1,524 research outputs found

    An adaptive Cartesian embedded boundary approach for fluid simulations of two- and three-dimensional low temperature plasma filaments in complex geometries

    Get PDF
    We review a scalable two- and three-dimensional computer code for low-temperature plasma simulations in multi-material complex geometries. Our approach is based on embedded boundary (EB) finite volume discretizations of the minimal fluid-plasma model on adaptive Cartesian grids, extended to also account for charging of insulating surfaces. We discuss the spatial and temporal discretization methods, and show that the resulting overall method is second order convergent, monotone, and conservative (for smooth solutions). Weak scalability with parallel efficiencies over 70\% are demonstrated up to 8192 cores and more than one billion cells. We then demonstrate the use of adaptive mesh refinement in multiple two- and three-dimensional simulation examples at modest cores counts. The examples include two-dimensional simulations of surface streamers along insulators with surface roughness; fully three-dimensional simulations of filaments in experimentally realizable pin-plane geometries, and three-dimensional simulations of positive plasma discharges in multi-material complex geometries. The largest computational example uses up to 800800 million mesh cells with billions of unknowns on 40964096 computing cores. Our use of computer-aided design (CAD) and constructive solid geometry (CSG) combined with capabilities for parallel computing offers possibilities for performing three-dimensional transient plasma-fluid simulations, also in multi-material complex geometries at moderate pressures and comparatively large scale.Comment: 40 pages, 21 figure

    The physics of streamer discharge phenomena

    Get PDF
    In this review we describe a transient type of gas discharge which is commonly called a streamer discharge, as well as a few related phenomena in pulsed discharges. Streamers are propagating ionization fronts with self-organized field enhancement at their tips that can appear in gases at (or close to) atmospheric pressure. They are the precursors of other discharges like sparks and lightning, but they also occur in for example corona reactors or plasma jets which are used for a variety of plasma chemical purposes. When enough space is available, streamers can also form at much lower pressures, like in the case of sprite discharges high up in the atmosphere. We explain the structure and basic underlying physics of streamer discharges, and how they scale with gas density. We discuss the chemistry and applications of streamers, and describe their two main stages in detail: inception and propagation. We also look at some other topics, like interaction with flow and heat, related pulsed discharges, and electron runaway and high energy radiation. Finally, we discuss streamer simulations and diagnostics in quite some detail. This review is written with two purposes in mind: First, we describe recent results on the physics of streamer discharges, with a focus on the work performed in our groups. We also describe recent developments in diagnostics and simulations of streamers. Second, we provide background information on the above-mentioned aspects of streamers. This review can therefore be used as a tutorial by researchers starting to work in the field of streamer physics.Comment: 89 pages, 29 figure

    A new numerical strategy with space-time adaptivity and error control for multi-scale streamer discharge simulations

    Get PDF
    This paper presents a new resolution strategy for multi-scale streamer discharge simulations based on a second order time adaptive integration and space adaptive multiresolution. A classical fluid model is used to describe plasma discharges, considering drift-diffusion equations and the computation of electric field. The proposed numerical method provides a time-space accuracy control of the solution, and thus, an effective accurate resolution independent of the fastest physical time scale. An important improvement of the computational efficiency is achieved whenever the required time steps go beyond standard stability constraints associated with mesh size or source time scales for the resolution of the drift-diffusion equations, whereas the stability constraint related to the dielectric relaxation time scale is respected but with a second order precision. Numerical illustrations show that the strategy can be efficiently applied to simulate the propagation of highly nonlinear ionizing waves as streamer discharges, as well as highly multi-scale nanosecond repetitively pulsed discharges, describing consistently a broad spectrum of space and time scales as well as different physical scenarios for consecutive discharge/post-discharge phases, out of reach of standard non-adaptive methods.Comment: Support of Ecole Centrale Paris is gratefully acknowledged for several month stay of Z. Bonaventura at Laboratory EM2C as visiting Professor. Authors express special thanks to Christian Tenaud (LIMSI-CNRS) for providing the basis of the multiresolution kernel of MR CHORUS, code developed for compressible Navier-Stokes equations (D\'eclaration d'Invention DI 03760-01). Accepted for publication; Journal of Computational Physics (2011) 1-2

    Implementation of the classical plasma–fluid model for simulation of dielectric barrier discharge (DBD) actuators in OpenFOAM

    Get PDF
    To simulate the coupled plasma and fluid flow physics of dielectric-barrier discharge, a plasma–fluid model is utilized in conjunction with a compressible flow solver. The flow solver is responsible for determining the bulk flow kinetics of dominant neutral background species including mole fractions, gas temperature, pressure and velocity. The plasma solver determines the kinetics and energetics of the plasma species and accounts for finite rate chemistry. In order to achieve maximum reliability and best performance, we have utilized state-of-the-art numerical and theoretical approaches for the simulation of DBD plasma actuators. In this respect, to obtain a stable and accurate solution method, we tested and compared different existing numerical procedures, including operator-splitting algorithm, super-timestepping, and solution of the Poisson and transport equations in a semi-implicit manner. The implementation of the model is conducted in OpenFOAM. Four numerical test cases are considered in order to validate the solvers and to investigate the drawbacks/benefits of the solution approaches. The test problems include single DBD actuator driven by positive, negative and sinusoidal voltage waveforms, similar to the ones that could be found in literature. The accuracy of the results strongly depends to the choice of time step, grid size and discretization scheme. The results indicate that the super-time-stepping treatment improves the computational efficiency in comparison to explicit schemes. However, the semiimplicit treatment of the Poisson and transport equations showed better performance compared to the other tested approaches.info:eu-repo/semantics/publishedVersio

    Plasma propulsion simulation using particles

    Full text link
    This perspective paper deals with an overview of particle-in-cell / Monte Carlo collision models applied to different plasma-propulsion configurations and scenarios, from electrostatic (E x B and pulsed arc) devices to electromagnetic (RF inductive, helicon, electron cyclotron resonance) thrusters, with an emphasis on plasma plumes and their interaction with the satellite. The most important elements related to the modeling of plasma-wall interaction are also presented. Finally, the paper reports new progress in the particle-in-cell computational methodology, in particular regarding accelerating computational techniques for multi-dimensional simulations and plasma chemistry Monte Carlo modules for molecular and alternative propellan

    Analysis and development of numerical methodologies for simulation of flow control with dielectric barrier discharge actuators

    Get PDF
    The aim of this thesis is to investigate and develop different numerical methodologies for modeling the Dielectric Barrier discharge (DBD) plasma actuators for flow control purposes. Two different modeling approaches were considered; one based on Plasma-fluid model and the other based on a phenomenological model. A three component Plasma fluid model based on the transport equations of charged particles was implemented in this thesis in OpenFOAM, using several techniques to reduce the numerical issues. The coupled plasma-fluid problem involves wide range of length and time scales which make the numerical simulation difficult. Therefore, to obtain stable and accurate results in a reasonable computational run time, several numerical procedures were implemented including: semi-implicit treatment of coupling of Poisson equation and charge density equation, super-time-stepping and operator splitting algorithm. We examined our code for a constant positive voltage, testing for the dependency of the behavior of the current density to the selected numerical scheme. In addition, although there is no clear numerical or experimental benchmark case for DBD plasma actuator problem, the developed plasma solver was compared quantitively and qualitively with several numerical works in the literature. Afterward, the developed numerical methodology was used to explore the possibility of influencing the flow, with higher speed, using nano-second (NS) pulsed DBD plasma actuator. Therefore, the interaction of the transonic flow and actuation effects of DBD plasma actuator with nano second pulsed voltage was simulated. The effect of gas heating and body force was calculated by the plasma solver and was supplied into the gas dynamic solver for simulating the flow field. Moreover, the results of the plasma fluid model were used to develop an energy deposition model. It was shown that the energy deposition model is able to capture the main features of the effect of NS DBD plasma actuators correctly, with less computational time. It was also shown that fast energy transfer, from plasma to fluid, leads to the formation of micro-shock waves that modify locally the features of the transonic flow. Although the numerical efficiency of the plasma fluid model was improved, the computational cost of simulating the effect of DBD plasma actuator on a real scale flow situation was still high. Therefore, a simple model for plasma discharge and its effect on the flow was developed based on scaling of the thrust generated by DBD plasma actuators. The scaled thrust model correctly predicts the nonlinear dependency of the thrust produced and the applied voltage. These scales were then introduced into a simple phenomenological model to estimate and simulate the body force distribution generated by the plasma actuator. Although the model includes some experimental correlations, it does not need any fitting parameter. The model was validated with experimental results and showed better accuracy compared to previous plasma models. Using a simple phenomenological model that was developed here, a numerical study was conducted to investigate and compare the effect of steady and unsteady actuation for controlling the flow at relatively high Reynolds number. Firstly it was shown that the size of the time-averaged separation bubble is greatly reduced and the flow structure is sensitive to the frequency of burst modulation of DBD plasma actuators. The results also confirmed that in the case of unsteady actuation, the burst frequency and burst ratio are crucial parameters for influencing the capability of the actuators to control the flow. It was found that burst frequencies near the natural frequencies of the system were able to excite the flow structure in a resonance mode. This observation also confirmed that with proper frequencies of excitation, the flow structure can be well rearranged and the flow losses can be reduced. In the end, Plasma actuators were used for controlling the flow over the Coanda surface of the ACHEON nozzle. When the plasma actuator was used, it was possible to postpone separation of the flow and increase the deflection angle of the exit jet of the nozzle. To find the optimum position of the actuators, seven DBD actuators in forward forcing mode were placed over the Coanda surface considering the numerically obtained separation points. Results show that when the actuator is placed slightly before the separation point, enhanced thrust vectorizing with the use of DBD actuator is achievable. Preliminary results of the experiments agree with planned/foreseen deflection angle obtained from numerical computation.O objetivo deste trabalho visa a investigação e desenvolvimento de diferentes métodos numéricos para modelação de actuadores a plasma de Descarga em Barreira Dieléctrica, (DBD), tendo em vista o controlo do escoamento na camada limite. Esta modelação numérica foi abordada de duas formas diferentes, uma baseada num modelo de “plasma-fluid” e outra fundamentada num modelo fenomenológico. Neste trabalho é usado um modelo “plasma-fluid” de três componentes que é baseado numa equação de transporte para as partículas electricamente carregadas. Este foi implementado no software OpenFOAM fazendo uso de diversas técnicas para minimização de problemas numéricos que ocorriam na resolução das equações. O cálculo de um problema com acoplamento entre plasma e fluido envolve uma gama diversa de escalas, tanto temporais como dimensionais, trata-se então de uma simulação numérica delicada. Como tal, e por forma a obter resultados estáveis e precisos num tempo de cálculo considerado razoável, foram implementados diversos procedimentos numéricos, tais como o tratamento semiimplícito do acoplamento da equação de Poisson com a equação da densidade de carga, o super-passo-tempo e ainda um algoritmo do tipo divisão de operador. Foi considerado o caso de uma diferença de potencial positiva, constante, e testada a dependência da densidade de corrente com os diferentes esquemas numéricos. Apesar de não existir atualmente uma base de dados, de tipo numérica ou experimental, com casos de teste para actuadores a plasma tipo DBD, o modelo computacional desenvolvido para calcular o plasma foi validado qualitativamente, bem como quantitativamente, usando os vários trabalhos numéricos disponíveis na literatura. Após esta validação inicial, a metodologia numérica desenvolvida foi utilizada para explorar a possibilidade de influenciar um escoamento de maior velocidade, através de actuadores a plasma tipo DBD com impulsos de tensão da ordem de nano-segundos (NS). Desta forma foi simulada a interacção entre um escoamento transónico e o efeito dos actuadores a plasma tipo DBD sobre o escoamento, usando pulsos de nano-segundos. O efeito térmico do gás, assim como a força resultante, foram calculados usando o modelo numérico para cálculo de plasmas desenvolvido neste trabalho. O resultado obtido é acoplado ao modelo de cálculo para a dinâmica de gases, o que torna possível simular as condições do escoamento resultante. Adicionalmente, os resultados do modelo de “plasma-fluid” foram reaproveitados para desenvolver um modelo de deposição de energia. Este demonstrou ter a capacidade de capturar correctamente as características principais do efeito de actuadores de plasma, de tipo NS-DBD, com um tempo de computação menor. Foi demonstrada que uma rápida transferência de energia, do plasma para o fluido, leva à formação de micro-ondas de choque que alteram localmente as características do escoamento transónico. Apesar da eficiência numérica do modelo de “plasma-fluid” ter sido melhorada, o seu custo computacional para a simulação de actuadores a plasma tipo DBD à escala real continua bastante elevado. Neste sentido, a partir de uma escala de propulsão gerada pelo actuador plasma DBD, foi desenvolvido um modelo mais simples para a descarga do plasma e para determinar os seus efeitos sobre o escoamento. O modelo inicial previa correctamente uma dependência não-linear entre a força propulsiva gerada e a diferença de potencial aplicada. Estas escalas foram então introduzidas num modelo fenomenológico mais simples para estimar, e simular, a distribuição de forças geradas pelo actuador a plasma. Apesar de o modelo incluir algumas correlações experimentais, este não requer qualquer parâmetro de afinação. O modelo foi validado com resultados experimentais, demonstrando melhores resultados quando comparado com outros modelos de plasma . Utilizando um modelo fenomenológico simplificado, que foi desenvolvido no presente trabalho, foi feito um estudo numérico com o objetivo de investigar, e comparar, os efeitos que uma actuação estacionária e não-estacionária exibe sobre o controlo do escoamento a números de Reynolds relativamente elevados. Foi demostrado que a dimensão da bolha de separação é reduzida em muito e que a estrutura do escoamento é sensível à frequência da modulação “burst” do actuador a plasma tipo DBD. Os resultados também confirmaram que, para o caso de actuação não-estacionária, a frequência de “burst” e o “burst ratio”, são parâmetros cruciais para influenciar a capacidade de controlo do escoamento por parte dos actuadores a plasma. Determinou-se que as frequências “burst”, semelhantes às frequências naturais do sistema, são capazes de excitar as estruturas do escoamento num modo de ressonância. Esta observação confirma igualmente que, com frequências de excitação apropriadas, a estrutura de um escoamento de camada limite consegue ser correctamente modificada, e que as perdas no escoamento são reduzidas. Por fim, os actuadores a plasma foram utilizados para o controlo do escoamento sobre uma superfície Coanda de uma tubeira. Quando nesta foi aplicado um plasma, tornou-se possível retardar a separação do escoamento e aumentar o ângulo de deflexão do jacto gerado pelo propulsor. Por forma a encontrar a posição óptima para os actuadores, sete actuadores de tipo DBD foram distribuídos ao longo da superfície Coanda, tendo em consideração os pontos de separação do escoamento na camada limite obtidos numericamente. Os resultados mostram que quando o actuador DBD é colocado ligeiramente antes do ponto de separação do escoamento, há um aumento da capacidade de controlo e vectorização do jacto gerado. Os resultados preliminares das experiências efectuadas estão de acordo com o ângulo de deflexão do jacto previsto pelo modelo computacional
    corecore