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Abstract Automatically classifying retinal blood vessels appearing in fundus
camera imaging into arterioles and venules can be problematic due to vari-
ations between people as well as in image quality, contrast and brightness.
Using the most dominant features for retinal vessel types in each image rather
than predefining the set of characteristic features prior to classification may
achieve better performance. In this paper, we present a novel approach to clas-
sifying retinal vessels extracted from fundus camera images which combines
an Orthogonal Locality Preserving Projections for feature extraction and a
Gaussian Mixture Model with Expectation-Maximization unsupervised clas-
sifier. The classification rate with 47 features (the largest dimension tested)
using OLPP on our own ORCADES dataset and the publicly available DRIVE
dataset was 90.56% and 86.7% respectively.
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1 Introduction

Quantitative structural analysis of the retinal blood vessels as they appear in
fundus camera imaging provides important indicators for diseases which affect
the body and brain such as diabetes, hypertension and Alzheimers disease and
which manifest in the retina [1–3]. The quantifiable vascular changes that ap-
pear can be different for arterioles and venules. For example, narrowed retinal
arterioles are associated with long-term risk of hypertension [2], while larger
retinal venular calibre has been associated with Alzheimer’s disease [3]. Thus,
an essential part of a computerised system for retinal vascular characterisation
is an automatic technique for discerning arterioles from venules.

To date, several techniques have been developed and introduced to iden-
tify vessel type using various discriminative features with different supervised
[4–13] and unsupervised algorithm [14–16]. Colour, location, patterning and
structure are commonly used to discriminate between vessel type [8]. Classi-
fication performance not only varied with the choice of features used and the
classification algorithm employed but also on the overall classification frame-
work.

The unsupervised classification approach of [14,15] has a drawback, that
it imposes a condition to have at least one vein and one artery per quadrant.
Moreover, basic k-means clustering approach is sensitive to initialisation and
therefore, can easily get stuck at local minima. The authors in [4–13,17] used a
supervised approach which requires large volumes of clinical annotations (i.e.
manual labelling of vessels into venules and arterioles) to generate the requisite
training data and this may not be easy to source, especially for large dataset.

The authors in [4,5,10] used different feature selection methods such as
sequential forward floating selection (SFFS), a wrapper based method to find
the discriminative features for differentiating between arterioles and venules.
SFFS starts from the empty set, and the next best single feature is added. After
each forward step, SFFS performs backward steps to exclude any feature that
becomes non-useful. Using this method near optimality is achieved, but at
the expense of computational time especially in the case of data of greater
complexity and dimensionality [18]. For large dataset, it may not be a very
good approach.

The authors in [13] provided the extensive study using WEKA (Waikato
Environment for Knowledge Analysis) software [19] for retinal vessel classifi-
cation using nine different feature extraction and thirteen machine learning
algorithms (both single and ensemble classifiers). They found that the infor-
mation extracted by Local Binary Patterns (LBP) and Multiscale Rotation
Invariant LBP (MS-RI LBP) from the arteries and veins vessels are most dis-
criminative features. The performance of the proposed method using the LBP
and MS-RI LBP features was tested with 13 different classifiers. Out of the
13 tested classifiers, only 6 methods gave the result greater than 85%. This
means that to obtain high classification rate, not only the features but also
the classifier and overall framework is equally important.
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Furthermore, in [17], the authors proposed a semi-automatic system for
retinal vasculature classification into the artery and vein. They extracted
colour and structural features from segmented vessels of DRIVE dataset and
then utilised PCA to reduce the dimension of the feature space. Finally, the
neural network classifier was used to classify the vessels. They divided the
total 69 extracted features into 4 set based on the eigenvalues. They showed
that different feature set yielded different accuracy and highest accuracy was
obtained with features corresponding to highest eigenvalues.

Similarly, Hausdorff distance measure has been used extensively in com-
puter vision applications for feature selection as well as to determine the sim-
ilarity of patterns [20–23]. Moreover, recently the results obtained by authors
in [24] with correlative classifiers approach based on particle filter seems to be
very promising. As mentioned above, representative features as well as robust
classifier play an important role for an accurate retinal classification system.
For a comprehensive study of several proposed methods for classification of
arteries-veins classification in fundus images the readers are referred to [25].
Moreover, a recent exhaustive review study related to latest progress in im-
age processing techniques in feature-based retinal image analysis can be found
here [26]

2 Contribution and Organisation of the Paper

Automated vessel classification relies on representative features extracted from
the images. Predefining the feature set across all images is problematic due to
variations in colour as well as the intensity within and between the images [5,
6]. Additionally, the image resolution as well as the image quality may not be
constant throughout an image set due to different applications, operators and
camera systems. Hence, extracting the most dominant features in each image
may lead to a better classification performance.

Therefore, in this paper, we propose a classification framework for arteriole-
venule (a-v) classification based on a discriminative set of features that are
extracted using Orthogonal Locality Preserving Projections (OLPP) [27], and
vessel classification is subsequently performed using Gaussian Mixture Model
with Expectation-Maximization (GMM-EM) unsupervised classifier (without
the need of training data). We also studied the effect of feature set dimension
on the performance of the proposed hybrid approach (OLPP + GMM-EM).

The paper is structured as follows: Section 3 provides the datasets that were
used to test the proposed vessel classification approach. Section 4 describes the
methodology and the main steps involved in the retinal vessel classification.
Section 5 presents the results obtained, which are then discussed in Section 6
and followed by conclusions in Section 7.
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3 Materials

The proposed vessel classification method was evaluated on our own dataset:
ORCADES (Orkney Complex Disease Study) and a publicly available database,
the DRIVE (Digital Retinal Image for Vessel Extraction),

3.1 Datasets

1. ORCADES: Seventy colour fundus camera images were selected at ran-
dom from the Orkney Complex Disease Study (ORCADES) large image
database containing ≈ 2000 images. The ORCADES study is a family-
based, cross sectional and genetic epidemiology study based on an isolated
population in the north of Scotland that aims to discover the genes and
their variants which influence the risk of common, complex diseases[28].
Each image in the database had the resolution of 2048 × 3072 pixels and
was captured with Canon CR-DGi non-mydriatic retinal camera with 45 ◦

field of view (FoV). From the 70 images, 802 vessels from zone B (an an-
nulus 0.5 to 1 OD diameter from the OD boundary) were extracted to test
the vessel classification framework.

2. DRIVE: The DRIVE dataset contains 40 colour fundus camera images
[29], each having the resolution of 768 × 584 pixels. The set of 40 images
has been divided into a training and a test set, both containing 20 images
each. The retinal photographs were obtained from a diabetic retinopathy
screening program in the Netherlands and were acquired using a Cannon
CR5 non-mydriatic 3 CCD camera with a 45 ◦ field of view (FoV). In this
study, 171 vessels extracted from zone B of 20 test images are used to test
the performance of the proposed method.

3.2 Manual labelling

The manual labelling of the vessels was undertaken by two trained human ob-
servers (authors; DR and TM). Both observers were involved in retinal imaging
and analysis for clinical research. Observer 1 (DR) classified all vessels into
arterioles and venules, while 1.5% of 802 vessels of ORCADES images (i.e.
12 vessels) were not classified (labelled as unclassified) by observer 2 (TM)
due to an uncertainty in deciding the label. Out of all the vessels which were
classified (as arterioles or venules) by both observers (i.e. 790), it was observed
that the discrepancy in labelling vessels by two observers were found for only
two vessels i.e. the labels given by both observers were same for 788 vessels.
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3.3 Performance measures

Following performance measures [30] were computed for observer 1 (separately
for arterioles and venules) w.r.t. the labels of observer 2,

Sensitivity =
TPa/v

(TPa/v + FNa/v)
(1)

Specificity =
TNa/v

(TNa/v + FPa/v)
(2)

Positive Predicted Value =
TPa/v

(TPa/v + FPa/v)
(3)

Negative Predicted Value =
TNa/v

(TNa/v + FNa/v)
(4)

Positive Likelihood Ratio =
Sensitivity

(1− specificity)
(5)

Negative Likelihood Ratio =
(1− Sensitivity)

specificity
(6)

Classification Accuracy =
(TPa/v + TNa/v)

(TPa/v + TNa/v + FPa/v + FNa/v)
(7)

Classification Error Rate =
(FPa/v + FNa/v)

(TPa/v + TNa/v + FPa/v + FNa/v)
(8)

where TP is True Positive, FP is False Positive, TN is True Negative and
FN is False Negative. These are further defined as [15]:

- True Positiveartery(vein) (TPa/v): When both the observer 1 and the ob-
server 2 identified a vessel as arteriole (or venule).

- False Positiveartery(vein) (FPa/v): When the observer 1 identified a ves-
sel as arteriole (or venule) and the observer 2 identified it as venule (or
arteriole).

- True Negativeartery(vein) (TNa/v): When the observer 2 identified a ves-
sel as venule(arteriole) and the observer 1 identified it as not arteriole
(venule)(i.e. either as venule (arteriole) or not labeled).

- False Negativeartery(vein) (FNa/v)): When the observer 1 did not identify a
vessel as arteriole (or venule), i.e. either as venule(arteriole) or not labeled,
and the observer 2 identified it as arteriole (venule).

The performance measures are given in Table 1. This demonstrates the
high level of agreement between the two observers. Thus, the results in the
subsequent section are given with respect to (w.r.t.) observer 1.
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Table 1: Table showing the performance of observer 1 w.r.t. observer 2 who
both manually labelled vessels as arterioles or venules on the ORCADES
dataset (70 images; 802 vessels).

Performance Measure arterioles venules

Sensitivity 0.9976 0.9973
Specificity 0.9973 0.9976

Positive Predicted value 0.9976 0.9973
Negative Predicted value 0.9973 0.9976
Positive Likelihood Ratio 367.13 420.85
Negative Likelihood Ratio 0.0024 0.0027
Classification Accuracy 0.9975 0.9975
Classification Error rate 0.0025 0.0025

4 Methodology

4.1 Pre-processing

First a fundus camera image was pre-processed to compensate for variation in
brightness and contrast caused by non-uniform background illumination. This
was enacted upon multiple channels utilized for obtaining features for vessel
classification - Red, Green, and Blue from RGB image space; Hue and Value
from HSV image space; Lightness from the Lab image space; and a gray scale
image, Gy, converted from RGB (whereGy = 0.299×R+0.587×G+0.114×B).
The pre-processing used a correction technique based on median filtering [31].

To do this, first, background intensity, BI = BI(i, j), in each channel was
estimated by median filtering with a mask of size 100×100. The mask size was
chosen in such a way that it is several times bigger than the expected maximum
diameter of the retinal vessels. Then the correction coefficients, CC(i, j), were
calculated by dividing the maximum gray-level value, max(BI), in the median
filtered image by the intensity level value of each pixel in the filtered image,

CC(i, j) =

{
max(BI)
BI(i,j) for BI(i, j) 6= 0

0 for BI(i, j) = 0
(9)

where (i, j) represent image coordinates. The corrected output image,OI(i, j),
is then obtained by multiplying the input image, IM , with its correction co-
efficients,

OI(i, j) = IM(i, j)× CC(i, j)− c (10)

where c = max(BI)−128 is an image dependent constant and is subtracted
from whole image. By subtracting the constant c, the mean value is moved to
the middle of the gray-value range between 0 to 255.

In addition, the hue channel was pre-processed, prior to background cor-
rection, to improve the contrast of vessels against background by mapping the
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original pixel intensity values between 1% of bottom and 20% of top pixel in-
tensity values to values between 0 and 1 respectively. Fig. 1 shows an example
of the Hue channel of a fundus image before and after the contrast adjustment.

(a) (b)

Fig. 1: H channel (a) before and, (b) after contrast adjustment.

4.2 Detecting centreline pixels

To extract vessel centreline pixels, the green channel of a fundus camera image
was divided into four quadrants by locating the OD and its approximate di-
ameter with software described in [32] (see Fig. 2(a), solid black lines passing
through OD centre). In zone B (i.e. the region between the two concentric cir-
cles in Fig. 2(a)) each vessel was tracked between two manually marked start
and end points, see Fig. 2(b) [30]. The cross-sectional intensity profiles were
found at every 5th pixel.

To do this, first, the start (S ) and end (E ), were marked manually on the
vessels between which the vessel needs to be tracked (see Fig. 2(b)). Then the
vector defining the direction from S to E, VS−E , was computed as VS−E =
[Vxx Vyy], where Vxx = decos(θ) and Vyy = desin(θ), with de as the Euclidean
distance between S and E and θ = tan−1(dyy/dxx), where dxx and dyy are
differences between x and y coordinates of points E and S. Then coordinates
of the new point, Pnew, 5 pixels ahead of S was calculated as,

Pnew = S + 5(VS−E). (11)

At Pnew, the intensity profile across the vessel axis (and which resembles an
inverted Gaussian; see Fig. 2(b) which shows an example) was obtained. Point
C, marked red on the intensity profile (see Fig. 2(b)), give the approximate
centre of the vessel and was found by locating and averaging 2 local minima
on the profile. Then, the next Pnew was calculated (using eq. 11) five pixels
ahead of point C with vector direction VC−E . This procedure continues until
end point E was reached, i.e. cross-sectional intensity profiles (black straight
lines in Fig. 2(b)) were found at every 5th pixel between S and E. Then
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the Canny edge detector [33] was applied to each of these intensity profiles,
to locate vessel edges (marked as black circles in Fig. 2(b)) and finally the
centreline pixels (marked as green in Fig.2(c)) were located as the midpoint
of a pair of edge points.

In this way, the centreline pixels were extracted from vessels in each quad-
rant (i.e. from quadrant I, II, III and IV; see Fig. 2(a)). The centreline pixels
were extracted from vessels in each quadrant to provide a set of v vessel seg-
ments Sq = V1q, V2q,...,Vvq, where Viq is ith vessel in qth quadrant, Sq is set of
vessels in qth quadrant and each vessel is represented by a set of h centreline
pixels: Viq = p1q, p2q,...,phq. Moreover, the distance between the edge points
were stored as an approximate vessel width to evaluate features inside the
vessels.

(a)

(b) (c)

Fig. 2: (a) Figure shows normal four quadrants i.e. quadrant I, II, III and IV,
and when they were rotated by 45 ◦ (marked as dashed line in the image), (b)
Profiles between start and end points, (c) Centreline pixel extraction on each
of the profile using canny edge detector.

4.3 Extracting features

Once the centreline pixels were found in each quadrant, features were extracted
by sampling inside the vessels in each of the pre-processed channels. The details
of this are as follows:

1. ROI-based features were extracted using a circular neighborhood around
each centreline pixel, with diameter 60% of the mean vessel diameter, to
calculate the intensity level inside the vessel.
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2. Profile-based features were extracted from the background corrected R
and G channels as these channels show good contrast discrimination be-
tween arterioles and venules [34,35,14],) from the RGB colour space after
an additional contrast adjustment (by mapping the intensity values in an
input image to new values such that 1% of data is saturated at low and
high intensities value of input image) from a profile line across the vessel
of length 60% of the mean vessel diameter.

3. Contrast of a vessel w.r.t. background from the corrected R and G chan-
nels was extracted after additional contrast adjustment in a similar manner
as explained above for profile based feature. For each centreline pixel, a pro-
file of length 2.5 times the width of the vessel was drawn. The profile length
was chosen bigger than the twice the approximate width of the vessel to
calculate the background intensity at each end of the profile. At each end
of the profile, mean intensity Ib1 and Ib2, from two circular ROI’s (whose
diameters were 60% of the mean vessel diameter, and a centre as the end
point of profile) were obtained as shown in Fig. 3.
The average of these two intensities, Ib, was calculated and this represented
the background intensity. The mean intensity I from a circular neighbour-
hood around the centreline pixel (with diameter 60% of the mean vessel
diameter) was extracted as the vessel intensity. The contrast feature, C,
was then calculated as,

C =
I − Ib
Ib

(12)

For ROI and profile-based features, mean (M), standard deviation (Std),
variance (Var), minimum (Min) and maximum (Max) of intensity values from
each of the channels were extracted. This along with contrast features created
a set of 47 features for each image. See Table 2 which summarizes the feature
set.

In order to check the consistency, robustness and influence of the dimension
or size of the feature set on vessel classification, feature subsets of different
dimensions were formed from the set of 47 features. See Table 3 for a summary.
In the context of this paper, a feature dimension of ≤ 15 was considered
small whereas > 15 was considered as high. The feature subsets with smaller
dimensions were formed using ROI based colour features, which are commonly
reported as discriminant features to classify retinal vessel type [9,5,7] - i.e.
those extracted from R, G, B, H and V. Whereas, the feature sets with larger
dimensions were formed with ROI-based colour, profile-based and contrast
based features from R, G, B, H, V, L and Gy.

In RGB colour fundus images, the green and red channels usually show
good contrast discrimination between arterioles and venules, and therefore the
feature set with dimension 9 was formed by combining the features extracted
from the red and green channels with those extracted from B, H and V re-
spectively. These feature sets are referred to as 9B, 9H and 9V henceforth,
respectively (see Table 3). OLPP was then used to extract the most dominant
features for an image from these feature subsets.
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Table 2: Description of Total Number (No.) of features extracted from each
image

Features No. of Channels No. of Total No.

features channels features

ROI-based: 5 G , R, B, 7 35

M, Std, Var, Min, Max H, V, L, Gy

Profile-based: 5 G, R 2 10

M, Std, Var, Min, Max

Contrast 1 G, R 2 2

Table 3: Different Feature sets consisting different colour features extracted
from R,G,B,H,V, L channels and grey image.

Total Features Features Set

9

ROI based: GRB ROI based features: M, Std., Var. from G, R, and B channel

(9B)

ROI based: GRH ROI based features: M, Std., Var. from G, R, and H channel

(9H)

ROI based: GRV ROI based features: M, Std., Var. from G, R, and V channel

(9V)

12 ROI based: GRBH ROI based features: M, Std., Var. from G, R, B and H channel

15 ROI based: GRBHV ROI based features: M, Std., Var. from G, R, B, H and V channel

32
ROI based: GRBHVL ROI based features: M, Std, Var, Min, Max from G, R, B, H, ,V and L channel +

Contrast: G and R channel Contrast from G and R channel

37
ROI based: GRBHVLGy ROI based features: M, Std, Var, Min, Max from G, R, B, H, V, L channel and Gy image +

Contrast: G and R channel Contrast from G and R channel

42

ROI based: GRBHVL ROI based features: M, Std, Var, Min, Max from G, R, B, H ,V and L channel +

Profile based: G and R channel Profile based features: M, Std, Var, Min, Max from G and R +

Contrast: G and R channel Contrast from G and R channel

47

ROI based: GRBHVLGy ROI based features: M, Std, Var, Min, Max from G, R, B, H ,V and L channel and Gy image +

Profile based: G and R channel Profile based features: M, Std, Var, Min, Max from G and R +

Contrast: G and R channel Contrast from G and R channel

Fig. 3: Extracting contrast features w.r.t. retinal background. I is the mean
intensity extracted from circular ROI inside the vessels while Ib1 and Ib2 are
the mean intensity extracted from circular ROI from the vessel background on
either side of the vessel.



Title Suppressed Due to Excessive Length 11

4.4 Feature extraction using Orthogonal Locality Preserving Projections
(OLPP)

When high dimensional data are available, then it is often advisable to find
the most informative features before attempting classification. We propose to
use Orthogonal Locality Preserving Projections (OLPP) algorithm [27], the
to extract the discriminant features to solve the retinal vessel classification
problem.

OLPP finds an orthogonal mapping of a given feature set in order to pre-
serve the local structure. OLPP is an extension of Locality Preserving Projec-
tions (LPP) [27,36]. LPP preserves the local structure and is nonorthogonal.
On the other hand, OLPP produces orthogonal basis functions and there-
fore has more locality preserving power than LPP. Also, OLPP has a neigh-
bourhood preserving property and can, therefore, better capture the intrinsic
manifold structure to a greater extent [27]. The locality preserving ability is
directly related to the discriminating ability [27,37]. In contrast, conventional
algorithms such as PCA only model the features in Euclidean space and cannot
detect the intrinsic low-dimensionality features. The algorithmic procedure of
OLPP is as follows [27] [37],

I. PCA Projection: Let f1, f2, ....., fn ⊂ Rm be a set of features such that
F = [f1, f2, ....., fn] forms the feature matrix. In many classification prob-
lems, the dimension of the features m is often much larger than the num-
ber of features n. In order to overcome this problem, PCA projects the
features set into a subspace by removing the eigenvectors corresponding to
zero eigenvalue. Thus the extracted features are statistically uncorrelated.
The transformation matrix of PCA is denoted by WPCA.

II. Adjacency Graph construction: Let U be a J nearest neighbour graph
with n nodes. The i -th node corresponds to the feature fi. If fi and fj
are close, i.e. fi is among p nearest neighbours of fj or fj is among p
nearest neighbours of fi then an edge is put between nodes i and j. In an
unsupervised mode, edges are located between a sample and its J nearest
neighbours, where J is a small integer. In order to measure the closeness
between two arbitrary data nodes in a J nearest neighbour graph Euclidean
distance was used. In an unsupervised mode, the J closest neighbours of one
node can be obtained by analysing the constructed the Euclidean distance
matrix. The constructed nearest neighbours graph approximates the local
manifold structure.

III. Choosing the Weights: If the nodes i and j are linked then assign weight
as,

Wij = e−
||fi−fj ||

2

2t (13)

where t is a constant. Otherwise, Wij = 0. The weight matrix W of graph
G represents the local structure of the feature space.
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IV. Computing the Orthogonal Basis Functions: Define diagonal matrix
D as the sums of each column (or row as W is symmetric) entries of W i.e.
Dij =

∑
j Wij . Also define Laplacian matrix, L = D −W [27]. Also state,

A(d−1) = [a1,a2, ...,a(d−1)] (14)

B(d−1) = [A(d−1)]T .(FDFT )−1.A(d−1) (15)

where {a1,a2, ...,ad} are the orthogonal locality preserving projections and
can be computed iteratively as,

(a) Compute a1 which is the eigenvector of (FDFT )−1FLFT correspond-
ing to the smallest eigenvalue.

(b) Compute ad as the eigenvector of

M (d) = {I − (FDFT )−1.A(d−1)[B(d−1)]−1[A(d−1)]T

.(FDFT )−1.(FLFT )}
(16)

corresponding to the smallest eigenvalue of M (d).

V. OLPP Embedding: Let WOLPI = [a1, a2, . . . , al], the embedding is
defined as,

f → y = WT f (17)

W = WPCAWOLPI (18)

where y is a l -dimensional feature vector f and W is the transformation
matrix.

4.5 Gaussian Mixture Model with Expectation-Maximisation (GMM-EM)

After feature extraction, the centreline pixels were classified in an unsupervised
manner using the Gaussian mixture model expectation-maximisation (GMM-
EM) method [38,39].

4.5.1 Gaussian Mixture Model (GMM)

Considering data as a mixture of Gaussian distributions is a widely used means
to cluster the data [40]. A Gaussian Mixture Model (GMM) is a parametric
probability density function represented as a weighted sum of K Gaussian
component densities known as the mode of the GMM, and each mode has its
own mean and covariance [38]. Mathematically, For a D-dimensional vector
X, the multivariate Gaussian distribution p(X) can be defined as [39],

p(X) = N (X|µ,Σ) (19)
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where µ is the mean, Σ is the covariance matrix and N signifies the multi-
variate Gaussian and can be mathematically defined as follows,

N (X|µ,Σ) =
1√

(2π)D|Σ|
exp
(
− 1

2
(X − µ)TΣ−1(X − µ)

)
(20)

Similarly the mixture of multivariate Gaussian densities is defined as [39],

p(X) =

K∑
k=1

πkN (X|µk, Σk). (21)

where, k = 1 · · ·K, is the number of Gaussian, 0 ≤ πk ≤ 1 is the mixture
coefficient of kth Gaussian and

∑K
k=1 πk = 1, µk is the mean of the kth Gaus-

sian and Σk is the covariance matrix of the kth Gaussian respectively. Given a
GMM, the main aim is to maximise the likelihood function w.r.t. the parame-
ters (µk, Σk and πk) [39]. As compared to conventional clustering method such
as K-mean clustering, GMM cluster assignment is much more flexible, i.e. data
point belongs to each cluster to a different degree (with different probabilities)
as opposed to a hard assignment of a data point to each cluster.

4.5.2 The Expectation-Maximisation (EM) algorithm

Two commonly used methods for inferring the parameters such as means,
variances and mixture weights of the unknown distributions from an observed
data set are maximum-likelihood (ML) estimation and Bayesian posterior in-
ference. In this paper, we utilise the ML estimation method for estimating the
parameters of the unknown distribution. In practice, ML estimation of the un-
known densities is generally done using the Expectation-maximisation (EM)
algorithm as it is a reliable and faster iterative technique for computing the
maximum-likelihood estimate of the parameters of an underlying distribution
from data, where a closed form analytical expression is difficult to obtain. The
advantage of EM algorithm is that it can also handle efficiently the data which
is incomplete or has missing values [39].

The EM algorithm is a local optimisation method, and hence it is sensi-
tive to the initialisation of the model. Therefore, the simplest way to initiate
parameters is to use a K-means approach [39]. EM for Gaussian mixtures
algorithm [39] is explained as,

I. Initialise Gaussian parameters: Initialise µk , Σk and πk for each Gaus-
sian k using the K-means approach and evaluate the initial value of the
log likelihood.

II. E Step: Calculate an assignment score γ(Znk) with the current parameters
values,

γ(Znk) =
πkN (Xn|µk, Σk)∑K
j=1 πjN (Xn|µj , Σj)

. (22)

Here n = 1 · · · , N is total number of data points.
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III. M Step: Given scores, adjust µk , Σk and πk for each cluster k i.e. for
each Gaussian k, update parameters using new γ(Znk). Mean of Gaussian
k is given by,

µnew
k =

1

Nk

N∑
n=1

γ(Znk)Xn (23)

where Nk is defined as the effective number of points assigned to cluster k
and given by,

Nk =

N∑
n=1

γ(Znk). (24)

Find the means that fits the assignment score best. Covariance matrix of
Gaussian k is given by,

Σnew
k =

1

Nk

N∑
n=1

γ(Znk)(Xn − µnew
k )(Xn − µnew

k )T . (25)

Mixing coefficient for Gaussian k is given by,

πnew
k =

Nk

N
. (26)

IV. Evaluate log Likelihood: Calculate the log likelihood again,

ln p(X|µ,Σ, π) =

N∑
n=1

ln

K∑
k=1

πkN(Xn|µk, Σk) (27)

and finally check for convergence of either the parameters or the log likeli-
hood. If likelihood or parameters converge then stop else go to step II. (E
step).

4.6 Vessel Classification

Each of the centreline pixels belonging to vessels from pair of adjacent quad-
rants (i.e. from quadrant combinations (I, II), (II, III), (III, IV) and (IV, I))
were classified using GMM-EM with dominant discriminative features pro-
vided by OLPP. The centroid of arteries and veins cluster is associated with a
vector of mean values representing the features. The two mean intensity values
representing the centroids (i.e. for two clusters) were compared to determine
the a-v class. The cluster with higher mean intensity value at its centroid is
defined as arteriole cluster and the other as venule cluster [16].

As each quadrant was considered twice in the processing for pairs (I, II),
(II, III), (III, IV) and (IV, I), each pixel has two labels assigned to it in total
[30]. Then the quadrant partitioning was rotated 45 ◦ clockwise (see Fig. 2(a),
dashed black lines at 45 ◦ to horizontal passing through OD centre) and the
centreline pixels belonging to vessels from a pair of adjacent rotated quadrant
were classified again, generating two more labels per centreline pixel. In this
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way, each centreline pixel has a total of four labels. The vessels were assigned a
final status of based on the maximum polling of labels assigned to its centreline
pixels.

4.7 Classification Performance Evaluation

The classification rate was calculated in order to compare the performance of
the different methods. The classification rate, CR, was calculated as,

CR =
CV

TV− TU
× 100 (28)

where CV is correctly classified vessels, TV is total number of vessels and
TU is number of vessels remained unclassified. The performance measure were
also calculated in similar manner as explained in section 3 where TP, FP, TN
and FN are defined as:

- TPa/v: When both the system and the observer identified a vessel as arte-
riole (or venule).

- FPa/v: When the system identified a vessel as arteriole (or venule) and the
observer identified it as venule (or arteriole).

- TNa/v: When the observer identified a vessel as venule(arteriole) and the
system identified it as not arteriole (venule)(i.e. either as venule (arteriole)
or not labelled).

- FNa/v): When the system did not identify a vessel as arteriole (or venule),
i.e. either as venule(arteriole) or not labelled, and the observer identified
it as arteriole (venule).

5 Result

In certain data analysis techniques, high-dimensional data can be replaced by
its projection onto the most important axes, and these axes are the ones cor-
responding to the largest Eigen values. Thus the original data is approximated
by data with fewer dimensions (by choosing the most dominant Eigen values),
which summarizes the original data well [41]. OLPP fall into this class of data
analysis techniques, therefore, eigenvectors corresponding to high eigenvalues
were extracted for generating a new feature set. With OLPP, transformed
features were used for vessel classification.

In order to select the dominant eigenvalues and corresponding eigenvectors
for OLPP, a threshold value was selected by conducting an initial experiment
with 10 images. Based on the analysis, in order to select the most important
features (corresponding to higher Eigen values), a cut-off of 0.9 and 0.95 were
used for smaller and larger dimension of feature set, respectively. Thus with
OLPP, the Eigen vectors corresponding to Eigen values greater than or equal
to 0.9 (for smaller dimensions) and 0.95 (at larger dimensions) were used to
transform the original feature set.
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Table 4 presents the rate of correct classification rate (CR), and unclassified
vessels (UN) obtained using the proposed method from ORCADES dataset.
The mean and standard deviation of the classification results obtained with
smaller (9-15 features) as well as larger dimensions (32-47 features) were cal-
culated and are also mentioned in Table 4.

Table 4: Correct Classification Rate (CR) and Unclassified Vessel(UN) using
GMM-EM classifier with OLPP method from seven feature sets using OR-
CADES dataset.

Features OLPP

C% UN%

9

GRB 91.1 8.85

GRH 91.7 11.34

GRV 91.69 11.47

12 GRBH 90.68 10.35

15 GRBHV 91.13 11.5

Mean 91.14 10.7

(9-15 features)

Standard Deviation 0.26 1.16

(9-15 features)

32
GRBHVL 90.1 9.2

Contrast: GR

37
GRBHVLGy 90.21 10.85

Contrast: GR

42

GRBHVL 90.4 8.98

Profile: GR

Contrast: GR

47

GRBHVLGy 90.56 8.85

Profile:GR

Contrast:GR

Mean 90.77 10.14

(9-47 features)

Standard Deviation 0.49 1.22

(9-47 features)

Table 5 gives the performance measures, computed separately for arterioles
and venules, of the system using OLPP with 12 feature set w.r.t. observer 1
on the ORCADES dataset. Table 6 presents the results obtained with OLPP
using DRIVE dataset.

Figure 4 shows an example of an image with resulting vessel categorisation
using OLPP with quadrant-pairwise GMM-EM classifier.
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Table 5: Table showing the performance measures of OLPP with 12 feature
set w.r.t. observer 1 on the ORCADES dataset.

Performance Measure OLPP

arterioles venules

Sensitivity 0.9618 0.8405

Specificity 0.8405 0.9618

Positive Predicted value 0.8791 0.9481

Negative Predicted value 0.9481 0.8791

Positive Likelihood Ratio 6.03 22.02

Negative Likelihood Ratio 0.045 0.1658

Table 6: Correct Classification Rate (CR) and Unclassified Vessel(UN) using
GMM-EM classifier with OLPP on DRIVE dataset

Features OLPP

C% UN%

12
GRBH 86.3 5.8

Contrast: GR

15 GRBHV 86.39 14

Mean 86.34 9.9

(12-15 features)

32
GRBHVL 85.4 11.7

Contrast: GR

37 GRBHVLGy 86.3 9.9

Contrast: GR

42

GRBHVL 86.57 12.86

Profile: GR

Contrast: GR

47

GRBHVLGy 86.7 11.7

Profile:GR

Contrast:GR

Mean 86.3 10.9

(12-47 features)

6 Discussion

As seen from Table 4, we observed that in smaller dimensions (9−15 features)
as well as in larger dimension (32− 47 features), the mean classification rates
obtained are similar. We observed that the classification rate and hence the
performance of the proposed method does not changes much irrespective of
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Fig. 4: ORCADES image showing the classification output using OLPP with
quadrant-pairwise GMM-EM classifier in zone B. Vessels highlighted in red,
blue and yellow have been classified as arteriole, venule and unclassified, re-
spectively.

the feature dimension i.e. the proposed methods constantly perform well with
all the feature subsets.

The performance measures using OLPP were computed with 12 feature
set w.r.t. observer 1 on the ORCADES dataset (see Table 5). As seen from
Table 5 the sensitivity for arterioles and venules, as obtained with OLPP is
0.9618 and 0.84505 respectively. That is to say, the probability of an incor-
rect classification is 3.8% and 15.9% for arterioles and venules respectively.
The Positive predicted value (PPV) (precision) and Negative predicted value
(NPV), for both arterioles and venules, with OLPP, are higher. Moreover, the
high positive likelihood ratios (PLR) and low negative likelihood ratios (NLR)
obtained with OLPP confirmed the high reliability of the system.

Additionally, the same observation, that OLPP consistently performed
well, was observed when the analysis was performed on a DRIVE dataset
(see Table 6).

Moreover, during the analysis, it was observed that correcting 7 channels
to extract 47 features set was computationally expensive. In addition, further
computational time is necessary for extraction of ROI based, profile-based and
contrast features. Therefore, extracting large numbers of features from a reti-
nal fundus image takes a significant amount of computational time. Hence, if
the faster processing of large image datasets is desirable, OLPP is a promising
method as the dimensionality of the feature set does not affect vessel classi-
fication accuracy. Moreover, this further gives more flexibility to the user to
use any dimension of feature set to perform vessel classification.

The results showed that the proposed hybrid approach (OLPP+ GMM-
EM) seems to be robust due the added advantage of GMM-EM and OLPP.
With GMM-EM, the degree of uncertainty about the data point regarding
its cluster assignment, make it possible to choose the cluster with highest
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probability of assignment. Whereas, advantage of OLPP is that it has more
locality preserving power.

Through analysis, we showed that the proposed methodology performed
well in small as well as a large dimensional dataset. Thus, when compared
with other conventional feature extraction method, such as PCA, the proposed
method has an advantage that well-distributed classes in small datasets are
formed thus giving the high-performance rate. Moreover, PCA takes into ac-
count the entire data for the principal components analysis without taking into
consideration the fundamental class structure [42,43] whereas, as mentioned
before, OLPP has a neighbourhood preserving property and can, therefore,
better capture the intrinsic manifold structure to a greater extent.

7 Conclusions

We proposed a flexible approach for retinal vessel classification using OLPP,
to automatically extract the most dominant and discriminating set for an
image to then use with GMM-EM unsupervised classifier. Due to its ability to
adapt to variations within and between images, the hybrid approach (OLPP +
GMM-EM) gave high classification rate. Moreover, the proposed method found
to be more consistent at different feature dimension. The proposed system has
a broad application, for example, OLPP based feature extraction approach can
apply to facial recognition and object identification solutions [44] and decision
making to plan and organise service [45,46] during the Hajj and Umrah rituals.
Moreover, the proposed method can be used to extract dominant features
needed for Velocity-Based Modeling [47].

Additionally, in the field of securing data in Internet of Things (IoT)
Health-Care Systems, the secure algorithm is required that will map best fea-
tures of lightweight symmetric and asymmetric algorithms. The lack of security
features affects the patient security and privacy. The proposed OLPP method
might contribute in extracting the best features for the encryption of the data
[48–51]. Furthermore, the application of proposed method can also be applied
to the field of steganography. The performance of steganalysis is greatly influ-
enced by the selection of feature subspaces [52,53]. The classification accuracy
reduces and computational complexity increases by using a large number of
features for Steganalysis relative to the size of the training set [52,54–56]. Thus
to select feature subspaces more effectively the proposed method can also be
tested in the field of Steganography [54–56].

Although here we utilised colour features, in our future research work, we
are working on to design a system which selects dominant features from even
larger feature bank prior to classification in an unsupervised manner. Addi-
tional test with different features and classifier can be done as a future work
to further evaluate the performance of OLPP on different datasets. In future,
to improve the computational speed, multi-core techniques such as GPU com-
puting [57] and optimisation computing proposed in [58] can be explored for
analysing large-scale dataset for biomarker discovery studies. Further tests
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with different datasets are needed featuring images with different resolutions
and from different camera systems to declare its suitability to support a-v
classification in biomarker research.
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1. M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal imaging and image analysis,”
IEEE reviews in biomedical engineering, vol. 3, pp. 169–208, 2010.

2. M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal signs and stroke,”
Stroke, vol. 39, no. 4, pp. 1371–1379, 2008.

3. S. Frost, Y. Kanagasingam, H. Sohrabi, J. Vignarajan, P. Bourgeat, O. Salvado, V. Ville-
magne, C. Rowe, S. L. Macaulay, C. Szoeke, et al., “Retinal vascular biomarkers for early
detection and monitoring of alzheimer’s disease,” Translational psychiatry, vol. 3, no. 2,
p. e233, 2013.

4. M. Niemeijer, B. van Ginneken, and M. D. Abràmoff, “Automatic classification of retinal
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