921 research outputs found

    Kalman-variant estimators for state of charge in lithium-sulfur batteries

    Get PDF
    Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ. This paper describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly introduced, and the applicability of ‘standard’ lithium-ion state-of-charge estimation methods is explored. Open-circuit voltage methods and ‘Coulomb counting’ are found to have a poor fit for lithium-sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which are based on a relatively simple equivalent-circuit–network model, can deliver useful results. If the three estimators implemented, the unscented Kalman filter gives the most robust and accurate performance, with an acceptable computational effort

    Effects of cycling on lithium-ion battery hysteresis and overvoltage

    Get PDF
    Currently, lithium-ion batteries are widely used as energy storage systems for mobile applications. However, a better understanding of their nature is still required to improve battery management systems (BMS). Overvoltages and open-circuit voltage (OCV) hysteresis provide valuable information regarding battery performance, but estimations of these parameters are generally inaccurate, leading to errors in BMS. Studies on hysteresis are commonly avoided because the hysteresis depends on the state of charge and degradation level and requires time-consuming measurements. We have investigated hysteresis and overvoltages in Li(NiMnCo)O2/graphite and LiFePO4/graphite commercial cells. Here we report a direct relationship between an increase in OCV hysteresis and an increase in charge overvoltage when the cells are degraded by cycling. We fnd that the hysteresis is related to difusion and increases with the formation of pure phases, being primarily related to the graphite electrode. These fndings indicate that the graphite electrode is a determining factor for cell efciency.Peer ReviewedPostprint (published version

    Open circuit voltage and state of charge relationship functional optimization for the working state monitoring of the aerial lithium-ion battery pack.

    Get PDF
    The aerial lithium-ion battery pack works differently from the usual battery packs, the working characteristic of which is intermittent supplement charge and instantaneous large current discharge. An adaptive state of charge estimation method combined with the output voltage tracking strategy is proposed by using the reduced particle - unscented Kalman filter, which is based on the reaction mechanism and experimental characteristic analysis. The improved splice equivalent circuit model is constructed together with its state-space description, in which the operating characteristics can be obtained. The relationship function between the open circuit voltage and the state of charge is analyzed and especially optimized. The feasibility and accuracy characteristics are tested by using the aerial lithium-ion battery pack experimental samples with seven series-connected battery cells. Experimental results show that the state of charge estimation error is less than 2.00%. The proposed method achieves the state of charge estimation accurately for the aerial lithium-ion battery pack, which provides a core avenue for its high-power supply security

    Interpretable Battery Lifetime Prediction Using Early Degradation Data

    Get PDF
    Battery lifetime prediction using early degradation data is crucial for optimizing the lifecycle management of batteries from cradle to grave, one example is the management of an increasing number of batteries at the end of their first lives at lower economic and technical risk.In this thesis, we first introduce quantile regression forests (QRF) model to provide both cycle life point prediction and range prediction with uncertainty quantified as the width of the prediction interval. Then two model-agnostic methods are employed to interpret the learned QRF model. Additionally, a machine learning pipeline is proposed to produce the best model among commonly-used machine learning models reported in the battery literature for battery cycle life early prediction. The experimental results illustrate that the QRF model provides the best range prediction performance using a relatively small lab dataset, thanks to its advantage of not assuming any specific distribution of cycle life. Moreover, the two most important input features are identified and their quantitative effect on predicted cycle life is investigated. Furthermore, a generalized capacity knee identification algorithm is developed to identify capacity knee and capacity knee-onset on the capacity fade curve. The proposed knee identification algorithm successfully identifies both the knee and knee-onset on synthetic degradation data as well as experimental degradation data of two chemistry types.In summary, the learned QRF model can facilitate decision-making under uncertainty by providing more information about cycle life prediction than single point prediction alone, for example, selecting a high-cycle-life fast-charging protocol. The two model-agnostic interpretation methods can be easily applied to other data-driven methods with the aim of identifying important features and revealing the battery degradation process. Lastly, the proposed capacity knee identification algorithm can contribute to a successful second-life battery market from multiple aspects

    A novel endurance prediction method of series connected lithium-ion batteries based on the voltage change rate and iterative calculation.

    Get PDF
    High-power lithium-ion battery packs are widely used in large and medium-sized unmanned aerial vehicles and other fields, but there is a safety hazard problem with the application that needs to be solved. The generation mechanism and prevention measurement research is carried out on the battery management system for the unmanned aerial vehicles and the lithium-ion battery state monitoring. According to the group equivalent modeling demand of the battery packs, a new idea of compound equivalent circuit modeling is proposed and the model constructed to realize the accurate description of the working characteristics. In order to realize the high-precision state prediction, the improved unscented Kalman feedback correction mechanism is introduced, in which the simplified particle transforming is introduced and the voltage change rate is calculated to construct a new endurance prediction model. Considering the influence of the consistency difference between battery cells, a novel equilibrium state evaluation idea is applied, the calculation results of which are embedded in the equivalent modeling and iterative calculation to improve the prediction accuracy. The model parameters are identified by the Hybrid Pulse Power Characteristic test, in which the conclusion is that the mean value of the ohm internal resistance is 20.68mΩ. The average internal resistance is 1.36mΩ, and the mean capacitance value is 47747.9F. The state of charge prediction error is less than 2%, which provides a feasible way for the equivalent modeling, battery management system design and practical application of pack working lithium-ion batteries

    Review on Battery State Estimation and Management Solutions for Next-Generation Connected Vehicles

    Get PDF
    The transport sector is tackling the challenge of reducing vehicle pollutant emissions and carbon footprints by means of a shift to electrified powertrains, i.e., battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). However, electrified vehicles pose new issues associated with the design and energy management for the efficient use of onboard energy storage systems (ESSs). Thus, strong attention should be devoted to ensuring the safety and efficient operation of the ESSs. In this framework, a dedicated battery management system (BMS) is required to contemporaneously optimize the battery’s state of charge (SoC) and to increase the battery’s lifespan through tight control of its state of health (SoH). Despite the advancements in the modern onboard BMS, more detailed data-driven algorithms for SoC, SoH, and fault diagnosis cannot be implemented due to limited computing capabilities. To overcome such limitations, the conceptualization and/or implementation of BMS in-cloud applications are under investigation. The present study hence aims to produce a new and comprehensive review of the advancements in battery management solutions in terms of functionality, usability, and drawbacks, with specific attention to cloud-based BMS solutions as well as SoC and SoH prediction and estimation. Current gaps and challenges are addressed considering V2X connectivity to fully exploit the latest cloud-based solutions

    Advancing state estimation for lithium-ion batteries with hysteresis: systematic extended Kalman filter tuning

    Full text link
    Knowledge of remaining battery charge is fundamental to electric vehicle deployment. Accurate measurements of state-of-charge (SOC) cannot be directly obtained, and estimation methods must be used instead. This requires both a good model of a battery and a well-designed state estimator. Here, hysteretic reduced-order battery models and adaptive extended Kalman filter estimators are shown to be highly effective, accurate SOC estimators. A battery model parameterisation framework is proposed, which enhances standardised methods to capture hysteresis effects. The hysteretic model is parameterised for three independent NMC811 lithium-ion cells and is shown to reduce voltage RMS error by 50% across 18-hour automotive drive-cycles. Parameterised models are used alongside an extended Kalman filter, which demonstrates the value of adaptive filter parameterisation schemes. When used alongside an extended Kalman filter, adaptive covariance matrices yield highly accurate SOC estimates, reducing SOC estimation error by 85%, compared to the industry standard battery model.Comment: 22 pages, 8 figures. Journal submissio

    Online state of charge estimation for the aerial lithium-ion battery packs based on the improved extended Kalman filter method.

    Get PDF
    An effective method to estimate the integrated state of charge (SOC) value for the lithium-ion battery (LIB) pack is proposed, because of its capacity state estimation needs in the high-power energy supply applications, which is calculated by using the improved extended Kalman filter (EKF) method together with the one order equivalent circuit model (ECM) to evaluate its remaining available power state. It is realized by the comprehensive estimation together with the discharging and charging maintenance (DCM) process, implying an accurate remaining power estimation with low computational calculation demand. The battery maintenance and test system (BMTS) equipment for the aerial LIB pack is developed, which is based on the proposed SOC estimation method. Experimental results show that, it can estimate SOC value of the LIB pack effectively. The BMTS equipment has the advantages of high detection accuracy and stability and can guarantee its power-supply reliability. The SOC estimation method is realized on it, the results of which are compared with the conventional SOC estimation method. The estimation has been done with an accuracy rate of 95% and has an absolute root mean square error (RMSE) of 1.33% and an absolute maximum error of 4.95%. This novel method can provide reliable technical support for the LIB power supply application, which plays a core role in promoting its power supply applications
    • …
    corecore