detection, vascular network topology estimation, and arteries / veins classi cation are of great assistance to the ophthalmologist in terms of diagnosis and treatment of a wide spectrum of diseases. Methods: We propose a new framework for precisely segmenting retinal vasculatures, constructing retinal vascular network topology, and separating the arteries and veins. A non-local total variation inspired Retinex model is employed to remove the image intensity inhomogeneities and relatively poor contrast. For better generalizability and segmentation performance, a superpixel based line operator is proposed as to distinguish between lines and the edges, thus allowing more tolerance in the position of the respective contours. The concept of dominant sets clustering is adopted to estimate retinal vessel topology and classify the vessel network into arteries and veins. Results: The proposed segmentation method yields competitive results on three pub- lic datasets (STARE, DRIVE, and IOSTAR), and it has superior performance when com- pared with unsupervised segmentation methods, with accuracy of 0.954, 0.957, and 0.964, respectively. The topology estimation approach has been applied to ve public databases 1 (DRIVE,STARE, INSPIRE, IOSTAR, and VICAVR) and achieved high accuracy of 0.830, 0.910, 0.915, 0.928, and 0.889, respectively. The accuracies of arteries / veins classi cation based on the estimated vascular topology on three public databases (INSPIRE, DRIVE and VICAVR) are 0.90.9, 0.910, and 0.907, respectively. Conclusions: The experimental results show that the proposed framework has e ectively addressed crossover problem, a bottleneck issue in segmentation and vascular topology recon- struction. The vascular topology information signi cantly improves the accuracy on arteries / veins classi cation
    corecore