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Abstract 
The aim of this thesis is to investigate and develop different numerical methodologies for 

modeling the Dielectric Barrier discharge (DBD) plasma actuators for flow control purposes. 

Two different modeling approaches were considered; one based on Plasma-fluid model and 

the other based on a phenomenological model.  

A three component Plasma fluid model based on the transport equations of charged particles 

was implemented in this thesis in OpenFOAM, using several techniques to reduce the 

numerical issues. The coupled plasma-fluid problem involves wide range of length and time 

scales which make the numerical simulation difficult. Therefore, to obtain stable and 

accurate results in a reasonable computational run time, several numerical procedures were 

implemented including: semi-implicit treatment of coupling of Poisson equation and charge 

density equation, super-time-stepping and operator splitting algorithm.  

We examined our code for a constant positive voltage, testing for the dependency of the 

behavior of the current density to the selected numerical scheme. In addition, although there 

is no clear numerical or experimental benchmark case for DBD plasma actuator problem, the 

developed plasma solver was compared quantitively and qualitively with several numerical 

works in the literature. Afterward, the developed numerical methodology was used to explore 

the possibility of influencing the flow, with higher speed, using nano-second (NS) pulsed DBD 

plasma actuator. Therefore, the interaction of the transonic flow and actuation effects of 

DBD plasma actuator with nano second pulsed voltage was simulated. The effect of gas 

heating and body force was calculated by the plasma solver and was supplied into the gas 

dynamic solver for simulating the flow field. Moreover, the results of the plasma fluid model 

were used to develop an energy deposition model. It was shown that the energy deposition 

model is able to capture the main features of the effect of NS DBD plasma actuators 

correctly, with less computational time. It was also shown that fast energy transfer, from 

plasma to fluid, leads to the formation of micro-shock waves that modify locally the features 

of the transonic flow.  

Although the numerical efficiency of the plasma fluid model was improved, the computational 

cost of simulating the effect of DBD plasma actuator on a real scale flow situation was still 

high. Therefore, a simple model for plasma discharge and its effect on the flow was 

developed based on scaling of the thrust generated by DBD plasma actuators. The scaled 

thrust model correctly predicts the nonlinear dependency of the thrust produced and the 

applied voltage. These scales were then introduced into a simple phenomenological model to 

estimate and simulate the body force distribution generated by the plasma actuator. 

Although the model includes some experimental correlations, it does not need any fitting 

parameter. The model was validated with experimental results and showed better accuracy 

compared to previous plasma models.  

Using a simple phenomenological model that was developed here, a numerical study was 

conducted to investigate and compare the effect of steady and unsteady actuation for 
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controlling the flow at relatively high Reynolds number. Firstly it was shown that the size of 

the time-averaged separation bubble is greatly reduced and the flow structure is sensitive to 

the frequency of burst modulation of DBD plasma actuators. The results also confirmed that 

in the case of unsteady actuation, the burst frequency and burst ratio are crucial parameters 

for influencing the capability of the actuators to control the flow. It was found that burst 

frequencies near the natural frequencies of the system were able to excite the flow structure 

in a resonance mode. This observation also confirmed that with proper frequencies of 

excitation, the flow structure can be well rearranged and the flow losses can be reduced. 

In the end, Plasma actuators were used for controlling the flow over the Coanda surface of 

the ACHEON nozzle. When the plasma actuator was used, it was possible to postpone 

separation of the flow and increase the deflection angle of the exit jet of the nozzle. To find 

the optimum position of the actuators, seven DBD actuators in forward forcing mode were 

placed over the Coanda surface considering the numerically obtained separation points. 

Results show that when the actuator is placed slightly before the separation point, enhanced 

thrust vectorizing with the use of DBD actuator is achievable. Preliminary results of the 

experiments agree with planned/foreseen deflection angle obtained from numerical 

computation.  

 

Keywords 

Dielectric Barrier discharge actuator, Plasma Fluid Model, phenomenological DBD model, Flow 

control
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Resumo 
O objetivo deste trabalho visa a investigação e desenvolvimento de diferentes métodos 

numéricos para modelação de actuadores a plasma de Descarga em Barreira Dieléctrica, 

(DBD), tendo em vista o controlo do escoamento na camada limite. Esta modelação numérica 

foi abordada de duas formas diferentes, uma baseada num modelo de “plasma-fluid” e outra 

fundamentada num modelo fenomenológico. 

Neste trabalho é usado um modelo “plasma-fluid” de três componentes que é baseado numa 

equação de transporte para as partículas electricamente carregadas. Este foi implementado 

no software OpenFOAM fazendo uso de diversas técnicas para minimização de problemas 

numéricos que ocorriam na resolução das equações. O cálculo de um problema com 

acoplamento entre plasma e fluido envolve uma gama diversa de escalas, tanto temporais 

como dimensionais, trata-se então de uma simulação numérica delicada. Como tal, e por 

forma a obter resultados estáveis e precisos num tempo de cálculo considerado razoável, 

foram implementados diversos procedimentos numéricos, tais como o tratamento semi-

implícito do acoplamento da equação de Poisson com a equação da densidade de carga, o 

super-passo-tempo e ainda um algoritmo do tipo divisão de operador. 

Foi considerado o caso de uma diferença de potencial positiva, constante, e testada a 

dependência da densidade de corrente com os diferentes esquemas numéricos. Apesar de não 

existir atualmente uma base de dados, de tipo numérica ou experimental, com casos de teste 

para actuadores a plasma tipo DBD, o modelo computacional desenvolvido para calcular o 

plasma foi validado qualitativamente, bem como quantitativamente, usando os vários 

trabalhos numéricos disponíveis na literatura. Após esta validação inicial, a metodologia 

numérica desenvolvida foi utilizada para explorar a possibilidade de influenciar um 

escoamento de maior velocidade, através de actuadores a plasma tipo DBD com impulsos de 

tensão da ordem de nano-segundos (NS). Desta forma foi simulada a interacção entre um 

escoamento transónico e o efeito dos actuadores a plasma tipo DBD sobre o escoamento, 

usando pulsos de nano-segundos. O efeito térmico do gás, assim como a força resultante, 

foram calculados usando o modelo numérico para cálculo de plasmas desenvolvido neste 

trabalho. O resultado obtido é acoplado ao modelo de cálculo para a dinâmica de gases, o 

que torna possível simular as condições do escoamento resultante. Adicionalmente, os 

resultados do modelo de “plasma-fluid” foram reaproveitados para desenvolver um modelo de 

deposição de energia. Este demonstrou ter a capacidade de capturar correctamente as 

características principais do efeito de actuadores de plasma, de tipo NS-DBD, com um tempo 

de computação menor. Foi demonstrada que uma rápida transferência de energia, do plasma 

para o fluido, leva à formação de micro-ondas de choque que alteram localmente as 

características do escoamento transónico. Apesar da eficiência numérica do modelo de 

“plasma-fluid” ter sido melhorada, o seu custo computacional para a simulação de actuadores 

a plasma tipo DBD à escala real continua bastante elevado. Neste sentido, a partir de uma 
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escala de propulsão gerada pelo actuador plasma DBD, foi desenvolvido um modelo mais 

simples para a descarga do plasma e para determinar os seus efeitos sobre o escoamento. 

O modelo inicial previa correctamente uma dependência não-linear entre a força propulsiva 

gerada e a diferença de potencial aplicada. Estas escalas foram então introduzidas num 

modelo fenomenológico mais simples para estimar, e simular, a distribuição de forças geradas 

pelo actuador a plasma. Apesar de o modelo incluir algumas correlações experimentais, este 

não requer qualquer parâmetro de afinação. O modelo foi validado com resultados 

experimentais, demonstrando melhores resultados quando comparado com outros modelos de 

plasma . 

Utilizando um modelo fenomenológico simplificado, que foi desenvolvido no presente 

trabalho, foi feito um estudo numérico com o objetivo de investigar, e comparar, os efeitos 

que uma actuação estacionária e não-estacionária exibe sobre o controlo do escoamento a 

números de Reynolds relativamente elevados. Foi demostrado que a dimensão da bolha de 

separação é reduzida em muito e que a estrutura do escoamento é sensível à frequência da 

modulação “burst” do actuador a plasma tipo DBD. Os resultados também confirmaram que, 

para o caso de actuação não-estacionária, a frequência de “burst” e o “burst ratio”, são 

parâmetros cruciais para influenciar a capacidade de controlo do escoamento por parte dos 

actuadores a plasma. Determinou-se que as frequências “burst”, semelhantes às frequências 

naturais do sistema, são capazes de excitar as estruturas do escoamento num modo de 

ressonância. Esta observação confirma igualmente que, com frequências de excitação 

apropriadas, a estrutura de um escoamento de camada limite consegue ser correctamente 

modificada, e que as perdas no escoamento são reduzidas. Por fim, os actuadores a plasma 

foram utilizados para o controlo do escoamento sobre uma superfície Coanda de uma tubeira. 

Quando nesta foi aplicado um plasma, tornou-se possível retardar a separação do escoamento 

e aumentar o ângulo de deflexão do jacto gerado pelo propulsor. Por forma a encontrar a 

posição óptima para os actuadores, sete actuadores de tipo DBD foram distribuídos ao longo 

da superfície Coanda, tendo em consideração os pontos de separação do escoamento na 

camada limite obtidos numericamente. Os resultados mostram que quando o actuador DBD é 

colocado ligeiramente antes do ponto de separação do escoamento, há um aumento da 

capacidade de controlo e vectorização do jacto gerado. Os resultados preliminares das 

experiências efectuadas estão de acordo com o ângulo de deflexão do jacto previsto pelo 

modelo computacional.  

Palavras-chave 

 

actuadores a plasma de Descarga em Barreira Dieléctrica, modelo de “plasma-fluid”, modelo 

fenomenológico, controlo do escoamento na camada limite 
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1 - Introduction 
Obtaining higher efficiency in aerodynamic systems is a crucial need. This could lead to 

several important advantages including, lower power consumption, lower pollution and safer 

operation. With advancement of the technology, new techniques need to be considered to 

replace the conventional methods that were used to achieve these objectives. 

 

1.1 -  Why to consider plasma actuators for flow control? 

Flow control has been used generally to manipulate a particular flow field to achieve a 

desired effect. The control strategies are classified in several ways depending on the 

character of flow instabilities, the presence or lack of walls, the Reynolds number and Mach 

numbers. Usually, the aim of the control strategy is to reduce drag, enhance lift, augmentate 

the mixing of mass, momentum or energy, or to suppress the flow induced noise. Flow control 

techniques are categorized as being active or passive. Passive techniques require no auxiliary 

power and include geometric shaping to manipulate the pressure gradient, they use fixed 

mechanical vortex generators for separation control, or the placement of longitudinal grooves 

or riblets on a surface to reduce drag. Outside of the range of conditions where the flow is 

controllable by using the passive flow control techniques, for example on any aerodynamic 

device, the aerodynamic performance might reduce drastically. In other words, these passive 

flow control methods normally represent a continuous energy loss and they dissipate energy 

also when the flow does not need to be controlled.  

In contrast, active flow control methods require energy expenditure such as jet vectoring 

using piezoelectric actuator, oscillatory blowing, piezoelectric actuators, synthetic jets. In 

addition, the most popular flow control methods usually involve the use of mechanical flaps, 

suction and blowing techniques. A detailed review of actuators suitable for active flow 

control purposes can be found in [1,2]. The use of active flow control is very important, in 

the field of aeronautical applications. Being applied to internal or external flows, efficient 

flow control systems are capable of manipulating the flow to achieve certain desired effects, 

such as drag reduction, mitigation of noise pollution, and help to increase stall margins on 

airfoils. In order to achieve these results, flow control techniques are used mainly for 

separation control and laminar-to-turbulent transition suppression.  

Among the several active flow control techniques, flow control techniques that use Electro-

hydrodynamic (EHD) devices and electrical discharges (plasma) are considered very promising. 

Electric discharges generated along the surface of an airfoil have been proposed as micro-

actuators able to exert significant forces in the boundary layers of aerodynamic surfaces. In 

general, plasma can induce a body force on the gas, heating the gas or producing radicals for 

combustion. Body forces can be exerted on charged species (electrons and ions) by electric 



 _____________________________________________________________________________   

 
2 

and magnetic fields and coupled to bulk gas by collisions. These forces can then be used to 

control the flow. 

 Recently, the introduction of plasma actuators in the field of aerodynamics has 

demonstrated to be very promising to achieve flow control leading to cost and weight 

reduction. Plasma-based devices exploit the momentum coupling between the surrounding 

gas and plasma to manipulate the flow. Unlike other flow control techniques, such as suction 

and mechanical actuators, plasma actuators require low power consumption, involve no 

moving mechanical elements, have low parasitic drag and a very fast frequency response that 

allows real-time control and, moreover, usually they have simple constructive requirements 

and they are not expensive. For these reasons, the plasma actuator has become a very 

promising and attractive device in the flow control community. On the other hand, their main 

drawback is their limited ability to control high speed flows and their sensitivity to the air 

conditions e.g., humidity. 

 

1.2 -  What is a plasma? 

Plasma is a (conductive) state of matter (often called as the forth state of matter) consisting 

of a mixture of positive and negatively charged particles, unstable neutral radicals and 

ground state atoms and molecules. Owing to self-generated electric fields plasmas are quasi 

neutral, meaning that the positive and negative charge densities are almost equivalent, 

except over a small characteristic length scale (the Debye length) where separation of charge 

is significant.  

 

1.3 -  Thermal and non-thermal plasma discharges 

Different types of electrical discharges have been used in aerodynamic actuators, such as 

Dielectric Barrier discharge, DC corona discharge, radio frequency discharge (RF) (Mega 

Hertz), microwave discharge (MW) ((Giga Hertz)), DC glow discharge and laser created 

plasmas (Pico Hertz). The selection of the discharge type is determined by the particular flow 

control conditions. Furthermore, atmospheric pressure plasmas can be classified according to 

whether they are in thermal equilibrium or non-equilibrium [3]. In a plasma the temperature 

is determined by the average kinetic energy of its components. However, a plasma can 

exhibit multiple temperatures, usually one for the heavy particles hT  and one for the 

electrons eT  unless sufficient collision occurs between them. Because of the large difference 

in mass between electrons and other particles the temperature of these two species remains 

different in many conditions. When he TT   the plasma is considered in local thermodynamic 

equilibrium (LTE) and termed as thermal plasma. These discharges are characterized by high 

temperature of the gas and a Maxwellian velocity distribution function of particles. Arc and 

inductively coupled plasma discharge, as in Plasma Torches or the fusion plasma devices, 
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sparks and lightning belong to this group. Microwave plasma sources can be thermal or non-

thermal plasma, depending on the operating conditions. 

Non-thermal plasmas are typically characterized by a relatively low gas temperature and high 

kinetic energy of electrons ( he TT  ). In this case the plasma is called non-equilibrium or 

non-thermal plasma. Such plasma is formed by applying a very high electric field over a very 

short time duration (nano-microsecond) which preferentially heats the electrons to very high 

temperatures (10 electron Volts or more) while preventing thermalization of the gas. 

Preferentially heating the electrons to very high temperatures allows the discharge to 

efficiently and rapidly ionize and dissociate the gas mixture without losing too much energy 

to thermalization or vibrational excitation. The main feature of non-thermal plasmas is that 

the most part of the electrical energy injected in the system is used for the production of 

energetic electrons rather than heating the gas, while the neutral species and ions remain 

relatively cold because of the low energy exchange with light particles. The electrons have 

enough energy to ionize other molecules and atoms, and to generate excited species and 

other electrons. Dielectric Barrier discharges (DBD) is often classified in the non-thermal 

plasma category. In other words, this discharge is characterized by low gas temperatures and 

rapid chemistry.  

 

1.4 -  Dielectric barrier discharges 

Among the electrical discharge actuators, surface Dielectric Barrier discharges (sDBD) and 

surface DC corona discharges (sDCD) are mostly used for low speed flows at atmospheric 

pressure and they can be generated on the top of the surfaces. The sDCD plasma actuators 

involve the placement of two electrodes, which are both exposed to the air, on the surface of 

a dielectric separated by a fixed distance. The application of a high DC voltage potential 

across the electrodes ignites weakly ionized plasma that is capable of inducing flows up to 5 

m/s. One major disadvantage of the corona discharge actuators is the glow-to-arc transition 

that occurs at large potential differences. This transition introduces a large surge of current 

towards the anode, effectively creating a short circuit.  

sDBD produce highly non-equilibrium plasmas that provide high density active species 

including radicals, energetic electrons and ions but still has a moderate gas temperature. The 

major difference between the sDBD and the surface corona discharge is the presence of a 

dielectric barrier separating the anode and cathode, in the former configuration. The 

dielectric layer is the key component of the DBD actuator. At high pressures, a non-

equilibrium plasma will typically transit to a thermal spark plasma unless there is some 

mechanism to prevent the transition. The dielectric layer limits the amount of charge 

transported by a single micro discharge and distributes the micro discharges over the entire 

electrode. The use of a dielectric layer inhibits the flow of conduction current to the plasma 

and prevents the discharge from transitioning to a spark keeping the resultant plasma in non-
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equilibrium. Such plasma discharges are effective at producing reactive radical species while 

minimizing energy expended to heat the gas. Therefore, surface DBDs are generally preferred 

to surface DC corona discharges since sDBD operates on a self-limiting process through the 

reduced electric field potential by the surface charge accumulation, thus preventing the 

corona-to-spark transition. 

The DBD plasma actuators produce a significant thrust by asymmetric span-wise electrode 

configurations through momentum transfer. The momentum transfer between the plasma and 

gas is due to collisional momentum transfer between charged ions and neutral atoms. Such 

actuation of the flow is active and nearly instantaneous. The advantages of the DBD plasma 

actuators are the absence of moving parts, their compactness and application in almost any 

location. Most importantly they do not affect the shape of the aerodynamic element on which 

they were applied for controlling the flow. Compared to conventional actuators for active 

flow control, the life of DBD actuators will be much longer than mechanical devices such as 

synthetic jet actuators.  

The basic configuration of a DBD plasma actuator is shown in Fig. (1.1). However, there are 

several configurations that are possible based on the different arrangements and geometry of 

the electrodes. In the basic linear surface DBD plasma actuator, two electrodes are typically 

separated by a dielectric barrier usually glass, Kapton or teflon as depicted in Fig. (1.1). 

When a high AC voltage signal of sufficient amplitude (5-40kVpp) and frequency (1-20 kHz), is 

applied between the electrodes, the intense electric field partially ionizes the surrounding air 

producing non–thermal plasma on the dielectric surface. The collisions between the neutral 

particles and accelerated ions generate a net body force on the surrounding fluid leading to 

the formation of the so called “ionic wind”. The body force can be used to impart the desired 

flow control on a given fluid system. For the sDBD configuration the momentum coupling of 

the plasma and fluid induces an initial vortex that propagates downstream. This can be 

observed on the PIV measurements of Post ]4[ . The dielectric barrier introduces a region of 

large electric breakdown strength, allowing for the application of larger potential differences 

and thus larger electric field intensities in the plasma region.  

 
Fig. 1.1: Schematic of sDBD actuator. 
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As was mentioned before, the presence of the dielectric barrier increases the stability of the 

plasma, preventing a glow-to-arc transition at typical potentials for which this would occur on 

the surface corona discharge. The dielectric layer blocks all (or most) of the current flow to 

the buried electrode and alters the electric potential across the discharge and effectively 

creates a capacitance in the discharge circuit.  

Another main feature of the DBD is its operation over a wide range of pressures [5]; from as 

low as 0.1 bars to high atmospheric pressures. At low pressures DBDs operate in a Townsend 

breakdown regime generating a diffuse glow discharge. At atmospheric pressure, the 

realization of a diffuse discharge is restricted to limited conditions of geometry, electrical 

parameters and gas composition, and DBDs operate usually in a streamer discharge in which 

several narrow discharge filaments are typically formed. The streamer regime constitutes a 

strongly interacting system of discharges exhibiting cooperative behavior. This leads, under 

specific conditions, to the formation of coherent spatial configurations that have been 

observed in different types of experimental setups. However, micro-discharges seem, to some 

extent, to occur at random within the discharge gap for most applications of DBDs. 

1.4.1 -  Three dimensional DBD plasma actuators 

Many varieties of this basic design have been tested (Fig. (1.2)). The serpentine DBD 

actuators [6–10] were developed to induce flow mixing. Such three-dimensional novel 

actuators produce much better flow mixing downstream of the actuator than standard two-

dimensional (linear) actuator. Three-dimensional plasma effects extract momentum from an 

upstream flow injecting it into the bulk fluid through localized pinching and spreading effects 

(local swirl).  

a) b) 

Fig. 1.2: Three dimensional plasma actuators a) Curved electrode (horse shoe) plasma actuator b) 

plasma actuator synthetic jet. 
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1.4.2 -  Nanosecond-DBD plasma actuators 

To improve the performance of DBD plasma actuators and their discharge behavior, different 

voltage shapes have been employed. However, in the aerodynamic field, two major types of 

DBD plasma actuators are currently under consideration; The Alternating Current AC-DBD and 

the Nanosecond DBD (NS-DBD) plasma actuators. They differ in terms of the shape of the 

voltage signal that drives the discharge and, thus, the mechanism of operation.  

As was mentioned before, plasma actuations are capable of influencing the momentum 

boundary layer significantly in low speed regime. Therefore, non-equilibrium DBD plasma 

actuators find limited application for high speed flows. This is due to the inherent losses 

associated with the momentum exchange between the charged and neutral particles, and due 

to exorbitant power budget. As an alternative, high-voltage nanosecond pulsed plasma 

actuators are becoming a quite attractive option for high speed applications [6]. The main 

mechanism of impact for nanosecond pulsed plasma actuators is the energy transfer. When a 

DBD is excited by a nanosecond pulsed voltage, the temperature near the surface is increased 

(400K for 50ns pulse durations). Such fast heating (less than microsecond) of the gas layer 

leads to periodic flow disturbances that could control boundary layer separation and reduce 

acoustic noise at a Mach number close to one. 

1.5 -  Applications of DBD plasma actuators 

Being one of the most popular plasma discharge and electrode configurations, especially for 

atmospheric pressure plasma application, DBD has widely been used in various fields and 

industrial applications. DBD plasma actuators have been used primarly in the chemical 

industry, mostly for ozone production. They have been used also in the lithography related 

applications such as Surface cleaning, modification, thin film deposition and surface etching 

[11]. 

Very promising results for the application of plasma actuators have been observed in a wide 

range of applications, in particular targeted at the aeronautic community and for flow control 

purposes. Moreau [12] and Corke et al. [13] showed detailed reviews of aerodynamic 

applications of plasma DBD actuators that are effective in controlling the flow. 

Comprehensive reviews on plasma actuators for aerodynamic flow controls have been 

published recently [14,15]. Corke et al [13,16] provide an overview of the physics and 

modeling of SDBD (single dielectric barrier discharge) plasma actuators. They highlight some 

of the capabilities of plasma actuators through examples from experiments and simulations. 

Caruana [17] has given a survey of methods of air flow control for aircraft performance 

improvement. He has presented a short overview of non-plasma devices and studied ways for 

flow control. Touchard [18] also made a detailed review of the designs and associated setups 

for different aerodynamic plasma actuators developed in these last twenty years, he further 

discussed the limits and the prospects of plasma actuators considered for airflow control. 
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1.5.1 -  Flow separation control 

Separation control has also been successfully achieved for a wide range of geometries, 

including airfoils, wings and circular bodies. The mechanism responsible for separation 

control by DBD plasma is most often associated with the wall jet generation described earlier, 

however the effects of DBD in boundary layer tripping or in energizing or amplification of 

instabilities are still in debate and depend on the flow system under consideration. For 

separation control, explicitly, the state of the boundary layer (laminar or turbulent) just 

upstream of the actuator will also play a role. Unlike traditional unsteady jets, created with 

voice coils or piezo-ceramic disks, the exact location at which the plasma actuator 

accomplishes control is not immediately obvious, but actuators placed at or slightly upstream 

of the separation location give favorable results. 

The pioneering work of Roth et al. [19,20] demonstrated the possibility of using plasma 

actuators based on surface DBDs for aerodynamic applications. Surface discharges can 

generate airflow with velocities less than 10 m/s, while active airflow control with SDBDs has 

been demonstrated for low subsonic velocities up to 30 m/s. Greenblatt et al. [21] studied 

the mechanism of flow separation control experimentally, and computationally, using pulse-

modulated DBD plasma actuation on a stalled flat plate airfoil, at a Reynolds number of 3000. 

They carried out a parametric study where the pulse-modulation frequency, duty cycle, and 

peak plasma body-force were varied. A direct effect of the forcing frequency on lift was 

documented. The mechanism of lift enhancement was based on severing the leading-edge 

vortical layer, whose downstream component then merged with a naturally growing 

downstream vortex. Jayaraman et al. [22] numerically investigated the potential of using DBD 

to control flow at low Reynolds numbers for applications such as micro air vehicle (MAV). Both 

co-flow and counter-flow actuation strategies were considered for the purpose of the flow 

control. The co-flow approach offers momentum enhancement via favorable pressure 

gradient in the near wall region while the counter flow approach can trigger earlier 

separation, and transition, by introducing adverse pressure gradients. Jolibois et al. [23] 

studied the influence of the actuator locations on the airfoil surface using both steady and 

unsteady DBD plasma actuators. These experiments show that the plasma actuator is more 

effective when it acts close to the natural separation location, and that the power 

consumption can be highly reduced in using a non-stationary actuation. Mabe et al. [24] 

tested airfoils of various sizes with varying free stream velocity, angle of attack, and 

deflection angle. Two different sets of experiments based on the actuator location were 

conducted. It was determined that the input momentum was very weak and not sufficient to 

prevent separation at Reynolds numbers greater than 100,000. Results showed that the 

plasma actuators only provided sufficient momentum to be effective at very low Reynolds 

numbers, such as those appropriate to micro-air-vehicles. 

As was mentioned before, the AC discharge is the most well-known one, and it results in 

momentum increase due to ionic wind created by the discharge. But this ionic wind is quite 
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slow (velocities up to several meters per second) and thus the range of flow speeds at which 

this type of actuators is effective is limited. To expand the range of the applications of the 

DBD actuators to higher speed ranges nanosecond plasma discharges are considered. The 

mechanism of flow control by nanosecond plasma discharge is different. It is supposed that 

the vorticity is created by the shock wave, which is produced from the layer of the hot gas. 

This hot gas is generated during the fast thermalization process, in which up to 60% of the 

discharge energy is converted to heat in less than 1 μs. 

Little et al. [25] demonstrated the efficiency of NS-DBD pulses on an airfoil leading edge 

separation up to Reynolds number (Re) = 1x106 (62 m/s). Similarly, Correale et al [26], also 

performed an experimental study of flow separation control with a nanosecond pulse plasma 

actuator. Different geometries of the actuator were tested at flow speeds up to 80 m/s to 

control the flow over three different airfoil models. In stall conditions a significant lift 

increase of up to 20% is accompanied by drag reduction (up to 3 times). The dependence of 

this effect on the position of the actuator, on the wing, was studied showing that the most 

effective position of the actuator is on the leading edge, in case of leading edge separation. 

Experiments using Schlieren imaging showed that the shock wave propagation and formation 

of large-scale vortex structure in the separation zone are the mechanism of separation 

elimination, in the case of the nano second pulsed actuators. Rethmel et al. [27] extended 

the exploration on the use of dielectric barrier discharge plasma actuators driven by 

repetitive nanosecond pulses to higher Mach numbers (M) (0.26, 93 m/s) and Re (1.15x106) 

using an 8 inch chord NACA 0015 airfoil commonly studied for active flow control. A 

comparison of NS-DBD and AC-DBD plasma actuations was conducted at various Re to 

demonstrate the difference in control authority between the two methods. 

1.5.2 -  Turbo-Machinery application 

As DBD plasma actuators are thin, surface mounted, and do not require internal volumes or 

passages, they are particularly attractive for gas turbine and turbo-machinery applications. 

Plasma actuators also have been tested for applications regarding turbo-machinery mostly for 

the purpose of reducing the tip losses in low pressure turbine or increasing the axial 

compressor pressure ratio. Van Ness et al. [28] proposed using the active flow control 

capability of a plasma actuator to reduce blade tip losses in a low pressure turbine. A 29.5% 

reduction in maximum pressure loss, at an axial chord Reynolds number of 105, was achieved 

during actuation. Wall et al. [29] performed experiments using a pulsed DC dielectric barrier 

discharge plasma actuator to reattach separated flow of a highly loaded turbine blade in the 

suction surface. Using phase locked particle image velocimetry (PIV) he showed that at a 

pulse rate of 100 pulses per second the 70% velocity contour in the boundary layer was moved 

closer to the wall by 39%. Vo [30] modeled a circumferential plasma actuator on a compressor 

case, near the compressor rotor, to induce axial flow acceleration within the tip clearance 

gap region, with the intention of suppressing tip clearance flow responsible for spike 
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formation and short length-scale rotating stall inception. The simulations indicated that 

actuation effectiveness decreases with increasing compressor speed and that stronger 

actuation strength than that of conventional plasma actuators may be needed. Wu et al. [31] 

used plasma actuators in a Teflon compressor case in order to measure the efficiency 

increase of a subsonic axial compressor during actuation. They determined the pressure rise 

coefficient and flow coefficient for the compressor test rig with and without plasma actuation 

to represent compressor performance. The experiment showed that, with plasma actuation, 

the mass flow coefficients near stall decreased by as much as 5.2% at a constant rotor speed. 

Williamson [32] studied the flow in an axial compressor using plasma actuators via wake 

measurements in response to various plasma actuator and compressor operating conditions. 

Both leading edge and 1/4 chord plasma actuator configurations were examined in the 

counter and co-flow directions. The compressor rotor momentum measurements showed that 

leading edge actuation can have an unpredictable effect and may cause an increase in drag. 

Huang et al. [33] used a linear cascade of turbine blades to examine the effects of using 

plasma actuators for controlling separation. They characterized the flow using surface 

pressure, Laser-Doppler Velocimetry, and hot wire measurements. It was determined that 

unsteady actuation was more effective than the steady actuation at reattaching the 

separated flow, while using less power. 

1.5.3 -  Control of laminar to turbulence flow transition 

There have been extensive researches on the study on the effect of DBD plasma actuators for 

turbulent boundary layer control. Most numerical and experimental studies regarding altering 

the characteristics of turbulent flows with plasma actuators were focused on inducing span-

wise flow oscillations for controlling turbulent flows [34–36], including also control of 

transition from laminar to turbulence boundary layers [37,38] . 

Span-wise flow oscillations is one of the most effective techniques applied for turbulent flow 

control. In this context, Wilkinson [35] had used oscillating weakly ionized surface plasma for 

turbulent drag reduction. Surface plasma was used as a source of span-wise oscillation of the 

flow. However, in the experiment of Wilkinson, the induced oscillations were small and the 

effect was negligible due to the small frequency (100 Hz) of the surface plasma. The applied 

DBD was in a three electrode configuration with one top electrode and two bottom 

electrodes. Jukes et al. [36] also tried to use plasma actuators for creating span-wise 

oscillations on the flow. They have used also a three electrode stream-wise placed plasma 

actuator configuration, with one common grounded electrode and the other two at the 

surface. If just one set of electrodes was activated, plasma was formed to one side of the 

exposed electrode. By switching between the activated set of electrodes, an optimum 

frequency for the span-wise oscillation of the flow in the near wall region was achieved. The 

results show around 45% drag reduction downstream of the plasma actuators. In comparison 

to span-wise flow oscillations span-wise traveling waves are more favorable, as they don’t 
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need to increase in forcing amplitude to achieve higher drag reduction. Span-wise travelling 

waves collect the low speed fluid and spread it over the wall surface as the waves are 

propagated in the span-wise direction. Wally and Choi [39] used DBD plasma actuators to 

create a four phase span-wise traveling wave instead of a span-wise traveling oscillation to 

control the turbulent boundary layer. This configuration allows both a generation of bi and 

uni-directional forces. A review of the control techniques of turbulent boundary layers with 

span-wise oscillations and travelling waves generated by plasma actuators is presented in 

[40]. 

Schatzman and Thomas [41] experimentally studied the effect of span-wise and stream-wise 

oriented single DBD plasma actuators to control a turbulent boundary layer separation. The 

stream-wise rotated DBD actuator (plasma stream-wise vortex generator, PSVG) configuration 

uses a single covered electrode. The multiple exposed electrodes, with spacing, are aligned 

parallel to the incoming flow. Instead of a wall jet, the PSVG arrangement is designed to 

generate pairs of counter-rotating vortices that intended to enhance the cross-stream mixing 

within the boundary layer. The difference between the configuration used for stream-wise 

oriented actuators and the ones used in [39] is that there is no switching of the activated 

electrode to create span-wise oscillations or span-wise traveling waves. They have also 

showed that effective control authority was achieved by creating counter-rotating vortices 

within the boundary layer that promote mixing of high and low momentum fluid. 

Plasma actuators were used to attenuate the transient growth of the disturbances produced 

by an array of roughness elements by Hanson et al. [42]. Four stream-wise oriented actuators 

were used to generate impinging wall jets, causing span-wise periodic stream-wise vorticity 

at a suitable span-wise wave number to damp the disturbance created by the roughness 

elements. The results of Hanson et al [42] showed that plasma actuators were able to 

generate a primary disturbance mode and additional weaker modes similar to that of the 

roughness array and thus, minimize the effect of disturbance caused by the roughness 

elements. Moreover, Hanson et al [43] extended the use of plasma actuators for closed-loop 

control of bypass transition based on feedback from wall-shear stress measurements. A 

controller was designed to minimize the residual disturbance energy in the output 

measurements at the target instability span-wise wave number. By considering a range of 

static roughness element heights, measurements of the disturbed flow state were correlated 

with simultaneous shear stress measurements to form empirical models of the flow state, 

which were then used for model-based control decisions, by providing them from shear stress 

inputs to the controller. The range voltages, applied in the tests of the plasma actuators 

provided disturbance amplitudes similar to those caused by the roughness elements, but with 

opposite phase. 

Widmann et al. [44] presented two different operational modes for the DBD actuators 

namely: the boundary-layer stabilization mode, in which the actuator is operated 

continuously (quasi-steady); and the hybrid mode, in which the actuator amplitude is 

modulated about a steady value to reduce the amplitude of the artificially excited TS 
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(Tollmein Schlichting) waves to obtain transition delay. The physics of the interaction of the 

DBD actuators and the TS wave in these two modes is different. For achieving boundary-layer 

stabilization a quasi-steady body force are applied. By inducing momentum into the boundary 

layer, its stability characteristics are modified such that the existing perturbations are 

dampened indirectly by the more stable boundary-layer velocity profile. In contrast, when an 

unsteady body force is produced, the body force acts directly on the velocity fluctuations of 

the wave. In the hybrid mode, Because of the force offset, the actuator can counteract 

positive as well as negative velocity deviations of the waves whereas the active wave 

cancelation (AWC) only enables forcing in one direction. Results confirmed the impact of the 

quasi-steady body force on the wave amplification and in the boundary-layer stability, and 

cancelation of the periodic disturbances when the plasma actuator is operated in hybrid 

mode. Similarly, Kruz et al. [45] conducted an experimental and 2D numerical study to 

control the boundary layer transition on an Onera-D airfoil by using DBD plasma actuators. 

Both steady and unsteady modes of actuation were considered. On one hand, the effect of 

steady actuation was used to modify the mean velocity profile in order to reach boundary 

layer stabilization, and on the other hand, unsteady actuation was used to achieve active 

wave cancelation in a direct frequency mode by counteracting the growing instabilities within 

the boundary layer (TS waves). The results of the stability computations, as well as 

experiments, showed that DBD plasma actuators used in a steady mode have a stabilizing 

effect on the boundary layer. The modification of the mean velocity profiles was such that 

the amplification of the disturbances was reduced and transition was delayed. In an unsteady 

mode two DBD actuators were used. The first one was activated for the excitation of the TS 

waves and the other one was used to counteract with these waves at a higher beating 

frequency. Also, for efficient counteraction of the TS waves and of the transient plasma 

force, an active control system with a closed-loop was used to detect the waves and optimize 

the actuation, by adjusting the phase relation between the TS waves and the actuator 

excitation signal. The results showed that the destructive interference of the transient body 

force reduced the amplitude of TS waves locally.  

Grundmann et al [38] also studied the effect of plasma actuators on boundary layer flow, 

both experimentally and numerically. A modified numerical model, based on a linear body 

force, was calibrated with the results of experiments in quiescent air for considering the 

effect of plasma actuators. The improvement of the previous model replaces the linear 

decrease of electric field with asymptotic exponentional decay. The results showed that the 

calibrated numerical model in combination with RANS (Reynolds Averaged Navier Stokes) 

model can correctly simulate the effect of plasma actuators with addition of momentum to 

boundary layer when free stream velocity exist. Following the work of Grundmann et al. [38], 

Duchmann [46] attempted to delay the boundary layer transition over a flat plate with 

adverse pressure gradient using plasma actuators. In this case, flow transition was initiated 

naturally by Tollmien–Schlichting waves. The effect of DBD on the flow control was presented 

through both statical analysis and integral quantities. The flow control goal was achieved 



 _____________________________________________________________________________   

 
12 

through attenuating the disturbances inside the flow and altering the flow stability. The 

results show that the DBD plasma actuator successfully controls the flow near the transition 

region, it increases the hydrodynamic stability of the boundary-layer flow and reduces the 

disturbances in stream-wise velocities. However, in the fully turbulent region, the results 

didn’t exhibit any effect of control on the flow. Moreover, Duchmann [46] mentioned that 

excessively high voltages and associated fluid accelerations have the additional disadvantage 

that an overshoot in the velocity profile can occur, which leads to a destabilization of the 

flow, rendering the actuation useless for transition delay. 

1.5.4 -  Plasma assisted combustion 

Recently, studies of plasma assisted combustion (PAC) have shown many possibilities for 

improving combustion efficiency [3,6,47,48]. It was reported that the improvement in 

efficiency was achieved: by enhancing the flame propagation speed; enhancing the 

breakdown of fuel and the creation of reactive radicals; the enhancement of chemical 

reactions due to heating and active particle generation; mixing oxidizer with fuel in the flow; 

flow structure modification for combustion stabilization; fast local ohmic heating of the 

medium; non-equilibrium excitation and dissociation of oxygen and fuel molecules; 

shocks/instabilities generation; momentum transfer in electric and magnetic fields. 

1.6 -  Background physics of fundamental processes of plasma 

There are several fundamental processes that play the major role in plasma physics. In the 

following, some of them are explained shortly. 

1.6.1 -  Electron avalanche 

The fundamental mechanism that drives the creation of plasma from a neutral gas by an 

electric field is the electron avalanche. In any volume of gas, before any voltage is applied, 

the gas is electrically neutral and only a small quantity of charge carriers (electrons with 

background densities on the order of 394 1010  m ) are present that are caused by cosmic 

rays, natural radioactivity and the detachment of negative ions. Thus, if the electric field is 

high enough these will accelerate and collide with molecules of the gas, thereby releasing 

more electrons, which in turn will do the same, creating what is known as an electron 

avalanche. In other words, the process in which, in the presence of a strong applied electric 

field, the initial "seed" electrons gain sufficient energy such that as they collide with the 

neutral gas, creating new electron-ion pairs (impact ionization) is called the electron 

avalanche. 
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1.6.2 -  Electrical breakdown of gases 

Electric breakdown is referred to the process that transforms a non-conducting material to a 

conducting one when a sufficient strong electric field is applied. Although the breakdown is a 

rather complex process that strongly depends on the system conditions it always begins with 

an electron avalanche. As the avalanche forms, the highly mobile electrons drift in the 

direction opposite to the electric field and diffuse radially outward giving the avalanche a 

teardrop shape. The large ions formed due to electron impact are relatively stationary 

compared to the mobile electrons, and tend to trail the electrons as they drift and diffuse. 

This results in a region of negative charge in the head of the avalanche and a positively 

charged region left in the trail of the electrons. The breakdown of the gas can be considered 

as being due to a sequence of electron avalanches which initially start at the electrode and 

drift towards the anode. In a more simple explanation, at a certain value of applied 

potential, the electrons gain enough energy to create an electron avalanche. One seed 

electron accelerates through the field to a high enough energy to knock an additional 

electron off neutral particles or other positive/negative ions. These additional electrons 

accelerate and cause even more ionization. This process is known as breakdown and the 

potential difference required to initiate is called the breakdown voltage. 

 
Fig. 1.3: Schematic of the Electron Avalanche process.  

1.6.3 -  Townsend breakdown mechanism 

The discharge process at low pressure is called Townsend. In a simple system of electrodes, 

shown in Fig. (1.3), the seed electrons generated from an external source are accelerated by 

the electric field in the gap and reach the anode unless they are lost in the way by ion 

recombination or interaction with walls. If the external electric field becomes bigger, the 

smaller fraction of the electrons will be lost before they reach the anode. As a result, the 

electric current in the circuit, which is proportional to the number of charged species which 

reach the electrodes, initially increases with increasing voltage. As long as the net charge is 
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not sufficient to distort the field appreciably, the centre of the avalanche moves with the 

electron drift velocity appropriate to the uniform applied field. If, during the life of the 

avalanche secondary electrons are released then new avalanches will be created, and the 

total current will be amplified. Secondary electrons are released either by positive ions or UV 

photons hitting the cathode, or by photo-ionization of the gas behind an avalanche. In this 

way the current grows exponentially by what is known as the ‘Townsend breakdown 

mechanism’ [49]. Central to this model of breakdown is the concept that each avalanche 

must provide a secondary electron prior to its absorption into the anode, in order to 

constitute a self-sustained discharge. The Townsend theory is generally valid for low to 

moderate values of Pd (Pd < 200 Torr cm) [50]. At lower pressures, the plasma is typically 

sustained by multiple electron avalanches which are ejected from the cathode, by ion or UV 

bombardment, and drift in the electric field. 

1.6.4 -  Streamer breakdown mechanism 

At higher pressures (e.g. atmospheric), the process of gas breakdown occurs at a much faster 

rate than what is predicted by Townsend theory, due to the considerable space-charge 

generated during the first avalanche’s transit through the gap. This different kind of 

breakdown is explained by the so called streamer theory. Streamer theory uses the concept 

of the electron avalanche to explain the breakdown process but it considers a single large 

electron avalanche rather than a series of avalanches as the mechanism of breakdown. When 

the electron avalanche grows to a size such that it is capable of partially shielding itself from 

the applied field, the propagation and growth of the avalanche changes remarkably. A single 

large avalanche forms an active zone (the streamer head), which propagates into the gap, 

producing other secondary electron avalanches due to a great enough induced electric field, 

which are drawn towards the primary avalanche. Essentially, a streamer is an ionization 

wave. In front of the wave (the streamer head) the separation of positive and negative 

charged particles shields the interior and causes a sharp enhancement of the electric field 

over a limited region just outside the streamer head. As the primary avalanche propagates 

into the gap it leaves behind a long, thin trail of quasi neutral plasma from which comes the 

term streamer. The subsequent plasma discharge is referred to as a streamer and consists of 

two features: an active head region where ionization and secondary avalanche production 

take place and an inert quasi neutral plasma tail left behind by the active region as it 

propagates.  
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Fig. 1.4: Transition of electron avalanche to streamer. 

The criterion for an avalanche to form a streamer is that the induced electric field of the 

electron avalanche should be of the same order as the applied electric field. In Fig. (1.4), if 

the gap distance, the gas pressure (density) or applied voltages are large then the 

amplification factor of electrons in the electron avalanche can become large. The charge 

produced by the electron avalanche can then become significantly enough that the charge in 

the electron avalanche head distorts the externally applied field. Unlike the electron 

avalanche, which propagates due to the drift of electrons in the field, the streamer 

propagation mechanism is wave like in nature, and is driven by the exchange of energy from 

kinetic energy of the ionization of charged particles and the subsequent displacement of the 

electrostatic field due to the new space charge (potential energy). 

1.6.5 -   Ionization processes 

The fundamental process in plasma is the ionization because it is responsible for its 

generation and sustainment. There are different kinds of such processes (Fig. (1.5)). Direct 

ionization by electron impact is the basic plasma reaction, and includes the ionizations of 

non-excited atoms, molecules and radicals. It involves the interaction of an energetic 

electron hitting the other neutral species when its energy is high enough to create an ion-

electron pair. 

Preliminary exited neutral species can undergo further ionization in a stepwise ionization by 

electron impact. This kind of process is important in thermal, or highly energetic discharge, 

when the degree of ionization (ratio of electron and ion density) is high. Ionization by 

collision, with heavy particles can generate electrons during ion-molecular or ion-atomic 

collisions involving also vibrationally or electronically excited species. Chemical reactions are 

involved too. Photoionization processes generate electrons in the collision process between a 

heavy particle and a photon. Photoionization is important in thermal plasma and in the 

propagation process of a streamer channel.  
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Fig. 1.5: Ionization and recombination processes. 

 

1.6.6 -  Electron and charged particles losses  

Many processes cause the loss of a free electron and of charged particles. The balance 

between these processes and the ionization processes determines the degree of ionization 

and plasma density. Electron-ion recombination processes involve the neutralization of a 

positive ion with an electron. It is a highly exothermic reaction which needs a channel for 

accumulation of the energy released during the process. This can lead to molecular 

dissociation, creation of excited species, photon emission, etc.  

Another process that causes the losses of the charged particles is the attachment process. 

The electron attachment processes are extremely important and are often responsible for the 

balance of charged particles especially in presence of an electronegative gas (such as O2). An 

attachment process typically takes place in electronegative gases when a molecular fragment 

(dissociation products) has a positive electron affinity.  

Ion-ion recombination processes come to play a role in the actual losses of charged particles 

when the electron attachment processes are involved in the balance of electrons and ions 

(electronegative gases). This process is the mutual neutralization of positive and negative 

ions in binary or three-body collisions. These processes can proceed by many different 

mechanisms and have very high rate coefficients. 

1.6.7 -  Secondary electron emission 

This is a process of generation of new electrons by electrons or ions bombardment. The 

electron enters the ground state of the atom, and a second electron absorbs excess energy of 

neutralization [51]. The secondary electrons that are emitted from the cathode is an 

important process in sustaining a discharge. When ions produced by the electron avalanches 

drift, and eventually collide with the cathode, they can produce free electrons from the 

surface in a process called secondary electron emission. 

Recombination

Ionization

hv



  _____________________________________________________________________________  

   
      17 

1.7 -  State-of-the-art related to the modeling of DBD 

plasma actuators 

The optimization of DBD plasma actuator performance has to rely on a comprehensive 

numerical modeling. Moreover, a current major gap in the plasma flow control technology is 

the lack of self-consistent theoretical models, and also of robust computational tools that can 

provide an adequate simulation of momentum sources induced by the surface plasma 

discharges. There have been diverse numerical studies on DBD plasma actuators. 

Computational modeling of discharge plasmas can be classified into three types, namely: fluid 

models; kinetic/particle models; hybrid approaches; and simple phenomenological or 

empirical models. Kinetic models involve the solution of the Boltzmann equation for the 

species velocity or an energy distribution function in both space and time, or particle 

simulations, often using Monte Carlo methods, which are generally computationally more 

expensive than the fluid models. The models coming from a phenomenological approach and 

the circuit based models are the most popular. They have shown some success in mimicking 

the overall electrical characteristics of the discharge but are still limited, because they are 

inherently static and/or only allow a predetermined charge imposition. On the contrary, the 

first principle models are more suitable for capturing detailed fluid dynamics and are also 

computationally expensive. The choice of the model is also dependent on the regime of 

interest to model.  

Here, in this thesis, we are interested in just two families of plasma actuator models. The 

first consists of chemistry based models (fluid models)  ]4,52–54[  that attempt to spatially 

resolve the plasma phenomena directly and consist of a few moments of the Boltzmann 

equation. The second are algebraic models that are based on the solution of a Poisson’s 

equation. These algebraic models generally require assumptions regarding either the charge 

density or electric field produced by the actuator. A detailed review of different approaches 

for modeling plasma actuators can be found in [55–57]. 

1.7.1 -  Plasma-fluid models 

The chemistry based family typically consists of drift diffusion type models. These models 

track the chemical species present in the plasma, such as electrons and ions, using a set of 

transport equations. The essential plasma physics such as ionization, recombination and 

streamer propagation are all modeled. In general, these models are capable of accurately 

resolving and predicting the plasma phenomena. However, the solution of these equations 

requires a very small spatial resolution, on the order of μm, to resolve the plasma 

phenomena. This scale is very challenging for realistic engineering geometries. This also 

imposes a significant restriction on the numerical time step, and prohibits the computation of 

high voltages at kHz frequencies. Because of this, the chemistry based family is not typically 

feasible to be used in the design and optimization of plasma actuators. 
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Primary attempts at DBD modeling were performed in Refs [58–60]. However, the physical 

models were inadequate and did not allow explaining some well-established experimental 

results regarding the DBD phenomena, even qualitatively. The challenge in modeling DBD 

plasma actuators comes from the physics of the problem. Generation, decay, drift, and 

diffusion of the electrons, and both positive and negative ions, must be correctly described by 

a consistent, comprehensive, physically-based model, and resolved by an accurate numerical 

scheme. Since it is the electric space charge that is responsible for the net force acting on 

the gas, the Poisson equation for the electric potential must be fully coupled with the other 

equations. Various processes occurring on the dielectric and metallic surfaces, such as 

electron attachment to the dielectric surface and secondary electron emission from metallic 

and dielectric surfaces must be included. An additional complexity for the modeling is the 

relatively high air density at which the DBD actuators operate. Another key issue of DBD 

operation, and modeling, is that the type of discharge changes as the voltage amplitude 

increases. 

One of the first modeling attempts for DBD plasma actuators using plasma fluid models was 

accomplished by Roy [60] and Singh and Roy [61]. The modeling was performed in helium-like 

gas at 300 Torr for DBD, driven by the radio-frequency (RF) sinusoidal voltage. Continuity 

equations of electron and ion density were solved coupled with Poisson’s equation to obtain 

spatial and temporal profiles of electron density, ion density, and voltage. However, the 

processes of surface charge accumulation, recombination and secondary emission, which are 

essential for the plasma discharges, were not taken into account. The simulations provided a 

qualitatively demonstration that the force in the positive half-cycle is due to the downstream 

positive ion motion. 

Later, Roy and Gaitonde, [62], coupled their developed plasma model with hydrodynamic 

model for the description of the induced gas flow. Then, the complete problem of a dielectric 

barrier discharge at high pressure with axially displaced electrodes was simulated in a self-

consistent manner. Model predictions for charge densities, the electric field, and gas velocity 

distributions were shown to mimic trends reported in the experimental literature. In [63], 

Singh and Roy, used an arrangement of multiple electrodes powered with pulsed DC voltage 

for controlling the flow on a conical fore body cross section of an aircraft. They had 

considered the effects of Joule heating of plasma, dielectric heating, and electro-dynamic 

force. It was found that electro-dynamic force contributes prominently to flow control, 

although Joule heating results in a high temperature of the dielectric surface.  

Duan et al. [64] studied both experimentally and numerically the glow discharge of DBD 

actuators in sub-atmospheric conditions. Their results pointed to the existence of a critical 

frequency below which the DBD is uniform for almost all the applied voltages. Moreover, the 

simulations results reveal that the distribution of the space electron density, at the beginning 

of each voltage pulse plays an important role in achieving the uniformity, such as uniform 

space charge results in a uniform DBD. The non-uniform (patterned) DBD always evolves from 

the initial uniform state to the eventual non-uniform one. During this process, the space 
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electrons form a patterned distribution ahead of the surface charges and lead to non-uniform 

discharge channels. Wang and Roy [6] investigated numerically a nanosecond pulsed dielectric 

barrier discharge (DBD) actuator for combustion stabilization. The plasma actuator used for 

plasma assisted combustion had a serpentine shape. The results showed that the nanosecond 

pulsed actuators are able to stabilize the flame near the walls. This may also enhance 

combustion efficiency for a lean-burn condition. The objective was to increase the fuel 

efficiency, and thus reducing the emissions. 

Boeuf and Pitchford [58] computed the force per unit volume acting on the flow, due to the 

effect of plasma actuator, based on a two-dimensional fluid model of the surface discharge 

and by considering positive ions and electrons with the N2 (inert gas) as the background gas. 

They have assumed that the gas flow velocity is small with respect to the charged particle 

drift velocities, and that the gas flow does not significantly affect the plasma (one-way 

coupling). They have also considered the simplified case where a single, constant voltage 

pulse of enough magnitude such that the discharge appears in a glow regime is applied to the 

exposed electrode. They have shown that this force is localized in the cathode sheath region 

of the discharge, expanding along the dielectric surface, while its intensity is much larger 

than the analogous force in a direct-current corona discharge. Boeuf et al. [65], extended 

their previous work to time varying voltage of ramp or sinusoidal voltage waveforms. They 

have shown that in these cases the discharge consists of large amplitude short current pulses 

during which filamentary plasma spreads along the surface, separated in time by long 

duration, and low current discharge phases of a Townsend or corona type. The contribution of 

the low current phases to the total force exerted by the discharge on the gas is dominant 

because their duration is much longer than that of the current pulses, and because the force 

takes place in a much larger volume.  

Jayaraman et al. [66] presented a two-dimensional modeling framework to study the 

evolution and interaction of such non-equilibrium plasma discharges in helium gas, under 

atmospheric pressure, using a plasma–fluid model. The plasma and fluid species were treated 

as a two-fluid system considering ionization and recombination as well as being coupled 

through force and pressure interactions. To overcome the stiffness of governing equations of 

the plasma, a finite-volume operator-split algorithm capable of conserving space charge was 

employed. Following their previous work, Jayaraman et al [54] characterized the fundamental 

process of discharge in the two half-cycles of the actuator operation. Moreover, the power-

law dependence on the voltage for the resulting force were observed and confirmed. 

Furthermore, they have observed that the complex interplay between lower electrode size, 

applied voltage amplitude and waveform, frequency of applied voltage and dielectric 

constant determines the actuator performance. Jayaraman and Shyy [56,67], also reviewed 

the first-principle-based hydrodynamic-plasma model. 

Nishida and Abe [68] simulated the time evolution of the plasma DBD actuator with a 

triangular applied voltage waveform using a simple fluid model similar to [65]. Their results 

showed that the periodic formation of the streamer discharge is shown by large discharge 
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current spikes when the positive-going voltage is applied. However, during the negative-going 

voltage the results showed that periodic breakdown of the gas and step-by-step plasma 

expansion didn’t lead to streamer formation and the plasma expands more smoothly than that 

in the positive phase, because of its higher breakdown frequency. The validity of the results 

was confirmed qualitatively as compared with a experiment that comprised an optical 

observation of the discharge plasma on the DBD plasma actuator with a high speed camera. 

Wang and Roy [69] studied dielectric barrier discharge plasma actuators for microscale 

applications. Traditional macroscale DBD actuators suffer from relatively small actuation 

effect, as characterized by small induced force density and resulting flow velocity. As a 

remedy they have considered microscale plasma actuators. First, a two-dimensional volume 

discharge with nitrogen as a working gas was investigated using a first-principles approach, by 

solving a coupled system of hydrodynamic plasma equations and a Poisson equation for ion 

density, electron density, and electric field distribution. Second, they simulated a first 

generation plasma micropump and solved multiscale plasma-gas interaction inside a two-

dimensional cross section of the microscale pump geometry. The result showed that a 

reasonable mass flow rate can be pumped using a set of small active electrodes. 

In [52] Singh and Roy expanded their previous modeling efforts for an asymmetric dielectric 

barrier discharge model by considering real gas air chemistry using a self-consistent multibody 

system of plasma, dielectric, and neutral gas. The electrodynamic force development 

mechanism was studied over a flat plate due to charge and neutral species production from 

adjacent air in a radio frequency driven barrier discharge. Likhanskii et al [70], developed a 

detailed physical model for asymmetric DBD in air at low sinusoidal voltages. Their model 

considers both positive and negative ions, and also electrons with relevant plasma kinetics 

such as recombination, ionization, attachment and secondary electron emission from metallic 

and dielectric surfaces. Results showed the leading role of charging the dielectric surface by 

electrons in the cathode phase. They have also explained the mechanisms of plasma 

formation with sinusoidal voltage and described the force production on the gas in both half-

cycles of the sinusoidal voltage. The significant role of negative ions which cause the 

downstream directed force was elucidated. Moreover, in [53], Likhanskii et al carried out the 

modeling of a DBD with high voltage repetitive, negative and positive, nanosecond pulses 

combined with positive dc bias. A second-order accurate MacCormack scheme, with flux 

corrected transport, was used to model the plasma kinetics. They have shown that the effect 

of backward-directed breakdown, in the case of negative pulses, results in a decrease of the 

integral momentum transferred to the gas. The use of positive repetitive pulses with dc bias 

was demonstrated to be promising for DBD performance improvement. The effects of the 

voltage waveform are visible on the force magnitude and on the spatial profile of the force, 

along with the crucial role of background electron density in numerical modeling of the 

ionization waves. Later, they simulated a realistic experimental condition by computing force 

and heating rate from the plasma model, and coupling these rates to a viscous flow solver 

[71]. 
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Afterwards, they have used their model to simulate DBD plasma actuators in air to propose a 

novel application configuration. In this configuration the sinusoidal driving voltage was 

substituted by the repetitive nanosecond pulses superimposed on the bias voltage. The 

advantages of the proposed concept, over the conventional one, were experimentally and 

numerically validated by simulating a DBD actuator driven by repetitive nanosecond voltage 

pulses and AC/DC bias with realistic experimental conditions [71]. A detailed description of 

the modeling accomplishments achieved by Likhanskii et al can be found in [72]. This work 

presented the first complete, comprehensive, physically- based model, which tracks all 

essential physics of DBD plasma actuators and uses modern numerical capabilities for efficient 

simulations. 

Similar to the model presented by Likhanskii et al. , Lagmich et al. [73] studied numerically 

the development of the electro hydrodynamic (EHD) force associated with surface dielectric 

barrier discharge in air using a 2D fluid model. A ramp voltage with positive and negative 

slope was applied that was consistent with typical experiments for sinusoidal voltage 

waveform. The results explained the differences in discharge development during the positive 

and negative parts of the sinusoidal voltage by considering contributions of negative ions. 

Boeuf et al. [74] conducted a parametric study, following their previous works, to study the 

contribution of negative and positive ions on force generation of the DBD plasma actuator 

with sinusoidal voltage waveforms. Their results confirmed the role of positive ions during the 

positive part of the cycle and the negative ions effect during the negative part of cycle on 

force production. Their results also predict that the contribution of negative ions tends to be 

dominant at low voltage frequencies and high voltage amplitudes. The momentum transfer 

takes place mainly during the low current phases between high current pulses and the 

streamers developing along the surface do not contribute significantly to the total EHD force. 

Nishida et al. [75] used a simple fluid model, similar to [73,76], in which the electron, one 

type of positive ion and negative ion were taken into account. Both the saw tooth and 

sinusoidal applied voltage waveform were considered. Results indicated that the discharge 

mode changes depending on applied voltage slope; when the applied voltage is positive-going, 

with high applied voltage slope, the corona-type discharge mode turns into the streamer-type 

discharge mode.  

Recently Unfer et al. [77] developed an asynchronous scheme with local time stepping for 

solving a 2D discharge model. This technique reduces the CPU time required for explicit 

resolution of Poisson/transport equations while permitting the use of high order spatial 

schemes. This brings along an advantage in comparison to only first order and quite diffusive 

semi-implicit schemes and explicit second order Poisson/transport coupling, with prohibitive 

computational cost. Unfer and Boeuf [78] analyzed two modes of the actuation depending on 

the driving voltage waveform, using the asynchronous mesh adaptation and time integration 

developed in their previous work. They used a simplified air plasma model fully coupled with 

gas dynamics and a high-voltage sine waveform, in the kilohertz frequency range, to transfer 

momentum from ions to gas molecules, and high-voltage nanosecond pulses to transfer energy 
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to the neutral gas on a short time scale, thus generating shockwaves. Wang and Roy [79] used 

a three-species physical model for DBD actuators under atmospheric pressure. The plasma 

model was loosely coupled with the compressible Navier-Stokes equations through momentum 

and energy source terms. Two cases of Rf powered, and nanosecond pulsed, barrier discharge 

actuators were simulated. The influence of DBD actuator was considered through a time 

averaged electro-hydrodynamic force and power deposition to the neutral gas. The power 

deposition accounts for ion Joule heating and a percentage of electrons Joule heating. 

All of the previous studies assume a span-wise uniformity of the plasma structure. However, 

the plasma structure in the span-wise direction is non-uniform, even if this non-uniformity in 

the plasma is expected to be small. To check the validity of the span-wise uniformity of the 

plasma, Nishida et al. [80] conducted three-dimensional discharge plasma simulations of a 

DBD plasma actuator by assuming step-like positive and negative applied voltages to simulate 

micro-discharges in a DBD plasma actuator, and analyzed span-wise non-uniformity in a body 

force field. In the positive voltage discharge, the minute disturbances at the boundary (that 

was from the numerical noise) lead to many filamentary structures because of the unstable 

nature of the streamer discharge. In contrast, the plasma structure of the negative voltage 

discharge is completely span-wise uniform because the glow-type discharge is more stable. 

However, both discharge structures are totally different from the experimental observations; 

the simulation model with the smooth exposed electrode cannot simulate the characteristics 

of the discharge structure as observed in the experiments. To correctly reconstruct the three-

dimensional micro-discharges some minute bumps, as artificial disturbances, were attached 

on the electrode edge. These disturbances break the span-wise uniformity and successfully 

reconstruct glow-type micro-discharges and streamer-type filamentary discharges in the 

negative and positive applied voltage cases. It was also shown that the tentative body force 

field has strong span-wise non-uniformity corresponding to the plasma structure. However, 

the span-wise-averaged body force has the same spatial-distribution, and time-evolution 

characteristics, as obtained by the two-dimensional simulation. Recently, Shang and Huang 

[81,82] presented a physical based modeling procedure for better understanding the 

fundamentals of the essential physics of DBD actuators. The drift-diffusion approximation was 

adopted as a transport property approximation to the non-equilibrium air plasma. The 

electron impact ionization process at a low-temperature environment was considered by the 

Townsend mechanism together with electron attachment, detachment, bulk, and ion–ion 

recombination. Moreover, the effects and quantifications of Joule heating, periodic 

electrostatic force, as well as the Lorentz acceleration for flow control were considered.  

1.7.2 -  Empirical and phenomenological models 

The most important physics of the flow can be captured using empirical models with much 

less computational cost. A significant difference between these low-order algebraic models 

and the drift-diffusion type models is that the former generally involve assumptions on the 
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behavior of either the electric field or plasma charge density. A simple, yet widely used 

empirical model was developed by Shyy et al. [83]. Shyy et al. considered an algebraic model 

by approximating the electric field and by assuming a spatially constant charge density. In 

this case, the electric field is assumed to decay linearly across the dielectric surface from a 

specified maximum value. However, this model over-predicts the actuator effect. 

Furthermore, it also does not reflect differences on the applied voltage waveform.  

Singh and Roy [84] used observations of the body forces obtained from a first principles 

simulation in order to come up with an approximation for the body force components. This 

approach obtains the body force by solving a curve fitting problem, but it contains no physics 

on itself. Also, like the model by Shyy et al. [83], it does not give any insight into the 

temporal characteristic evolution of the body force. Suzen et al. [85] have modified the 

electrostatic model developed by Enloe et al. [86] to compute a body force field. Suzen et al. 

[85] divided the electrostatic equations into contributions due to the external electric field 

and those due to the charged particles. Furthermore, in order to incorporate the time 

dependence into the model, a weighted Gaussian distribution, with a sine wave input, was 

used as a time dependent boundary condition for the charge density. The Gaussian 

distribution was chosen in order to emulate the observations made in the experiments. A 

scaling parameter was used as a calibration parameter, in order to force the induced velocity 

profiles to match the experimental results.  

Orlov [87] used a model based on lumped circuit elements in order to create a time 

dependent boundary condition for the governing electrostatic equations. The circuit elements 

consist of resistors and capacitors. The values of these circuit elements were based on 

physical constants and on the geometry of the actuator. The electrostatic formulation is 

based on the assumption that the plasma formation and fluid flow response can be 

decoupled, due to the disparities in the characteristic velocities associated with each 

process. This is a reasonable assumption since the characteristic velocities of the fluid 

transport under consideration were between 10 m/s and 100 m/s and, for electron 

temperatures between 1000 K and 10000 K, the electron velocities, which is the 

characteristic velocity of the plasma, is of the order of 105-106 m/s. While this lumped circuit 

element model was well validated using PIV results, the calculation of the body force vectors 

shows some inconsistencies with experimental results. Specifically, the force vectors have 

almost no normal component to the wall, as it was to be expected by considering the electric 

field lines.  

Lemire and Vo [88] used the two potential based models developed by Suzen et al. [85], but 

instead of a Gaussian distribution for the charge density boundary condition, the plasma 

current obtained from the lumped element model, developed by Orlov, was used to calculate 

a boundary condition for the charge density. Using this “hybrid model,” they were able to 

solve for time dependent body forces, and they applied the model to the simulation of rotor-

stator turbo-machinery interactions. However, after time averaging the body force vectors, 

they found a region where the force vectors are oriented in the negative x-direction. This 
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does not agree with experimental observations about the induced flow direction, but since 

these reversed vectors are smaller in magnitude than the vectors near the downstream edge 

of the exposed electrode, which are oriented in the positive x-direction, the net force is in 

the correct direction.  

Further, Mertz [89] refined the model presented by Orlov by casting the governing equations 

in terms of a generalized coordinate system, so that it can be applied to curved surfaces. By 

resorting to this approach the grid dependence of the model was eliminated, and the 

methodology of applying this model as a boundary condition to the electrostatic equations, in 

order to calculate the body forces generated by the actuator, was studied. This new 

formulation of the lumped circuit element model was then validated against various 

experimental observations, including the force vector orientation needed to produce the 

observed induced flow. Also, the scaling of the force with the input voltage, and the 

directivity patterns of force and pressure were validated from measurements.  

The above mentioned models had demonstrated that they are able to capture the most 

important physics of the actuator, in particular without the computational cost associated 

with first-principle models. Although are useful but, they do not actually analyze the dynamic 

and kinetic processes in plasmas. Moreover, a common feature amongst each of the above 

models is the need for an initial empirical Calibration. 

1.8 -  Objectives 

The main objective of the thesis is to numerically analyze DBD plasma actuators. Design and 

optimization of plasma actuators is strongly dependent on the development of a numerical 

model able to predict accurately their induced flow. To this aim, a suitable numerical model 

for simulating the DBDs will be considered and applied to situations resembling a typical flow 

configuration in propulsion geometries after studying different numerical methodologies for 

modeling DBD plasma actuators. Therefore, several objectives are presented by this research: 

 A classical plasma fluid model will be implemented in OpenFOAM and its accuracy and 

performance accordingly will be verified. OpenFOAM will provide the flexibility to 

solve the different physical equations. 

 An Analysis of the Plasma-Fluid modeling approaches should be performed and their 

modeling performance should be verified. These models suffer from severe 

restrictions due to the time scale and length scale of the plasma. Thus, it will be 

tried to employ different numerical procedures to improve the numerical 

performance. 

 A number of phenomenological models have been proposed throughout the literature, 

and all of them need empirical calibrations. A simple analytical model should be 

developed to simulate the macroscopic effect of DBD plasma actuators. 
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 The possibility of expanding the range of applicability of plasma actuators for higher 

speed ranges will be studied by using actuators in unsteady operational mode and 

nanosecond plasma actuators. 

 DBD plasma actuators will be applied to simple propulsion geometries to investigate 

the potential of these kinds of actuators for controlling flow and improving their 

performance. 

 

1.9 -  Outline of Thesis 

The present thesis is built up and based on the published, or under review papers, in peer-

reviewed journals. Thus, this thesis is divided into seven chapters: 

Chapter I: introduction; in this chapter an overview of the application of plasma actuators for 

flow control purposes will be presented. Moreover, a short background on the most important 

fundamental processes of plasma physics is presented. Also, a state-of-the-art on the 

modeling of DBD actuators is discussed. 

Chapter II: Implementation of the Plasma fluid model in OpenFOAM; in this chapter an 

Implementation of self-consistent model, which is suitable for the simulation of micro 

discharges, is described to model DBD plasma actuators in OpenFOAM. Different numerical 

treatments were employed and discussed. Several validation case studies were presented.  

Chapter III: Interaction of DBD plasma actuators and transonic flows; in this chapter the nano-

second plasma actuator is considered and the mechanism in which it alters the flow 

characteristic is explained. Moreover the plasma fluid model, described in chapter II, is 

expanded to model the effect of nanosecond pulsed actuators.  

Chapter IV: Modified split-potential model; the development of a new phenomenological 

model, which needs less experimental calibration, is presented in this chapter. Different case 

studies are also presented to demonstrate the validity of the presented model. Also, the 

performance of this model is compared with previous models existing in the literature. 

Moreover, the influence of the altitude variation is included in the model and is discussed in 

this chapter. 

Chapter V: Unsteady actuation with DBD plasma actuators; the possibility of obtaining 

improved flow control performance by using unsteady (duty cycled) mode of actuation is 

discussed in this chapter. The mechanism of flow control in steady and unsteady mode is 

compared and explained in this chapter. 
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Chapter VI: Effect of DBD plasma actuator on thrust vectorizing; in this chapter, plasma 

actuators are used to control the flow in the ACHEON nozzle geometry. The numerical model 

is based on the model presented in chapter IV. For the verification, the numerical results 

were compared with preliminary experimental results.  

Chapter VII: Conclusions and outlook of the future work. 

 .
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2 - Implementation of the Classical Plasma-Fluid 

Model 

Abstract 

This study focuses on the development of numerical methodologies for DBD plasma actuators. 

To simulate the coupled plasma-fluid flow physics of these discharges, the plasma-fluid is 

utilized in conjunction with incompressible and compressible flow solvers. The flow solver is 

responsible for determining the bulk flow kinetics of dominant neutral background species 

including mole fractions, gas temperature, pressure and velocity. The plasma solver 

determines the kinetics and energetics of the plasma species and accounts for finite rate 

chemistry. In the present chapter, the implementation of plasma-fluid model into the 

OpenFOAM library is discussed. In order to achieve maximum reliability and best 

performance, we have utilized state-of-the-art numerical and theoretical approaches to the 

description of the DBD plasma actuator. We have tried to test and compare different 

numerical treatments for obtaining stable and accurate results. The practical implementation 

of the model in OpenFOAM is provided together with theory involved behind. Numerical 

experiments are carried out in order to cross-validate the solvers and in order to investigate 

the drawbacks/benefits of the solution approaches. The test problems include single DBD 

actuator with positive and negative constant, ramp and sinusoidal voltage waveforms similar 

to the ones that could be found in literature1.  

Keywords: OpenFOAM, DBD plasma actuator, Plasma-Fluid Model, Supertime-stepping, 

Electric discharge 

2.1 -  Introduction 

Among the several active flow control techniques, flow control techniques that use Dielectric 

Barrier Discharges are considered very promising because of their fast reactivity, low parasitic 

drag and low energy consumption and moreover since usually they have simple constructive 

requirements and they are not expensive, they have no moving elements. DBD plasma 

actuators have shown a great potential for flow control purposes, especially regarding 

aeronautic applications. In general, DBD plasma actuator can induce a body force on gas or 

heat the gas. Body forces can be exerted on charged species (electrons and ions) by electric 

                                                 
1 This chapter is based on the following paper: “M. Abdollahzadeh, J.C. Páscoa, P.J. Oliveira (2014), 

Implementation of the Classical Plasma-Fluid Model for Simulation of the Dielectric Barrier Discharge 

Actuators in OpenFoam, Journal of Computational Physics, (Submitted).” 
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field and are coupled to bulk gas by collisions. These forces can then be used to control the 

flow.  

In this paper the coupled plasma-fluid flow physics simulations (the plasma solver) was 

conducted after implementation of the suitable physical model. Formation of the Plasma 

discharges involves multiple-scale processes such as convection, diffusion, and 

reaction/ionization mechanisms which make the transport equations of the plasma dynamics 

stiff. To handle the stiffness, a sequential finite-volume operator-split algorithm is employed. 

Then, a body force or localized heating treatment is devised to link the plasma dynamics and 

fluid dynamics.  

Open source computational fluid dynamics (CFD) codes provide suitable environments for 

implementation, testing and rapid dissemination of algorithms. As a test platform, we choose 

the unstructured, finite volume method (FVM) based open source C++ library OpenFOAM. The 

plasma fluid model then was implemented in the OpenFOAM CFD toolbox [90] along with 

suitable numerical remedies for obtaining stable and accurate results. OpenFOAM has 

attracted a lot of attention recently because it is an open source code designed for 

continuum mechanics applications specially CFD applications. It is a C++ toolbox based on 

object oriented programming [90]. This makes OpenFOAM sustainable in terms of reuse and 

development by many users all around the world, in contrast to the single block programming 

codes which are very hard to develop or even understand. OpenFOAM is as released under the 

Gnu Public License (GPL), has gained a vast popularity during the recent years. The readily 

existing solvers and tutorials provide a quick start to use the code. The existing solvers can 

also be freely modified in order to create new solvers regarding existing and new solution 

approaches. OpenFOAM gives a flexible framework which combines all the required tools for 

solving any CFD problem. This framework consists of enormous groups of libraries for 

different mathematical, numerical and physical models. Linking the mathematical and 

numerical tools with the physical models in a main C++ function produces different solvers 

and utilities. OpenFOAM, undoubtedly, opens new horizons for CFD community for efficient 

models devolving, allowing the industrial sectors to be updated with all new models without 

any delay for waiting the new models to be implemented in the commercial CFD codes. 

The rest of this chapter is arranged in the following format; the details of the plasma-fluid 

model are summarized in section 2.2, 2.3 and 2.4. Section 2.5 describes the numerical 

procedure. In section 2.6, the main procedure of the implementation of the entire model in 

OpenFOAM is explained. Section 2.7 presents the results. Finally, conclusions are drawn in 

section 2.8. 

2.2 -  Governing equations and boundary conditions 

Plasma fluid models (hydrodynamic models) are based on the Boltzmann equation and its 

moments [91–93]. Derivation of hydrodynamic or fluid models is always based on a number of 

simplifying assumptions. 
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2.2.1 -  The Boltzmann equation and its moments 

Transport problems (including accelerating forces and collisions) can be treated by solving the 

Boltzmann equation: 

collision
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where ),,,,( tzyxfk 


 is the time-dependent particle distribution function, the time evolution 

of the particle density, in the 6-dimensional configuration-velocity (phase) space. The 

subscript “k” could designate electrons, positive ions, negative ions or neutral and 


 and a


 

are respectively velocity and acceleration of charged particles. Assuming that particles have 

the mass km  and the charge kq , acceleration of charged particles a


 would be expressed by 

acceleration due to electric E


 and magnetic B


 fields, which is then given by 

  BEmqa kk


 / . First term on left-hand side represents the change in the distribution 

function over time. The second term describes how the distribution changes in space, or 

configuration coordinates, as the particles move through the system with a certain velocity 

and direction. The third shows how the species distribution is changing due to external forces 

acting to accelerate the charged particles. Gradient, kf  represents the change to the k  

distribution function with respect to configuration coordinates ),,( zyx  whereas 


 /kf , 

represents the change to the distribution function with respect to the velocity coordinates, 




. The collision operator  collisionk tf  /  in the right-hand side considers the generation or 

destruction of particles (by impact ionization, recombination or chemical reactions) as well as 

collision processes. 

A combination of the Boltzmann equation for each particle species with the Poisson’s 

equation leads to the solution of the number of particles and the velocity of the particles in a 

volume element. This solution gives a detailed rigorous description of microscopic view of any 

given plasma system at any given time. However, Due to the complexity of the resulting 

system, finding a solution is impossible or is only possible for simple test examples. The 

numerical effort for more general cases is too high to get solutions in an acceptable time. 

It is very difficult to solve the Boltzmann equation for the number of discharge problems due 

to the strict restrictions. The distribution function contains a large amount of information and 

generally, the complete information is not necessary for all physical problems. When the 

system under investigation does not require microscopic detail, it is possible to provide a 

more practical alternative by considering the moments of the Boltzmann equation. If Eq. (2.1) 

is multiplied with a set of test functions and integrated over the velocity space (moment of 

Boltzmann Equation), the six degrees of the freedom and complexity of the Boltzmann 

equation will be reduced. This operation leads to conservation equations known as the 
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moments of the Boltzmann equation. The first three moments of Boltzmann equation provide 

the equation of mass, momentum and energy balance for each species.  

In this aspect, from integration of ),,,,( tzyxfk 


 over the velocity space, ),,,( tzyxnn kk   the 

particle density per volume can be obtained; 
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Also, the average drift velocity of the particles v


 can be calculated by multiplying kf  with 




 and integrating over the whole velocity space 
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The integration of Eq. (2.1) over the velocity space (zeroth velocity moment) will lead to the 

conservation of mass (continuity equation): 
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(2.4) 

In the derivation of the above equation, divergence theorem was used and distribution was 

set to zero as the surface used in the integral approaches infinity. Here S  represents all the 

processes that lead to a generation or loss of particle. 

Neglecting the effect of magnetic field, a conservation equation for momentum can be 

derived in a similar way. Multiplying Eq. (2.1) with a weight function which is equal to 

product of the particle mass m and the velocity vector, and integration over the whole 

velocity space (first moment), the particle momentum equation will be obtained as; 
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(2.5) 

In the derivation of the above equation, the conservation of mass was used and it was 

assumed that the distribution function is isotropic. Moreover, a scalar partial pressure p  is 

defined as kBkk Tknp  ; where, a local particle temperature ),( txTk


 can be defined so that 

the mean random kinetic energy of all particles at the same location can be expressed by as 
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The mean kinetic energy of the particles is a scalar quantity given by 
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To obtain the conservation of energy, the second moment is calculated by multipling Eq. (2.1) 

by 
2


and integrating over the whole velocity space. Again assuming isotropic distribution 

function, 
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(2.8) 

The advantage of this procedure is that in the most general case, there remain only the three 

spatial degrees of freedom. The plasma fluid model theoretically can consist of an arbitrary 

number of equations for each species in the plasma. However, the number of needed 

equations is limited to the second momentum equation by closing the series with an 

appropriate assumption of the energy distribution function (for example, isotropic energy 

distribution). This fact that assumptions about the distribution function have to be made is 

the most serious drawback.  

2.2.2 -  Plasma-fluid model 

Under atmospheric pressure, the discharge can be simulated using a time-dependent plasma-

fluid model instead of a kinetic model. As was mentioned before, the fluid model for 

modeling the DBD consists of the first few moments of the Boltzmann equation for the various 

species with a near-Maxwellian distribution function. This fluid model description using the 

continuity equations for the various particle densities is satisfactory at atmospheric pressures, 

where the momentum and energy equilibrium times are generally small compared with any 

macroscopic scale variations of the system [57]. The core of the model consists of solving 

Navier-Stokes equation, Maxwell equation for electromagnetic and multiple species continuity 

equations including non-equilibrium chemical reactions to obtain the spatio-temporal 

distributions of each particle species and electric field.  

For simplicity, the plasma is considered as a multi-component fluid considering global 

categories of charged particles comprising four primary species, namely, neutrals, positive 

and negative ions and electrons. Multiple charged ions will be neglected. This include the 

assumption that positive ions or negative ions are in close equilibrium with other positive or 

negative ions which results in one type of effective positive ion and one type of effective 

negative ion [94]. The model does not describe the kinetics of excited species and their 

influence on the plasma evolution. The model only considers that at any instance during the 

discharge, the ionized species concentration is the net balance between ionization, 

detachment, attachment and recombination processes. Moreover, the model accounts for the 

charging of the dielectric surface due to the incident charged particles. 

In modeling gaseous discharges using a fluid model, several important assumptions have to be 

made. Here, it is assumed that the DBD plasma is a weakly ionized plasma. The imbalance of 

net space charge due to the charged species densities will generate self-consistent electric 

forces. In the absence of external magnetic field and by assuming that the current densities 
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are small (weakly ionized plasma), self-consistent magnetic fields can be safely neglected and 

the Maxwell equations can be reduced to solving a single Poisson equation for the electric 

potential [82]. 

There are two characteristic temperatures, heavy species temperature and a separate 

electron temperature. Each temperature could be obtained separately by solving energy 

conservation equations. However, as ions tend to thermalize effectively with neutrals by 

frequent charge exchange collisions, it might be assumed that the ion temperature is in the 

order of the neutral gas temperature (It is assumed that all heavy species (ions and neutrals) 

are in thermal equilibrium with each other). In other words; since the ion mass is very nearly 

the same as the mass of the background gas, the ions are assumed to be in thermal 

equilibrium with the background, and no energy equation is solved for the ions. For the 

electrons, due to their lower mass, the exchange of kinetic energy with the other particles is 

poor, and their temperature can be significantly higher than the other species. Thus, for the 

simplification, a high constant electron temperature is assumed. 

The species flux kkk vn


 in Eq. (2.5) can be obtained by solving separate momentum 

equations for each species. However, at atmospheric pressure, a reasonable and 

computationally efficient approximation could be made using the so called drift-diffusion 

approximation [95]. In this approximation, the fluxes of charged particles are calculated by 

neglecting the inertial and unsteady terms of the momentum equation and balancing the 

thermodynamic pressure gradient with the drift force and collision terms. This assumption for 

reduction of the momentum equation for the species is valid at high pressures (e.g. 

atmospheric conditions) [54]. Such an approximation requires the pressure tensor to be 

isotropic and is strictly valid only for a Maxwellian distribution. Moreover, this approximation 

is valid when the mean free path is significantly smaller than the characteristic length scale 

of the problem. This is typically the case at atmospheric pressures and length scales of the 

order of millimeters or greater [6]. In other words; As long as the thermal velocity is 

comparable to the drift velocity and we are in the continuum regime (Knudsen number Kn  is 

low, 1/  KnL , as the mean free path   at atmospheric conditions is O( m710 ) and the 

actuator characteristic length L  is O( m310 )), the inertial components in the momentum 

equation can be neglected. What is realized is a balance between the collision/ionization 

effects and the drift-diffusion components instead of the full momentum equation. Thus the 

fluxes of charged particles could be expressed as: 

bkkkkkkkk vnnDEnvn


   (2.9) 

In Eq. (2.9), the drift-diffusion flux consists of a mobility flux term (for charged species), a 

diffusive flux term, and the species flux due to the flow velocity field. 

The simplest set of equations, within the fluid model framework, containing the basic physics 

necessary for gaseous discharges, are the continuity equations for electrons, positive ions and 

negative ions (to account for the development of the space-charge) coupled with Poisson’s 
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equation (to account for the modification of the electric field due to space-charge) which are 

summarized in Table (2.1). 

Table 2.1: Summary of the governing equations. 

Equations  

Continuity equations:  

Electron; 
ee

e S
t

n



 

.
 

epeepee nnrS 
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  
(2.10) 
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n
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 
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pnnppeepep nnrnnrS 


  
(2.11) 

Negative 

ions 
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n S
t

n



 
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pnnpen nnrS 



 

(2.12) 

Momentum equations  

beeeeeeee vnnDEnvn


 
 

(2.13) 

bpppppppp vnnDEnvn


 
 

(2.14) 

bnnnnnnnn vnnDEnvn


 
 

(2.15) 

Poisson equation:  

 snep nnne  )().(  (2.16) 

 

 

2.2.3 -  Transport properties 

The production terms and loss terms inside the continuity equations of the charged particles 

include different reactions. If we assume that the working fluid is air and is just composed of 

N2 and O2, following reaction could be considered. 

-Ionization 

)(2)( 2222
 ONeONe  

(2.17) 

-dissociative electron-ion recombination, 

OOOe  
2  

(2.18) 

224 OOOe  
 

(2.19) 

-Ion-ion recombination 
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MBAMBA  
 

(2.20) 

-dissociative electron attachment  

OOOe  
2  

(2.21) 

In the above reaction the ionization coefficient   could be defined which measures the 

number of ionization by electron per unite distance. In other words, it is a measure of energy 

gain by charge particles between the collisions. The dissociative electron-ion recombination is 

the fastest mechanism of the bulk recombination of the weakly ionized gas. The rate is given 

as peep nnr . At low pressure environment the ion-ion recombination process takes place 

through binary collisions and the reaction is similar to charge transfer and at moderate 

pressures the reaction proceeds through triple collisions. The rate of ion-ion recombination is 

also given as pnnp nnr . The electron attachment is the formation and depletion of negative 

charged ions in the partially ionized air. The electron attachment is the main mechanism of 

removing electron from negatively charged ions. This lost of electron number density can be 

given by ea nv , where a  is the attachment frequency. However, for the case of stability of 

the numerical simulation the rate of attachment is defined in similar way to ionization rate as 

e


 . 

An accurate gas discharge plasma modeling requires an extensive knowledge of the transport 

parameters of the gas in question. The fluid model uses transport parameters found from the 

kinetic model or from experimental results. The parameters have been obtained through the 

solution of the stationary Boltzmann equation. However, we should mention that there are 

deviations between different correlations reported in the literature, which may affect the 

results somewhat. The gas properties such as transport coefficients (momentum transfer rate 

such as  , and D ) , the collisional ionization coefficient   and energy loss rates could be 

obtained simply by considering the local-field approximation(LFA) or local–mean-energy 

approximation (LMEA) [96]. This implies that dependence of theses coefficients on the mean 

energy are supposed to be the same as at equilibrium. By "equilibrium conditions" we mean a 

situation where the rate of electron energy gain is locally balanced by the energy loss rate 

[56] . The local equilibrium assumption implies that the transport coefficients depend on 

space and time only through the local value of the electric field ),( txE


 (functions of the 

reduced electric field (E/N) where E is the field amplitude and N the gas number density [6] 

). In this way, the transport coefficients are assumed to be the same as those which could be 

measured or calculated under a uniform and constant electric field equal to E


 

(hydrodynamic regime). Essentially this means that the electron distribution function is in 

local equilibrium with the neutral plasma. This assumption is valid as long as the relaxation 

time for achieving a steady state electron energy distribution function is short compared with 

the characteristic time of discharge development. Another alternative is to assume the 
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transport coefficients and the rate coefficients of electron impact reactions to be functions of 

the electron mean energy [56]. 

Table 2.2: Summary of property models employed for discharge simulation. 

Transport/reaction 

properties 

Value  

)( 11  Torrm
p


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
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/
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23430

/
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/
exp(32.2421.0
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 
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
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 112  sTorrVmpp  
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0308.0)
38175

/
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exp(05492.079.0
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
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 112  sTorrVmpn  ,181225.0  
(2.25) 

)( 11  Torrm
p


 











 
 )

53.2

)04.9)/(ln(
exp(

/

33200
307.121.0

2pE

pE
 (2.26) 

kD kkBTk   (2.27) 

npr  1313107.1  sm  (2.28) 

epr  1313102  sm  (2.29) 

 

In both cases, to obtain the properties of electron transport such as mobility; diffusivity, 

mean energy etc, varying as a function of E/N (E is electric field and N is the gas number 

density) or electron mean energy, the solution of steady state Boltzmann equation is 

considered under constant field condition to obtain the electron energy distribution function 

in the gas under investigation. For most of the electron-induced processes the reaction rates 

are calculated on the basis of energy-dependent cross-sections, and with a separate program, 

called BOLSIG+ [97]. This program is applied for a wide range of different, fixed reduced 

electric fields and gives the dependence of the rates of ionization, dissociation, and 

excitation of the particles in discharges on the reduced electric field E/N or electron mean 

energy by solving the Boltzmann kinetic equation in a homogeneous field with uniform and 
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steady conditions. Here, rate constants of the different electron-induced processes 

corresponding to the above reactions, and the transport coefficients including mobility of the 

electrons (The corresponding diffusion coefficients are then calculated using Einstein’s 

relation) were obtained from BOLSIG+ Solver or were extracted from [94], and are presented 

in Table (2.2). 

2.3 -  Boundary and initial conditions 

2.3.1 -  Initial Condition 

The initial condition used to start the simulation requires specifying the starting number 

densities for the various species. The value of 0n  is used as a reference value (and also as a 

measure of pre-ionization of the neutral gas) to define the initial values. Thus, the initial 

positive ion and electron number densities are assumed to be uniform and equal to 0n  in the 

plasma domain, while the negative ion charge density is assumed to be equal to zero. 

2.3.2 -   Electric potential boundary conditions 

The boundary value of the electric potential is defined at the two electrodes (Anode and 

Cathode) using a Dirichlet type boundary as follows; 

,)(0 anodeattfV  (2.30) 

,0 cathodeat  (2.31) 

)(tf
 

is a function representing the time-dependent voltage waveform. Moreover, the 

homogeneous Neumann boundary condition is applied for the electrostatic potential at the 

open boundaries (far-field) which simply read as; 

,0 farfieldat
n





 
(2.32) 

In addition, the boundary condition of the electric field and electric potential at the 

dielectric barrier and plasma interface is calculated considering the accumulated surface 

charges from the Gauss’ theorem [82] ; 

0)(  dEEn


 (2.33) 

  nEnE dd


.. 00  (2.34) 

In the above equations, 0 is the permittivity of the space, d  is the relative permittivity of 

the dielectric layer, E


 and dE


 are respectively electric field in the gas and the dielectric 

and   is calculated by integrating the net charge density over the surface and has the 

dimension of C/m2. This charge accumulation on the surface is considered as the result from 

instantaneous recombination of the charged particles after satisfying the imposed boundary 
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conditions for the charged species and includes both accumulations of positive and negative 

charges (    ) , and is computed using the flux of charged species to the surface [81] 

as: 

   
tt

nep dtnjdtne
00

..


  (2.35) 

where j


 is the current due to fluxes of charged particles. We should mention that, in view of 

the relatively short duration of micro-discharge versus the microsecond time scale of the AC 

cycle; the instantaneous surface recombination is an acceptable approximation. Eq. (2.33) is 

stating that that the tangential electrical field strength is continuous across the media 

interface. For a Cartesian grid, this means that the rate of change for electric potential in z 

must be identical across the interface along the x coordinate and the rate of change of 

electrical potential in x must be equal along the z coordinate across the media interface. This 

requirement is automatically satisfied by the two- dimensional formulation. 

The second condition expressed by Eq. (2.34), is the balance of the discontinuity of the 

normal component of the electric displacement across the plasma/dielectric interface by the 

net surface charge density on the interface by emission, desorption, and accumulation. This 

condition is independent of all the chemical-physics process on the interface. This equation 

could be rewritten by considering the electric potential as; 

 







d
d

air nn 00  
(2.36) 

In other words, the current continuity is enforced. This equates the drift current and the 

displacement current in the fluid domain to the displacement current inside the dielectric 

material [66]. 

2.3.3 -  Charge number density boundary conditions 

At the domain boundary away from the dielectric/electrode surface, incoming/outgoing flux 

of particles is negligible. Thus a zero normal gradient boundary condition is assigned (i.e. the 

slopes of the solution variables are equal to zero) which assumes that impact far away from 

the fluid-actuator interface is insignificant. This boundary condition is expressed as; 

,0

,0.







n

n

n

k

k


 (2.37) 

Boundary conditions of the charged particle number density is defined on the electrode and 

dielectric layer surface through balance between the fluxes of the charge particles absorbed 

by surface and fluxes of the particles that are reflected from the surface. When the surfaces 

are in anodic behavior (e.g. exposed electrode as anode and 0  ), the incident positive ion 
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fluxes at the surface is collected considering the thermal equilibrium of the positive ions at 

the surface. While the electron fluxes are reflected from the surface. In this case, The 

electron and negative ion flux is also based on the electron thermal velocity (

)/(8 mTkv Bth  ) whose magnitude is given by 
4

th
th

nv
 and is directed towards the wall 

and it implies that the hydrodynamic flux equals the flux from the dielectric surface.; 

pthpp vn ,4

1



 (2.38) 

nthnnnnn vnEn ,4

1



  (2.39) 

etheeee vnEn ,4

1





 
(2.40) 

In the same way, when the exposed electrode is as cathode and the dielectric barrier is in 

cathodic behavior ( 0 ), positive ion fluxes are reflected from the surface and thus the 

positive ion flux will be equal to its drift part. For the electrons and negative, we assume that 

all the electron and negative ion fluxes are collected on the surface and thus; 

pthpppp vnEn ,4

1



  (2.40) 

nthnn vn ,4

1



 (2.41) 

ethee vn ,4

1



 (2.42) 

The above boundary conditions could be compacted as follows; 

pthpppp vnnEnn ,4

1
)0.0,.min(. 


  (2.43) 

nthnnnn vnnEnn ,4

1
)0.0,.min(. 


  (2.44) 

etheeee vnnEnn ,4

1
)0.0,.min(. 


  (2.45) 

The above equations, in fact are preventing the zero charged particle fluxes to the wall as 

the driving force are directed towards the wall. In Eqs. (2.43) and (2.44), the second term is 

the thermal flux of ions to the wall and the first term is a drift flux contribution due to the 

sheath potential. This term quantifies a nonzero drift flux for positively charged ions in a 

positive sheath (i.e., decreasing potential toward the wall) and zero flux in the same sheath 

for negatively charged ions. The opposite is true for negative sheaths. 

When positive ions hit the cathode (either electrode surface or dielectric surface), it releases 

sec  secondary electron(s). The secondary emission coefficient sec  is generally between 0 

and 1. Its value depends on the particle, its energy, the surface material and temperature. In 

this case, the expression of the electron flux due to secondary emission is: 
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p


secsec   (2.46) 

Thus, the total electron flux at the wall (Eq . (2.45)) becomes, 

nvnnEnn petheeee


.
4

1
)0.0,.min(. sec,    

(2.47) 

This boundary condition is essential because the mechanism and speed of the streamer 

breakdown process depend on the availability of these secondary electrons. As mentioned in 

[98], this implementation of the secondary emission is not consistent with the experimental 

value of sec  at the cathode. In experiments, sec  is calculated as the ratio between the flux 

of secondary electrons and the particle flux to the electrodes. As a solution, thermal velocity 

of zero at the cathode is imposed. However, due to the variation of the plasma potential 

responding to the applied voltage, it is fairly delicate to detect which wall represents the 

instantaneous cathode. An alternative solution is suggested in [99,100] . 

Here for simplicity, we assume that the thermal velocity is zero on the all the surfaces. As 

mentioned before, variation of the potential causes the drift flux of electrons to change along 

surface leading to a jump of the electron concentration at a point where E =0. In some cases, 

this interrupts computations, because the needed accuracy cannot be achieved in the jump 

vicinity. thus to determine the instantaneous cathode and insure a smooth and stable 

variation of the charge boundary condition on the surface, the exact solution of the 

mentioned boundary conditions is considered as follows; 
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(2.50) 

The above equations are general boundary conditions, which are valid for any surface. 

2.4 -  Interaction of the discharge and the Flow 

The problem can be separated into two parts. One of them is modeling of plasma phenomena 

(ionization, recombination, evolution of electric field, etc.) that occur on sub nanosecond-to-

microsecond time scale on the background of “frozen” flow field. The second problem 

consists of coupling of the plasma part with the flow by means of plasma-induced force and 

heating rate. In the first approach, the coupling between the plasma solver and the flow 

solver is in one way, that is, in this case a gas heating and source term is imposed to the 

plasma solver and the plasma is only influencing the flow field through the electro-

hydrodynamic force or gas heating. The electro-hydrodynamic (EHD) force associated with the 
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momentum transfer from charged particles to neutral molecules in the volume above the 

dielectric layer is considered as follows [73]. 





neik

kkk vmn
,,

kuf  (2.51) 

where, kn  is the charged particle density, km  is particle masse, kv  is the momentum 

exchange frequencies for particle-particle collision and ku is the charged particle mean 

velocity. In the above equation, the mean velocity of the neutral particles with respect to the 

charged particle mean velocities is neglected. Using the definition of the charged particles 

mobility (
kk mv

e
k ) and considering the dominancy of the drift terms in charged particles 

current density in the case of discharge ( Ejk kken  ), the above equation can be written as; 

 Ej
f

k

k
nep

neik

nnne  
 ,,


 

(2.52) 

Above equation thus provides the total force per unit volume acting on the neutral molecules 

and is equal to the Coulomb force acting on the charged particles. In other words, the 

momentum gained by the charged particles in the electric field is exactly and locally 

balanced by collisions, and entirely transmitted to neutral molecules. 

When the plasma equations are solved in tandem with an external flow model, the gas 

heating source terms, thp  are collected and communicated to the flow model which is then 

responsible for determining the bulk temperature. The gas heating source terms are 

calculated by the plasma solver and include the ion Joule heating term due to the work done 

on the ions by the electric field, inelastic collisional heating term due to the quenching of 

electronically excited species such as nitrogen, oxygen metastables, and the elastic 

collisional heating term due to elastic electron impacts with the background gas. These gas 

heating source terms get importance for atmospheric DBD plasma actuator driven by a 

nanosecond voltage.  

Here, for the case of simplicity, the one-way coupling of the plasma solver and the flow 

solver is adopted. We should mention that this is quite a valid assumption for large range of 

applications, due to the large difference of the fluid characteristic time scales and time 

scales of operating plasma dynamics.  

However, in the case that plasma solver and the flow solver are communicating in two-way 

coupling, the flow influences the plasma as a momentum source for the species. This 

momentum source enters in the drift-diffusion equations. This effect is particularly important 

for the neutral species, as there are no electric forces to modify their speed. Moreover, if the 

fluid dynamic time scales become comparable, then the two-way coupling will need to be 

handled and the fluid solution advancement should be performed using the DBD time scale. 
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2.5 -  Numerical procedures 

The coupled plasma–fluid problem is inherently nonlinear and exhibits wide ranges of time 

and length scales. Numerical solution of the charged particles governing equation coupled 

with Poisson equation is subjected to serious limitations of selection of numerical time-step. 

Sufficiently small time-steps provide stable and accurate solution, however the computational 

run time will be massively high for the purpose of simulation. Thus, the approach selected for 

treating the time discritization and advancing the time-step should be capable of both 

providing needed accuracy and stability while providing a reasonable computational cost. In 

this view, different approaches could be found in the literatures that have been tested to 

reach this purpose. Moreover, existing different time scales in the plasma formation, 

originating from fast ionization and slow recombination process along with drift and diffusion 

of the species, typically lead to stiff problem that in this case is the vastly differing time 

scales. Moreover, high accuracy may be required for all time scales. To resolve this issue, 

special treatment need to be considered for solving the governing equation of the plasma 

dynamic, some possible remedies could be:  

- Implicit methods are favored for stiff problems. And they are often used but these can be 

expensive and difficult to derive. Marching the solution in time will typically need to be 

implicit because of the diffusion terms, which otherwise would cause a severe time step 

restriction. The reaction terms may also contribute to the necessity of using an implicit 

method if some fast reactions reach equilibrium on a much faster time scale than the 

processes being modeled (i.e., if the reaction terms are “stiff”).  

- Physically, the presence of diffusion in the system should damp high frequency oscillations. 

When the full model is solved numerically however, the time-step required to prevent high 

frequency oscillations from overwhelming the results is very small when the diffusion term is 

discretised. The diffusion in the continuity equations of the charged particle could be treated 

as source term. This can lead to numerical stability issues, though; it could reduce the 

numerical diffusion and increase the accuracy. 

-Operator splitting [54,101,102] (or the fractional step method) treats the separate processes 

independently, i.e. solve the homogenous (convective part) and inhomogeneous (source 

terms) part of the equations separately. Although splitting allows each component to be 

modeled efficiently, none should be allowed to vary significantly before interacting with 

others. In this case, the simulation could take advantage of the best scheme that can be 

chosen in each case (useful when some terms are insignificant). Moreover, accuracy and 

stability issues can be dealt with at each stage (aiding robustness) and also it is relatively 

simple to deal with processes acting on widely differing time scales, due to flexibility in the 

choice of time-stepping. This is typically relatively simple, cheap to run and fairly stable. But 
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it also ignores the fact that the processes are coupled and do interact, so it may misinterpret 

the results. Formally, the scheme is only first order accurate.  

- Sub-cycling or dual time-stepping is used as a simpler alternative, particularly when the 

source terms are complicated and highly nonlinear. This uses many steps of an explicit 

method to reach the same time level as the global time-step. 

- Adaptive time-stepping might be desirable allowing larger time steps when it is possible. 

Although the mentioned remedies could benefits the solution, but all of them require that 

quantities don’t change dramatically within a global time-step. Moreover, small time-steps 

are required to resolve the effects of rapid transients phenomena’s. Also, larger time-steps 

may be necessary to allow the simulation to be run within a reasonable time. In other words, 

numerical stability governs the length of time-step which can be used to get any results at 

all. In general, the time-step is constrained by accuracy which must also be balanced against 

efficiency and stability. In the following sections, some of the numerical treatments, used in 

this paper for the solution of the governing equations of plasma-fluid model are presented. 

2.5.1 -  Time discretization 

In the present study, we have employed an operator-split sequential solution algorithm. In 

using time-split algorithms for processes operating in a wide range of time scales, the choice 

of time-step size is typically determined by the smallest time scale, but need not necessarily 

be chosen as such. To speed up the solution procedure, an adaptive intermediate time scale 

is chosen to advance the overall system in time. Also, a predictor–corrector approach is used 

to ensure sufficient coupling between the solution variables.  

2.5.2 -  Time-scales of the plasma dynamic  

The plasma/flow interaction is fundamentally a multi-scale problem [102] with a large range 

of time scales from shorter than the pico-second (e.g. dielectric relaxation time) to time 

scale of the airflow [56]. In the case of RF discharge operating at frequency of f  , the time 

scale of operating frequency is; 

f

1
  (2.53) 

Moreover, the reaction terms in the continuity equation of the charged particles have 

different time scales. The characteristic times of ionization, attachment and recombination 

processes are in the order of; 

Eionization 
 1

  (2.54) 
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Eattachment 
 1
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(2.55) 
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Also, the convective and diffusive fluxes have different time scales based on the 

corresponding velocities as; 
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In addition, electrostatic relaxation of the electric field consistent to the distribution of 

charge density in the bulk, on a certain time scale need to be considered when charged 

particles appear and an electric field comes into play. This relaxation time defines a 

maximum reaction time on which the field varies when a charge density perturbation is 

applied: 

 nneepp
R nnne 





 0  (2.59) 

This temporal scale could be much smaller of both drift diffusion motion time and chemical 

reactions one. So an implicit treatment, regarding the electric field evolution, is required. 

This time step restriction is usually one of the most severe and is equivalent to the Courant 

type stability criterion for the current continuity equation. The origin of the restriction is 

primarily caused by the non implicit treatment of the electric field in the species transport 

equations. When the equations are solved explicitly, the time-step needs to satisfy the 

Courant–Friedrich–Levy (CFL) condition that means time-step needs to be less than the time 

scale of the problem. The CFL condition can be expressed in function of the transport 

coefficient, the electric field and the density of charged particles. 

  ),min(
),min(

2
),min(

0

yxnnn
e

yx

D
E

yx
Cot

nneepp 











 

(2.60) 

The CFL condition presented above has three contributors, the drift velocity E , the 

“diffusion velocity” ),min(/2 yxD  , and some contribution of the Maxwell time 

  ),min(
0

yxnnn
e

nneepp  


. This expression is numerically quite different for the 

electrons and the ions (electrons transport coefficients are usually more than a 100 times 

larger than the corresponding ions coefficients).  
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2.5.3 -  The fractional step method and sub-cycling 

The continuity equation of the electron and positive ions (Eqs. (2.10)-(2.16)) could be 

handled by fractional step method. Similar procedure was adopted in [66] for modeling DBD 

plasma actuators. To this purpose, the main problem needs to be split in two sub-problems. 

One issue regarding the solution of the continuity of the charged particle is arising due to the 

presence of very fast chemical rates, and in particular by large decay rates, which make the 

source terms coupled with drift diffusion terms quite unstable. Therefore, we will treat the 

terms separately by rewriting the governing equation as follows; 

)()( kk
k nn
t

n
RH 




, 
(2.61) 

And splitting them into; 

)( k
k n
t

n
H


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, 
(2.62A) 

)( k
k n
t

n
R




, 
(2.62B) 

Two different approaches could be considered for dealing with the above equations. First; Eq. 

(2.62A) could be solved with time-step t  .Then the results will be used to solve Eq. (2.62B) 

with time-step t . 

This approach is often known as Godunov splitting and essentially needs two sub-cycle. 

However, it is possible to use more cycles using an even number of overall steps while 

keeping the order in which the solution of Eq. (2.62A) and Eq. (2.62B) are carried out. An 

alternative approach which requires three sub-cycle is the Strang splitting [103]. In this case,  

 Eq. (2.62A) will be solved with time-step of 2/t ,  

 Eq. (2.62B) will be solved with time-step of t ,  

 Eq. (2.62A) will be solved again with time-step of 2/t .  

The small modification in Strang splitting allows the overall scheme to be second order 

accurate. Here also it is possible to use more sub-cycles. In this case, one 2/t  step (Eq. 

(2.62A)) followed by a series of t  steps (Eq. (2.62B)) until finishing with one 2/t  step is 

necessary. The Strang splitting is a symmetric version of the above procedure of the first 

form. Another variant of Strang splitting method could be expanded by splitting up the 

solution procedure into independent steps corresponding to the advection, diffusion, and 

reaction processes and handling them independently at each step [104]. Similar methodology 

that uses both explicit and implicit formulation of the advection and diffusion part could be 

find in [105] .  
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2.5.4 -  Adaptive time-stepping 

As mentioned before, for accuracy and stability of the modeling, the time step is defined by 

the CFL condition, i.e. particles cannot move more than a grid size during the time step. The 

modified or adaptive time step concept is based on the recognition of the onset of the 

breakdown. In this way, the time step is defined by electron velocities, considering a 

threshold, based on maximum electron number density for onset of breakdown [72] .  

2.5.5 -   Super-time-stepping 

As was mentioned before, explicit methods for their solution are easy to implement but have 

very restrictive time-step constraints. Implicit solution methods can be unconditionally stable 

but have the disadvantage of being computationally costly or difficult to implement. 

Recently, super-time-stepping methods [106] for treating unsteady terms occupy an 

intermediate position. In such methods each super step takes s explicit Runge–Kutta like time-

steps to advance the parabolic terms by a time-step that is larger than a single explicit time 

step. Mayer [107] et al. derived the first and second order super-time-stepping scheme based 

on the Runge–Kutta–Legendre (RKL) methods. The general recursion formula of first order 

(RKL2) and second order RKL (RKL4) are respectively as follows; 
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However, to be used for advection-diffusion problems, the equations need to be solved in 

operator split-manner. The number of the stages, of RKL2 could be chosen to be the lowest 

odd values that satisfy the stability criteria mentioned in [107] . Then, continuity equations of 

the number density of the charged particles will be divided in two sub-problems, considering 

the homogenous and non-homogenous operators 

)()( kk
k nn
t

n
RH 




, 
(2.65) 

Then, an entire, time step, representing the action of all operators contains the following 

stages. 

 Solve   t
k

tt
k ntn )2/(

*
 H over time t

 
with data t

kn
 
to obtain  *tt

kn   

 Solve    ***
)( t

k
tt

k ntn  R
 
over time t
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over time t  with data   **tt

kn 

 
to obtain tt

kn   

2.5.6 -  Semi-Implicit solution of Poisson-transport equations 

When time integration of the Poisson-transport system is treated explicitly, Poisson’s 

equation and charged particle transport equations are solved successively and that the 

electric field calculated at time kt  is supposed to be constant during the integration of the 

charged particle transport equation between times kt  and 
1kt . However, The strong 

coupling between the charge density equations and the electric potential results in a severe 

time step restriction of the explicit methods (the time step must be smaller than the 

dielectric relaxation time “dielectric relaxation time-step constraint). In order to overcome 

this constraint, the Poisson equation is solved in a semi-implicit manner for the electric 

potential [108]. Semi-implicit treatment of the Poisson equation has been proven to be able 

to provide stable results and allow larger time-steps ( similar approach was used by [54,101] 

). To derive the semi-implicit version of the Poisson equation, species number densities in the 

source term of the Poisson equation need to be linearized implicitly. This could be 

accomplished by substitution of charges number density for the source term using the species 

transport equations, and expanding the right hand side using first order Taylor serious 

expansion; 
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(2.66) 

By substitution of charges number density for the source term using the species transport 

equations, and treating the terms containing terms with drift velocities (thus electric field), 

Poisson equation could be rewritten as 
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(2.67) 

The charge continuity equations are also solved based on a semi-implicit method. In this way, 

the flux terms are evaluated using the value of charge densities in new time step, while the 

source terms (ionization, recombination, and attachment) are estimated using the value of 

the charge densities from previous time step. Semi-implicit Poisson/transport could be 

attractive in terms of computation time when using large time step compared to the stability 

constraint (CFL or Maxwell relaxation time). However this scheme is only first order in space 

and said to be quite diffusive. On the other hand fully explicit second order Poisson/transport 

coupling is feasible but at prohibitive computational cost. 

2.6 -  Implementation of the model 

The coupled systems of species equations (Eqs. (2.10)-(2.15)) as well as Poisson’s equation 

(Eq. (2.16)) are solved using OpenFOAM by enforcing the above mentioned boundary 

conditions and using the above mentioned numerical procedures for two dimensional 

simulations. As mentioned in [58], the 2D Cartesian geometry can provide realistic results if 

the plasma is not filamentary in the direction perpendicular to the simulation plane or if the 

width of the filaments in this direction is large with respect to the thickness of the filament 

above the dielectric surface.  

The implementation of the plasma-fluid model needs some extra treatment regarding the 

multi-region coupled solution of the Poisson equation and inter-coupling between the 

transport equations and the electric field. Some of these treatments are mentioned below. 

2.6.1 -  Multi-region coupling of the electric potential  

The presence of the Dielectric layer brings the need of the solution of the electric potential 

equation on gas phase (e.g. air) and the solid phase (e.g. dielectric layer). In Fig. (2.1), a 

schematic of the multi-region problem is shown. Therefore to be able to obtain the solution 

of the Poisson equation in multiple regions, a multi-region solver is developed based on the 

partitioning approach. The main principal idea is to solve governing equations of the similar 

physics that are coupled through a common boundary.  
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Fig. 2.1: A multi-region coupled domain for electric potential. 

 

In the portioned approach, governing equations (Poisson equation) are solved in each zone 

with the appropriate boundary conditions using a segregated solver. In other words the 

iterative solution will be obtained region by region. In addition, the interface boundary 

condition are treated in a segregated manner where one of the interface equations is applied 

as a boundary condition to one sub domain and the other boundary condition to the second 

sub domain. These boundary conditions are implemented using a Mixed BCs for PDE on 

different parts of the boundary of the domain of the equations. In this way, the resulting 

conditions are responsible for coupling between different regions and have to be used for 

each region according to the updated values in the neighboring region. The schematic of the 

partitioned approach for the plasma-fluid problem is demonstrated in Fig. (2.2). 

 
Fig. 2.2: Schematic of the partitioned approach for the plasma-fluid problem. 
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In this approach the convergence is assured by using a PIMPLE loop for solution of the 

governing equations. In other words, for each time step, given a maximum number of 

iterations, the governing equations will be solved alternatively for every cell of the coupled 

regions and when the convergence is reached, the solution will be proceeded to the next time 

step. 

2.6.2 -  Coupling of Poisson and charged particles transport (segregated 

solution of the Poisson-Transport) 

In the plasma-model, there exist two separate problems regarding the coupling of the 

variables. First is the coupling of the number density of the particles and electric potential, 

and the second is related to the multi-region solution of the Poisson equation. The first 

approach that we had adopted is the iterative solution of discredized equation in each time 

step with sufficient internal iteration to guarantee enhanced coupling between the 

dependent variables and also convergence of the Poisson solver at the interface of solid zone 

(Dielectric material) and fluid zone (Air). The main algorithm of the plasma solver, includes a 

predictor and a corrector loop. The Schematic of the algorithm is shown in Fig. (2.3).  

Predictor loop: at the beginning of each time step, the values of charge number densities and 

transport coefficients are known, and they will be used to solve the Poisson equation. When 

the electric field is updated, all the transport properties and source terms of the charge 

continuity equations will be updated according the new value of the electric field. 

Corrector loop: continuity equation of the charge density will be solved with updated values 

of the electric field and source terms. Then, the source term and artificial permittivity arising 

due to the semi-implicit treatment of the Poisson equation will be recalculated. Moreover, 

the surface charge density will be corrected also at this step. 
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Fig. 2.3: Flowchart. 

2.6.3 -  Grid requirements 

The plasma processes are very sensitive to the local electric field, which in the DBD case 

varies at the characteristic scale on the order of 10 microns for the high applied voltages. The 

necessity of the correct resolution of the plasma dynamics leads to a grid size of the order of 

several microns. However, the increase of the operating voltage leads to the further decrease 

of the grid size. Thus, the computational grid need to be selected based on the outcome of 

testing several grid sizes to ensure enough resolution of the steep electric field and electron-

ion density gradients relevant to the ionization wave front, and to ensure the plasma sheath 

near the wall–gas interface can be adequately resolved while balancing the consideration of 

the computational costs. 
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2.7 -  Results and discussion 

Since there is no benchmark case for comparison, we had chosen the recent numerical work 

of Unfer et al [109] and Boeuf et al [58] (shown respectively by Explicit asynchronized LTS 

and Semi-implicit (SG method)) for the purpose of comparison of the influence of the each 

numerical remedies that we had used for alleviating the stiffness of the numerical solution of 

the plasma-Fluid model. Firstly, a simple case of constant positive voltage is considered. 

Although this case is simple, it can provide the possibility of correctly analyzing different 

numerical issues. This case comprises a 2D geometry with exposed electrode as anode (with 

constant positive voltage). Secondly we will present some validation case, on basically the 

same geometry but different voltage waveform. 

One of the important aspects of the numerical simulation of the plasma dynamics is to 

determine the proper choice of the global time-step t  which would require balancing 

computing efficiency with stability. In Fig. (2.4), effect of the time-step on the accuracy of 

the current density behavior is shown for a coarse grid with the cell length of 2 m . This 

current is the displacement current on the bottom electrode. In Fig (2.4a), upwind scheme is 

used for discritization of the convective term in continuity equation and the Euler scheme is 

used for treating the unsteady terms. The results are clearly showing that when the time step 

is larger, results are more diffusive and the peak value of the current happens later at a 

smaller maximum magnitude. In addition, the results are showing unstable results when the 

time step is reduced to smaller than 10-11 s. In Fig (2.4b), a second order differed corrected 

Gamma scheme is used for the convective terms. Comparing the Fig. (2.4a) and Fig. (2.4b), 

we can see that Upwind scheme, as was expected, shows more diffusive behavior in 

comparison with the second order differed corrected Gamma scheme. But at the same time 

this kind of error obviously makes the scheme highly stable even for large time steps, but 

produces wrong solutions. 

In Fig. (2.5a), the grid independency test results are presented for simulations with Euler 

time and first order upwind spatial discretization. When the grid density is low, effect of the 

numerical diffusion appears to me more intense, and in contrast when the grid is refined, the 

resolution of the results is better. Moreover, as shown in Fig. (2.5b), all the time 

discretization schemes including the Euler, backward and splitted super-time stepping have 

shown similar accuracy on the refined grid with enough small time steps.  
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a) b) 

Fig. 2.4 : Influence of time-step of implicit Euler scheme on the current density a) first order 

Upwind Scheme b) Second order differed correction Gamma. 

 

  

a) b) 

Fig. 2.5 : a) Grid dependency of the results for the implicit Euler scheme with first order Upwind b) 

Comparison of different time discretization for mxst 5.0,105 12  
. 

 

In Fig. (2.6), the effect of the number of the super-time stepping stages with RKL is 

demonstrated on a medium refined grid with mx 1  and st 12105  . For lower number 

of super-time stepping stages, the results are more diffusive. This was expected, as increase 

of n should allow larger time-step to be used for the simulation. However, increasing the 

number of the super-time stepping, in this case more than 21, didn’t change the resolution of 

the obtained results. We should mention that, while splitted super time stepping is an 

important technique for improving accuracy and stability, its ability to increase the global 

time-step is limited. 
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Fig. 2.6: Influence of the super time stepping levels on the resolution of the current density 

behavior for positive constant voltage. 

 

As now the influences of the main numerical treatments are shown for the positive constant 

voltage case, we can readily select the numerical approach for our simulations. In the 

following we will present validation studies for different voltage waveform. In Fig. (2.7), the 

current density behavior in the case of a constant negative voltage and positive nano-second 

voltage is shown and the results are compared with numerical results of Boeuf et al [58] and 

Unfer and Boeuf [110]. The results of the present study are correctly capturing the current 

evolution versus time.  

a) b) 

Fig. 2.7: Comparison of the current obtained from the present study for: a) constant negative 

applied voltage with the work of Beouf et al [58] b) nano-second pulsed voltage with the work of 

Unfer and Boeuf [110]. 
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In Fig. (2.8), current behavior in the case of a positive and negative voltage ramp is shown. 

The results are showing the similar features described in previous papers [65,111,112] and are 

qualitatively valid. It is clear from the results that there is a difference between the 

discharge characteristic in these cases. In the case of positive ramp, the electrode above the 

dielectric layer plays the role of an anode. Once the size and density of the positive ion cloud 

reach critical values, a high current breakdown occurs, characterized by the development of 

high amplitude pulses in current profile. The discharge during the positive part of the cycle is 

composed of successive phases of ion cloud formation and high current breakdown. When a 

negative voltage ramp is applied, the current profile is also composed of current pulses, but 

with a frequency much larger than in the positive ramp case and of much lower intensity. 

a) b) 

Fig. 2.8: current characteristic of the dielectric barrier discharge with a) positive ramp voltage b) 

negative ramp voltage. 

 

And in the last case, an AC sinusoidal voltage with frequency of 8kHz and 8kV is applied to 

the exposed electrode and the results are shown in Fig. (2.9). The results are again in 

qualitive agreements with results presented in [65,76]. The difference observed between the 

positive ramp voltage and negative ramp voltage (Fig. (2.8)) can be observed also in Fig. (2.9) 

for positively going and negatively going part of the AC sinusoidal voltage. This difference 

implies that the EHD force is important not only during the positive part of the sinusoidal 

voltage cycle but also during the negative part of the cycle.  

The component of the force parallel to the plate is shown in Fig. (2.10) for the duration of 

the voltage similar to Fig.(2.9). During the positive part of the cycle, the EHD force is due to 

the formation of a positive ion cloud that is periodically interrupted by high current 

breakdown. The EHD force during the negative part of the cycle is due to the development of 

a negative ion cloud that continuously grows during the successive high frequency current 

pulses that form in this regime [73]. 

time (s)

C
ur

re
n

t
(A

/m
)

V
ap

p
(k

V
)

0 5E-05 0.0001
10-3

10-2

10-1

100

101

102

103

5

10

15

20

25

30

35

Current
Vapp(kV)=0.2*t(s)

time (s)

C
ur

re
nt

(A
/m

)

V
ap

p(
k

V
)

0 1E-05 2E-05 3E-05

-70

-60

-50

-40

-30

-20

-10

0

10

-7

-6

-5

-4

-3

-2

-1

0

Current
Vapp(kV)=-0.02*t(s)



  _____________________________________________________________________________  
 

   
      55 

 
Fig. 2.9: Voltage and current of a DBD actuator with AC-sinusoidal applied voltage. 

.  

Fig. 2.10: Component of the EHD force parallel to the surface for actuation with AC sinusoidal 

voltage. 

 

2.8 -   Conclusions 

Different assumptions and considerations regarding the Plasma Fluid model are discussed. In 

addition, various numerical issues regarding the stability and accuracy of the model are 

discussed and explained. To solve these issues, several numerical remedies that have been 

used in the literature are employed. At the end, a three particle fluid model of the discharge 

in air that provides the space and time evolution of the charged particle densities, electric 

field and surface charges was implemented in OpenFOAM. Different voltage waveforms, 

including positive and negative constant and ramp voltage and a case of AC sinusoidal 

voltage, have been considered for testing the accuracy of the implementation. In the 
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following chapter, the Plasma-fluid model will be used for modeling nano-second pulsed 

voltage waveform DBD actuator. 
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3 - Two-Dimensional Numerical Modeling of 

Interaction of Micro-Shock Wave Generated by 

Nanosecond Plasma Actuators and Transonic 

Flow  

Abstract 

The influence of nanosecond pulse-driven, surface-mounted dielectric barrier discharge (DBD) 

actuators on a transonic flow is studied numerically. An airfoil representing turbo-machinery 

blades in transonic flow is considered as a test case. A two dimensional fluid model of DBD is 

used to describe the plasma dynamics. The model couples fluid discharge equations with 

compressible Navier-Stockes equations. Simulations were conducted with an airfoil of NACA 

3506 profile in a transonic condition of M=0.75. When a nanosecond pulse voltage is used, 

with a rise and a decay time of the order of nanoseconds, a significant amount of energy is 

transferred in a short time from the plasma to the fluid, which leads out to the formation of 

micro shock waves and therefore to the modification of flow features. Moreover, a plasma 

energy deposition model is developed and presented by using the results of the plasma 

discharge model2. 

Keywords: Nanosecond DBD actuators; plasma Energy deposition model; flow control; 

transonic flow; 

3.1 -  Introduction 

For future huge airships, which are being designed to fly at very high altitude (as in the case 

of MAAT project [113]), efficiency increase is a crucial subject. For such airships, any 

increase in propulsion system efficiency will lead to a decrease in energy consumption 

through a decrease in size, length and mechanical complexity of propulsion system, thus also 

lowering the initial investment. At the blades of a propulsion system, separation causes 

significant total pressure loss causing a reduction in overall efficiency.  

The abilities of traditional flow control techniques are limited due to a strict localization and 

slow response of such systems. Surface dielectric barrier discharges (SDBDs) can modify the 

boundary layer of a flow and have been studied as possible actuators for flow control. Their 

                                                 
2 This chapter is based on the following published paper “M. Abdollahzadeh, J.C. Páscoa, P.J. 

Oliveira (2014), Two-dimensional numerical modeling of interaction of micro-shock wave generated 

by nanosecond plasma actuators and transonic flow, Journal of Computational and Applied 

Mathematics, Volume 270, pages 401-416, ISSN 0377-0427, doi:10.1016/j.cam.2013.12.030.” 
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advantages include fast response, real-time control, low weight and no moving mechanical 

parts. In many applications, airflow control by DBD actuators is based on the generation of 

the ionic wind at the wall which adds momentum to the boundary layer. At low flow 

velocities, those actuators have proven to be effective for a wide range of applications 

[68,114]. At high flow velocities, however, the effect of the induced wall jet is almost 

negligible. In our previous study [115], the interaction between an AC-driven DBD actuator 

mounted on a NASA rotor 67 blade profile in transonic flow was investigated and almost no 

noticeable effect of the actuator on the performance of the rotor was observed. Recently 

[116,117], it was shown that a DBD actuator driven by nanosecond (NS) pulse has a more 

significant impact on the transonic flow. It was found that in these types of DBD actuators, 

there is an overheating in the discharge region, which generates a compression wave 

emerging from the surface into the flow. In this case, the effective control of the flow implies 

an appreciable change in its properties by local energy deposition. Fig. (3.1) shows the two 

main approaches by which DBD plasma actuators may influence the flow.  

(a) (b) 
Fig. 3.1: DBD Plasma Actuators a) AC sinusoidal power source b) NS power source. 

 
 The purpose of the present study is to describe a numerical model for a surface dielectric 

barrier discharge in air, which uses a nanosecond voltage pulse generator. A two-dimensional 

fluid model of the DBD is used to describe the plasma dynamics at first. The model couples 

the fluid discharge equations with the compressible Navier–Stokes equations, which include 

momentum and thermal transfer from the plasma to the neutral gas. The 2D fluid model of 

the discharge in air provides the space and time evolution of the charged particle densities, 

electric field and surface charges. The model is solved numerically by means of a finite 

volume technique. A validation of the model is presented in order to assess the capabilities of 

the computational code here developed using open source code of OpenFoam. Secondly, a 

new plasma energy deposition model is presented based on the analysis of the results of 

discharge model. 

The remaining of this chapter is organized in four sections. Section two presents the 

governing equations and the numerical procedure related to the modeling of the plasma 

discharge and the energy deposition model. In section three, the details of the configuration 

here considered for the test cases in the numerical experiments are provided. In section four, 
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comparison and analysis of the obtained numerical results are done. At the end, in section 

five, some important conclusions are made. 

3.2 -  Mathematical model and numerical procedure 

3.2.1 -  Plasma discharge mathematical model 

In this model we are not interested in the details of air chemistry and, for the purpose of 

simplification, we just consider three types of charged particles electrons, one type of 

generic positive ions, and one type of generic negative ions. By considering the fluid 

description of electron and ion transport in air by means of classical drift-diffusion and local 

field approximation, the continuity equations for the electrons and the ions are written as, 
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e nnr
t

n
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where npe nnn ,,  are the charged particle densities and npekk ,,. 


their fluxes, npr,,  and 

epr are, respectively, the ionization coefficient, the attachment coefficient, ion-ion and 

electron-ion recombination coefficients. Moreover E


 is the electric field vector, k  and kD  

are the charged particle mobility and diffusion coefficients, respectively, andu


 is the 

velocity of the gas flow. The recombination coefficients are considered to be constant and 

equal to 131310  sm  [118]. The charged particles mobility and ionization coefficient’s of the 

air are obtained from Hoskinson [118] and are written as, 
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The charged particle diffusion coefficients in Eqs. (3.1)-(3.3) are expressed by the Einstein 

relation and the charged particles temperature in the diffusion terms are taken as constant , 

1eV for the electrons and 350 K for the ions. 

Eqs. (3.1)-(3.4) are coupled to an Poisson's equation for the electric field: 

 snep nnne  )().(  , (3.8) 

where   is the permittivity. The permittivity of air is considered to be equal to that of 

vacuum ( 112
0 10854.8  Fm ) and  is the surface charge density in 13  Akgs . this is 

evaluated at the dielectric surface, as indicated by the delta function s , after time 

integrating the charged particle fluxes at the surface. 
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(3.9) 

where n


 is the unit normal vector pointing into the computational domain. For the electric 

field at the outer boundaries, the following condition is held, 

0. nE


 , (3.10) 

and at the electrode, the value of electric potential is prescribed. The electric field inside 

the dielectric dE


was related to the electric field E


 at the surface through the relation 

  nEnE dd


.. 00  , (3.11) 

where   is the surface charge density and n


 is the unit normal vector pointing into the 

computational domain. By implementing this condition, the effect of the surface charge 

density in the continuity equation is taken into account. In addition zero normal gradients are 

considered for the boundary conditions of the charged particles at outer boundaries. 

The boundary conditions for charged particles number density at the walls are set out by 

preventing zero charged particle fluxes towards the wall, since the driving forces are directed 

out from it, and by enforcing ion-induced secondary emission at cathode or cathode-like 

walls. 
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For certain cases, these boundary conditions lead to numerical instability. For anode or 

anode-like surfaces, the boundary condition that would satisfy the real situation for negative 

ions and electrons is one of zero gradient on the electron number density. The derived 

boundary condition on ions at anode is a Robin condition for the number density of ions. 

(However, since the diffusion is always negligible with respect to its drift part in the sheath, 

it’s possible to employ a more robust and simpler condition [119] , namely 0pn ). 

On the other hand, for the cathode or cathode-like surfaces, the zero gradient boundary 

condition could satisfy the condition for the positive ion number density. Here, the boundary 

condition on electrons is a Robin condition (for simplification, it is possible to neglect the 

diffusion part). Electrons may be emitted from material surfaces via secondary electron 

emission. Therefore, the total electron flux near a surface is given by, 

nn pe

   , (3.15) 

where   is the secondary electron emission coefficient at the surface, which is 0.05 for the 

dielectric surface, and zero for electrode surface . The minus sign indicates that secondary 

electron fluxes, away from a surface, are proportional to the ion fluxes into that surface. 

3.2.2 -  Gas dynamics equations 

For modeling the gas dynamics, a mass-averaged fluid dynamics formulation was employed to 

represent the motion of the gas as a whole. In this view, the compressible Navier-Stokes 

formulation is written as, 
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In the above equations, p  is the static pressure, I is the unity tensor , is the viscous stress 

tensor, E is total specific energy and is the thermal conductivity of air. The interaction 

terms are EHDF


, force due to discharge and thp , the dissipated power due to the conduction 
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current, unnnejJ nep

 )( . In the above equations the viscous stress tensor is as 

follows, 
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where  is the dynamic viscosity of air and is calculated from Sutherland formula. 

The above system of equation is closed with the equation of state for a perfect gas, RTp  . 

Coupling parameters due to plasma effects inside the gas dynamic equations are represented 

through the EHD force EHDF


and the heating power density thp . The EHD force term is written 

as [110] , 

nnBeeBppBnpeEHD nTknTknTkEnnneF 


)(  , (3.20) 

 

In the work of Che et al [120], the heating power density thp  was considered to consist of ion-

neutral collisions, the energy deposited by electron elastic collisions, rotational excitation 

and vibration excitation, and was written as, 

EJJJp eenipith


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where e  was the effective fraction of energy deposited by electron, considered to be 

constant and equal to 0.75 [6,120]. Similarly, the term i  is an efficiency factor specified to 

indicate the amount of Joule heating energy that is converted into thermal energy. This term 

is typically set to 1 when at higher (atmospheric) pressures or when energy loss to the wall by 

direct ion impact can be neglected [121].   

 Here we consider a more accurate formulation for the thp of electrons following Unfer and 

Boeuf [78]. In this view, the gas heating term is composed by two parts, one contribution of 

the ion-neutral molecule collisions ionsthp ,  and the other thermal energy transfer from 

electrons to neutral particles ethp , . Assuming that all the energy obtained by ions from electric 

field is totally transferred into gas heating ( 1i ) , ionsthp ,  is expressed as 

EJJp npionsth


).(,   , (3.22) 

High electron temperatures and thus highly energetic electrons can provide high excitation 

rates of different electronically excited state of atoms and molecules by electron impact.  

The total energy absorbed by electrons from electric field is equal to 2Ep eelec  , where e  

is the electron conductivity. In presence of molecules in the plasma an extremely important 

process is the vibrational excitation of molecules by electron impact. Indeed, in a molecular 

gas, most of the electron energy can be transferred to the vibrational excitation [50]. For this 

reason, the vibrational excitation, relaxation, and reaction of vibrationally excited molecules 
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strongly influence the chemical kinetics of the plasma. Several relaxation processes are 

important. Vibrational-translational (VT) processes convert vibrational energy in kinetic 

energy of the whole particle and it is the loss mechanism of vibrational energies. Also the 

rotational levels of molecules can be excited by rotational excitation of molecules by electron 

impact processes. Thus, the total energy absorbed by electrons is transferred to neutral 

molecules and gas heating through electronic excitation, vibrational excitation and elastic 

and rotational collisions [122,123]. Moreover, it is assumed that the energy absorbed by 

electrons in elastic and rotational excitation, and 30% of the energy in electronic excitation 

are released instantaneously into gas heating. But, the vibrational excitation of electrons into 

gas heating is released at a different time scale, with a time constant of VT . Thus the 

contribution of electrons in gas heating can be expressed as; 

EVTReleth pppp  , , (3.23) 
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where E is the fractional power deposited in electronic excitation and %30e . In Eq. 

(3.23), considering a relaxation of time of VT  for vibrational excitation, VTp is obtained by 

solving a phenomenological equation of the type; 
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where V  is the fractional electron power deposited in vibrational excitation of air 

molecules. 

The three fractional power deposited by electron ( RelVE  ,, ) is obtained by fitting curves 

to data calculated as a function of E/n using BOLSIG+ software [124] as (Fig. (3.2)): 

131

111

10507497.4)1063147.2exp(1014522.4

)1002042.2exp(108365.9)5410.3exp(10348001.1









N

E

N

E

N

E
E

, 

(3.26) 

 

21

131

1091435.3)105157.2exp(02191.1

)4288.9exp(1046957.1)1010797.6exp(106041.1









N

E

N

E

N

E
V

, 

(3.27) 

 



 _____________________________________________________________________________   

 
64 

331

222

1098161.2)1013103.7exp(1068412.1

)107446.1exp(1004597.4)6180.2exp(1007278.2










N

E

N

E

N

E
Rel

, 

(3.28) 

 

 
Fig. 3.2: Comparison fractional power deposited by electrons from the current correlations (Eqs. 

(3.26)-(3.28)) and the data obtained by BOLSIG+ software. 

3.2.3 -  Surface and volume heating model 

Another idea to simplify the numerical complexity and reduce the computational time is to 

formulate the effect of plasma as volume and surface sources of energy deposition, with a 

specified frequency inside the flow domain. To this aim, an approach similar to the 

phenomenological model described in [125–128] is chosen. To reproduce the overall wave 

structure, wave speed and strength, and power input to the NS-DBD actuators, a surface and 

volume heating profile is considered in a way to obtain similar results as in the full discharge 

modeling. The speed and strength of the initial wave are related to the maximum 

temperature in the heated region, which is obtained by introducing a volume heating 

component and the shape of the wave correlates with the temperature distribution along the 

surface. Fig. (3.3) demonstrates the development of the compression wave due to volume and 

surface heating. Using a simple analysis, the volume heating can be estimated from, 
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Considering the discharge volume of 25e-8 m3 and temperature ratio increase of 1.4 for the 

ambient temperature of 300 K, and a relaxation time of s1 , we can calculate the power 

E/N (Td)

E
ne

rg
y

L
os

s
F

ra
ct

io
n

10-3 10-2 10-1 100 101 1020

0.2

0.4

0.6

0.8

1







el-R

V

E



  _____________________________________________________________________________  
 

   
      65 

needed per span wise electrode length to actuate the flow as mW /106.2 4 , which is 

equivalent to 0.026 mJ / by integrating the above equation over volume.  

 
Fig. 3.3: Schematic of the plasma surface and the volume energy deposition model. 

Moreover, the process of formation of the plasma micro-shock wave above the surface is 

separated into two parts. In the first part, the pulse of energy input to the plasma is started 

at t=0 and switched off at relaxEt ,  (which we consider to be equal to s1 ). During this period 

the pressure and temperature rise above the surface and the wave front moves just a short 

distance away from the surface. In the second part, when the pulse of energy input is 

switched off, an expansion wave is generated and propagates into the domain. 

3.2.4 -  Numerical procedure  

The strong coupling between the charge density equations and the electric potential results 

in a severe time step restriction (the maximum allowable time step is the dielectric 

relaxation time). In order to overcome this constraint, the Poisson equation is solved in a 

semi-implicit manner for the electric potential [78], 
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In this way the Poisson equation could be rewritten as, 
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Furthermore, a two–stage plasma computation approach [129,130] is implemented. In this 

approach, during the voltage pulse, the numerical time-step is set to 10-3 ns, and the full 

physical model is solved. When the input voltage decays the electric field effects become 

negligible and the space charge density rapidly goes down. Therefore, in this stage, the 

electric field and space charge are set to zero and the time-step is increased to the timescale 

of the dominant physical process (gas dynamics). 

The numerical task has been done through Object Oriented Programming in the environment 

of OpenFoam by developing a new solver (UBIPlasmaFoam). The solution of the gas dynamic 

equations was accomplished based on a density based explicit algorithm. The numerical 

fluxes were evaluated using the flux difference splitting Roe scheme [131] and to extend the 

accuracy in space, a second order MUSCL reconstruction scheme is used. Integration in time is 

performed by multistage pseudo time integration based on four-stage Runge–Kutta method. 

Moreover, a two parameter k−ω SST turbulence model with y+ less than one is used for the 

turbulent transfer description [132].The initial distribution of parameters corresponding to 

the steady flow around the airfoil without energy addition was obtained with an absolute 

error of 10-6.The computational grid in the physical region is geometrically adapted towards 

the wall being refined in the vicinity of the electrode and dielectric surfaces. 

3.3 -  Test case configurations 

3.3.1 -  Validation cases  

For the validation of the numerical modeling of the plasma discharges, two flat plate DBD 

actuators are considered (similar to [58]).The electrodes were considered to be infinitely thin 

and arranged in asymmetric configuration without a gap between the electrode edges. 

Moreover, in the initial time instant, the gas is considered to be quasi-neutral, the initial 

charged particle densities (electrons and positive ions) are considered to be uniform and 

equal to 31310 m in the first case and 31010 m in the second case, in the whole simulation 

domain. In the first configuration, the length of the exposed electrode and the covered 

electrode are m100  and m400 , respectively, and a constant voltage of 1200V is applied to 

the exposed electrode. The dielectric material is Kapton, having electric permittivity of 010  

and thickness of m50 . 

The second test case is considered in a way to be similar to the experiment of Straikovski et 

al [116] and the numerical study of Unfer and Boeuf [110]. The computational domain consists 

of a 2D rectangular geometry, of dimensions mm 0768.00768.0  . The length of the exposed 

electrode is considered to be 5.1mm and the lower electrode is 4.8mm long. The upper 

electrode is placed at 0.03m from the left wall. A voltage pulse is applied to the upper 

electrode. The total pulse duration is 35ns and the rise and falling time of the nanosecond 

pulse are 7ns and 15ns, respectively. The lower electrode is covered by a dielectric layer 



  _____________________________________________________________________________  
 

   
      67 

m300 thick and, permittivity equal to 05 .The configuration of these test cases is shown in 

Fig. (3.4). 

 

(a) (b)
Fig. 3.4: Configuration of the validation test cases for the present plasma discharge modeling. 

3.3.2 -  Transonic airfoil gas dynamic with plasma dynamic  

The transonic range of flying vehicles is the most difficult to simulate in aerodynamics; on the 

other hand, the feasibility of controlling transonic flows would greatly improve the 

aerodynamical performance of flying vehicles ( and thereby increase the flight range , reduce 

the carrier cost, etc. ) and allow flight control at maneuvering. In this aspect, Peschke et. al 

[134] had conducted an experimental study on the effect of DBD plasma actuators on 

transonic flow over a NACA 3506 airfoil. They have concluded that the plasma used did not 

modify the transonic flow in a significant way. The fact that shock structure does not exhibit 

significant differences without and with plasma can have several physical causes. The 

boundary layer is already turbulent in the case without plasma. It is thus not possible in these 

conditions to generate a transition from a laminar boundary layer to a turbulent one with 

plasma upstream or below the shock foot. However, the results of [135] show that in some 

cases, when the aerodynamics situation is sensitive to weak influence, the surface plasma of 

barrier discharge can effect on the transonic flow. Moreover, Roupassov et. al [136] showed 

that the discharge effect is negligible till a specified angle of attack and for the angles higher 

than the stall angle the discharge switches the flow to un-separated flow. 

Therefore, for the study of the effect of plasma actuator on gas dynamic, the plasma 

actuator is mounted on a NACA 3506 profile with a chord length of c=77.57mm, similar to the 

experiment by Peschke et. al [134] . The electrodes are considered to be infinitely thin. The 

exposed electrode is located at x/c=0.32 from the leading edge and it is 1mm wide, and the 

covered electrode is 10mm wide. The electrodes are separated by a 0.1mm thick layer of 

dielectric material. The permittivity of the dielectric material is 05 . A single pulse with a 
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peak voltage of Vp=5kV and pulse shape similar to that for the second test case, is considered 

as configuration of the power supply. Two different angles of attack are considered. One 

corresponds to an angle of attack of four degrees and other to a post stall angle of attack of 

20 degrees. The configuration of the electrodes and the computational grid for this case are 

presented in Fig. (3.5). 

 

 

 
a) b) 

Fig. 3.5: a) Electrodes position and b) computational grid around the surface of the NACA 3506 

airfoil. 

3.4 -  Results and discussions 

For the first test case the effect of gas heating is not considered and so the only mechanism 

by which the plasma modifies the flow is through momentum transfer to the fluid. Figs. (3.6)-

(3.7) shows a simulation results of the time evolution of the plasma discharge for the case of 

a constant voltage pulse of 1.2kV. The plasma discharge consists of a quasi neutral plasma 

column and a non-neutral ion sheath that propagates along the dielectric surface, away from 

the exposed electrode. It is obvious from these figures that the discharge is of the streamer 

type. Our results in Fig. (3.6) show similar physical behavior in comparison to the results by 

Nishida and Abe [68] and Bouef and Pitchford [58]. 
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Fig. 3.6: Validation of the first test case with the numerical results of Boeuf and Pitchford (2005) 

[58]. 

The distribution of ion charge density is shown in Fig. (3.7). It is apparent that, as the charge 

density of ions and electrons near the dielectric surface is increased, the electric potential on 

the surface of the dielectric material raises and thus increasing the extension of the virtual 

electrode. Fig. (3.7) also shows that the region with higher ion density is located at the point 

with the largest electric field, and thus a higher rate of ionization exists there.  
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c) 
Fig. 3.7: Propagation of the ion sheath along the dielectric surface at: a) t=12ns; b) t=22ns; c) 

t=31ns (values of ion charge density in m-3). 

 

For the second test case the effect of gas heating was taken into account. Fig. (3.8) shows 

general good agreement of the predicted current, from the present numerical simulation, in 

comparison with the numerical work of Unfer and Beouf [110]. Moreover Fig. (3.9) shows the 

time evolution of the electron and potential density at four different times. Streamer 

discharge propagation along the surface of the dielectric was observed during the voltage rise 

when the exposed electrode plays the role of anode. 

 
Fig. 3.8: Validation of the second test case for the pulsed input voltage. 
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a) b) 

c) d) 

 
Fig. 3.9: Streamer formation during the voltage pulse at: a) t=3ns;b) t=5ns;c) t=11ns;d) t=23ns 

(values of electric potential in V). 

 
Fig. (3.10) illustrates the spatial distribution of the gas pressure induced by the discharge at 

two different time instants. These results highlight that fast gas heating takes place in the 

boundary layer, close to the edge of the exposed electrode, thus producing a micro shock 

wave.  
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(a) (b) 

Fig. 3.10: Micro-shock formation above the dielectric surface (distribution of the induced pressure 

difference by plasma) at: a) ; b) (  contours in (Pa) ). 

Fig. (3.11) shows the formation of the micro-shock wave above the dielectric surface 

mounted on the surface of the NACA 3506 airfoil. The formation of the plasma on the surface 

of the electrode leads to a very fast gas heating of the fluid near the surface, which in this 

case results in the formation of a compression wave traveling outward from the surface.  

 

a) b) 
Fig. 3.11: Micro-shock wave above the dielectric surface mounted on the surface of NACA 3506 

Airfoil in quiescent flow at: a) st 25.1 ; b) st 5  (pressure contours (Pa) ). 
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3506 airfoil, is shown together with the imposed profile. The surface heating profile is a step 

profile that has a jump at a critical point xc. Two important parameters of this profile are the 

temperature ratio and the critical step point. 

 
Fig. 3.12: Dielectric surface temperature ratio (imposed model –red line; at initial case-green line; 

discharge model- black line) for the NACA 3506 airfoil at 4 . 

Fig. (3.13) gives the time evolution of the drag coefficient over the surface of the airfoil until

s70 as predicted by the two approaches just mentioned. It is clear from this figure that the 

difference of the computed results by the two different modeling approaches is less than 1e-

3. The jumps in the plots represent the instants of time at which the plasma pulse is active. 

 
Fig. 3.13: Comparison of the drag coefficient obtained on the surface of the NACA 3506 airfoil at 

4  by different models.  
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Additionally, Fig. (3.14) shows the time variation of pressure at three different locations near 

the surface of the airfoil at angle of attack of 20 . The peak values show the waves that 

reach the probe locations. There is a small difference in the values of the wave strength seen 

by the pressure sign arriving at the point, for each model. This is completely natural as the 

energy input and distribution in the plasma energy deposition model is not the same as in the 

plasma discharge model. However, the difference remains within an acceptable range. 

 
Fig. 3.14: Time variation of pressure at three probe locations.  

Fig. (3.15) compares the shape, position and strength of the plasma micro shock wave 
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st 5    

a) b) 

Fig. 3.15: Comparison the wave location and shape obtained by: a) plasma multistage solution; b) 

plasma energy deposition model.  
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Pescheke et al. The figure shows qualitively the level of agreement of the current plasma 

calculation. 

X(m)

Y
(m

)

0 0.02 0.04 0.06

-0.02

0

0.02

0.04 p
145248
132853
120458
108062
95667.2
83272
70876.7
66745
54349.7

X(m)

Y
(m

)

0 0.02 0.04 0.06

-0.02

0

0.02

0.04 p

139904
123867
107829
91791.5
75754
68294.2
54370.7

X(m)

Y
(m

)

0 0.02 0.04 0.06

-0.02

0

0.02

0.04 p
145248
132853
120458
108062
95667.2
83272
70876.7
66745
54349.7

X(m)

Y
(m

)

0 0.02 0.04 0.06

-0.02

0

0.02

0.04 p

139904
123867
107829
91791.5
75754
68294.2
54370.7



 _____________________________________________________________________________   

 
76 

 
Fig. 3.16: Comparison of the present numerical simulation with the experimental results of 

Pescheke et al. [134] at st 10 . 

Table (3.1), gives the CPU time required by each model for the completion of 1ms of 

simulation time for the case of the NACA 3506 airfoil. Clearly, the plasma energy deposition 

model is a lot less computationally expensive in comparison to other models. Although this 

model does not have the complexity of the others but is still able to capture the main 

features of the effects of NS DBD plasma actuators correctly. Thus it presents itself as a good 

candidate to be used for modeling large scale problems. 

Table 3.1: Comparison of the computational time for various models. 

 Plasma discharge  Plasma multistage  Plasma energy  

 model model deposition 
model 

CPU time 
for 1ms 884 h 132 h 1.74 h 
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modeling nanosecond plasma actuators. Based on the results of plasma discharge model, an 

energy deposition model was also developed for the simulation of the effects of DBD 

actuators. The accuracy of the solver was tested through comparison with the available 

results in the literature. It was shown that fast energy transfer, from plasma to fluid, leads to 

the formation of micro-shock waves responsible for modifying the main flow features. Also, a 

nano-second plasma actuator for transonic flow over an airfoil was tested numerically. 

Although this model does not have the complexity of others, it was shown that it is able to 

capture the main features of the effect of NS DBD plasma actuators correctly, with less 

computational time. Thus it could be viable for modeling large scale problems when using 

standard plasma discharge models is not viable. 
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4 - Modified Split-Potential Model for Modeling 

the Effect of DBD Plasma Actuators in High 

Altitude Flow Control 
Abstract 

Surface DBD plasma actuators are novel means of actively controlling flow. They have shown 

promising ability in reducing drag, postponing transition from laminar to turbulent flow, 

suppression of separation, noise reduction and enhancement of mixing in different 

applications. The CFD simulation of the effect of plasma actuator in such kind of applications 

could provide more information, and insight, for optimization and design of close looped flow 

control systems. However, the fluid models for simulating the formation of the plasma and its 

effect are computationally expensive such that, although they provide more detailed 

information about the physics related to the formation plasma, they are still not viable to be 

used in large scale CFD simulations. In this paper, we present the modified version of a 

simpler model that predicts the thrust generated by the plasma actuator with acceptable 

accuracy and can be easily incorporated in CFD calculations. This model is also free of 

empirical fitting parameters, being based on pure flow physics scaling3. 

Keywords: DBD System Capacitance; Semi-empirical; Thrust estimation; Body force; Barrier 

Discharge; flow control; 

4.1 -  Introduction 

Dielectric Barrier Discharge (DBD) plasma actuators gained increased interest during the past 

decade for different applications[115,137–139]. It has been proven that they have a promising 

potential for controlling flow in diverse applications. Many experimental and numerical works 

have been done for the purpose of better understanding the mechanisms by which these kind 

of actuators influence the flow and also for the optimization of their design and improvement 

of their performance [68,140,141]. DBD plasma actuators mostly influence the flow through 

two different mechanisms, depending on the type of the excitation voltage shape employed. 

If the DBD plasma actuator is excited through a nano-second voltage pulse, the characteristics 

of the flow around the DBD actuator is altered through fast energy deposition and creation of 

micro shock-waves. In contrast, if some kind of radio frequency excited voltage is used, the 

flow will be accelerated around the actuator plate due to the formation of ionic-wind.  
                                                 
3 This chapter is based on the following published paper: “M. Abdollahzadeh, J.C. Pascoa, P.J. Oliveira 

(2014), Modified Split-Potential Model for Modeling the Effect of DBD Plasma Actuators in High Altitude 

Flow Control, Current Applied Physics, Volume 14:8, Pages 1160-1170, ISSN 1567-1739, 

doi:0.1016/j.cap.2014.05.016.”   
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The plasma fluid model [65,70,117,142] and the particle in cell model [143] are the most 

sophisticated and common models for simulating plasma actuators. However, due to large 

difference between the spatial and temporal scales of the flow and the plasma, the 

computational time of these techniques is excessively high. Even with multi-processor 

modeling approaches and some kind of unsteady acceleration techniques[144], such as 

adaptive local time stepping. The solution of large scale problems in realistic geometries is 

not viable with those models. A more simplified approach needs to be devised in order to 

have both acceptable accuracy and fast simulation times.  

In this aspect, a semi-numerical modeling of the effect of plasma actuator could provide a 

rapid tool to ascertain the effect of plasma actuators. Different such numerical models have 

been proposed, including semi-experimental [145,146], basic phenomenological 

models[88,89,114,147–151] and PIV measurement-based models [152–155]. Obviously, the 

accuracy of the simulation results reduces when the simplicity of models is increased. 

However, high fidelity fluid models are too much computationally expensive to be used for 

simulation of large scale problems. PIV data based models also need availability of complex 

experimental results for the tested plasma actuator. Moreover, since the major influence of 

the DBD actuator occurs at large scales, such as energy deposition and ionic field, the overall 

effect could be captured by simpler phenomenological models. 

Different simplified models can be found in the literature. Shyy et al [83]considered a body 

force formulation. The electric field region was confined to a triangular shaped region over 

the actuator plate, whose size was estimated by the length of the actuator and an assumed 

value for the height of the plasma region. The maximum body force in that model would 

occur at the edge of the exposed electrode and this body force was directed parallel to the 

shape of the body force region. The height of the plasma region and a constant charge density 

were considered to be the fitting parameters of the model. Suzen et al [85] developed a 

model Assuming a Gauss law, by additionally considering the electric potential to be produced 

by the accumulated charge density over the dielectric surface to obtain the charge density 

distribution. The distribution of the charge density was assumed to be Gaussian in accordance 

to the observed experimental distribution. Scales for the space charge density (maximum 

charge density), shape factors of the Gaussian distribution, and Debye length were selected 

to match experimental results. Both these models were not able to accurately capture the 

applied voltage-thrust dependency which was observed experimentally by [4] to be 

2/7
max appVU   .  

An involved unsteady phenomenological model was presented by Orlov et al [150], who 

considered the DBD actuator system as an electric circuit with several electric components, 

including capacitances and resistances. In this way, they were able to calculate the so called 

memory voltage over the surface of the dielectric layer. The model successfully predicted the 

ratio of the voltage-thrust dependency. However, the value of the body force was too much 

over estimated in comparison to experimental results. Mertz [89] modified the model 

presented by Orlov et al to increase the accuracy of the direction of the predicted induced 
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flow. These models required some parameters, such as plasma resistivity and plasma height 

which were fitted to match experimental results. Recently, Lemire [156]developed a hybrid 

model, by estimating the charge density distribution over the embedded electrode as in the 

model of Suzen et al, and by considering the virtual electrode concept from the circuit model 

of Orlov et al [150].  

Although the above mentioned models have gained success in modeling some experimental 

cases, as shown by Palmeiro [157], their predictive capability varies significantly depending 

on particular experimental situations. Moreover, most of them involve fitting parameters that 

need to be predefined by observing experimental results. These aspects restrict their 

practicality as a tool for the purpose of designing and testing flow control applications for 

which experimental results are not available. In the present paper, we wish to propose a 

modification to the model presented in [85]. This modification will serve to reduce the 

dependency of the results to fitting parameters, to capture correctly the voltage-thrust 

dependency, and to increase the range of validity of the model for different experimental 

situations.  

 

4.2 -  Modified split-potential model 

In this section we will present the modification to the split-potential model. The model is 

modified through scaling the components of the body force (section 4.2.1) and introducing 

these new scales in the split-potential model to simulate body force distribution generated by 

the plasma.  

4.2.1 -  Scaling of generated thrust and body force 

The thrust produced by the DBD plasma actuator is proportional to the power consumption of 

the DBD actuator system. For estimating the scale of power consumption the dielectric 

barrier discharge actuator is regarded as an AC circuit having a capacitor. Two cylindrical 

capacitors are considered, similarly to the work of Yoon et al [146]. gC includes the upper 

electrode and the generated plasma over the dielectric surface, while dC is the embedded 

electrode and the dielectric barrier. These capacitances are estimated as:  
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The difference in the definition of the capacitance with that of [146] is the inclusion of the 

length of the embedded electrode el  ,which is known, and the plasma region length pl , 
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which is unknown. Here, for simplicity the span wise length of the electrodes is assumed to 

be finite and equal to unity. And the considered cylindrical capacitors for each electrode are 

aligned in the stream-wise direction. The schematic of the typical DBD actuator and the 

corresponding AC circuit is presented in Fig (4.1), where the various lengths appearing in Eqs 

(4.1) and (4.2) are depicted. gC and dC capacitors are connected in a serial way to each 

other. Thus, the equivalent capacitance of the DBD actuator can be readily calculated as:  

dg

dg
eq CC

CC
C


  (3) 

 

 

 

a) b) 
Fig. 4.1: a) Schematic of the considered DBD capacitor system b) Equivalent circuit for the DBD 

plasma actuator system. 

The Debye length ( )(mD ) is estimated through the relation presented by Bouchmal [158], as  

 43 1042.7)(103.02.0   kVVappD  (4.4) 

in which appV  is the applied voltage in kilo Volts. 

The property that governs if ionization occurs is the electric field (threshold value at which 

the ionization occurs). To define this threshold value, the critical voltage at which the air is 

observed to first ionize (the critical voltage) is considered to be equal to the breakdown 

voltage bdV , of the DBD. Yoon et al [146] correlated the break down voltage taken as the 

initial operation voltage in the work of Thomas et. al [159], as;  

 .10063145.88289.4)( 2
dbd tkVV   (4.5) 

where )(mtd  is the thickness of the dielectric. However it is well known that the break down 

voltage is dependent on the operating pressure p , the secondary emission coefficient  and 

the dielectric thickness. An alternative relation, for calculating the break down voltage is 

adopted from the work of [160] as,  
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 where 1115  TorrcmA , TorrVcmB 1365   for air as working fluid. The effect of the plasma 

actuator arises through the electrostatic pressure which can be interpreted as the total 

energy consumption of the plasma actuator. The DBD plasma actuator was considered as a 

circuit with equivalent capacitance eqC , thus the energy consumption of the plasma actuator 

over the period   is related to the energy consumption (W ) of the equivalent capacitance, 

calculated as, 

.
00
 


dt
dt

dV
VCdtVIW eq  (4.7) 

Plasma only discharges when the electric field strength (applied voltage ( appV )) is larger than 

the critical value of electric field for the ionization to occur crE  (the break down voltage (

bdV )), and therefore, the consumed power ( P ) of the capacitance is estimated by taking the 

integration only in the effective plasma period ( t ) as, 
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(4.9) 

  .2 2
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t

W
P 


  

(4.10) 

where f  is the frequency of the applied voltage. In the above equations, it was assumed that 

eqC is the average equivalent capacitance over the effective plasma period. Moreover, In Eq. 

(4.9), the effect of voltage shape was ignored for the approximation of t  . In fact, Eq. (4.10) 

provides an estimation of the area of the characteristic Lissajous figure of the DBD actuator. 

As we have already mentioned, the thrust generated by the DBD actuator is proportional to its 

power consumption, and thus 

  .2 2
bdappeq VVfCT    (4.11) 

where  is a fitting coefficient which is considered to be unity. Moreover the dimension of 

the region in which this thrust is effective is obtained from an experimental correlation 

presented by [146], as, 
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T
h

T
l pp  (4.12) 

where pp hl , are respectively the length and the height of the plasma region in (m), and thrust 

T, is in(N/m). 

However the dependency of thrust on the extension of the plasma region was observed in the 

experimental work of Durscher and Roy [161] to have a linear relation, with a minimum 

length for the plasma region of 2.5mm. Thus, If we consider,  
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and replace the thrust in Eq. (4.12) from Eq. (4.17)), and then the length of the plasma 

region is calculated directly as, 
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where egp lll ,,  are in [m]; 0,0 dg CC  [F/m] and bdapp VV ,  in [V]. gl  is the asymmetric gap length 

between the trailing edge of the exposed electrode and the leading edge of the grounded 

electrode. Optimum gas spacing could higher thrust for the plasma actuator. Here, we have 

assumed that the minimum length of the plasma region is equivalent to the gap spacing (if 

exists). 

To approximate this dependency of the thrust on the power consumption, we assume a 

situation of uniform flow ( cte
dt

dm
m  ), and this results in: 
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T   (4.15) 
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(4.16) 

where A  is the area of the actuator. 

Substituting Eqs. (4.11) and (4.10) in Eq. (4.16), we have an estimation of the thrust 

generated by plasma actuator, 
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The air density   in the above equation is calculated from the ideal gas law.  

4.2.2 -   Numerical modeling of plasma generated body Force 

Since Eq. (4.17) already provides us with a correct scale for the thrust generated by the 

plasma, we only need the correct distribution and direction of the body force generated by 

the plasma actuator to close the formulation of the model. The body force generated by the 

plasma actuator depends on the charge density ( c ) and the electric field ( E


) as expressed 

by, 
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With this and the Eq. (4.17), we define the scales for the charge density and the electric field 

as, 
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where E


 is the electrostatic field vector E


, and the star indicates normalized fields. 

To arrive at Eq. (4.19), we have assumed that plasma is distributed uniformly in the span wise 

direction and the effective height of the equivalent capacitor that is storing the same charges 

is equal to the Debye length and the accumulation of the charge occurs during the time 

interval t . Moreover, this effective height is corrected (with an error function) in a way to 

compensate for the charge density drop over the dielectric surface (Eq. (4.27)). Solution of 

the charge density field and the electric potential was based on the model developed in 

[85],with a modified boundary condition for the electric field on the surface of the dielectric 

layer. We should mention that, a key advantage of the parameter scaling in Eqs. (4.19) and 

(4.20) is that the voltage dependency of power and body force can be predicted more 

accurately and also that the model thus needs less unknown fitting parameters.  

By considering Gauss law, we need to solve the following Poisson equation for the electric 

field, 

  .cE  


 (4.21) 

According to the split-potential field model, the electric potential is separated in two parts, 

one being a potential due to the external electric field, and the other being a potential due 

to the net charge density in the plasma, 

.   (4.22) 

 Assuming that the Debye length is small, as well as the charge on the wall above the 

encapsulated electrode, then the distribution of charged particles in the domain is governed 

by the potential due to the electric charge on the wall, being unaffected by the external 

electric field. The smaller the Debye length, the narrower the plasma region located near the 

electrode and dielectric surface become. Therefore, the governing equations for the 

potentials due to the external electric field and for the net charge density are: 

  ,0   (4.23) 

  .c   (4.24) 

The charge density and Debye length are related by 
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and after replacing the above equation into Eq. (4.24), we obtain the governing equation for 

the net charge density, 

  r
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
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 02
,   (4.26) 

Eq. (4.23) is solved for the electric potential, using the applied voltage on the electrodes as 

boundary conditions. Applied AC voltage is imposed at the exposed electrode while the 

embedded electrode is prescribed as ground by setting the electric potential to zero. At the 

outer boundaries, 0/  n is assumed. Eq. (4.26) is solved for the net charge density on the 

air side of the domain. A zero normal gradient for the net charge density is imposed on the 

solid walls except in the region covering the lower electrode. The charge density is set to 

zero on the outer boundaries. To close the formulation of the model, the distribution of 

charge density on the surface of the dielectric, over the embedded electrode, is prescribed in 

the stream wise direction by a half Gaussian distribution function )(xG , which follows closely 

the experimental plasma distribution over the embedded electrode, that is: 
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In Eq. (4.27),   is the location parameter indicating the position of the maximum, and   is a 

scale parameter determining the rate of decay. The location and scaling parameters depend 

on the voltage and operating characteristics of the DBD. We should mention that the correct 

distribution of the charge density on the dielectric surface ( )()(max,, tfxGcwc   ) can have a 

great influence on the accuracy of the simulation results. However, for the purpose of 

simplification of the computations, the assumption of a simple Gaussian distribution is viable. 

The location parameter is chosen such that the peak of charge density corresponds to the 

middle of the plasma region extension over the embedded electrode. In addition, the value of 

scaling parameter is selected in a way to allow a gradual decay of the charge density 

distribution to the end of the plasma region length. Moreover the dielectric shielding 

boundary condition introduced by Ibrahim and Skote [162] for the electric potential is also 

adopted which reads as, 

  trdtn   (4.28) 

  
 The condition produces a thin layer across the boundary that shields the electric field formed 

by the two electrodes, thus giving rise to the formation of the so called memory voltage on 

the dielectric surface. 
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4.3 -   Numerical procedure and flow solver 

We note that Eqs. (4.23) and (4.26) do not contain a time derivative term. Only the boundary 

condition for the applied voltage at the exposed electrode and the boundary condition for the 

charge density at the dielectric surface are time dependent. Therefore, Eq. (23) can be 

normalized and solved by imposing a constant boundary condition equal to unity at the upper 

electrode and similarly Eq. (26) can be normalized for charge density. The normalized 

parameters for a two dimensional coordinate system are as follows: 
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where )(tf  is a function representing the shape of the applied voltage.  

Once the dimensionless distribution is determined, the dimensional values at any given time 

can be obtained by multiplying this distribution with the corresponding normalization factor. 

In this manner, there is no need to solve the plasma model in an unsteady manner. The 

methodology is explained in detail in [114]. 

The interaction of the plasma actuator is implemented as an explicit source term inside the 

momentum equation. The flow governing equations were solved by finite volume method 

using the Commercial CFD solver FLUENT. The plasma model was then coded as an UDF (User 

Defined Function) and was used alongside for the simulation purpose. A two dimensional 

Cartesian orthogonal grid was used for the numerical simulation. Note that the grid spacing 

should not be larger than the Debye length. For enforcing this and reaching grid independency 

of the obtained results, and also reducing the numerical cost, the numerical grid was refined 

toward the electrodes and surface of dielectric layer. Moreover, the grid was refined in the 

regions where higher values of electric field and charge density exist. Thus, the grid spacing 

was stretched toward the electrode both in the normal direction and in the stream wise 

direction leading to the minimum cell size of about 2 µm. The total number of cells varies for 

the different test cases as the size of the computational domain varies. 

4.4 -  Results and discussion 

For the purpose of validation and to ascertain the improvement due to this new modeling 

approach, three different test cases have been selected. The first validation test case is the 

experimental work of Thomas et al. [159],in which the experimental correlation of the 

plasma extension is based on. Table (4.1), presents the details of the DBD plasma actuator 

used in that work of Thomas et al [159]. The computational grid of this case (Mesh A) consists 

of around 41047 cells for a rectangular domain of mm 5.01.1  . 
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Table 4.1: Details of the first validation test case (Thomas et al [159]). 

 Dielectric 
Material 

rd  )(cmle  )( mte   )(mmtd  )(kHzf  

A- Teflon 2.0 5.08 40.0 3.18,6.35 2.1 
B- Derlin 3.5 5.08 40.0 6.35 2.3 
C- Quartz 4.2 5.08 40.0 6.35 2.3 
D- Kapton 3.9 5.08 40.0 0.15 4.4 
E- Macor 6.0 5.08 40.0 3.18 2.3 

 

Fig. (4.2a) shows the comparison of the scaled calculated thrust and experimental results of 

Thomas. It is clear that model provides the correct trends regarding the influence of the 

different effective components of DBD actuator. Also, the model reasonably predicts the 

nonlinear dependency of the thrust and applied voltage although the rate of increase of the 

data is somewhat lower that the predictions. It should be mentioned that, considering the 

simplicity of the model, the difference between the calculated and experimental results is 

reasonable and in line with experimental results. In Fig. (4.2b), the correlation between the 

applied voltage and thrust dependency is depicted. As it was shown in [4] the voltage and 

thrust are related through 2/7
appVT  , and here we have calculated this to be 2/54.6

appVT   . it is 

interesting to note that the thrust data of [159] in Fig. (4.2a) show an even smaller rate of 

variation with voltage. 

a) b) 
Fig. 4.2: a) Comparison of the computed scaled thrust (solid lines)with the experimental results of 

[159] (symbols) b) Correlation between the voltage and the calculated scaled thrust for the 6.35 mm 

thick Teflon material. 

Moreover, a comparison between the unmodified split-potential model and the present 

modified model shown in Fig. (4.3) reveals that much improved level of agreement is 

achieved. The addition of the scaling to the model clearly modifies and improves the results. 

We should mention that for the unmodified model the values of the max,c  and d were taken 

from the work of Suzen et al [85] being 0.0008 C/m3 and 0.001m respectively.  
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Fig. 4.3: Comparison between the numerically obtained thrust from the present modified model 

(which is more accurate) and the previous unmodified split-potential model. 

For the second test case, we selected experimental work of Durscher and Roy [161] in order 

to examine the predicting capability of the model in a range of the experimental data outside 

that used for the fitting of Eq. (4.12) which was, we recall, correlated from the experimental 

results of Thomas et al [159]. The DBD plasma actuator used in the experiments of [161] 

includes an exposed electrode with a length of 0.5cm and an embedded electrode with length 

of 2 cm. Both electrodes were built from m70 thick copper strips. Also, the dielectric was 

3mm thick layer of acrylic with relative permittivity of 3.0. The computational domain for 

this case (Mesh B) was a rectangular with the dimension of mm 5.00.1   with around 4101.3   

grid cells. Fig. (4.4) compares the thrust calculated by the present model and the 

experimental results of Durscher and Roy [161] for two frequencies over a range of applied 

voltage. The computed thrust is in reasonable agreement with the experimental results and 

thus confirming that the considered correlations been proposed are sufficiently general for 

thrust estimation outside of the range of parameters on which they were based. 
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Fig. 4.4: Comparison between the calculated thrust from the present modified model and the 

experimental results of Durscher and Roy [161]. 

 

Fig. (4.5) depicts the normalized electric potential distribution around the electrodes along 

with the normalized distribution of the charges over the surface of the dielectric material. It 

should be mentioned that the effect of finite electrode thickness is considered just for the 

scaling of the body force, as explained in the previous section, while the actual numerical 

domain for simulations assumes infinitely thin electrodes. In addition Fig. (4.5c) illustrates 

the induced ionic wind by means of the contour of velocity magnitude and velocity vectors. 

The direction of most of the induced flow is in stream wise direction because the vertical 

component of the force generated by the plasma actuator is smaller than the horizontal 

component. Since the spatial distribution of the generated plasma body force and the ionic 

wind are obtained numerically, different actuators arrangement and electrode geometries 

could be modeled and analyzed easily.  
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(c) 
Fig. 4.5: a) Electric potential field around the DBD actuator for kHzfkVV 14,10max   . b) Charge 

density distribution over exposed electrode. c) Induced ionic wind velocity magnitude contour 

(m/s). 

 

In Fig. (4.6) , calculated profiles of the steam wise velocity component are compared with 

the PIV data of Durscher and Roy [161] at two stations, x=25 and 35 mm for 

kHzfkVV 14,10max  . The trend is well captured but there is a difference between the 

maximum values of the velocities for both profiles. This is related to the underestimation of 

the thrust computed by the present model for the applied voltage (as can be seen in Fig. 

(4.4)). However, for a simplified model the accuracy is acceptable and the predictions are in 

line with the experiments. Moreover, the figure shows that the position of the maximum 

velocity is predicted correctly by the present model.  

(a) (b) 
Fig. 4.6 : Comparison between the calculated profile of the horizontal velocity and the experiments 

of Durscher and Roy [161]. at a) x=25 mm b) x=35mm, downstream of the exposed electrode. 
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One of the parameters that is known to affect the thrust is the length of the plasma region, 

which was estimated by Eq. (4.14). The obtained plasma region length from the present 

model was then compared with experimental results of Durscher and Roy [161], and the 

results are shown in Fig. (4.7) .As can be seen the experimental results show approximately a 

linear relation between thrust and plasma region length while the numerical calculation is 

showing a quadratic tend. The deviation of the estimated scaled thrust (under estimation at 

low voltages, and over estimation at high voltages) is related to this point, i.e. the correct 

evaluation of the flow regime. 

Fig. 4.7 : Comparison of the estimated length of the plasma zone and the experimental results of 

Durscher and Roy [161]. 

 

Finally, the experimental and numerical work of Palmeiro [157] is considered to compare the 

present model with other models and with experimental results. Three test cases are 

considered following [157], with different electrode geometry and applied voltage and some 

of their details are tabulated in Table (4.2). As shown in [157], the existing phenomenological 

models have diverse accuracy for different cases. 

Table 4.2: Details of the test cases of Palmeiro [157]. 

Test Case rd  )(mmle  )(mmlg  )(mmtd  )(kHzf  )(max kVV  
(1) 2.9 6.35 1.0 0.19 3.0 6.0 
(2) 2.9 12.7 1.0 0.57 3.0 7.5 
(3) 2.9 5.0 0 0.18 2.75 5.0 

 

Table (4.3) compares the maximum velocity obtained from the present model with other 

phenomenological models and the experiments. It is obvious from this table that although our 

model is simple, it offers a more uniform predictive capability for the various test cases 

compared with the other models. The maximum velocity shown in Table (4.3) is obtained at a 

specified stream-wise measuring location which was equal to 10mm, 10mm, and 5mm from 

lp ( mm)

T
(m

N
/m

)

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
0

5

10

15

20

25

30

35

40

45

50

Experimental results (Durscher & Roy (2012))
Estimated Plasma region length



  _____________________________________________________________________________  
 

   
      93 

the leading edge of the exposed electrode, respectively for cases (1), (2) and (3). The present 

model shows acceptable accuracy for all the three cases. Although the hybrid model of 

Lemire et al. [156] shows good accuracy for two of the cases ,it is not capable of replicating 

the experimental results of the other case. 

Table 4.3: Maximum induced velocity )/(max smU  

Test Case Experiments 
[157] 

Simple 
body 
force 
model 
[83] 

Split-
potential 

model 
[85] 

Lumped-
circuit 
model 
[89] 

Hybrid 
Model 
[156] 

Present 
Model 

(1) 1.9458  0.7266 0.2110 8.9311  1.5339  1.05642 
(2) 1.2772 0.8383 0.2495 7.3674 0.2927 1.10435 
(3) 1.5181 0.3042 0.2124 3.9770 1.2382 0.959561 

 

In Fig. (4.8) the obtained x-velocity profiles at the measuring locations mentioned above, are 

compared with experimental and numerical results of Palmeiro [157]. The velocity profiles for 

each measuring station and modeling methods are normalized by the corresponding maximum 

velocity. For each case four sets of results are presented, namely A) the experimental results 

[157] ; B) unmodified split-potential model ; C) the model giving the closest behavior to the 

experiments ; D) and the results obtained from the present model. After removing the 

discrepancies introduced by the correct prediction of the velocity peak, we see that our 

model is the best to predict test cases (2) and (3), and none of the models is able to predict 

adequately the very narrow boundary –layer behavior of test case (1). 
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(3) 
Fig. 4.8: Comparison of the x-velocity profile at the specified measuring location a) Case (1) b) Case 

(2) c) Case (3). 

 

4.4.1 -  Effect of altitude on the thrust generation of plasma actuators 

For a flow control system to be used in real applications, for which the altitude, for example, 

will vary significantly the characteristics of the thrust generated by the plasma actuators 

under various ambiental parameters need to be assessed to prove that they have adequate 

capability of usage. When the altitude of the aeronautical system is changed, several 

properties, including pressure, temperature and humidity, will change. These factors could 

alter various parameters of the plasma actuator system. As an example, the dielectric 

permittivity, secondary emission coefficient of the surface of the dielectric material, space 

ionization and attachment coefficient are dependent on the local characteristics of the 

environment. The results of such assessment will serve to help the design of a novel flow 

control system using DBD plasma actuators, for high altitude airships which consists of both 

cruiser and feeder airship, with a wide range of change of altitude [113].  

Several studies addressed the influence of the variation of altitude, temperature and relative 

humidity, such as [163] who concluded that the effectiveness of the actuator increases with 

relative humidity also the [164–169] studied the influence of the operating pressure on the 

performance of the plasma actuator. Wu et. al[164] considered the reduction of the operating 

pressure below atmospheric pressure level. They showed that the reduction of operating 

pressure causes a decrease of the rotational temperature of the electrons, and also an initial 

decrease in vibrational temperature of the electrons followed by an increase. They also 

observed that the pressure reduction causes a change of the discharge mode at a transition 

pressure of 45 torr. Litvinov et al[165] mentioned that the larger thrust resulting from a 

decrease in pressure could be associated with an increase in the plasma volume, ahead of the 

electrodes, allowing for a larger total number of ions, moreover, it was shown that the 

relative area occupied by the plasma on the dielectric surface varies with pressure by 
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  5/7
0 /)200( ptorrp . Benard et al [166] also showed that the plasma extension increases when 

reducing the operating pressure. Their results revealed that the extension of the plasma 

region was smaller than the length of the embedded electrode, when the pressure is equal to 

1 atm (in accordance to the assumption we made in previous section 4.2), however, when the 

operating pressure is reduced the plasma tended to extend more. 

Abe et al [168] investigated the effect of operating pressure on the plasma actuators 

performance and reported the same result, the power consumption of the DBD increases with 

a decrease of pressure. In essence, pressure influences the thrust generating capability of the 

plasma actuator by decreasing the voltage required to create a discharge (Eq. (4.6)). In other 

words, when the gas density is reduced, current pulses become more intense as the electric 

field is kept constant and fewer collisions between charged particles and surrounding neutrals 

occur. Versailles et al [170] looked to the effect of pressure in a range above atmospheric 

pressure. They concluded that, for a given actuator input, the plasma density and extent 

tends to decrease with increasing pressure. 

For the purpose of examining the ability of the proposed model to capture the effect of 

altitude on the thrust produced by the plasma actuator, several test cases were considered. 

Table (4.4) shows the geometrical details of the actuators employed for testing the effect of 

operating pressure. The first test case is related to pressures below the atmospheric pressure 

level, and the second is related to pressures above the atmospheric level. 

Table 4.4: Case details – Effect of operating pressure. 

Test Case et  )(mmle  )(mmlg  )(mmtd  d  
Dielectric 
Material 

P1 [166] 0.1 10 5 4 3 PMMA 
P2[170] 0.076 12.7 2 1.6 2 Teflon 

 

Eq. (4.17) provides us thrust exerted by a unit mass of working fluid, per unit length of 

plasma region. Moreover, using Eq. (4.18), source term for the momentum equations of air 

with density  , the thrust which is generated by the force induced by the plasma actuator on 

the surface, can be numerically calculated.  

An extra correction needs to be done for the Debye length. Valerioti et al [141], considered a 

pressure dependency of the Debye length as )3/4( pD . Debye Length is related to the 

electron charge density and electron temperature as 
2
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 . We have 

fitted the variation of the electron density and electron temperature with operating pressure 

from the work of Wu et al [164]. We have obtained the Debye length dependency to operating 

pressure as 
)5/3( pD by replacing the fitting of the electron density and electron 

temperature in the formula of the Debye length and then replaced in the mentioned equation 

, resulting to the dependency of the Debye length to operating pressure.  



 _____________________________________________________________________________   

 
96 

In Fig. (4.9) the variation of the normalized thrust obtained from (Eq. (4.17)) and normalized 

body force (from Eq. (4.18), with decreasing pressure is presented for this case. As indicated 

in this figure both parameters posses a maximum point, whose value is in accordance with the 

results presented by [164,166,168] . The peaks of the scaled thrust and body force, estimated 

by Eq. (4.17) and Eq. (4.18) are occurring respectively at 0.59 atm and 0.71 atm, while the 

experimental results suggest a peak at 0.6 atm. However, the main point is that the simple 

model presented here could capture the behavior of thrust correctly. 

Fig. 4.9 : Variation of normalized thrust and force with decreasing pressure (below atmospheric). 

For test case P1, the velocity profiles obtained at different stream-wise sections over the 

plasma actuator, are presented in Fig. (4.10). The maximum value of the induced velocity is 

in accordance with the experimental results for this case at atmospheric pressure.  

Fig. 4.10 : Velocity profile at different stream-wise sections for atmospheric pressure, p=1 atm. 
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For the case in which operating pressure is higher than the atmospheric pressure, the thrust 

obtained from the present study is compared with the experimental results of [170]. For 

pressures higher than atmospheric pressure, no pressure correction for the Debye length is 

considered. The results are plotted in Fig. (4.11) and show the correct trend: reduction of the 

thrust by increasing the pressure. As was explained in [170], increase in operating pressure in 

constant temperature causes an increase in air density. Therefore the mean free path 

between the particle and the kinetic energy of them when they collide reduces. Thus the rate 

of the momentum transfer decreases. Secondly the ignition voltage (break down voltage) is 

increasing with increase in operating pressure. Thus at higher operating pressure, the voltage 

needed for the plasma region to form is larger. In this study, the secondary electron emission

)( , was considered constant and equal to 0.01. In fact,   depends on surface characteristic, 

ionization energy, and primary electron energy. As shown by Wu et al [164], when the 

operating pressure is changed the electron energy and temperature will change. Thus, it may 

be expected that the secondary electron emission   would also be depend on pressure. To 

approximate the sensitivity of the results to the level of   , in Fig. (4.11) the estimated 

thrust is shown for two values of  and the lower 001.0  seems to offer results closer to 

the experiments in which pressure varies in a range kPap 250150   . 

 

Fig. 4.11 : Comparison of the effect of higher atmospheric pressure on thrust estimated by the 

present study with the results obtained in[46]. 

4.5 -  Conclusions 

A simple model for plasma discharge and its effect on the flow was developed based on 

scaling the thrust generated by DBD plasma actuators. The scaled thrust model correctly 

predicts the nonlinear dependency of the thrust produced and the applied voltage. These 

scales were then introduced into a simple phenomenological model to estimate and simulate 

the body force distribution generated by the plasma actuator. Although the model includes 
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some experimental correlations, it does not need any fitting parameter. The model was 

validated with experimental results and showed better accuracy compared to previous plasma 

models. Moreover, the generality of the model was confirmed through validation with three 

different experiments. Finally, the model was tested for predicting the thrust for cases in 

which the altitude (pressure) is changing.  
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5 - Comparison of DBD Plasma Actuators Flow 

Control Authority in Different Modes of 

Actuation  
Abstract 

The principal mechanisms by which DBD plasma actuators influence flow characteristics, and 

are thus able to control the flow, depend strongly on their modes of actuation. Here two 

different modes based on steady and unsteady actuation are compared and investigated. A 

simple sinusoidal voltage distribution and a duty cycled sinusoidal voltage were considered for 

these purposes. Leading edge separation around a stalled NACA 0012 airfoil at 6103Re  is 

considered as test case. A simple phenomenological model which uses the correct scale of the 

plasma body force is considered for the modeling of the plasma actuator effects. The steady 

actuation results show that flow control can be effectively achieved and moreover this mode 

can be used for noise control by continuous injection of momentum in the boundary layer. 

Unsteady actuation with an imposed frequency equal to the calculated natural frequencies of 

the flow gives rise to a resonance actuation effect4.  

Keywords: Unsteady actuation; optimum frequency; flow control; analytical model; 

resonance mode;  

5.1 -  Introduction 

The use of effective active control flow techniques can provide higher efficiency for the 

controlled system. Among different Active Flow Control (AFC) techniques, DBD plasma 

actuators are novel means of actively controlling flow and have gained increased interest 

during the past decade for different applications [117,171–174]. This kind of actuators may be 

operated in different modes depending on the type of the input voltage signal. If a 

sufficiently high continuous sinusoidal voltage is applied to the electrodes, the plasma 

actuator will accelerate the fluid. In this mode the main mechanism of flow control is by 

locally imparting momentum to the nearby flow. The use of a plasma actuator in steady 

operational mode would cause significant modification of the stability properties in a 

boundary layer. The amplitudes of the oscillations would tend to decrease. If the voltage 

source operates in a burst mode, with a specified duty cycle, the momentum injection will be 

done discontinuously (unsteady mode) with a frequency equal to the frequency of duty cycle. 

In this mode, the plasma actuator might mitigate or stabilize the natural instabilities of the 

                                                 
4 This chapter is based on the following paper: “M. Abdollahzadeh, J.C. Páscoa, P.J. Oliveira (2014), 

Comparison of DBD Plasma Actuators Flow Control Authority of the in Different Modes of Actuation, 

Journal of Applied Physics: D, (Submitted).” 
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flow in a more efficient way by generating large coherent vortical structures. In this case, the 

plasma induced instabilities would counteract the disturbances already present in the flow. 

The amplitude of the flow instabilities would decrease due to superposition of velocities. In 

the case of unsteady or pulsed actuation, the power requirement of the actuator is lower 

than in steady actuation due to the short duty cycles of the input voltage. In fact, the duty 

cycle percentage correlates linearly with power consumption. In Fig. (5.1), the schematic of 

the plasma actuator and the different operational modes of a plasma actuator are shown. In 

the unsteady mode, the forcing of the actuator during the active period accelerates the flow. 

When the actuator is turned off periodically, a large vortex forms due to wall effect and 

decouples from the actuation region. This process is then repeated at every cycle [175]. 

(a) (b) 

Fig. 5.1: a) plasma actuator in steady operation mode; b) plasma actuator with duty cycle applied 

voltage. 

 

One of the most common situations in which the importance of flow control is more relevant 

is the control of flow in stall and post stall condition. Several studies have been reported in 

the literature showing the capability of plasma actuators for controlling flow in such 

situations [176]. To increase the efficiency of the plasma actuators, some of the relevant 

parameters can be optimized to reach higher performances [46,147]. Tsubakino and Tanaka 

[177] have shown that the location of the plasma actuator has an influence on the flow 

control capability. In our previous work [114], we have shown that, for optimum flow control, 

plasma actuator should be placed before the separation point. The shape of the voltage wave 

has also an influence on the electric discharge and thus on the trust generated by plasma 
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actuators [178–180]. In the case of unsteady actuation, the burst ratio and the duty cycle are 

the major factors that may influence the efficiency of the plasma actuator [181].  

Asada et al [182] have studied experimentally the effect of burst ratio and burst frequency. 

They concluded that smaller burst percentage allows increased flow control capability and at 

higher duty cycle frequency the voltage needed for controlling the flow is smaller and thus 

higher burst frequencies are more efficient. They have also shown that the reduced frequency 

of 1.9F  is optimal for flow control. Similar results have been reported by Audir et al [183] 

.Patel et al [184], reported that the optimum frequency of unsteady actuation at which the 

voltage needed to reattach the flow is minimum is equal to 1F . To obtain the optimum 

frequency, the actuator voltage was varied until a sudden rise in the lift coefficient was 

observed for the specified frequency. Moreover, they mentioned that if the burst frequency is 

not optimal, the effect of the plasma actuator would be negligible, and showed that the 

minimum voltage to control the flow varies with the angle of attack and flow velocity. In the 

experiments conducted by Sidoenko et al [185], the existence of an optimum frequency for 

both pulsed voltage and burst modes of actuation was observed ( 146.2 F ). Mitsuo et al 

[186] showed that flow control authority of the plasma actuator is sensitive to the frequency 

of the unsteady plasma actuation. However, their measurements showed a value around 

5.0F  for the optimum burst modulation frequency. Benard et al [187] studied 

experimentally the effect of steady and unsteady actuation on the lift and drag coefficients. 

Their results showed an aerodynamic enhancement when the frequency coincides with 

natural vortex frequency. Furthermore, Benard and Moreau [188], explored the use of multi-

frequency excitation voltage signal to cover a wide range of the frequency of the flow 

instabilities. These studies suggest that there exists an optimum point for the parameters 

involved in unsteady or burst mode of actuation. Akansu et al [189], experimentally 

investigated the effect of four DBD plasma actuators on the manipulation of separation over a 

NACA0015 airfoil at low Reynolds number. They studied several parameters including the 

effects of applied voltage amplitude, dielectric thickness and unsteady actuation. Another 

situation for which periodic force generation by plasma actuators would benefit flow control 

is the dynamic stall, where unsteady plasma actuation enhances the lift and production of 

concentrated vortex structure near the leading edge [190].  

Although most of these studies report an optimum value of 1F  for the bust frequency, 

there are still discrepancies between the values suggested by some studies. The objective of 

the present chapter is to investigate and compare the flow control ability of DBD plasma 

actuators under different modes of actuation. All of these modes of actuation were tested 

with only one single DBD actuator to control the leading edge separation of the airfoil, at stall 

condition. Since plasma actuation in unsteady mode could influence the stability of the 

boundary layer and turbulization (higher frequency) or the instabilities of the separation layer 

and shedding structure (lower frequency), we have applied FFT analysis on the velocity 

components in order to obtain the natural frequencies of the flow. Then, for the unsteady 
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mode of actuation, different values of the burst frequencies were tested including the natural 

frequencies of flow instabilities. 

5.2 -  Plasma effect modeling 

Recently, we have presented a simple phenomenological model based on the scaling of the 

plasma generated thrust which allows us to compute the body force in the momentum 

equation due to plasma actuation [191]. The model uses the Gauss law to obtain the electric 

field distribution, in conjunction with an experimentally verified distribution of the particles 

charge density over the surface of the dielectric material for obtaining the body force. The 

governing equations of the model (electric potential and charge density) are as follows: 

  ,0   (5.1) 
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These equations do not contain a time derivative term. It is only the boundary condition for 

the applied voltage at the exposed electrode and for the charge density at the dielectric 

surface which are time dependent. Therefore, Eqs. (5.1) and (5.2) can be normalized as 

follows for a two dimensional coordinates: 

 

,,
)(

,
)(

**
**

max

*

max,

*


















 j
y

i
x

lE
tftf p

c

c
c

 








 
(5.3) 

  

where 

 


























 























 p

p
corr

dcorr

bdapp
eqc

l

l
f

f

VV
fC

2

2

1
erf

2

2

1
erf2

2

1
,

)(
2, max,  (5.4) 

p

bdapp

l

VV
EEEE

)(
0

*
0





 (5.5) 

 

In the above equations )(tf  is a function representing the shape of the applied voltage and 

*E


 is the normalized electric potential. Once the dimensionless distribution is determined, 

the dimensional values at any given time can be obtained by multiplying this distribution with 

the corresponding normalization factor. In this manner, there is no need to solve the plasma 

model in an unsteady manner. The body force generated by the plasma actuator depends on 

the charge density ( c ) and the electric field ( E


) as expressed by, 
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EF c


0  (5.6) 

The normalized governing equations and the corresponding boundary conditions for the 

plasma model are summarized in Fig. (5.2) for the considered DBD actuator geometry.  

5.3 -  Problem statement and numerical procedure 

The test case consists of flow around a NACA 0012 airfoil with chord length of 1m in 

atmospheric conditions. The Reynolds number based on the chord length and the free stream 

velocity equals 6103 ( smU /81.43 ). A single DBD plasma actuator is placed at the leading 

edge of the airfoil, mostly for controlling the stall. The exposed electrode length is 15.47 mm 

and it starts at x/c=0.001481. The embedded electrode is 26.57 mm long and its leading edge 

is placed at x/c=0.01149 .Both electrodes were assumed to have thickness of m70 . The 

embedded electrode is covered with thin layer of dielectric material which is 4mm thick and 

has a dielectric permittivity equal to 04  . A schematic of the electrodes and dielectric 

layer configuration is presented in Fig 2. Although the plasma model makes use of the 

thickness of the electrode for estimating the thrust induced by the plasma actuator, the 

numerical grids were built assuming that electrodes are infinitely thin layers. 

 

 

Fig. 5.2: Schematic of the DBD configuration near the leading edge of the airfoil and the 

corresponding boundary conditions of for the plasma model. 

 

Two dimensional unsteady incompressible Navier-Stokes equations are considered for 

obtaining the flow field variables (velocity and pressure) and are written in tensor form as:  

0



i

i

x

u
 (5.7) 



 _____________________________________________________________________________   

 
104 

j

i
ij

i
j

ij

ij

jii

x

u

f
xx

p

x

uu

t

u





























 (5.8) 

In the above equations, the indices 2,1i , represent respectively the x and y direction, p  is 

the pressure,   is dynamic viscosity, t is the time, ij  is viscous stress tensor, iu is the i-

component of the velocity vector and if is the component of the body force vector arising 

from the plasma model.  

Numerical solution of the governing equations stated above and in the previous section was 

accomplished by discritizing them with a finite volume approach, using a cell centered 

collocated arrangement of primitive variables. The numerical implementation was conducted 

by developing a new solver in OpenFoam [90]. All the convective fluxes were approximated by 

the GAMMA scheme using face center values for velocity. The pressure-velocity coupling is 

solved by the PISO algorithm and time is advanced with a second-order backward-differencing 

scheme. In simulating the procedure of different frequencies of excitation, the time step is 

kept in the order of s510 , with 50 sub-iterations, so that there are sufficient discrete time 

steps in each period of excitation. Although the predictability of the URANS and Hybrid LES-

RANS models for the case of unsteady actuation needs to be verified [192,193], here we have 

used those methods together with k-w SST turbulence model [194] and a scale-adaptive 

simulation technique (SAS) [195]. The uncontrolled flow is a multi-frequency system, which 

may have different major frequencies including frequency of shear layer, frequency of 

separation bubble and frequency of the vortex shedding. Since URANS models could filter out 

fluctuations above some specified frequency level (e.g. the shear layer), when measuring 

natural frequencies of the flow, SAS model had been used. A C-type computational grid was 

created and the grid spacing was refined near the airfoil surface to assure the condition y+ < 

1 for correctly capturing the boundary layer development. Different grid densities have been 

tested for assuring that the results obtained are independent of the numerical grid. The 

boundaries representing the free stream conditions were considered far enough from the 

airfoil (15c ahead of the airfoil and 20c at the back). 

 The solution procedure consists of two main steps. The first step is two solve the normalized 

form of the governing equations for the plasma model in order to obtain the magnitude and 

distribution of the body force generated by the plasma actuator. In the second step the 

normalized body force was introduced as an explicit source term in momentum equations 

which are solved in a sequence fashion with the continuity equation in order to obtain the 

velocity and pressure fields. The convergence of the numerical procedure is assured by 

reaching a minimum relative error of 610 at each time step for all variables. An example of 

the computational grid and the corresponding boundary conditions is shown in Fig. (5.3). 
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Fig. 5.3: The computational grid and boundary conditions for the flow field. 

5.4 -  Results and discussion 

For the purpose of validation, the results of the present simulations without the effect of the 

plasma actuator are compared with the experimental study of Ladson [196]. When there is no 

actuation applied on the surface of the airfoil, the onset of the stall is around 16 degree. 

Above this angle of incidence, a large separation bubble is formed and the lift coefficient 

drops sharply. Fig. (5.4a) illustrates the flow structure at an angle of 20◦ without actuation 

and Fig. (5.4b) compares the results of the present study for the lift coefficient with the 

experimental results of Ladson. It is clear that the present numerical modeling approach 

provides acceptable accuracy in predicting the flow except for a small discrepancy when stall 

is approached.  

(a) (b) 

Fig. 5.4 : a) Stream lines of the velocity field at an angle of attack of 20 , showing the time-

averaged separation bubble b) Comparison of the lift coefficient ( LC ) obtained from the present 

study and experimental results of [196]. 
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For the purpose of controlling the flow, a single DBD actuator with the configuration specified 

in Table (5.1) was applied. A high-voltage continuous sinusoidal signal of 15KV with frequency 

of 15 kHz was used for actuation. It should be mentioned that this configuration might not be 

the optimum for the actuation process. 

Table 5.1: Configuration of the single DBD actuator. 

apV  15 kV 

extf  15 kHz 

dt  4 mm 

d  4 

exposedl  
15.47mm 

embeddedl  
26.57mm 

et  4 mm 

 

When a steady actuation is applied, the fluid beside the actuator is accelerated and the so-

called ionic wind is formed. This accelerated flow region will extend along the airfoil surface. 

The maximum value of velocity obtained by plasma actuation is around 18.5 m/s and the core 

of the region of accelerated flow is located at x/c=0.02699, which is after the separation 

point for the angle of attack of 20◦ (x/c=0.020022). The ionic wind will impart momentum to 

the flow around the location of actuator and stabilize the nearby flow fluctuations and 

promote reattachment of the boundary layer. Fig. (5.5) illustrates these features by showing 

the velocity contour of ionic wind formed due to the steady operation of the DBD actuator. 

 

Fig. 5.5: Velocity contours of the plasma ionic wind at an angle of attack of 20  in quiescent 

air. 

3
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At the specified incidences, when separation occurs over the airfoil surface three different 

frequency scales are identifiable. Existence of all these frequencies depends on that the 

separated shear layer will reattach before the trailing edge. These frequencies may be 

classified according to their origin: the frequency of the shear layer Slf ; frequency of the 

separation bubble sepf ; and frequency of global instability shedf which is related to vortex 

shedding. They can be scaled as

U

fSl  , 
sep

sep L

U
f   and 

wake
shed L

U
f   where U  is average 

velocity in the shear layer,   momentum thickness at the separation point, sepL is the length 

of separation bubble, and wakeL is characteristic width of the wake. Using the results of the 

simulations without actuation, the characteristic frequencies of the flow were determined by 

computing power spectra of time-series of v-velocity in the shear layer, the separated region, 

and the wake, using FFT analysis. For this purpose, seven different probe locations were 

considered for monitoring the variation of the velocity components. The locations of these 

points are tabulated in Table (5.2), with the origin of the x,y coordinates at (0,0) , and are 

shown by the dots in Fig. (5.5). 

Table 5.2: Velocity sensors monitoring locations.  

Probe 

Number
 

x (m) y (m) 

1 0.0300 0.0187 

2 0.0812 0.0308 

3 0.1918 0.0435 

4 0.4255 0.0435 

5 0.7264 0.0723 

6 1.0018 -0.3152 

7 1.2515 -0.3312 

In Fig. (5.6), the variation of the cross-stream velocity (v-component) at different probe 

locations for the angle of attack of 20◦ is shown along with the corresponding power spectra 

(PS). It is noted that the frequency of shear-layer instability cannot in principle be captured 

in the numerical simulation using URANS. Firstly because the time step may filter out the 

fluctuations of that level, and secondly because using RANS might distort the correct spectral 

content of the signal (as an outcome of the RANS averaging procedure). Typically, the URANS 

approach could provide accurate results in situations where the rate of the time variation of 

the flow is of much lower frequency than that of the turbulence. To overcome this issue, the 

SAS model was here applied. As can be seen from Fig. (5.6), the shear layer, separation 

bubble and the wake are all locked on a major dominant frequency which is equal to 24.4 Hz. 

However, two other characteristic frequencies are also observable, one around 3.7Hz and the 

latter around 46 Hz. Since these frequencies are less energetic, they could possibly be some 
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sub/super harmonics of the main natural frequency. The reduced/normalized frequency can 

then be calculated using the scales introduced above, and the resultant reduced frequencies 

are presented in Table (5.3). The value of the reduced shedding frequency of 0.189 is in the 

range reported in literature [21]. 

Table 5.3: Dominant normalized frequencies of the flow without actuation.  

Measured 

frequency 

f(Hz)
 

Normalized  



 
U

cf
f

sep
sep  

Normalized



 
U

cf
f shed

shed
sin

 

3.7 0.084 0.02872 

24.3 0.554 0.1894 

43.5 0.9929 0.3395 
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(a) (b) 

Fig. 5.6: Cross-stream velocity component signals at different probe locations without actuation: a) 

time variation; b) power spectra. 

Since the plasma actuators were placed slightly upstream of the separation point so as to 

have an optimum controlling effect, they can be used either in steady mode for stabilization, 

or in an unsteady manner to lock on the major frequencies of the flow and their harmonics, 

to initiate a hydrodynamic resonance or optimum controlling effect. In Fig. (5.7a), the time 

averaged velocity stream lines reveal the significant reduction of the size of the separation 

bubble in the case of steady actuation, for the angle of attack of 20 degree. Figs (5.7b) and 

(5.7c) compare the variation with   of lift coefficient and the lift/drag ratio of the airfoil 

DL CC /  for the cases with and without actuation. These results show that the steady 

operation of the DBD actuator successfully improves the lift coefficient of the airfoil. At high 

angle of attack, the increment of LC  is more pronounced when stall occurs. At the angle of 

attack 20°, the lift coefficient was increased approximately by 16% with its value raising from 

0.99 to 1.16. Moreover, the reattachment of the flow decreases the effective angle of attack 

of the airfoil and therefore, improves the aerodynamic performance of the airfoil (Fig. 

(5.7c)). 
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(a) (b) 

 

 

(c) 

Fig. 5.7 : Results with the DBD actuator in steady mode: a) Stream lines of the velocity field at angle 

of attack of 20  showing the time-averaged separation bubble; b) enhancement of the lift 

coefficient ( LC ) by actuation c) effect of steady plasma actuation change on the pick aerodynamic 

performance point.  

Fig. (5.8) illustrates the changes brought about to the velocity fluctuations and the 

corresponding power spectra when the steady actuation is applied. As can be seen, when the 

plasma actuator is working in steady mode, all the major frequencies of the flow vanish and 

the flow becomes more stabilized. There is also a reduction in the power spectrum peak, and 

regulation of the fluctuations indicating that possibly noise reduction might be achievable by 

using the DBD plasma control.  
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(a) (b) 

Fig. 5.8: Cross-stream velocity component signals at different probe locations with steady plasma 

actuation: a) time variation; b) power spectra.  

In the case of unsteady actuation with alternative current (AC), reduced frequencies in the 

range 0.1 to 23, with two burst modulations of 10% and 50%, were tested for possible 

observation of resonance behavior. Due to the actuation, ionic wind is formed during the 
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active part of the cycle. When the actuation stops, the plasma induced vortex separates from 

the actuation location and interacts with the main flow separation bubble and thus allowing 

some control of the flow.  

In Fig. (5.9), the time averaged streamlines are superimposed on velocity field contours and 

are shown at these burst frequencies and burst ratios ( %10 on the left and %50 on the 

right). The shape of the separation bubble varies significantly with the burst frequency and 

burst ratio. The size of the separation bubble is reduced when %50 for all the burst 

frequencies employed here. The center of circulation region moved further downstream when 

the frequency is increased from Hzf 25  to Hzf 250 . In the case of %10 , the 

suppression of the separation bubble was not significant for the lower frequencies, Hzf 25  

and Hz50 . However, the size of secondary vortex near the trailing edge is reduced in these 

cases in comparison to the base case (Fig. (5.4a), 0 ). When the burst frequency is 

increased to 250 Hz, the unsteady actuation was successful in controlling the separation 

bubble. 

Hzf 25  

Hzf 50  
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Hzf 250
 

 (a) (b) 

Fig. 5.9: Time-averaged velocity contours and streamlines at angle of attack of 20◦ for a) %10  

and b) %50 . 

Both the steady and the unsteady actuation processes have improved the pressure recovery in 

the separation region. In this aspect, the steady actuation was slightly better than the 

unsteady one. This is quite different from the results for laminar separation control where 

unsteady actuator operation (mostly at F+ = 1) has always been found to be better than 

steady actuator operation. Similar results for controlling turbulent separation bubble were 

reported by He et al [197]. However, this conclusion from the numerical results could be 

related to the assumption of the two-dimensional flow followed in the present study. Asada 

and Fuji [192], suggested that important phenomena related to the effect of the burst mode 

on separation control using the plasma actuator may be three-dimensional vortices generated 

by plasma actuator which induce the strong longitudinal vortices. 

Mean surface pressure coefficients for the base flow and steady and unsteady actuator cases 

are compared in Fig. (5.10). When the plasma actuator is off, the flow-field around the airfoil 

separates from the leading edge and the pressure coefficient has a flat distribution over the 

whole suction side of the airfoil. However, when the steady or unsteady actuation is on, the 

body force produced by the plasma actuator locally accelerates the ambient air, thus 

producing a strong low pressure region and thus a sharp decline in the Cp level at the 

actuator position at the leading edge, which is then followed by a rapid pressure recovery 

towards the trailing edge. The peak value of the pressure coefficient in the presence of the 

plasma actuator is reduced. For unsteady cases the largest value of the peak occurred for

HzF 250 and Hz25  for %10 and %50  respectively. Moreover for %10  at 

HzF 250  , the size of large plateau the Cp on the suction surface (characteristic of the 

separation side) significantly reduces. Therefore, the lift of the airfoil can be improved. 

However, this figure shows that the steady actuation (normal mode) is more effective than 

unsteady actuation (burst mode) on the control of separation in this flow condition. 
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(a) (b) 

Fig. 5.10: Pressure coefficient distribution around the NACA0012 airfoil at an angle of attack of 

20◦for steady and unsteady plasma actuation for a) %10 ; b) %50 . 

In Fig. (5.11), the effect of two burst ratios, 10% and 50%, and different burst frequencies on 

the lift and drag is demonstrated. At burst ratio of 10%, the lift and drag coefficients had 

respectively experienced a maximum increment of 12.51% and 10.22% at HzF 25 . Even 

duty cycles of 10% were able to increase the lift coefficient. However at the same burst ratio, 

when the burst frequency is increased to 250 Hz, both lift and drag reduce to minimum by 

9.66% and 21.5 % respectively. Moreover, it was observed that almost for all the cases the 

increase in lift was accompanied by decrease in drag and vice versa. When %50 , the lift 

and the drag curves just have a extremum at HzF 50 . The results also confirmed that it 

was possible to obtain the same lift coefficient by consuming less amount of energy (eg. 

HzF 100 ). 

(a) (b) 

Fig. 5.11: Effect of unsteady actuation frequency and burst percentage on: a) lift coefficient; b) 

drag coefficient. 
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The predicted lift and drag coefficients for different burst frequencies and two different 

burst percentages, together with their variance are also summarized in Table (5.4). These 

data show that, for all the cases, the separation point for all the cases moves downstream 

when unsteady actuation is on, in comparison to the case without plasma actuation. When 

the burst frequency is equal to 50 Hz, the oscillation amplitude of the lift and drag 

(excitation-induced oscillations) is maximum for both cases with %10  and %50 . This 

shows that instabilities in the flow were excited, and not damped, by the plasma actuation. 

When %50  , the variance of lift and drag coefficients is seen to reduce continuously by an 

increase in the burst frequency and are much smaller in comparison with the case of %10

. It should be clear that such an increase in burst ratio causes the plasma actuator to act 

closer to the steady operation mode, which is more effective in stabilization of the broad 

band frequencies of the flow (see Fig. (5.7)). 

In Table (5.4), the rows belonging to the frequencies for which optimum or resonance 

behavior is observed are highlighted for emphasis. Considering the results obtained, the 

optimum or resonance frequency in unsteady mode of actuation could be interpreted in two 

ways. As shown by Patel et al [184] and Asada et al [182], there exists a frequency for which 

the actuation voltage controlling the flow in unsteady manner has the smallest (minimum) 

amplitude (optimum mode). The second viewpoint is that, disregard of the voltage there 

exists a frequency for which the controlling/disturbing effect of the actuator is more 

pronounced (resonance mode).  

We should note that, although the unsteady actuation employed in the current study was not 

found to be more efficient that the steady actuation, a careful analysis of our results 

confirms the recently reported data  of [185] in the sense that at a burst frequency of 1F

, the major flow structures are exited in a resonant manner (the variance of the oscillations 

were maximum as well as the lift and drag increments) and for 75.5F , best aerodynamic 

efficiencies were obtained ( similar to [182,185]). In addition, our results show that at 

HzF 5  the aerodynamic efficiency was enhanced. This observation might be related to the 

fact that this low frequency is of the order of the frequency of the shear layer here predicted 

and sufficient for exciting the roll up vorticities at the leading edge and thus promoting 

separation control. 
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Table 5.4: Summary of the influence of the unsteady actuation.  

%0        

- LC  DC  DL CC /  sepx  
clVar  cdVar  

 0.9981 0.38 2.626579 0.020022 0.005199 0.000524 

%10        

F  LC  DC  DL CC /  sepx  
clVar  cdVar  

5 0.935366 0.17213 5.434061 0.082837 0.0008141 6.33E-05 

25 1.140893 0.41886 2.723805 0.03826 0.005806389 0.0006336 

50 1.076958 0.393098 2.739668 0.023833 0.015185 0.001784 

100 1.018479 0.351313 2.899062 0.026955 0.004855 0.000209121 

250 0.91012 0.164078 5.546874 0.1158 0.0001029 1.37E-06 

500 1.019219 0.36028 2.828964 0.081117 6.15E-03 0.0002623 

1000 1.017927 0.358106 2.842528 0.0329 0.006054 0.00026 

%50        

F  LC  DC  DL CC /  sepx  
clVar  cdVar  

5 1.08089 0.14598 7.40437 0.171168 0.00103016 0.00012035 

25 1.080187 0.1444 7.221219 0.178534 0.00188 6.58E-05 

50 1.09316 0.20061 5.44918 0.14785 0.0073944 0.004399 

100 1.02082 0.1404 7.270798 0.168786 1.60E-06 1.60E-06 

250 1.023525 0.142204 7.197572 0.164954 5.84E-05 1.74E-06 

500 1.042744 0.138942 7.504887 0.172284 7.05E-07 4.18E-08 

1000 1.04623 0.138444 7.557063 0.173402 8.00E-07 2.40E-08 

%100        

- LC  DC  DL CC /  sepx  
clVar  cdVar  

 1.16795 0.118068 9.892181 0.23079 - - 

 

To further clarify the effect of the burst frequency and burst ratio for the case of unsteady 

actuation, Fig. (5.12) shows the power spectra for the time variation of the cross-stream 

velocity (y-component) at different probe locations for an angle of attack of 20◦. These cases 

correspond to the frequencies HzF 50 and Hz250 . PSD of the y-component of the velocity 

at points 1-3 correspond to unsteady flow in the shear layer. When the burst ratio is 50% the 

peaks of the flow instabilities are shifted to lower frequencies, however the PSD shows 

several weak oscillations in a frequency range larger than 52Hz. In the separation zone and 

the shedding region, the frequency bump is slightly shifted in a way that, in the separation 

region, the major frequency is locked at a value around 52 Hz (resonance situation). When 
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the frequency of the actuation is increased to 250 Hz, the magnitude of the power spectra 

density at those locations is reduced and the peak of the frequency map for the vortex 

shedding frequency is locked at the imposed excitation frequency, moreover all fluctuations 

with a frequency range below 250Hz are filtered (optimum case). In this case, the interaction 

and resonance between shear layer and wake vortex shedding results in optimum control 

authority. 

In contrast, when the burst ratio is 10% and burst frequency is equal to HzF 50 , the power 

spectra exhibit strong peaks at the burst frequency and its harmonics in the range 24.66 Hz to 

100.76Hz, that showing that the plasma actuator is clearly contributing to the production of 

turbulence. This may explain the drag increase in unsteady actuation at this frequency, in 

comparison to the steady actuation. Essentially, the coexistence of fluid motions with 

different frequencies of movement in the wake, and thus the momentum and energy 

exchange among these structures, could result in disorganization of the flow motions and 

extra losses. However, the flow in the shedding region and separation bubble is more 

organized and regulated, since the low amplitude and high frequencies in the flow disappear 

in this case. When the burst frequency is increased to 250Hz, the FFT analysis shows that the 

motions at lower frequency in the flow field are successfully suppressed (similar behavior to 

the case of %50 ). 
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c) 

d) 

Fig. 5.12: Power spectra of y-velocity component for a) %50,50   HzF  b) %50,250   HzF  c)

%10,50   HzF  d) %10,250   HzF  . 

 

We might hypothesize that the efficiency of the unsteady plasma actuation could be 

dependent on different parameters, including the electrical and geometrical characteristics 

of the DBD and also the characteristic of the regime of the flow to be controlled [198] . For 

example if the frequency of actuation does not match the natural frequencies of the flow, 

either the actuation is not in the optimum mode or the perturbation injected by the plasma 

actuator is destabilizing the flow in a negative way. On the other hand when the voltage 

amplitude is considerable and the steady actuation already controls the flow, the unsteady 

actuation with large forcing amplitude may induce unwanted oscillations in the flow which 

will reduce the efficiency of flow control. Also, efficiency of momentum injection and mixing 

will be reduced when the free stream velocity is large or the boundary layer is too energetic 

(turbulent boundary layer). Thus when the flow velocity is higher, the flow structure is less 

receptive to the unsteady disturbances produced by the plasma actuator and the effect of 

unsteady actuation would tend to decrease [199]. For example, Asgar et al [200,201] have 

shown that the Reynolds number could be used as a scaling parameter for considering the 

effectiveness of the DBD plasma actuator. Moreover, the configuration of the DBD could 

influence the potential of the actuator for flow control. Since steady and unsteady actuation 

follow different approaches for controlling the flow, the optimum configuration (e.g. DBD 

position) might work in one case and might fail to control the flow in other cases. 
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5.5 -  Conclusions  

A numerical study was conducted to investigate and compare the effect of steady and 

unsteady actuation for controlling flow at relatively high Reynolds number. A new 

phenomenological model was used to simulate the effect of the plasma actuator. It can be 

concluded that the DBD plasma actuator is an effective mean for controlling the stalled airfoil 

flow. The large separation region on stalled airfoil was not completely removed by the plasma 

actuator in the present configuration of the DBD, however the size of the time-averaged 

separation bubble was greatly reduced. The flow structure is sensitive to the frequency of 

burst modulation.  

The results showed that in the case of unsteady actuation, the burst frequency and burst 

ratio are crucial parameters influencing the flow capability of the actuators. This actuation 

mode consumes less power and achieves the desirable control effect. Burst frequencies near 

the natural frequencies of the system were able to excite the flow structure in a resonance 

mode. In this case, the instabilities and the losses in the flow structure increase (resonance 

mode) which limits the efficiency of the actuators. However, higher frequencies of around of 

250 Hz show better flow control. In this case the flow frequencies become less energetic, 

implying that the internal process of exchanging momentum and energy among the flow 

structures becomes more constrained and thus the flow losses are reduced. This observation 

also confirms that with proper frequencies of excitation, the flow structure can be well 

rearranged and the flow losses can be reduced. 

The computational study presented here clearly confirmed the effect of the burst frequency 

and duty cycle percentage on controlling and regulating the flow structure. However, the 

unsteady actuation employed here showed lower efficiency in comparison to the steady 

actuation mode. The reason could be ascribed to several factors considering the mechanism 

of the flow control by plasma actuators. To further investigate the flow control mechanism, 

3D simulations need to be done using more sophisticated turbulence models (e.g. LES models) 

to eliminate the averaging procedure of the RANS models and also to better simulate the 

three dimensional vortex structures. 
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6 - Numerical Design and Analysis of Multi-DBD 

Actuator Configuration for Experimental 

Testing of ACHEON Nozzle Model 

Abstract 

Two dimensional numerical simulations of plasma actuator flow control of the ACHEON nozzle 

are conducted to give insight on the design of an experimental setup. Three configurations of 

the plasma actuators with single and multi DBD actuators are used in steady mode of 

operation. DBD actuators in standard mode (forward forcing mode), reverse mode (backward 

forcing mode) and plasma synthetic jets mode were used. Three different main groups of test 

cases were investigated by varying the reference velocity at the inlet of the nozzle stream 

from 4, 5 and 6m/s. Moreover, each group includes four velocity ratios VR=1, 1.5, 2, 2.5. The 

locations of the flow separation points are obtained numerically for all these cases and the 

plasma actuators are placed slightly upstream of these points leading to a system of seven 

DBD plasma actuators in the forward forcing mode over the Coanda surface. The induced 

thrust of the plasma actuators was estimated using a phenomenological model which 

considers the maximum achieved voltage and frequency from the experiments. Using an 

excitation voltage with maximum amplitude of 12 kV pp and frequency of 20 kHz, ionic wind 

was formed with 2.4 m/s velocity. The effects of plasma actuator are presented through 

change of the thrust and velocity angle and thrust vectoring efficiency. Preliminary results of 

the experimental set-up correlate well with the numerical design values5. 

Keywords: Plasma actuators, Plasma synthetic jets, flow control, thrust vectoring, Acheron 

nozzle 

 

6.1 -  Introduction 

To maximize the agility and safety of flight missions, thrust–vectoring flight control (TVFC) is 

applied to complement conventional aerodynamic flight control systems. The ACHEON (Aerial 

Coanda High Efficiency Orienting jet Nozzle) is a novel design of thrust vectoring propulsion 

system without moving parts. The work is supported by European Union through consortium of 

six institutions [202]. 

                                                 
5 This chapter is based on the following paper: “M. Abdollahzadeh, F. Rodrigues, J.C. Páscoa, P.J. 

Oliveira (2014), Numerical Design and Analysis of a Multi-DBD Actuator Configuration for the 

Experimental Testing of ACHEON Nozzle Model, Aerospace Science and Technology 41 (2015) 259–273” 
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ACHEON nozzle [171,203] makes use of two main inlet jet streams for vectoring the thrust 

generated by the nozzle. The idea is similar to fluidic thrust vectoring techniques, thus having 

similar advantages of being lightweight, simple and built on a fixed geometry, in comparison 

to mechanical thrust vectoring systems. However, the ACHEON nozzle, in contrast to 

traditional fluidic thrust vectoring system does not possess a secondary air jet and the nozzle 

is made up of two main primary air jets. When the velocity ratio between the primary jets is 

altered from unity, the exit jet of the nozzle tends to deflect toward the Coanda surface at 

the side of the inlet with higher velocity. However, the thrust vectoring is limited due to 

separation of the boundary layer over the Coanda surfaces, which are almost entirely 

composed by a section of cylindrical surfaces. Flow control techniques that could suppress 

the separation and enhance the flow streaming over the Coanda surface, while maintaining 

the same functionality of the nozzle would be highly beneficial.  

DBD Plasma actuators [12,204] are novel means of flow control. Being fully electrical and less 

complex they can be easily applied in different application for controlling flow in different 

situations. They have also been used and studied for controlling flow separation [205], 

transition to turbulent flow [41], enhancement stabilization and mixing of the flow, noise 

control [206], turbo-machinery flows [207,208]. Several papers have reported the mechanism 

through which plasma actuators influence the surrounding flows. However the objectives of 

flow control in those works are different from those in the present research, in spite of the 

mechanisms of controlling the flow with plasma actuators acting through the same principles.  

As was mentioned before, one of the novel mean of controlling flow, and especially 

suppressing the flow separation, is to use surface dielectric barrier discharge (sDBD) 

actuators. As shown in previous studies, this kind of actuators has proven to offer great 

potential for flow control in different applications. The specific application we intend to 

demonstrate here is related to nozzles, specifically to how increase the efficiency of thrust 

vectoring in nozzles. Do et al [209] used multiple DBD actuators to delay flow separation 

behind a bluff body in atmospheric pressure air. The bluff body was similar to Coanda 

surfaces of the ACHEON nozzle and was made of a flat plate connected, tangentially, to a half 

cylinder as a round-cornered trailing edge. The flow speed was altered in a range from 10 

m/s to 25 m/s. Ginn et al [210], patented the usage of the DBD plasma actuators for 

manipulating the flow in jet engine nozzles. They also suggested that the dielectric barrier 

discharge plasma actuators could be used to direct cooling air flow near the surface of the 

nozzle, thus avoiding excessive heating of the nozzle, to create thrust vectoring and reduce 

noise associated with the exhaust flow exiting the nozzle. Benard et al [211–213] showed that 

the DBD plasma actuators could alter the deflection angle of the asymmetric jet by detaching 

the turbulent airflow. They have employed both steady and unsteady plasma actuators and 

concluded that unsteady actuation allows energizing the coherent structures and reduce 

power consumption while the forced jet properties are conserved. Their electrode 

arrangement allows production of counter-flow action on the initial region of the free 

turbulent shear layer. 
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Plasma actuators are also employed in burst mode with the applied voltage being duty cycled 

with a specified burst frequency and burst ratio. Kopiev et al [214] conducted an 

experimental study on the effect of high frequency DBD actuator on nozzle exit jet. They 

claimed that the plasma actuator effect is related with the acoustic radiation of the 

discharge, and showed that jet noise suppression and intensification was achievable 

depending on the jet excitation frequency. Kim et al [215] and Samimy et al [216] used 

localized arc filament plasma actuators (LAFPAs) which were powered by a pulsed radio 

frequency (RF) plasma generator for flow control of a high speed circular jet. Theses arc 

plasmas were shown to be capable of flow excitation by depositing energy at fast rate in the 

flow. The principles are similar to energy addition and micro-shock wave generation with 

nano-second pulsed DBD plasma actuators [117]. Keliman et al [217] demonstrated 

numerically the control ability of LAFPAs to alter the development of supersonic turbulent 

jets and suppress their noise. Recently, Das et al [218], showed that multiple electrode 

configuration of plasma actuators is effectively capable of changing the exit jet flow 

direction. In the continuation of these studies, we will consider here the application of DBD 

plasma actuators to improve the ACHEON nozzle thrust vectoring efficiency.  

As a part of ongoing research in ClusterDEM lab [219], the experimental facilities were 

prepared for testing the ACHEON nozzle geometry with plasma actuators [220]. The 

schematic of the experimental setup is shown in Fig. (6.1). However, due to limitation of the 

achievable voltage, the controlling effect of one single actuator is restricted. The objective 

of the present work is to design a single or multi DBD actuator configuration capable of 

controlling the flow in the ACHEON nozzle. The design output should include the position of 

the electrodes and number of DBD pairs. The procedure considers the available experimental 

facility such as the maximum excitation voltage and frequency and the experimental inlet 

velocities.  

Fig. 6.1: Experimental test setup for controlling flow of ACHEON nozzle with plasma actuators.  
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6.2 -  Presentation of the acheon nozzle 

The dimensions of the ACHEON nozzle model are presented in Fig. (6.2). The Coanda surfaces 

are sections of cylindrical surface made of 2mm thick polycarbonate sheet. The two main 

primary jets where created by using two electric ducted turbofans (EDTs) at the inlets with 

diameter of 70mm. 

 

 

Fig. 6.2: Dimensions of the ACHEON nozzle.  

 

Previous studies have shown that the control authority of the DBD actuators is dependent on 

their position in particular for the case of suppressing separation; the best functionality will 

be achieved when the actuator is placed slightly before the separation point [23]. Thus, to 

correctly define the position of the DBD actuators, the velocities at the inlet of each stream 

are required for the computation of the flow field and the locations of flow separation on the 

Coanda surfaces. According to the available experimental facility, three different test cases 

were selected, see section 6.4. 

6.3 -  Governing equations and numerical procedure 

CFD simulations of the flow field without the DBD actuator were done initially to obtain the 

necessary data for designing the experimental setup. For simplicity, a 2D computational 

domain was considered by ignoring three dimensional effects and the numerical grid used for 

the simulation is presented in Fig. (6.3).  
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Fig. 6.3: 2D computational mesh (328000 grid cells). 

 

The initial simulations were performed with the Commercial CFD solver FLUENT by 

discretizing the governing equation with finite volume method (FVM) using a cell centered 

collocated arrangement of primitive variables. For this purpose, the steady two dimensional 

(2D) incompressible Reynolds-Averaged Navier-Stokes (RANS) equations were solved with a 

coupled solver. The second order upwind scheme was used to discretize the convective 

terms, and the k–omega SST model was employed for modeling turbulence. Moreover, the 

interaction of the plasma actuator is implemented as an explicit source term in the 

momentum equation. A simple phenomenological model developed by Abdollahzadeh et al 

[191] was used for modeling the plasma actuators effect. This model is based on correct 

scaling of the plasma generated thrust for computing the body force and provides the 

distribution of the body force vector field. The governing equations of flow and the plasma 

model (electric potential and charge density) are as follows: 
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In the above equations )(tf  is a function representing the shape of the applied voltage and 

*E


 is the normalized electric potential. Once the dimensionless distribution is determined, 

the dimensional values at any given time can be obtained by multiplying this distribution with 

the corresponding normalization factor. In this manner, there is no need to solve the plasma 

model in an unsteady manner. The corresponding normalized boundary conditions of the 

plasma model are presented in Fig. (6.4) for the DBD actuator geometry.  

Fig. 6.4: Normalized Boundary condition of the plasma model applied to compute the DBD induced 

force. 

The plasma model was then coded as an UDF (User Defined Function) and was used alongside 

for the simulation purpose. We note that the grid spacing should not be larger than the Debye 

length and condition y+<1 where 
v

yu
y

*

  must be satisfied for correctly resolving the 

development of the turbulent boundary layer. For enforcing these conditions and reaching 

grid independency of the results at reasonable numerical cost, the numerical grid was refined 

toward the electrodes and surface of dielectric layer. Moreover, the grid was refined in the 

regions where higher values of electric field and charge density exist. Thus, the grid spacing 
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was stretched toward the electrode both in the normal direction and in the stream wise 

direction, thus leading to minimum cell size of about 2 µm.   

At the inlet of the nozzles, the velocity magnitude and direction are prescribed along side 

with turbulent intensity and turbulent viscosity ratio. At the walls, the no-slip boundary 

conditions are used. The boundary representing the outlet is considered to be far enough 

from the exit of the nozzle (As shown in Fig. (6.3)). Pressure outlet boundary condition was 

used at this boundary by assigning the value of the static pressure and turbulent intensity (0.1 

%) and viscosity ratio. It is true that at the inlet there should be high levels of turbulence. As 

this is the case, because of high level of turbulence at the inlet, the transition is bypass type, 

and most of the turbulence models do not capture it accurately. However, the purpose of this 

investigation is only to analyze the coanda flow separation. Therefore, we had assigned really 

low turbulent intensity values to avoid bypass transition. Although this is not the probably a 

true case of experiments, we want to make sure that bypass transition is not observed prior 

to flow separation. Thus the flow will be laminar before separation and turbulent after 

separation. Due to the high level of turbulence in the experiments, the separation on 

Moreover, the k-omega SST model used here is one of the best for near wall and separational 

flows. Study of the influence of turbulent intensity on flow deflection is the subject of our 

future work. 

6.4 -  Description of the experimental set-up 

In the experiments, two turbofans HET EDF 6904 were used to produce the two inlet flows to 

the nozzle. The turbofans contain brushless motors Typhoon EDF 4W and were controlled with 

electronic speed controllers 80A-Eco-6S ESC and pulse generators PWM Hobbyking LED Servo 

Tester. The DBD plasma actuators were feed by PVM 500, that is a high voltage frequency 

power supply, and the voltage waveform was produced by PWM 500 and measured with digital 

oscilloscope software designated by PicoScope. Together with the PicoScope, was used an 

accessory designated by Secondary Ignition Pickup allowed us measure the voltage and the 

frequency of the signal. A laser sheet and a digital camera CCD C10600-10B Orca-R2 was used 

to visualize the flow field. The laser used was a 1 L2S-SL-660-130-S-A-60 SteamLine Laser 

System and it can work in a continuous mode or in a pulse mode. It was feed with 5V and 

250mA by a power supply ITT Instruments AX 322 Metrix. Solid particles were seeded 

uniformly using a cyclone particle generator at the turbofans intakes. The cyclone particle 

generator contains an inlet where compressed air is introduced and an outlet to exit the mix 

of air and solid particles. Talcum powder was used to mark the flow once the talcum particles 

can follow the flow without change its properties and present a good reflection of the 

incident light. Before starting the experiments a compressor with 110 L reservoir was used to 

compress and store the air at a pressure of about 8 bar and the talcum powder was deposited 

in the base of the solid particle generator. The digital camera CCD C10600-10B Orca-R2 was 

positioned perpendicularly to the laser sheet and connected to the computer. The 
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configurations of the capture and the reception of the images were done using the software 

HCImage Live. The schematic of the experimental set-up is shown in Fig. (6.1). 

To make a PIV analysis and to acquire a pair of images with a very small time interval 

between them, the PIV mode of the camera was used which allows the capture of two 

consecutive images taking only 2μsfrom the end of the first exposure until the beginning of 

the second exposure. This operation mode of the camera requires the control by an external 

TTL signal and to produce it, asignal generator was used. Then a square signal with 5V of 

amplitude and about 6kHz was created with the signal generator. At an input trigger signal 

edge (rising or falling edge), the camera startsthe acquisition of one image pair. As the 

frequency of the external signal is very high, the camera capturesconsecutive acquisitions of 

image pairs until reachingthe number of images defined by the user. Before starting the 

acquisition of image pairs, one calibration image was captured in order to define the relation 

between the pixels of the image and the metric scale. After the acquisition of the image pairs 

the software PIVLab was used to make the PIV analysis and obtain the velocities of the flow. 

The final result of the PIV measurement was obtained by the average values of 10 PIV 

measurements. These ten PIV measurements were performed for ten consecutive image pairs. 

The exposure time of each image was 100μsbut the time between each image pair was 60ms. 

The images of the flow visualization were captured with 60ms of exposure. To measure the 

deflection angle a reference point was defined for all the images. The reference point was 

located at 67 pixels from the left side of the image and 519 pixels from the top of the image. 

Lines were drawn from the top of the flow until the bottom of the flow and the middle point 

of these lines was calculated. These lines were drawn at a distance of 400, 700 and 1000 

pixels from the left side of the image and the angle was measured between the reference 

point and each of the middle points of the lines. The position of the DBD actuator sets used in 

the experiments is shown in Fig. (6.5). The width of the covered electrode is 2cm and the 

width of the exposed electrode is 1cm. In Table2, we give some of the basic information 

about the DBDs available in the experiments. The dielectric material was made from a 2mm 

polycarbonate layer and electrodes were made from 0.1μm copper tape. An AC-sinusoidal 

voltage with 12kVpp and 20kHz was used as an excitation voltage. 
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Fig. 6.5: Schematic of the configuration of the DBDs in experiments. 

 

6.5 -  Results and discussion 

The ACHEON nozzle was tested with simulations based on values for the velocity magnitude at 

the inlet of the nozzles given in Table (6.1). When the velocity ratio is equal to unity, the jet 

out of the nozzle and the induced thrust are horizontal. This is considered the base case for 

comparing the capabilities of the plasma actuators for thrust vectoring. When, the velocity 

ratio is increased, the jet at the exit starts to deflect towards the coanda surface at the inlet 

side with higher velocity magnitude. For each case, we are interested on the following 

results: the location of separation point; maximum velocity at the nozzle ( maxV ), the thrust (

T ), the angle of thrust generated at the nozzle ( T ); and angle of the exit jet stream of the 

nozzle ( V ). Table (6.1), gives the data calculated by the numerical simulation. For 

comparing the vectoring capability, two parameters are considered, the induced thrust angle 

and the exit jet angle. It is possible to define efficiency parameters based on these angles 

and the mass flow rate at the inlet of nozzles ( 1m , 2m ) as follows; 
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Essentially, to insure a secure flight mission, a safety angle (maximum desirable design angle) 

for the thrust vectoring purpose could be defined. Here, arbitrarily, we assume that the 

thrust safety angle should be equal to 45 degree. This angle depends in a complex way on the 

flight speed, thrust magnitude and weight and size of the system. Considering this value we 

can reformulate Eq. (6.9) as follows: 
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The detailed numerical results obtained by the simulations are presented in Table (6.1). It is 

clear that when the velocity ratio between nozzle inlets increases the deflection angle of the 

jet is increased also. However, the thrust angle increment is not at the same rate as the 

angle of the exit jet. It should be reminded that this improvement in vectoring capability is 

obtained by spending more power in comparison to the case of VR=1.0. The position of 

separation point was also calculated for different cases and presented in Table (6.1). These 

results show that flow separation over the Coanda surface is postponed when the velocity 

ratio increased. This enhanced tendency of the flow to follow the surface curvature could be 

ascribed to enhanced injection of momentum from outside the boundary layer to zones with 

lower velocity magnitude, because of the difference of pressure drop between the two inlet 

jet stream sections. 

Table 6.1: Input and Output data for the nozzle flows without plasma actuators. 

 RV  )/(1 smV  )/(2 smV  )(NT  )/(max smV  )degree(V  )degree(T  Ysep 

Test 1      

 1 4 4 4.14 12.19 0 0.00 -0.0284 

 1.5 4 6 7.63 17.23 21.01 26.21 -0.0411 

 2 4 8 12.80 21.68 30.22 33.52 -0.0520 

 2.5 4 10 19.80 25.86 38.41 37.51 -0.0640 

Test 2      

 1 5 5 6.26 15.23 0 0.00 -0.0289 

 1.5 5 7. 5 12.02 21.54 22.68 27.97 -0.0434 

 2 5 10 21.09 27.08 34.43 35.46 -0.0581 

 2.5 5 12.5 37.92 32.34 52.87 38.75 -0.0884 

Test 3      

 1 6 6 8.77 18.27 0 0.01 -0.0290 

 1.5 6 9 17.79 25.85 25.11 30.21 -0.0466 

 2 6 12 31.95 32.44 37.86 36.83 -0.0643 

 2.5 6 15 58.13 39.01 63.98 38.67 -0.1006 

 

In Fig. (6.6), the velocity contours of the ACHEON nozzle are shown for various velocity ratios 

for the first test case. These figures illustrate how, with increase in velocity ratio, higher 

deflections of the exit jet angle are achieved. Moreover, by comparing the results for the 

three main test cases indicated in Table (6.1) (low, medium and high velocity range), it is 

possible to conclude that when the inlet velocity magnitude is increased, the deflection angle 

of thrust and velocity become larger, but the thrust angle reaches its maximum possible value 

(imposed by design and geometrical limitations) sooner.  
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(a) (b) 

(c) (d) 

Fig. 6.6: Velocity contour at the exit of the nozzle at a) VR=1.0 b) VR=1.5 c) VR=2.0 d) VR=2.5. (all 

cases with V2=4 m/s).  

 

In Fig. (6.7), the velocity angle at the exit of nozzle, the thrust angle and the performance 

ratios (Eqs. (6.9) and (6.10)) are plotted for different velocity ratios. The results clearly point 

out the existence of a limiting thrust angle for the considered dimensions of the ACHEON 

nozzle. As can be seen, the plot of thrust angle versus velocity ratio meets a plateau at a 

maxim angle of around 39 degrees. It may also be observed that, when the nozzle exit 

velocity magnitude is increased (going from Test1 to Test3), the limiting thrust angle occurs 

at lower velocity ratios. However, the velocity angle is seen to increase almost constantly 

over the velocity ratios here tested. We see that this does not always imply increase in the 

thrust vectoring capability.  
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(a) (b) 

 

(c) 

Fig. 6.7: Results of the simulations without plasma actuators for increasing velocity ratios of 

VR=1,1.5,2,2.5 a) Angle of the jet deflection b) angle of the thrust vector; c) thrust vectoring 

performance number . 

The experimental facility of our lab provides us with a specified range of operating conditions 

that need to be considered for the design of the DBD system. Table (6.2), presents the power 

source characteristic, the thickness of the available electrode, thickness of the dielectric 

material and permittivity of the dielectric material. 

For the problem under consideration here, the previous CFD results showed that when the 

velocity ratio of the nozzle is increased, the separation point varies. Thus to design a flow 

control system based on DBDs able to act almost universally over the whole duration of flight 

mission (velocity ranges and velocity ratios), a multi-DBD actuator system should be adopted 

taking into consideration the location of the various flow separation points. That is, for global 

functionality, a DBD actuator is positioned at each major separation point, and distance 

between the separation points is covered by the length of the each DBD actuator system. 

Since each actuator can operate separately, there should be enough space between the 
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electrodes of each for preventing arc and short-circuit formation. Therefore we consider 

seven sets of actuator with 15mm length embedded electrode and 6mm exposed electrodes. 

 

Table 6.2: Operating conditions. 

et  m1.0  

dt  2 mm 

d  3.1 Poly Carbonate 

appV  6 kV 

f  20 kHz 

T  293.15 K 

 

Previous results have shown that the influence of the DBDs on each other is additive and our 

CFD results [221] have shown that, the Multi-DBD system will causes ionic wind with higher 

intensity. To confirm this and to better understand how a multi-DBD actuator is more 

effective than a single DBD actuator, Fig. (6.8) shows simulation results for the ionic wind of 

a single DBD set and for multiple DBD set (four actuators). The maximum ionic wind induced 

by the multiple DBD is clearly greater than with the single DBD case and the plasma wall jet is 

seen to cover a much larger controlling surface area. 

(a) (b) 

Fig. 6.8: Induced ionic wind: a) single DBD actuator; b) multiple DBD actuators. 

For the purpose of comparing the effect of actuator location and number of active DBDs, a 

series of numerical tests have been carried out. To limit the number of cases to be studied, 

we have considered one active DBD (seven test cases indicated from E1, the DBD at the 

beginning of the Coanda surface to E7, with DBD at the end of the trailing edge of the Coanda 

surface), two active DBDs in row (six test cases, E12 to E67, with numbers showing the 

location of the DBDs), and three active DBDs in row (five test cases, E1-3 to E5-7) and also 
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four cases with four to seven DBDs active (E1-4, E1-5, E1-6, E1-7) and we also only considered 

the velocities equal to the condition of Test1. Fig. (6.9) shows the comparison between these 

cases for different value of velocity ratios. The dependency of the actuation efficiency is 

clearly obvious from this figure. When the actuation zone is slightly located before the 

separation point, the plasma actuators have effective performance on controlling the flow. 

Actuator E6 and E7 which are installed at the end part of the Coanda surface, alone don’t put 

effect on the flow characteristics. Thus in the case of single active actuator, depending on 

the velocity ratio, one of the actuators among E2 to E5 will be turned on. It is possible to 

increase the tolerance of controlling algorithms by using two sets of side by side active 

actuators. In this case, at each velocity ratio (except VR=1), there are two possible selection 

for the active actuator set. Moreover in this case, we observe that, the velocity deflection 

angle is improved in all velocity ratios (for VR=1.5 it wasn’t significant). When three side by 

side DBDs are active, the controlling effect is improved. The number of possible 

configurations which can be used for flow actuation also increases. In Fig (6.9d), more than 

four DBD set are active. Difference between E1-6 and E1-7 is almost negligible and when VR=1 

and 1.5 all the cases are showing almost the same efficiency. However, when velocity ratio is 

increased, especially at VR=2.5), cases that cover greater part of the Coanda surface has 

larger performance. However, when the numbers of electrodes are increased the total power 

consumption will increase. 
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(c) (d) 

Fig. 6.9: Effect of DBD plasma actuator on exit jet angle from the nozzle: a) single DBD actuator; b) 

two DBD actuator; c) three DBD actuators; d) multiple DBD actuators. 

It is interesting to mention that, it was possible to alter the velocity angle by minimum 10 

degree by altering the active DBD location. In Fig. (6.10), velocity contours corresponding to 

the selected cases at VR=2.0 and with single and double DBDs are shown. When single DBD is 

used, by using an actuator at E5 the velocity angle just changes around 31.85 degree. 

Changing the position of the DBD to E3 and E4 causes the thrust angle to increase respectively 

to 34.3 and 38.1 degree. This is quite interesting, since if one covers the control surface with 

suitable number of actuators, and using a suitable control algorithm, it will be possible to 

alter the flow angle arbitrarily with less power consumption.  
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a) b) 

Fig. 6.10: Effect of DBD plasma actuator on direction of the exit jet of the ACHEON nozzle a) single 

DBD b) double DBD. 

 

In Fig. (6.11), the thrust vectoring performance number and efficiency for different 

configuration of DBD plasma actuators, and nozzle velocity ratios, are shown. T  and T  are 

showing the point for optimum thrust vectoring on different velocity ratios . However, both 

are showing that maximum thrust vectoring is happening at medium velocity ratios. This 

result could be justified in thes way that, at higher velocity ratios, boundary layer already 

had attached to the Coanda surface to the maximum extent (look at asymptotic value of 

thrust), thus further increasing the velocity ratio or using plasma actuators would not add 

more efficiency to the system but it will use more power. 
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(a) (b) 

Fig. 6.11: Effect of DBD plasma actuator on a) thrust vectoring efficiency b) thrust vectoring 

performance number. 

 

In Tables (6.3) and (6.4), the flow and thrust deflection angle are tabulated for all the cases 

with plasma actuators. As can be seen if the plasma actuator is placed at optimum location, 

the increment in the velocity vectorizing is large as 16.5 degree for single actuator and 23.39 

degree for multiple DBDs. We should mention that this increment will reduce when the 

velocity magnitude at the inlet of the nozzle is increased. However, by analysis of the data of 

thrust angle, we will see that the influence of DBD system on thrust vectorizing is just 

pronounced at low velocity ratios and even in the presence of single or multiple DBD 

actuators the thrust angle won’t increase more than its asymptotic value shown in Fig. 6.6b. 

Moreover, we should mention that, the increment in thrust angle at those cases that DBD is 

installed at exit section of the Coanda surface is not related to increase in Coanda effect for 

suppression of separation over the surface. It is only related to the surface jet created by the 

plasma actuator (here with 2.4 m/s speed).  

Table 6.3: Influence of single and Double DBD plasma actuators on thrust and velocity angle.  

 VR  TT 0    VV 0      TT 0    VV 0   

E01 

1 8.40 6.12 

E12 

21.16 17.4 

1.5 0.04 -0.08 1.95 8.49 

2 0.26 1.30 0.68 3.28 

2.5 0.10 1.21 0.04 4.59 

E02 

1 20.59 15.48 

E23 

22.77 17.64 

1.5 1.36 1.82 5.80 8.79 

2 0.49 1.58 1.57 3.46 

2.5 0.22 1.25 0.68 9.19 

E03 

1 1.71 0.24 

E34 

2.01 0.43 

1.5 5.55 8.39 6.17 9.41 

2 1.45 4.15 3.32 11.63 
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2.5 0.51 3.29 1.11 9.49 

E04 

1 0.30 0 

E45 

0.09 0.00 

1.5 0.98 0.19 0.62 1.00 

2 2.70 7.95 3.36 11.89 

2.5 1.08 8.64 0.96 17.51 

E05 

1 0.02 0 

E56 

0.15 0.00 

1.5 -0.66 -0.48 -0.63 -0.44 

2 0.74 1.63 0.52 1.70 

2.5 1.02 16.30 0.90 17.89 

E06 

1 0.05 0 

E67 

0.11 0.00 

1.5 -1.08 -1.29 -1.12 -1.34 

2 0.06 0.31 0.05 0.32 

2.5 0.12 0.93 0.12 0.93 

E07 

1 4.19 0.00  

1.5 -1.18 -1.54 

2 -0.01 0.01 

2.5 0.00 0.11 

 

Table 6.4: Influence of three DBD plasma actuators on thrust and velocity angle. 

 
VR  TT 0    VV 0   

  TT 0 
 

 VV 0 
 

E123 

1 23.69 18.92 

E1-4 

23.90 19.10 

1.5 6.01 8.93 6.76 5.95 

2 1.66 4.57 3.47 9.08 

2.5 0.80 5.19 1.12 11.22 

E234 

1 23.17 18.59 

E1-5 

23.97 19.21 

1.5 6.54 11.04 6.88 6.17 

2 3.42 12.14 3.76 11.95 

2.5 1.13 9.86 0.85 19.20 

E345 

1 1.81 2.04 

E1-6 

23.92 19.23 

1.5 6.36 10.55 6.84 6.10 

2 3.64 13.61 3.78 12.28 

2.5 0.93 -4.67 0.35 23.39 

E456 

1 0.05 0.00 

E1-7 

23.87 19.21 

1.5 0.64 1.15 6.83 6.07 

2 3.46 12.39 3.77 12.27 

2.5 0.75 20.01 0.29 23.07 

E567 

1 0.20 0.00 

 

 

1.5 -0.68 -0.46 

2 0.51 1.68 

2.5 0.91 17.87 
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Besides the standard configuration of the actuator that was shown with single and multiple 

DBDs, plasma actuators can be used in several different configurations [8,10,162,214,222]. 

Here, using 2D modeling we only consider two of these configurations. In the first case, a 

plasma actuator is added in the top Coanda surface in a reverse mode to promote separation 

of the jet stream earlier. In the second case, a linear plasma synthetic jet actuator [223] 

(two plasma actuators, one act in forward mode and other acting reverse mode) are placed 

over the top surface to induce a jet normal to the surface. In Fig. (6.12) the induced ionic 

winds of the plasma actuator for the mentioned configurations in quiescent air are presented.   

a) b) 

 

c) d) 

Fig. 6.12: velocity contour of the induced ionic wind of a) single reverse actuator b) single DBD 

plasma jet c) multiple reverse DBD actuators d) multiple DBD plasma jets, installed on the top 

coanda surface. 

The velocity contours corresponding to the cases with single and multiple (two) DBD actuators 

in reverse mode and single and double DBD plasma jets are shown in Fig (6.13). These results 

are for the velocity ratio equal to unity with the inlet velocity of 4m/s. When the actuator is 

used in reverse mode on the top Coanda surface, the separation is promoted and exit jet of 
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the nozzle is deflected downward. Using multiple DBD actuators also increases the deflection 

of the jet. Interestingly, when DBD plasma jets are used, the flow tends to be directed 

upwards.  

 

a) b) 

c) d) 

Fig. 6.13: velocity contour at the exit of the ACHEON nozzle with a) single reverse actuator b) 

single DBD plasma jet c) multiple reverse DBD actuators d) multiple DBD plasma jets, installed on 

the top coanda surface. 

To verify the accuracy and validity of the numerical simulation, basic PIV measurements of 

the exit jet of the nozzle were used for measuring the average velocities, as shown in Fig. 

(6.14) for validating the baseline flow. The PIV measurements were conducted for VR=1 and 

V2≈2m/s. The average velocities in five velocity profiles are tabulated and are compared with 

numerical simulation in Table (6.5). The small differences between the numerical and 

experimental results are related to the fact that the numerical results are a 2D approximation 

of the 3D experiments. Moreover, the imposed boundary conditions in the numerical 

simulations V1 and V2 are pure axial velocities. However swirl velocity induced by the two fans 

reduces the velocity vector exit angle. In the 3D experiments the flow, after exiting the 
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6.6 -  Conclusions  

Plasma actuators were used for controlling the flow over the Coanda surface of the ACHEON 

nozzle. When the plasma actuator is used, it was possible to postpone separation of the flow 

and increase the deflection angle of the exit jet of the nozzle. To find the optimum position 

of the actuators, seven DBD actuators in forward forcing mode were placed over the Coanda 

surface considering the numerically obtained separation points. Different combinations of the 

multiple DBD actuators were also used. Results show that when the actuator is placed slightly 

before the separation point, enhanced thrust vectorizing with the use of DBD actuator is 

achievable. Moreover, both single and multiple DBD actuators were used in reverse operating 

mode and also single and multiple DBD plasma jets were used for increasing the thrust 

vectoring characteristic of the nozzle. Results have shown that utilization of DBD plasma 

actuators in reverse mode will promote the separation on the surface, thus will force the exit 

jet of the nozzle to deflect toward the other Coanda surface. Although, reverse DBD plasma 

actuators and DBD plasma jets were not tested for all the range of velocity ratios, we could 

expect that using a combination of these actuators and normal operational mode of DBD 

actuators will provide flexibility for controlling the flow direction. Preliminary results of the 

experiments were compared with the results of numerical simulation. We should note that it 

is difficult to fully compare the present 3D experimental results with result of 2D numerical 

simulation, since firstly, the numerical results are 2D approximations of the 3D experimental 

configuration and in the 3D experiments the flow, after exiting the nozzle starts to spread 

towards the lateral areas. Moreover, the imposed boundary conditions in numerical cases are 
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pure axial velocities that differ from the ones of the experiments. However, the present 

experimental and numerical results are consistent in the sense of demonstrating the 

capabilities of the CFD to help to system design by avoiding a large number of experiments. 

Detailed experimental study of the effect of plasma actuators on thrust vectoring efficiency 

of ACHEON nozzle will be presented in future work. 
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7 - Summary and conclusions 
 

Numerical modeling of the DBD plasma actuator is investigated using both fluid models and 

phenomenological models. The fluid models provide comprehension of the discharge 

properties. However, they are more complex and are not feasible to be used for modeling 

large scale cases such as a propulsion component. In contrast, phenomenological models are 

based on more simplistic assumptions but in reverse their usage requires less computational 

costs. Thus, the two approaches are complementary and together they could provide tools to 

the understanding of the discharge physics and mimic the macroscopic effect of the plasma 

actuator. 

As was stated before, one of the main drawbacks of the DBD plasma actuator is their 

relatively low intensity of induced ionic wind and the ability to control with higher speed 

range. To explore this issue, DBD plasma actuator were employed considering different modes 

of actuation. When the excited voltage is nano-second pulse, the effect of the plasma 

actuator is translated into instantaneous heating of the gas and thus the creation of micro-

shock waves. In contrast, using the AC sinusoidal voltage waveform, the effect of the plasma 

actuator is pronounced mostly as a body force. This body force can also be created by 

imposing a duty cycle on the applied voltage, leading to lower power consumption and larger 

influence on the flow field. 

Following the objectives and the motivation of the thesis, we have analyzed the 

implementation of classical plasma-model in OpenFOAM. The problem involves several 

numerical issues regarding the numerical stability, restriction on the time step and grid size. 

Therefore, we have studied the most well known procedures for solving the governing 

equations of the plasma fluid and the ways to increase the performance of the solver. In the 

end, we have used the novel technique for treatment of the time advanced using a 

combination of the Strang splitting and super-time-stepping. Afterwards, we had used the 

developed solver for modeling the interaction of transonic flow and DBD plasma actuators. To 

this aim, the rate of heat generation by plasma actuator was correctly considered and added 

to the model. Since the direct application of the model to solve the plasma dynamic and gas 

dynamic together increased the computational cost, we have devised two different 

approaches to overcome this problem. In the first approach, we have used the fact that the 

time of the discharge development and energy transfer to the flow are different which 

allowed us to proceed the solution in multi-stage manner. In the first stage, the plasma 

dynamic and the gas dynamic equation were solved together, and the problem was advanced 

in time with the time-step needed for the plasma solver. In the second stage, only the gas 

dynamic problem was considered. In the other approach, the plasma dynamic was solved only 

for one pulse duration, and the heating source term was saved to be used and activated after 

a estimated relaxation time. Using both approaches allowed us to save computational time.  
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Later, we have developed a new simple phenomenological model, which is not dependent on 

calibration of the model for different cases. The model, in principles is based on using a 

simple circuit model to define the correct scaling of the parameters of the body force 

produced by split potential model. We have validated the model with different experimental 

results regarding the value of the induced thrust and induced velocity profile. Interestingly, 

the accuracy of the model appeared to be better than most of the other existing models. We 

have further developed our model to be able to consider the influence of the altitude 

variation on the DBD plasma actuator. This was done simply by including the effect of 

pressure and temperature in the model. Our results showed that this new model could also 

correctly model the influence of sub and super atmospheric conditions. 

We have used our newly developed phenomenological model to study steady and unsteady 

mode of actuation, and analyze the possibility of obtaining better actuation results in 

unsteady mode at a frequency near the natural frequency of the flow. We have considered a 

stalled flow around an airfoil at a relatively high Reynolds number. The simulation results 

confirmed the possibility of controlling stall over the airfoil using the plasma actuator with 

both steady and unsteady mode of actuation. In addition, the simulation results were 

supported by frequency analysis of the flow at different probe location for providing 

information about the effect of the plasma actuator on flow instabilities. We have shown that 

there are frequencies that cause the flow to respond to actuation in a resonance or optimum 

mode.  

In the end, we have employed plasma actuators to control the flow at the exit of a nozzle. 

The objective of the flow control was to enhance the thrust vectoring capability of the 

nozzle. Therefore, we have considered several cases including single and multiple actuator 

sets. These DBDs were placed in two exit Coanda surfaces of the nozzle and were tested for 

several velocity ratios. The results verified our preliminary experimental tests and showed 

that by using DBD actuators, we can reach higher values of thrust vectoring efficiency. 

 

Considering our mentioned studies, we explicitly highlight our findings and conclusions as 

follows; 

 Implementation of the Plasma Fluid model in OpenFOAM. 

 Increasing the performance of the numerical simulation considering a new approach 

by using super-time-stepping and multi stage plasma solution. 

 Development of new simple phenomenological model which is more accurate and 

needs less calibration. 

 Including the effect of changes of the altitude in the phenomenological model. 

 Showing the existence of optimum or resonance frequencies of the actuation to reach 

higher flow control efficiency. 

 Showing the possibility of the use of the developed numerical tools to correctly model 

real scale geometry such as nozzle. 
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 Showing the possibility of the application of plasma actuators for controlling flow to 

enhance thrust vectorizing 

 

In the end we should mention that there are still cases that need further and deeper 

investigation. The implemented plasma fluid model could be improved by including 

asynchronized time-stepping to further decrease the computational cost. The present 

implementation of the plasma fluid was done using a segregated algorithm. However, a fully 

coupled solution of the governing equation could provide better accuracy and more stability 

and thus implementation of such algorithm will be worthless. In addition, more components 

could be added easily to the developed code, including the photonization effects, radiation 

losses, more complex chemistry and so on. Regarding the phenomenological, in the future the 

influence of the gas composition should be added to the model. Also adding a more 

sophisticated circtut model would be essential for further develoment of the versatility of the 

model and improving the consistency between simulations and experimental measurements. 
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