
  

 

Abstract 

In this paper, we present an automatic approach to classify retinal vessels into 
artery and vein classes by analyzing the extracted graph from the vasculature tree 
and deciding on the type of intersection points (bifurcation, crossing or meeting 
points). The results obtained by the proposed method were compared with 
manual classification on 40 images of the INSPIRE-AVR dataset. 

1 Introduction 
Retinal vessels can be affected by many diseases. In conditions such as 
diabetic retinopathy, the blood vessels often show abnormalities at early 
stages [1]. Retinal vessel dilatation is a well-known phenomenon in 
diabetes and significant dilatation and elongation of arterioles, venules, 
and their macular branches occur in the development of diabetic macular 
edema that can be linked to hydrostatic pressure changes [2]. Changes in 
retinal blood vessels are also associated with hypertension and other 
cardio-vascular conditions [3]. A sign that has been shown to be related 
to cardiovascular diseases is the generalized arteriolar narrowing, 
usually expressed by the Arteriolar-to-Venular diameter Ratio (AVR). 
Small changes in the AVR are associated with increases in the risk for 
stroke, cerebral atrophy, cognitive decline, myocardial infract [4] and 
also it can be affected by other diseases, like diabetic retinopathy and 
retinopathy of prematurity [5]. 

 In order to develop an automatic system for measuring the AVR, 
besides detecting the optic disc (OD) and segmenting the retinal 
vasculature, one of the main challenges is to classify the vessels as 
artery or vein (A/V classification) [6]. Several works on vessel 
classification have been proposed in the literature [7]-[10]. However the 
automated classification of the retinal vessels into arteries and veins has 
received limited attention and it is still an open task in the retinal image 
processing field. Within this context, in this paper we propose an 
automatic method to classify the retinal vessels as artery or vein (A/V 
classification). 

2 Methodology  
There are some visual and geometrical features that enables the 
discrimination between veins and arteries. The arteries are bright red and 
veins are darker.  In general, artery calibers are smaller than veins 
calibers. The arteries have thicker walls, which reflect the light as a 
shiny central reflex strip [11]. There are methods that explore these 
properties for classification purposes [8]-[10]. Another characteristic of 
the retinal vessel tree is that at least in the region near the optic disc, 
veins rarely cross veins and arteries rarely cross arteries, but both types 
can bifurcate to narrower vessels and also veins and arteries can cross 
each other [7], [11]. In our method, we assume where each intersection 
point is either a point where a vessel bifurcates to narrower parts or a 
point that a vein and an artery crosses each other.  

Figure 1 depicts the block diagram of our approach for A/V 
classification. After vessel segmentation and centerline extraction, the 
main phases are: 1) graph generation; 2) graph analysis; and 3) vessel 
classification. The algorithm first classifies the veins and arteries by 
analyzing the vessel tree as a graph which has been obtained by making 
a decision on the type of each intersection point (graph nodes); then, 
vessel segments (graph links) are classified into two different classes, 
and finally the A/V classes are assigned to the graph links by extracting 
a set of features and using a linear classifier.  In the following we detail 
each phase of the method. 

 
Figure 1: Block diagram of the method for A/V classification. 

2.1  Graph generation 
A graph is a simple representation of the vascular tree, where each node 
denotes an intersection point in the vascular tree and each link 
corresponds to a vessel segment between two intersection points. 

We used the segmentation method proposed by Mendonça et al. [12] 
which has good performance also in the detection and segmentation of 
thin vessels. An illustrative result for vessel segmentation is shown in 
Figure 2(b). Afterward we used the segmented image to obtain the 
vessel centerlines. The graph nodes are extracted by finding the 
intersection points (pixels with more than two neighbors), the endpoints 
(pixels with just one neighbor) and the high curvature points. Each link 
in the graph represents a connection between two nodes. The extracted 
graph may include some misrepresentations of the vascular structure as 
result of the segmentation and the centerline extraction processes. The 
typical errors are (1) splitting of one node into two nodes; (2) missing 
link on a side of a node; (3) incorrect detected link. In order to improve 
the accuracy, the extracted graph should be modified when one of these 
errors is identified. The final graph after applying the necessary 
modifications is shown in Figure 2(c). 

2.2  Graph analysis 
In the graph analysis phase a decision on the type of the nodes is made 
and based on node type, the links in the separate sub-graphs will be 
classified into one of two classes (C1 and C2). At the end of this phase 
we know which links are in the same class and in the next phase the 
artery/vein classes will be finally assigned to C1 and C2. We have 
considered four different types of nodes: 1) Connecting points; 2) 
Crossing points; 3) Bifurcation points; and 4) Meeting points. 

The node classification algorithm uses the following node 
information: the number of links connected to each node (node degree); 
the direction of the links; the angles between the links; the vessel caliber 
related to each link and the degree of adjacent nodes.  

The link classification is done for each separate sub-graph and 
distinct classes are assigned to each region. This means that classes C1, 
C2 will be assigned for the links in sub-graph 1, classes C3, C4 for the 
links in sub-graph 2 and so on. For each separate sub-graph, the farthest 
link from OD center is detected, and a class is assigned to this link (for 
instance C1); the node connected to this link is found and based on the 
node type the other links are labeled as class 1 or class 2. This procedure 
is repeated for all nodes until there is no more unclassified links. We 
will repeat the process for other separate sub-graphs each time defining 
two new classes, until the entire graph is classified. In the end we have a 
classified graph with different pair of classes for each disjoint sub-graph. 
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Figure 2: (a) Original color image; (b) Segmented vessels result; (c) 
Extracted graph; (d) Graph analysis result; (e) A/V classification result; 
(f) Comparison of proposed method with manual classification. 

2.3 A/V classification 
The purpose of this last phase is to assign the artery or the vein classes 
to the pair of classes in each separate sub-graph using a classifier. 
Having this purpose in mind, we have defined a set of features and a 
classifier. For each centerline pixel, the set of 30 features described in 
Table 1 are measured. We have used linear discriminant analysis (LDA) 
classifier and for feature selection, a sequential forward floating 
approach is used, which starts with an empty feature set and adds or 
removes features when this improves the performance of the classifier. 
After using this feature selection method a set of 19 features, 1-2, 7, 10, 
12-14, 16-17, 19-20 and 23-30 was selected. 

The trained classifier was used for assigning the A/V classes to the 
graph classes. First each centerline pixel is classified into A/V classes, 
then for each class (Ci) in a sub-graph, the probability of being artery is 
calculated based on the number of associated centerline pixels classified 
as an artery or a vein. The probability of a class (Ci) to be artery (Pa(Ci)) 
is computed as Pa(Ci)=na

Ci /( na
Ci+ nv

Ci) where na
Ci is the number of 

centerline pixels of class (Ci) classified as artery and nv
Ci is the number 

of centerline pixels classified as a vein. For each pair of classes in a 
separate sub-graph, the class with higher artery probability will be 
assigned as artery class and the other one as vein class. The result of 
assigning a class to the link centerline pixels is shown in Figure 2(e). 
The differences between the results of proposed method and manual 
labeling are shown in green in Figure 2(f) while the correctly classified 
arteries and veins are presented in red and blue respectively. 

Table 1: The list of features extracted for each centerline pixel. 
Nr.   Features 
1-3 Normalized Red, Green and Blue intensities under the centerline pixel. 
4-6 Normalized Hue, Saturation and Intensity under the centerline pixel. 
7-9 Normalized mean of Red, Green and Blue intensities across the vessel. 

10-12 Normalized mean of Hue, Saturation and Intensity across the vessel. 
13-15 Standard deviation of Red, Green and Blue intensities across the vessel. 
16-18 Standard deviation Hue, Saturation and Intensity across the vessel. 
19-22 Maximum and minimum of Red and Green intensities across the vessel. 

23-30 
Intensity under the centerline pixel in a Gaussian blurred 
( 2, 4, 8,16σ = ) of Red and Green plane. 

3 Evaluation and results 
For validating the proposed method we have used the INSPIRE-AVR 
dataset which contains 40 high resolution color images with 2392×2048 
pixels [13]. The manual artery/vein labeling is done by an expert for all 
40 images. For evaluating the classification method, we have calculated 
the accuracy both for centerline pixel classification and vessel pixel 
classification. Table 2 shows the accuracy values for centerline pixels 
and for vessel pixels in the entire image and also for the pixels inside the 
region of interest (ROI) which is the standard ring area within 0.5 to 1.0 
disc diameter from the OD margin. Each row contains the accuracy 
values calculated using different ranges for vessel calibers. First row is 
the result for all the vessels, while the remaining rows present the results 
for the vessels with caliber higher than 5, 10, 15 and 20 pixels. 

Table 2: Accuracy rates of correctly classified pixels. 

 

Centerline 
pixels in 

entire image 

All vessel 
pixels in 

entire image 

Centerline 
pixels inside 

 ROI 

All vessel  
pixels inside 

ROI 
All vessels 84,8% 88,0% 85,2% 90,3% 

Vessels Caliber  >  5 pixels 86,5% 88,4% 87,5% 90,8% 
Vessels Caliber  > 10 pixels 88,6% 89,4% 90,7% 92,3% 
Vessels Caliber  > 15 pixels 90,2% 90,4% 93,3% 94,1% 
Vessels Caliber  > 20 pixels 91,3% 91,1% 96,0% 96,0% 

4 Conclusion 
We have developed an automatic method to classify the retinal vessels 
into arteries and veins. We have reached an accuracy of 88.0% for 
correctly classified vessel pixels of entire vascular tree and an accuracy 
of 90.3% inside the ROI. The results show an improvement compare to 
previous techniques and demonstrate that the proposed automatic 
methodology for A/V classification is reliable for AVR calculation. 
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