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Abstract: High-power lithium-ion battery packs are widely used in large and medium-sized unmanned aerial vehicles 8 

and other fields, but there is a safety hazard problem with the application that needs to be solved. The generation 9 

mechanism and prevention measurement research is carried out on the battery management system for the unmanned aerial 10 

vehicles and the lithium-ion battery state monitoring. According to the group equivalent modeling demand against the 11 

battery packs, a new idea of compound equivalent circuit modeling is proposed and the model constructed to realize the 12 

accurate description of the working characteristics. In order to realize the high-precision state prediction, the improved 13 

unscented Kalman feedback correction mechanism is introduced, in which the simplified particle transformation is 14 

introduced and the voltage change rate is calculated to construct a new endurance prediction model. Aiming at the 15 

influence of the consistency difference between battery cells, a novel equilibrium state evaluation idea is applied and the 16 

calculation results are embedded in the equivalent modeling and iterative calculation to improve the prediction accuracy. 17 

The model parameters are identified by the Hybrid Pulse Power Characteristic test, in which the conclusion is that the mean 18 

value of the ohm internal resistance is 20.68mΩ. The average internal resistance is 1.36mΩ, and the mean capacitance 19 

value is 47747.9F. The state of charge prediction error is less than 2%, which provides a feasible way for the equivalent 20 

modeling, battery management system design and practical application of pack working lithium-ion  batteries. 21 
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1. Introduction 24 

Large and medium-sized Unmanned Aerial Vehicles (UAV) refers to a battery that is fully charged beforehand and 25 

supplied to the electric motor. At the same time, the battery is supplemented by an external power source, which has the 26 

advantages of low pollution, low noise, high energy efficiency and diversified energy sources. Because they are suitable for 27 

the UAV application, lithium-ion batteries are widely used due to low price and excellent cycle performance advantages, as 28 

well as having broad prospects of the power supply field. 29 

The Battery-Management-System (BMS) construction method was conducted for the real-time working state monitoring 30 

and energy management of the lithium-ion battery packs. Vortex generators were constructed for the active thermal 31 

management in lithium-ion battery power supply systems (Mondal, Lopez, Verma, & Mukherjee, 2018). Comparative 32 

analysis of lithium-ion battery resistance prediction was realized for the BMS (Mathew, Janhunen, Rashid, Long, & 33 

Fowler, 2018). Water cool strategy was studied for the thermal management system of the lithium-ion battery pack (Li, 34 

Yan, Chen, & Wang, 2018). Experimental investigation of the thermal management system was conducted for lithium-ion 35 

battery modules with coupling effect by heat sheets and phase change materials (He, Li, Zhang, Zhong, & He, 2018). 36 

Issues and recommendations were analyzed for the energy management system of lithium-ion batteries (Hannan, Hoque, 37 

Hussain, Yusof, & Ker, 2018). Impedance-based BMS was designed for the safety monitoring of lithium-ion batteries 38 

(Carkhuff, Demirev, & Srinivasan, 2018). Thermal management system of lithium-ion battery module was realized by 39 

using the micro heat pipe array (X. Ye, Zhao, & Quan, 2018). Lifetime management method was investigated for the 40 

energy storage system of lithium-ion batteries (Won, Choo, Lee, Lee, & Won, 2018). Performance analysis of the thermal 41 

management system was conducted with composite phase change material for lithium-ion battery packs (X. M. Wang et 42 

al., 2018). A novel thermal management system was constructed by using the mist cooling method of lithium-ion battery 43 

packs (Saw et al., 2018). Afterwards, health management systems were reviewed for lithium-ion batteries (Omariba, 44 

Zhang, & Sun, 2018). 45 

The Equivalent-Circuit-Modeling (ECM) analysis was conducted by mounts of researchers. The State of Charge (SOC) 46 

dependent polynomial ECM was investigated for the electrochemical impedance spectroscopy of lithium-ion batteries (Q. 47 

K. Wang, He, Shen, Hu, & Ma, 2018). The parameter identification method study of the Splice-Equivalent-Circuit-Model 48 

(S-ECM) was realized for the aerial lithium-ion battery pack (S. L. Wang, Fernandez, Liu, Su, & Xie, 2018). A 49 
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Partnership-for-a-New-Generation-of-Vehicles (PNGV) modeling method together with the State-of-Charge (SOC) 50 

prediction algorithm was studied for lithium-ion battery pack adopted in Automated Guided Vehicle (AGV) (Liu, Li, & 51 

Zhou, 2018). A comparative study of different ECMs was investigated for the SOC estimation of lithium-ion batteries (Lai, 52 

Zheng, & Sun, 2018) . Furthermore, another comparative study of reduced order ECMs was conducted for the on-board 53 

state-of-available-power prediction of lithium-ion batteries (Farmann & Sauer, 2018). 54 

The SOC prediction is very necessary for the group working lithium-ion batteries. And the dependent polynomial ECM 55 

was realized for the electrochemical impedance spectroscopy of lithium-ion batteries (Q. K. Wang et al., 2018). The error 56 

sources of the online SOC prediction methods were also investigated (Y. J. Zheng, Ouyang, Han, Lu, & Li, 2018). The 57 

SOC inconsistency prediction was realized for lithium-ion battery packs by using the mean-difference model and 58 

Extended-Kalman-Filter (EKF) algorithm (Y. J. Zheng, W. K. Gao, et al., 2018). Incremental capacity analysis and 59 

differential voltage analysis based SOC and capacity prediction were conducted for lithium-ion batteries (L. F. Zheng, Zhu, 60 

Lu, Wang, & He, 2018). An online SOC prediction algorithm was proposed for lithium-ion batteries by using an improved 61 

adaptive cubature Kalman-Filter (KF) (Zeng, Tian, Li, & Tian, 2018). The SOC prediction was realized by using a novel 62 

reduced order electrochemical model (Yuan, Wang, Zhang, Long, & Li, 2018). A double-scale and adaptive Particle-Filter 63 

(PF) based online parameter identification method was investigated for the lithium-ion batteries (M. Ye, Guo, Xiong, & Yu, 64 

2018). Furthermore, the online State-of-Health (SOH) prediction was implied for lithium-ion batteries by the Constant-65 

Voltage (CV) charging current analysis (J. F. Yang, Xia, Huang, Fu, & Mi, 2018). A novel Gaussian processed regression 66 

model was investigated for the SOH prediction of lithium-ion battery by using the charging curve (D. Yang, Zhang, Pan, 67 

Wang, & Chen, 2018).  68 

Coupling SOC and SOH prediction effect was analyzed on the mechanical integrity of lithium-ion batteries (Xu et al., 69 

2018). Enhanced Coulomb counting method was conducted by using the Peukert Law and Columbic efficiency (Xie, Ma, 70 

& Bai, 2018). Strong tracking effect of H-Infinity Filter was experimentally analyzed to realize the SOC prediction (Xia, 71 

Zhang, et al., 2018). Online parameter identification and SOC prediction of lithium-ion batteries were investigated by using 72 

the forgetting factor recursive least squares and the nonlinear KF algorithm (Xia, Lao, et al., 2018). Online model 73 

identification and SOC estimation were realized for the lithium-ion battery with a recursive total least square based 74 

observer method as stated by Wei et al. (Wei, Zou, Leng, Soong, & Tseng, 2018). De-noising wavelet treatment was 75 
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constructed for the SOC prediction of lithium-ion batteries (X. Wang, Xu, & Zhao, 2018) and an Unscented-Kalman-Filter 76 

(UKF) observer was also designed for lithium-ion battery SOC prediction (T. P. Wang, Chen, Ren, & Zhao, 2018). An 77 

adaptive SOC prediction method was proposed by us for an aeronautical lithium-ion battery pack based on a novel 78 

Reduced-Particle-Unscented-Kalman-Filter (RP-UKF) (S. L. Wang, C. M. Yu, et al., 2018). In addition, an integrated 79 

online adaptive SOC prediction approach was proposed by us for high-power lithium-ion battery packs (S. L. Wang, 80 

Fernandez, Shang, Li, & Yuan, 2018). The improved SOC dependent polynomial ECM was constructed for 81 

electrochemical impedance spectroscopy of lithium-ion batteries (Q. K. Wang et al., 2018) together with the influence 82 

analysis of battery parametric uncertainties (Shoe et al., 2018).  83 

By analyzing the online safety monitoring methods of lithium-ion battery packs in large and medium-sized UAVs, the 84 

high-precision remaining available power prediction is realized, in which the effective State-of-Balance (SOB) evaluation 85 

is investigated as well. Then, the safety monitoring equipment is developed for lithium-ion battery packs, laying the 86 

foundation for the critical breakthroughs of the reliable power supply. The charge and discharge experiments are designed 87 

and the nonlinear parameter identification experiments are also carried out, in which some working characteristics of the 88 

lithium-ion battery packs can be obtained. Afterward, the S-ECM is introduced and the state-space equations are expressed 89 

for the endurance prediction to improve its accuracy, which provides an experimental basis for the practical applications, 90 

modeling simulation and battery management system design. 91 

2. Mathematical analysis 92 

Through the experimental analysis of lithium-ion battery packs used in the UAVs, the variation law of key factors can be 93 

obtained and its rapid detection method is explored. The Voltage-Change-Rate (VCR) and the RP-UKF algorithms are 94 

used to realize the online accurate SOC prediction. The variation coefficient calculation method is used to realize the 95 

reliable SOB evaluation. In order to meet the reliable energy supply demand, the key technology research such as 96 

parameter detection, online fault diagnosis, charging control and safety management, is carried out to realize the safety 97 

monitoring equipment development. Technical application and promotion of the system anti-interference, charge and 98 

discharge management and safety reliability enhancement are conducted. (1) The integrated chips and digital 99 

communication methods are introduced to explore the application of high-precision, fast detection and anti-interference 100 

processing technologies for the voltage, current and temperature parameters. (2) By using the application of the VCR and 101 
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the RP-UKF algorithm, the on-line high-accuracy SOC prediction is realized while reducing the hardware cost. (3) 102 

Applying the variation coefficient calculation idea into the equilibrium state between the lithium-ion batteries of the pack 103 

gives an accurate characteristic evaluation. In addition, its stable and reliable operation under complex conditions is 104 

successfully achieved. (4) By Combining with the safety control and alarm, charge and discharge control, communication 105 

and information storage requirement, a BMS equipment is developed for the UAV lithium-ion battery packs. It provides a 106 

basis of the reliable power supply technology breakthrough. 107 

2.1. Parameter detection and anti-interference 108 

Large and medium-sized UAVs have high requirements for the power supply of lithium-ion battery packs, the internal 109 

structure of which has large number battery monomers in series and parallel combination characteristics. Aiming at its 110 

high-precision and multi-channel signal detection requirements, the anti-jamming technology is researched and a high-111 

reliability detection scheme is designed to realize the multi-channel high-precision detection of key parameters such as 112 

voltage, current and temperature for the lithium-ion battery packs. Considering the temperature gradient influence on the 113 

detection accuracy, the signal detection and correction methods are studied, which are suitable for different ambient 114 

temperatures. By analyzing the noise source of the signal detection process, the photoelectric isolation, transformer 115 

isolation, grounding and other technical means are used to solve the anti-interference problem of power supply ripple, 116 

electromagnetic interference and violent temperature changes. 117 

During the operation of the lithium-ion battery packs, the detection of the external measurable parameter signal has an 118 

inevitable error. At the same time, the noise introduced by the discrete digital sampling and iterative calculation processing 119 

is difficult to eliminate, which leads to the cumulative error of the lithium-ion battery state prediction and the intelligent 120 

management process. Considering the consistency influence over the monomers, once the equilibrium state information is 121 

introduced into the lithium-ion battery ECM constructing process, how these characteristics can be reflected by using the 122 

ECM needs to be solved. The expression of key time-varying parameter characteristics, such as voltage, current and 123 

temperature, needs to be obtained through the experimental analysis. How to describe the correlation characteristics 124 

between time-varying parameters in the battery pack of the perspective ECM requires in-depth studies. The proposed S-125 

ECM method can simulate the internal polarization effect, self-discharge and charge-discharge difference of the battery 126 

packs, which is studied to realize the model characteristic expression of the grouped working lithium-ion batteries. 127 
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Furthermore, the state-space equation is constructed to reveal the variation law of external measurable parameters, which 128 

lays a foundation to monitor the reliable energy state of lithium-ion battery packs. 129 

Aiming for the large and medium-sized UAV application scenarios, the lithium-ion battery pack has a large number of 130 

serials and parallel combination characteristics. In order to achieve the high-precision, multi-channel signal detection 131 

targets, the anti-jamming technology and detection schemes are studied. Meanwhile, the key parameter detection of 132 

lithium-ion battery is realized. Based on the high integrated chip and digital communication mechanism, the modular 133 

design is conducted to realize the high-accuracy detection, the principle of which is shown in Fig. 1. 134 
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Fig. 1.  key parameter detection sub-module 136 

In order to solve the multi-channel and high-precision parameter detection problem of lithium-ion battery packs, the 137 

influence of different parameters must be considered, such as: temperature gradient change of the detection accuracy, signal 138 

detection as well as the correction method suitable for different temperature environments. The anti-interference problem of 139 

power supply ripple, electromagnetic interference and other influencing factors should be solved, making it suitable for the 140 

complex of UAV application scenarios. The following parameters should be analyzed: the signal detection noise source, 141 

anti-interference ability, optical isolation, transformer isolation technologies. 142 

2.2. Residual power prediction and construction 143 

According to the new idea of calculating the SOC value according to the VCR, the SOC prediction model is constructed 144 

together with the application of the proposed RP-UKF algorithm. And the recursive operation of the residual available 145 
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SOC value is realized for the lithium-ion battery packs. Combined with the battery working characteristic analysis of 146 

complex working conditions, the improved S-ECM and its state-space equations are implied to improve the calculation 147 

efficiency. The linearization process is optimized by streamlining the PF algorithm to eliminate the estimated offset and 148 

utilize the equilibrium state. The feedback correction improves the prediction accuracy of the group working batteries, and 149 

thus achieves the high-accuracy and online prediction of the remaining available power for the lithium-ion battery packs. 150 

Lithium-ion battery grouping SOC prediction process is affected by the complex monomer structure and aging degree, as 151 

well as environmental conditions such as the temperature and humidity. Therefore, the iterative calculation correction of 152 

multiple factors needs to be considered in the SOC prediction process. By improving the iterative RP-UKF calculation 153 

process, the prediction modelling implementation mechanism is explored, and a real-time optimization model is 154 

constructed to provide an overall framework of the SOC prediction. Using high robust KF and its nonlinear extension, 155 

combined with the Unscented Transformation (UT) and functional fitting approximation, the mathematical description of 156 

working characteristics is explored for different working conditions. Through the modification of model parameters and 157 

weighting factors, the influence of inter-monomer imbalance on the SOC prediction is analyzed, and an adaptive SOC 158 

prediction model is constructed. Through the experiments, the action law of environmental conditions on the prediction 159 

process can be obtained. The typical environmental simulation experiment is used to obtain the change law, and the 160 

correction is made to optimize and correct the prediction results, which provides the theoretical basis of the improvement 161 

on the SOC prediction adaptability under complex environmental conditions. The relationship between key parameters 162 

such as voltage and temperature is obtained, and the influence law is analyzed experimentally. The iterative calculation, 163 

correction and functional relationship optimization are used to improve the robustness effect of the SOC prediction model.  164 

Through the reaction mechanism analysis and working condition simulation experiments, the internal reaction process of 165 

the lithium-ion battery is clarified, and the variation rules of current, voltage and temperature are studied. The working 166 

characteristics of different working conditions are obtained and established, together with the relationship between the 167 

Closed Circuit Voltage (CCV), temperature and current. Combined with the working mode analysis under different 168 

working conditions, the basic characteristic analyzing experiments are investigated for lithium-ion battery packs. Through 169 

the experimental research of different magnification, cyclic charge and discharge, the key factors can be obtained.  Based 170 

on the simulation experiments at different working conditions, the output response and change trend of lithium-ion battery 171 
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pack under different working conditions can be obtained and analyzed. The working condition influence is discussed, and 172 

the operating characteristic curves and variation laws of different working conditions are obtained. By using the battery 173 

ECM and state-space equation expression, the mathematical description methods of different working conditions are 174 

explored. Furthermore, using the high robust KF and its nonlinear extension algorithm, combined with the UT and function 175 

fitting approximation, the adaptive remaining available power prediction model is constructed. 176 

Based on the simulation and experimental analysis, the relationship between the remaining available electricity and SOB 177 

between the monomers can be analyzed during the group working conditions. The model parameters and weighting factors 178 

are modified to solve the influence of the imbalance between the monomers on the SOC prediction. On the basis of 179 

simulation and experimental analysis, the influence of the equilibrium state is incorporated into the adaptive SOC 180 

prediction process by using the mathematical SOB description. As a result, the model parameters and weighting factors are 181 

corrected and the prediction model is improved. The remaining available power prediction is verified by the complex 182 

working condition experiments, which is realized through the standard current charging, long-term shelving, intermittent 183 

replenishment, rapid discharge and other experimental research. Through the normal state, over-charge and over-discharge 184 

simulation conditions, the experimental verification of the remaining available power prediction is carried out under 185 

complex conditions. 186 

In order to improve the adaptability of the SOC prediction process, the voltage signal is used to detect the combined VCR 187 

to achieve the accurate SOC prediction. In the implementation process, the intermediate parameters of UA, SOB and 188 

Rate_U are first calculated by using the mean monomer voltage value, variation coefficient and VCR. Afterwards, the 189 

current value IL under the influence of the complex working condition is obtained by using the functional calculation. The 190 

obtained current parameter IL and the equilibrium stated parameter SOB are used as input parameters, and the proposed S-191 

ECM model is constructed. Then, the corresponding state-space equation S_E can be obtained. Finally, the proposed real-192 

time SOC prediction is achieved by the proposed RP-UKF algorithm. In the SOC prediction process of the lithium-ion 193 

battery pack, the real-time detected individual cell voltages of U1, U2, U3, ... and Un are used as the main input parameters, 194 

combined with the input of the temperature signal T. The RP-UKF algorithm is used for iterative calculation to obtain the 195 

SOC value. The overall implementation structure block diagram is shown in Fig. 2. 196 
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Fig. 2.  SOC prediction structure 198 

In the above figure, the overall structure of the lithium-ion battery state-space mathematical description is divided into 199 

three parts: S1, S2 and S3.  200 

In the S1 section, the inlet parameters are the individual monomer voltages of U1, U2, U3, ... and Un, and finally it is 201 

transformed into the state-space equation for the mathematical description. The module Avr is used to calculate the average 202 

voltage value UA. The module Volt_Rate is used to obtain the VCR parameter Rate_U. And the module Var_Coef is used 203 

to find the inter-monomer balance state SOB as shown below. 204 

  1 2 3

1
A nU = U U U U

n
        (1) 205 

  1 2 3_ , , , ,A A A AmRate U h U U U U     (2) 206 

 2

2

1

1 n
i A

i A

U U

n U
SOB 



 
 
 

       (3) 207 

Wherein, n is the number of battery monomers in series, in which the parallel monomers used for expansion are taken as 208 

a single battery cell. U1, U2, U3, ..., and Un are the respective monomer voltages. U A1, U A2, U A3, ..., and U Am are the UA 209 

values, which are obtained at the first m time moments in front of the present time. h(*) is the functional relationship of the 210 

VCR. SOB is an equilibrium state between the internal connected battery monomers, which is obtained by calculating the 211 

square value of the variation coefficient θ. Ui is the voltage acquisition value of the i-th battery monomer at the present time. 212 

In the S2 plate, the mean voltage and change rate parameters are used to obtain the estimated operating current value IL by 213 

the following functional relationship, which will replace the measured value to participate in the subsequent iterative 214 

calculations. 215 

  , _L AI f U Rate U     (4) 216 

In the S3 plate, the inlet parameter is the calculated current value IL, and the balance state value SOB. In the real-time 217 

iterative calculation process, the proposed RP-UKF algorithm is adopted. The inlet parameters are the voltage signals of 218 
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each battery cells and the temperature, and the exit parameter is the SOC value of the group working lithium-ion batteries. 219 

The optimized real-time iterative calculation is used to obtain the accurate SOC value. The equivalent model S-ECM can 220 

be introduced as shown in Error! Reference source not found..  221 
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Fig. 3.  S-ECM equivalent model 223 

Through the Kirchhoff law and the SOC iterative calculation of mathematical expression of discrete time conditions, the 224 

state-space equation is obtained as shown in the Equation 5. 225 
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  (5) 226 

Based on the proposed RP-UKF algorithm, the simplified three-particle and double UT treatments are performed to 227 

improve the prediction accuracy and reduce the computational complexity. Furthermore, a specific implementation is 228 

performed for the real-time SOC prediction, the calculation flow of which is shown in Fig. 4. 229 
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Fig. 4. RP-UKF algorithm based SOC prediction flow 231 
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The above calculation makes full use of the voltage signal characteristics in the lithium-ion battery pack, and uses the 232 

characteristic information covered in the voltage signal obtained by the real-time detection instead of current signal changes 233 

to realize the effective real-time working state expression, reducing the hardware cost of the signal detection and the BMS 234 

volume. At the same time, the method can adapt to the SOC prediction of lithium-ion battery packs with different 235 

capacities by removing the dependence on the current signal detection, which greatly improves the adaptability of the 236 

algorithm. The ideal voltage source UOC is used to indicate the OCV characteristics. UL is the terminal voltage at both ends 237 

of the external load. The positive and negative of IL characters the discharge and charge working conditions. The Ohm 238 

internal resistance Ro is determined by the internal structure of the battery and the electrolyte. The polarization internal 239 

resistance RP is the resistance caused by the polarization effect when the positive and negative electrodes of the batteries are 240 

chemically reacted, and CP is the polarization capacitance. The parallel circuit of RP and CP describes the polarization 241 

process. According to the working characteristics of the capacitor component, the relationship between the current flowing 242 

through the battery polarization capacitor and its CCV is shown in Equation 6. 243 

 p
( )

(t)=C
Cp

p
dU t

I
dt

    (6) 244 

It can describe the dynamic and static performance of lithium-ion batteries, which can simulate the battery behavior 245 

accurately under different current and temperature conditions in the charge and discharge process. Its structure is relatively 246 

simple and has been widely used in the dynamic modeling of power batteries. When the battery is charged and discharged, 247 

the accumulation of current in time causes a SOC change. Ro represents the ohm internal resistance. IL is its load current, 248 

and UL is the terminal voltage. These parameters need to be obtained by HPPC experiments.  249 

The applied mathematical modelling approach is compared with other approaches that are used in the working state 250 

estimation and prediction process of the lithium-ion batteries. The main features and innovations of this method compared 251 

with other approaches are as follows: (1) A composite equivalent circuit modeling method is proposed to accurately 252 

describe the working characteristics. (2) Based on the improved UKF algorithm, a new model of group working state 253 

prediction is constructed. (3) Explanatorily apply key factors such as equilibrium state are introduced to the correction 254 

process of SOC prediction. Through the simulation of the dynamic auxiliary power simulation and the prediction effect 255 

analysis, the effective characterization of the remaining power of the power lithium battery pack is realized, in which the 256 

computational complexity is reduced and the prediction accuracy is improved. 257 
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2.3. Reliable equilibrium state evaluation 258 

The equilibrium state is introduced into the ECM modeling analysis process during the SOC prediction process of the 259 

group working lithium-ion batteries. Furthermore, these characteristics should to be reflected off the ECM, and applied to 260 

the iterative calculation processes of the SOC prediction for the battery packs. Based on the mathematical description of the 261 

monomer voltage difference, the equilibrium stated modeling and the correction methods are developed to describe the 262 

inconsistent state between the monomers. Furthermore, the model parameters are combined with the weighting factors, 263 

which are embedded in the iterative SOC calculation processes. And the iterative calculation process is implemented with 264 

modularity to eliminate the monomer difference influence on the SOC prediction accuracy of the group working lithium-265 

ion batteries. Through the modification of model parameters and weighting factors, it can make a reliable numerical 266 

evaluation of the equilibrium state between the lithium-ion battery monomers. Using the monomer voltage to achieve the 267 

inter-monomer SOB evaluation, a novel numerical description can be conducted. Combined with the variation coefficient 268 

calculation in statistics, the equilibrium stated characteristic between the monomers of the power lithium-ion battery pack is 269 

expressed. Finally, the effect of inter-body consistency difference is described in the correction section to eliminate the 270 

impact on the inter-monomer inconsistency of the SOC prediction. 271 

The lithium-ion battery packs utilize complex cascade structures to break the limitations of low voltage and small 272 

capacity of the battery monomers. Due to the inevitable monomer difference in the manufacturing and application process, 273 

the imbalance between the internal monomers of the battery pack occurs, which causes safety hazards in the practical 274 

applications and affects the accuracy of the group working SOC prediction. Therefore, it is necessary to study the 275 

evaluation method of the equilibrium state and apply it to the correction step of the prediction process. During the 276 

application of lithium-ion battery packs, the difference between monomers will increase along with time. Based on the 277 

calculation of the variation coefficient, the evaluation and characterization of the equilibrium state are realized. The 278 

implementation idea is shown in Fig. 5. 279 
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Evaluate the equilibrium state

 280 

Fig. 5. State of balance evaluation  281 

Combined with the influence of environmental conditions, the revised strategy is studied to describe the inconsistent state 282 

between monomers and solves the problem of constructing the evaluation model of the equilibrium state between 283 

monomers. The influence degree analysis of each input parameter is carried out, and the weight preset of each parameter is 284 

realized for the evaluation process, which is then used for the equilibrium state correction in the SOC prediction process. 285 

Through the modification of model parameters and weighting factors, a reliable numerical evaluation of the equilibrium 286 

state between the monomers is made and applied to the correction process of the state parameters. 287 

2.4. Battery management equipment development 288 

The development of supporting safety monitoring equipment for lithium-ion battery packs embedded in large and 289 

medium-sized UAV is mainly realized through the state parameter detection, online fault diagnosis, charging control, 290 

safety control and alarm, communication and information storage. Furthermore, the thermal runaway control strategy is 291 

studied together with security monitoring and alarm by using the intelligent management strategy and implementation 292 

technologies. When the fault is diagnosed, the controller is notified and the processing request is sent to command. When 293 

the threshold value is exceeded, the main loop power is cut off to prevent high temperature and over-discharge 294 

phenomenon. The system structure of BMS is shown in Fig. 6. 295 
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Fig. 6. Supporting safety monitoring equipment structure 297 

As can be seen from the above Figure, the safety monitoring technologies of lithium-ion battery packs are studied for the 298 

large and medium-sized UAVs. In addition, the remaining available power prediction model is embedded in the BMS to 299 

realize the online accurate SOC prediction. The key technology research is conducted, such as parameter detection, online 300 

fault diagnosis, battery safety control and alarm, charging control. And then, the development of supporting safety 301 

monitoring equipment is realized to ensure the safe and reliable operation of lithium-ion battery packs. The power lithium-302 

ion battery pack is maintained at a good operating temperature by using a heater chip and a heat sink. Based on the 303 

functional and performance requirements of the power application, a working state detection and analysis subsystem is 304 

designed. The operational status detection and analysis includes the SOC prediction of the power lithium battery pack to 305 

ensure its safe application for its energy storage and energy supply processes. The data transmission uses the digital signals 306 

with strong anti-interference ability, and realizes real-time voltage, current and temperature signal detection during charging 307 

and discharging process.  Compared with other systems, the improved equivalent model building and endurance prediction 308 

methods are introduced in our scientific research, which is put forward considering the characterization accuracy and 309 

computational complexity by using the improved equivalent circuit modeling method together with the RP-UKF algorithm 310 

investigation. The comprehensive SOB evaluation is conducted real-timely for the internal connected battery cells, which is 311 

implied into the iterative calculation process. The corresponding anti-interference processing is carried out and the 312 
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correction algorithm is employed for the obtained function relation when it is applied to the on-line state prediction process 313 

of the safety control system for the lithium-ion battery packs. 314 

3. Experimental analysis 315 

3.1. Charging and discharging process 316 

In order to get the basic working characteristics of the lithium-ion battery packs used in the UAVs, this experiment 317 

monitors the electricity variation in real-time. The lithium cobaltate (LiCoO2) battery pack is selected as the experimental 318 

sample, which consists of M cells connected in series, heating components, sampling resistors, temperature sensors, sockets 319 

and combined cover. Combined with the application of temperature sensors, cross-type connectors and electronic 320 

connectors, the organic combination of multiple components is realized. The proposed method is applicable to different 321 

types of lithium-ion battery packs, and only needs to modify the coefficient values of the functional relationships, which 322 

will be obtained by parameter identification. The voltage and current changes are analyzed for the working state monitoring 323 

under different working conditions, and the voltage variation law can be obtained towards time. The relationship is shown 324 

in Fig. 7. 325 
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Fig. 7. Charge and discharge characteristics 327 

Firstly, 1C Constant-Current (CC) charging treatment is used for the fast charging process of the charging phase. The 328 

voltage has a fast rising phase, a slow rising phase, and a fast rising phase again. When the voltage rises to the rated 329 

terminal charging voltage, the current decreases gradually until the current drops to 0.05C when the charging is at the end 330 

by using the CC-CV charging treatment. Then, the lithium-ion battery pack is left for 1 hour to make the internal reaction 331 

returns to the steady state. The discharge test is conducted by 1C CC discharging. When the voltage drops to the end 332 

discharge voltage, the discharge process is the end. In the discharge process, the whole figure can be divided into three 333 

parts, which are: the voltage of the first part in the CC discharge process is rapidly decreased. The voltage dropped rate of 334 
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the second part decreases slowly, and the voltage dropped speed of the third part is fast. The discharge is terminated by the 335 

drop to the discharge termination voltage. The different charge and discharge curves obtained by controlling the current 336 

magnifications of 0.5C, 1C and 1.5C are shown in Fig. 8. 337 
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Fig. 8. Discharge at different rates 339 

During the discharge process of the lithium-ion battery, most of the time is in the second part, and the length of time 340 

occupied by the second part reflects the health state and the battery working performance. The multiple charging 341 

characteristics are shown in Fig. 9. 342 
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Fig. 9. Charge at different rates 344 

This is the voltage variation curve under different charge and discharge current rate conditions. Its variation law is studied, 345 

and a new method is explored for the SOC prediction. At present, the difference seen by the naked eye is quite large and 346 

the difference is obvious, but this is seen under the premise of large compression in the time axis. In a short time-frame, the 347 

change will be very insignificant. In order to obtain the voltage change rate law, the charge curve is amplified locally. The 348 

functional change law is observed and obtained as shown in Fig. 10. 349 
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Fig. 10. Local charge at different rates 351 

The voltages are the same and the slopes are different. According to the one-to-one correspondence between the different 352 

slopes and the discharge current, the discharge current can be obtained. Afterward, only voltages need to be measured to 353 

get the current, which is then used estimate the SOC value. 354 

3.2. OCV-SOC nonlinear parameter identification  355 

At the room temperature of 25°C, the lithium-ion battery was filled and allowed to stand for 1 hour by the CC-CV 356 

charging method, and the internal reaction was returned to a stable state. The CC discharge was performed at a discharge 357 

rate of 1 C. When the 10% SOC is released, it is set to stand for 30 minutes. The cyclic operation is performed for 10 times, 358 

and the voltage versus time curve is obtained. OCV is the terminal voltage of the battery in the open state, which can be 359 

recorded after standing for 30 minutes for every 10% SOC release in the experiment. And the OCV-SOC relationship 360 

curve at 1C discharging rate is obtained as shown in Fig. 11. 361 
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Fig. 11. OCV-SOC curve at 1C discharge rate 363 

The curve fitting result of the OCV-SOC relationship is shown in Equation 7. 364 

   2 3 4 5 6

0 1 2 3 4 5 6OCU f a a a a a a a                  (7) 365 

Wherein, a0=22.3, a1=32.9, a2=-92.4, a3=86.6, a4=50.9, a5=-125.3, a6=53.9. 366 
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3.3. Pulse power experimental test 367 

The Hybrid Pulse Power Characterization (HPPC) tests are very important, which are used commonly in the parameter 368 

identification process. It is currently used by mounts of battery manufacture and UAV companies to evaluate the 369 

performance of the battery systems and modules. A single HPPC test is shown in Fig. 12. 370 
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Fig. 12. HPPC test current curve 372 

In the first step, the lithium-ion battery is subjected to a 1C rate CC pulse discharge 10 seconds, which will be set aside for 373 

40 seconds in the second step. In the third step, the lithium-ion battery is charged with a CC pulse of 10C at a rate of 10C. 374 

In the cycle test, the lithium-ion battery is fully charged by CC-CV charging, and the SOC value is reduced to 90%, 80%, 375 

..., 10% by CC discharging for 40 minutes. The HPPC test is performed under the SOC value, and the voltage change 376 

relationship to time can be obtained. 377 

3.4. Model parameter identification 378 

The test was carried out at a temperature of 25℃ to identify the parameters in the ECM, such as the ohm internal 379 

resistance Ro, the polarization internal resistance Rp and the polarization capacitance Cp. Taking the SOC of 0.95 as an 380 

example, the single cycle HPPC tested voltage response curve is obtained as shown in Fig. 13. 381 
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Fig. 13. HPPC single test curve 383 
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(1) The parameter identification of ohm internal resistance Ro is conducted by using the following treatment. The current 384 

changes at time t1, and the sudden changes of voltage U0 to U1 are caused by the ohm internal resistance Ro, so its value can 385 

be obtained by Equation 8. 386 

 
0 1

0
U U U

R
I I

 
      (8) 387 

(2) Parameter identification of polarization internal resistance RP can be investigated as follows. During the static stage of 388 

t3-t4, the polarization capacitance CP is discharged through RP, and the voltage is slowly increased to U2 by U1’. The 389 

magnitude of the rise is determined by RP, so its value can be obtained by using Equation 9. Wherein, I is the discharge 390 

current. 391 
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      (9) 392 

(3) Parameter identification of time constant can be investigated as follows. The same analysis of the t3-t4 static stage, the 393 

zero input response to the parallel RC circuit of this stage can be implied to obtain the OCV value by using Equation 10. 394 

 1 1(1 )OC CP

t

U U U U e         (10) 395 

As can be known from the above Equation, U1’ and U2 can be obtained as shown in Equation 11 and 12. 396 
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Furthermore, the time constant of the simultaneous  Equations can be obtained as shown in Equation 13. 399 
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    (13) 400 

(4) Parameter identification of the polarization capacitor CP can be obtained, after obtaining RP, which is shown in 401 

Equation 14. 402 

 P

P

C
R


     (14) 403 

According to the HPPC test data, the values of various parameters are calculated, as shown in Table 1. 404 

Tab.1 The parameter value of HPPC test and calculation  405 

SOC R0/ mΩ Rp/ mΩ Cp/F Uoc/V 

1 20.7 1.49 93317.1 3.4 
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0.9 18.6 1.16 49748.1 3.34 

0.8 15.7 1.06 54440.5 3.32 

0.7 17.9 1.02 56575.4 3.3 

0.6 17.1 1.36 42431.6 3.296 

0.5 19.55 1.21 47691.7 3.294 

0.4 20.3 1.59 36294.2 3.29 

0.3 23.4 1.67 34555.5 3.27 

0.2 24.9 1.46 39525.8 3.25 

0.1 28.6 1.59 22899.1 3.21 

As can be known from the experimental data analysis, the mean value of ohm internal resistance Ro is 20.68 mΩ. The 406 

mean value of the polarization internal resistance RP is 1.36 mΩ, and the mean value of polarization capacitance CP is 407 

24421.7F. The ohm internal resistance Ro does not change significantly into the discharge process. As the SOC value 408 

decreases, there is a slightly rising process. The polarization internal resistance RP has little change along with the SOC 409 

value, and there is no obvious rising or falling trend. Therefore, the average values are selected as the polarization internal 410 

resistance values. The polarization capacitance CP decreases along with the SOC value, and it increases gradually.  411 

3.5. The SOC prediction effect 412 

The M-ICPXX power lithium-ion battery pack was selected as the experimental sample, which was mainly composed of 413 

medium-sized ICPXX lithium-ion battery cells, heating components, sampling resistors, temperature sensors, sockets and 414 

composite cover. The combination, combined with the application of temperature sensors, cross-connectors and electrical 415 

connectors, enables the organic combination of multiple components. The string XX represents the rated capacity of the 416 

lithium-ion battery pack. The single cells are composed of a plurality of batteries connected with parallel and confluent, 417 

which is sealed by a battery cell shell and a single cell cover. The heating component includes a polyimide heating film and 418 

a heating frame. During the application process of the lithium-ion battery pack, the battery cells formed by the respective 419 

parallel battery cells need to be cascaded in series to meet the high voltage and large capacity requirements of the UAV 420 

power application. According to the power demand, the number of commonly used series lithium-ion monomers should be 421 

6, 7, and 14. In the experimental analysis process, the lithium-ion battery pack and its internal connected monomers were 422 

selected for the experimental analysis. 423 
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Fig. 14. CCV tracking effect 425 

As can be known from the experimental data, the effective CCV tracking and the SOC estimation can be realized under 426 

complex working conditions. 427 
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Fig. 15. SOC prediction effect 429 

After comparison of the results obtained by the Ah-based integral method, the error between the iterative calculated value 430 

and the ampere-hour integral value is stable within 2.00%. It can be seen from the experimental data shown in the figure 431 

that the tracking error of the CCV in the complex working condition is 1.00%, and the error between the iterative 432 

calculation value and the ampere-hour integral value is stable within 2.00%. Experimental data shows that this method can 433 

achieve the effective CCV tracking and SOC prediction. 434 

4. Conclusions 435 

The endurance prediction of the power lithium battery pack plays an important role in its energy and safety management, 436 

which is an important part of the clean production and the reasonable battery energy management will facilitating its 437 

smooth implementation. A new endurance capability predicting method is proposed and realized, which improves the 438 

prediction accuracy and reduces the iterative computational complexity. The experimental verification is conducted, 439 

combining with the theoretical analysis, model construction, equipment development and experimental verification. In 440 

view of the reliable energy management and safety control objectives of lithium-ion battery pack, the battery equivalent 441 
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modeling construction method is explored and the adaptive residual available power prediction along with equilibrium state 442 

evaluation is realized. In combination with the application scenario analysis of large and medium-sized UAVs, a safety 443 

monitoring equipment is developed to conduct the reliable energy management and safety controls. And weighed the 444 

complexity and accuracy, the improved ECM has been constructed by using the HPPC test of the parameter identification. 445 

The charge and discharge experiments and nonlinear curve identification experiments are carried out to analyze the partial 446 

operating characteristics of the lithium-ion batteries, which are also used to verify the prediction effect. It provides 447 

experimental basis of the future practical applications, modeling simulation and BMS design. In the future, the following 448 

aspects will be further studied: (1) The equivalent modeling methods of group working characteristics by using the 449 

electronic components. (2) The calculation improvement on the unscented transformation weights and the Kalman 450 

superposition correction factor. (3) The expansion and correction strategy of the influence parameters. 451 

Acknowledgments 452 

This research was supported by National Natural Science Foundation (No. 61801407), Sichuan Province Science and 453 

Technology Support Program (No. 2018GZ0390, 2017FZ0013), Scientific Research Fund of Sichuan (No. 17ZB0453), 454 

Sichuan Science and Technology Innovation Miao-Zi Project (No. 2017109), Teaching Research Project (18gjzx11, 455 

18dsts16), Sichuan Science and Technology Innovation Cultivation Project (No. 201710619112). In addition, CF would 456 

like to express his gratitude to  RGU for its support. Thanks to the sponsors. 457 

References 458 

Carkhuff, B. G., Demirev, P. A., & Srinivasan, R. (2018). Impedance-Based Battery Management System for 459 

Safety Monitoring of Lithium-ion Batteries. Ieee Transactions on Industrial Electronics, 65(8), 6497-460 

6504.  461 

Farmann, A., & Sauer, D. U. (2018). Comparative study of reduced order equivalent circuit models for on-board 462 

state-of-available-power prediction of lithium-ion batteries in electric vehicles. Applied Energy, 225, 463 

1102-1122.  464 



23 

Hannan, M. A., Hoque, M. M., Hussain, A., Yusof, Y., & Ker, P. J. (2018). State-of-the-Art and Energy 465 

Management System of Lithium-ion Batteries in Electric Vehicle Applications:Issues and 466 

Recommendations. Ieee Access, 6, 19362-19378.  467 

He, F. Q., Li, X. X., Zhang, G. Q., Zhong, G. J., & He, J. S. (2018). Experimental investigation of thermal 468 

management system for lithium-ion batteries module with coupling effect by heat sheets and phase 469 

change materials. International Journal of Energy Research, 42(10), 3279-3288.  470 

Lai, X., Zheng, Y. J., & Sun, T. (2018). A comparative study of different equivalent circuit models for estimating 471 

SOC of lithium-ion batteries. Electrochimica Acta, 259, 566-577.  472 

Li, K., Yan, J. J., Chen, H. D., & Wang, Q. S. (2018). Water cooling based strategy for lithium-ion battery pack 473 

dynamic cycling for thermal management system. Applied Thermal Engineering, 132, 575-585.  474 

Liu, X. Y., Li, W. L., & Zhou, A. G. (2018). PNGV Equivalent Circuit Model and SOC Prediction Algorithm for 475 

Lithium-ion Battery Pack Adopted in AGV Vehicle. Ieee Access, 6, 23639-23647.  476 

Mathew, M., Janhunen, S., Rashid, M., Long, F., & Fowler, M. (2018). Comparative Analysis of Lithium-ion 477 

Battery Resistance Prediction Techniques for Battery Management Systems. Energies, 11(6).  478 

Mondal, B., Lopez, C. F., Verma, A., & Mukherjee, P. P. (2018). Vortex generators for active thermal 479 

management in lithium-ion battery systems. International Journal of Heat and Mass Transfer, 124, 480 

800-815.  481 

Omariba, Z. B., Zhang, L. J., & Sun, D. B. (2018). Review on Health Management System for Lithium-ion 482 

Batteries of Electric Vehicles. Electronics, 7(5).  483 

Saw, L. H., Poon, H. M., Thiam, H. S., Cai, Z. S., Chong, W. T., Pambudi, N. A., & King, Y. J. (2018). Novel thermal 484 

management system using mist cooling for lithium-ion battery packs. Applied Energy, 223, 146-158.  485 

Shoe, A. I., Meng, J. H., Shoe, D. I., Swierczynski, M., Teodorescu, R., & Kaer, S. K. (2018). Influence of Battery 486 

Parametric Uncertainties on the SOC Prediction of Lithium-ion Titanate Oxide-Based Batteries. 487 

Energies, 11(4).  488 



24 

Wang, Q. K., He, Y. J., Shen, J. N., Hu, X. S., & Ma, Z. F. (2018). SOC-Dependent Polynomial Equivalent Circuit 489 

Modeling for Electrochemical Impedance Spectroscopy of Lithium-ion Batteries. Ieee Transactions on 490 

Power Electronics, 33(10), 8449-8460.  491 

Wang, S. L., Fernandez, C., Liu, X. H., Su, J., & Xie, Y. X. (2018). The parameter identification method study of 492 

the splice equivalent circuit model for the aerial lithium-ion battery pack. Measurement & Control, 493 

51(5-6), 125-137.  494 

Wang, S. L., Fernandez, C., Shang, L. P., Li, Z. F., & Yuan, H. F. (2018). An integrated online adaptive SOC 495 

prediction approach of high-power lithium-ion battery packs. Transactions of the Institute of 496 

Measurement and Control, 40(6), 1892-1910.  497 

Wang, S. L., Yu, C. M., Fernandez, C., Chen, M. J., Li, G. L., & Liu, X. H. (2018). Adaptive SOC Prediction Method 498 

for an Aeronautical Lithium-ion Battery Pack Based on a Reduced Particle-unscented Kalman Filter. 499 

Journal of Power Electronics, 18(4), 1127-1139.  500 

Wang, T. P., Chen, S. Z., Ren, H. B., & Zhao, Y. Z. (2018). Model-based unscented Kalman filter observer design 501 

for lithium-ion battery state of charge prediction. International Journal of Energy Research, 42(4), 502 

1603-1614.  503 

Wang, X., Xu, J., & Zhao, Y. F. (2018). Wavelet Based Denoising for the Prediction of the State of Charge for 504 

Lithium-ion Batteries. Energies, 11(5).  505 

Wang, X. M., Xie, Y. Q., Day, R., Wu, H. W., Hu, Z. L., Zhu, J. Q., & Wen, D. S. (2018). Performance analysis of a 506 

novel thermal management system with composite phase change material for a lithium-ion battery 507 

pack. Energy, 156, 154-168.  508 

Wei, Z. B., Zou, C. F., Leng, F., Soong, B. H., & Tseng, K. J. (2018). Online Model Identification and SOC Estimate 509 

for Lithium-ion Battery With a Recursive Total Least Squares-Based Observer. Ieee Transactions on 510 

Industrial Electronics, 65(2), 1336-1346.  511 

Won, I. K., Choo, K. M., Lee, S. R., Lee, J. H., & Won, C. Y. (2018). Lifetime Management Method of Lithium-ion 512 

battery for Energy Storage System. Journal of Electrical Engineering & Technology, 13(3), 1173-1184.  513 



25 

Xia, B. Z., Lao, Z. Z., Zhang, R. F., Tian, Y., Chen, G. H., Sun, Z., . . . Wang, H. W. (2018). Online Parameter 514 

Identification and State of Charge Prediction of Lithium-ion Batteries Based on Forgetting Factor 515 

Recursive Least Squares and Nonlinear Kalman Filter. Energies, 11(1).  516 

Xia, B. Z., Zhang, Z., Lao, Z. Z., Wang, W., Sun, W., Lai, Y. Z., & Wang, M. W. (2018). Strong Tracking of a H-517 

Infinity Filter in Lithium-ion Battery State of Charge Prediction. Energies, 11(6).  518 

Xie, J. L., Ma, J. C., & Bai, K. (2018). Enhanced Coulomb Counting Method for SOC Prediction of Lithium-ion 519 

Batteries based on Peukert's Law and Coulombic Efficiency. Journal of Power Electronics, 18(3), 910-520 

922.  521 

Xu, J., Jia, Y., Liu, B., Zhao, H., Yu, H., Li, J., & Yin, S. (2018). Coupling Effect of State-of-Health and SOC on the 522 

Mechanical Integrity of Lithium-ion Batteries. Experimental Mechanics, 58(4), 633-643.  523 

Yang, D., Zhang, X., Pan, R., Wang, Y. J., & Chen, Z. H. (2018). A novel Gaussian process regression model for 524 

state-of-health prediction of lithium-ion battery using charging curve. Journal of Power Sources, 384, 525 

387-395.  526 

Yang, J. F., Xia, B., Huang, W. X., Fu, Y. H., & Mi, C. (2018). Online state-of-health prediction for lithium-ion 527 

batteries using constant-voltage charging current analysis. Applied Energy, 212, 1589-1600.  528 

Ye, M., Guo, H., Xiong, R., & Yu, Q. Q. (2018). A double-scale and adaptive particle filter-based online 529 

parameter and state of charge prediction method for lithium-ion batteries. Energy, 144, 789-799.  530 

Ye, X., Zhao, Y. H., & Quan, Z. H. (2018). Thermal management system of lithium-ion battery module based on 531 

micro heat pipe array. International Journal of Energy Research, 42(2), 648-655.  532 

Yuan, C. C., Wang, B. J., Zhang, H. Z., Long, C., & Li, H. H. (2018). SOC Prediction of Lithium-ion Battery Based on 533 

a Novel Reduced Order Electrochemical Model. International Journal of Electrochemical Science, 13(1), 534 

1131-1146.  535 

Zeng, Z. B., Tian, J. D., Li, D., & Tian, Y. (2018). An Online State of Charge Prediction Algorithm for Lithium-ion 536 

Batteries Using an Improved Adaptive Cubature Kalman Filter. Energies, 11(1).  537 



26 

Zheng, L. F., Zhu, J. G., Lu, D. D. C., Wang, G. X., & He, T. T. (2018). Incremental capacity analysis and 538 

differential voltage analysis based state of charge and capacity prediction for lithium-ion batteries. 539 

Energy, 150, 759-769.  540 

Zheng, Y. J., Gao, W. K., Ouyang, M. G., Lu, L. G., Zhou, L., & Han, X. B. (2018). SOC inconsistency prediction of 541 

lithium-ion battery pack using mean-difference model and extended Kalman filter. Journal of Power 542 

Sources, 383, 50-58.  543 

Zheng, Y. J., Ouyang, M. G., Han, X. B., Lu, L. G., & Li, J. Q. (2018). Investigating the error sources of the online 544 

state of charge prediction methods for lithium-ion batteries in electric vehicles. Journal of Power 545 

Sources, 377, 161-188.  546 

 547 


	WANG 2018 A novel endurance
	coversheetJournalArticles
	1-s2.0-S0959652618333869-main.pdf
	A novel endurance prediction method of series connected lithium-ion batteries based on the voltage change rate and iterativ ...
	1. Introduction
	2. Mathematical analysis
	2.1. Parameter detection and anti-interference
	2.2. Residual power prediction and construction
	2.3. Reliable equilibrium state evaluation
	2.4. Battery management equipment development

	3. Experimental analysis
	3.1. Charging and discharging process
	3.2. OCV-SOC nonlinear parameter identification
	3.3. Pulse power experimental test
	3.4. Model parameter identification
	3.5. The SOC prediction effect

	4. Conclusions
	Acknowledgments
	References



	Accepted.pdf

	OA: GREEN
	OA Logo: 
	AUTHORS: WANG, S.-L., TANG, W., FERNANDEZ, C., YU, C.-M., ZOU, C.-Y. and ZHANG, X.-Q. 
	TITLE: A novel endurance prediction method of series connected lithium-ion batteries based on the voltage change rate and iterative calculation. 
	YEAR: 2018
	Publisher citation: WANG, S.-L., TANG, W., FERNANDEZ, C., YU, C.-M., ZOU, C.-Y. and ZHANG, X-Q. 2018. A novel endurance prediction method of series connected lithium-ion batteries based on the voltage change rate and iterative calculation. Journal of cleaner production [online], 210, pages 43-54. Available from: https://doi.org/10.1016/j.jclepro.2018.10.349
	OpenAIR citation: WANG, S.-L., TANG, W., FERNANDEZ, C., YU, C.-M., ZOU, C.-Y. and ZHANG, X.-Q. 2018. A novel endurance prediction method of series connected lithium-ion batteries based on the voltage change rate and iterative calculation. Journal of cleaner production, 210, pages 43-54. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk/
	Version: AUTHOR ACCEPTED
	Publisher: ELSEVIER
	Series: Journal of cleaner production
	ISSN: 0959-6526
	eISSN: 
	Set statement: 
	License: BY-NC-ND 4.0
	License URL: https://creativecommons.org/licenses/by-nc-nd/4.0
	CC Logo: 
		2018-11-22T10:56:02+0000
	OpenAIR at RGU




