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a b s t r a c t

To simulate the coupled plasma and fluid flow physics of dielectric-barrier discharge, a plasma–fluid

model is utilized in conjunction with a compressible flow solver. The flow solver is responsible for de-

termining the bulk flow kinetics of dominant neutral background species including mole fractions, gas

temperature, pressure and velocity. The plasma solver determines the kinetics and energetics of the

plasma species and accounts for finite rate chemistry. In order to achieve maximum reliability and best

performance, we have utilized state-of-the-art numerical and theoretical approaches for the simulation

of DBD plasma actuators. In this respect, to obtain a stable and accurate solution method, we tested

and compared different existing numerical procedures, including operator-splitting algorithm, super-time-

stepping, and solution of the Poisson and transport equations in a semi-implicit manner. The implemen-

tation of the model is conducted in OpenFOAM. Four numerical test cases are considered in order to

validate the solvers and to investigate the drawbacks/benefits of the solution approaches. The test prob-

lems include single DBD actuator driven by positive, negative and sinusoidal voltage waveforms, simi-

lar to the ones that could be found in literature. The accuracy of the results strongly depends to the

choice of time step, grid size and discretization scheme. The results indicate that the super-time-stepping

treatment improves the computational efficiency in comparison to explicit schemes. However, the semi-

implicit treatment of the Poisson and transport equations showed better performance compared to the

other tested approaches.

© 2016 Elsevier Ltd. All rights reserved.
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. Introduction

Active flow control techniques that use dielectric barrier dis-

harge (DBD) are considered very promising. DBD plasma actuators

ave shown a great potential for flow control purposes, especially

egarding aeronautical applications. In general, DBD plasma actua-

or can induce a body force on a gas and heat up that gas. Body

orces are exerted on charged species (electrons and ions) by an

lectric field and become coupled to the bulk gas motion by parti-

le collisions. These forces can then be used to control the flow.

The optimization of DBD plasma actuator performance and fur-

her improvement in plasma flow control technology rely on com-

rehensive numerical modeling and robust computational tools.

here have been a number of numerical studies on DBD plasma

ctuators. Computational models of plasma discharges may be

ivided into four types, namely: i) fluid models [1–4]; ii) ki-

etic/particle models [5]; iii) hybrid approaches [6]; and iv)
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imple phenomenological or empirical models [7,8]. A detailed re-

iew of different approaches for modeling plasma actuators can be

ound in [9–11]. Jayaraman and Shyy [10] and Jayaraman [12] also

eviewed the first-principle based hydrodynamic plasma model.

mong these models, plasma fluid models are computationally less

xpensive and are suitable for spatially resolving the various phys-

cal phenomena occurring in actual plasma. Plasma–fluid models

reat the plasma as a fluid of freely moving charged particles and

nd-up in a set of drift-diffusion type transport equations. The

hemical species present in the plasma, such as electrons and ions,

re tracked using transport equations and the essential plasma

hysics, such as ionization, recombination and streamer propaga-

ion, are all modeled. In general, these models are capable of accu-

ately resolving and predicting plasma phenomena. However, the

olution of these equations requires very small spatial resolution.

uch limitation also imposes a significant restriction on the nu-

erical time step and prohibits the computation of high voltages

t kHz frequencies.

In the first modeling attempts of DBD plasma actuators us-

ng plasma fluid models, which were accomplished by Roy [13]

nd Singh and Roy [14], continuity equations for the electron and
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Nomenclature

Dk charged particle diffusion coefficient (m2 s−1)

e electron elementary charge e = 1.6022 × 10−19C
�E electric field vector (kg m s−3 A−1)

f(t) voltage waveform

f̃ force density in electrohydrodynamics (EHD)

(N m−3)

H homogenous operator
�j total electric current flux (A m−2)

kB Boltzmann constant (m2 kg s−2 K−1)

Kn Knudsen number

L loss term (m−3 S−1

m mass of particle (kg)

n0 initial charge particle density (m−3)

nk number charge particle density (m−3)

�n unit normal vector

P parabolic operator

p pressure (N m−2)

r recombination coefficient (m3 s−1)

R reaction operator

S source term (m−3 s−1)

t time (s)

T temperature (K)

�t time step

�vk species velocity (m s−1)

�vb background flow velocity (m s−1)

V0 voltage amplitude (V)

Greek symbols

λ mean free path (m)
��k fluxes of charged particles (m−2 s−1)

ɛ0 permittivity of space (Fm−1)

ϕ electric potential (V)

σ surface charge density (C m−2)

μk charged particle mobility (m2 V−1 s−1)

α ionization coefficient, (m−1)

η attachment coefficient (m−1)

γ secondary electron emission

� characteristic dimension of boundary cell (normal to

the boundary) (m)

Subscripts

d dielectric

e electrons

ep electron-ion

k particle type

p positive ion

n negative ion

np ion–ion

0 reference state

s surface

sec secondary

th thermal

air air side

Superscripts

Int adjacent internal grid cell center

ion densities were the only equations considered, solved as Pois-

son type equations. However, the processes of surface charge ac-

cumulation, recombination and secondary emission, which are es-

sential for the plasma discharges, were not taken into account.

Later, improved physical-based modeling procedures were devel-

oped, based on better understanding of the fundamentals of the
ssential physics of DBD actuators. Duan et al. [15] studied numer-

cally the uniformity of glow discharge of DBD actuators in sub-

tmospheric conditions. Nishida and Abe [16], Boeuf et al. [17], and

nfer and Boeuf [18] analyzed the dependency of the discharge

ode on the driving voltage waveform, ranging from a simplified

ase with a constant voltage pulse to time-varying voltage of var-

ous shapes, such as a ramp, saw tooth (triangular applied voltage

aveform), sinusoidal and nanosecond applied voltage waveform.

ontribution of negative and positive ions on force generation in

BD plasma actuators was also studied by Lagmich et al. [19].

More recently, the attempts to the modeling of DBD plasma ac-

uators were aimed at achieving a complete and comprehensive

hysically-based model, incorporating all essential physics of DBD

lasma actuators and using modern numerical methods for effi-

ient simulation. Along this line, Roy and Gaitonde [20] coupled

plasma model with an hydrodynamic model for the descrip-

ion of the induced gas flow. Singh and Roy [1], considered the

ffects of Joule heating in the plasma, dielectric heating, and

lectro-dynamic force. Boeuf and Pitchford [21], computed the

orce per unit volume acting on the flow, due to the effect of

he plasma actuator, based on a two-dimensional fluid model of

he surface discharge and by considering positive ions and elec-

rons with the nitrogen as the background inert gas. They have

ssumed that the gas flow velocity is small with respect to the

harged particle drift velocities, and that the gas flow does not sig-

ificantly affect the plasma (the so-called one-way coupling). Re-

ently, Shang and Huang [22,23] presented a physical based mod-

ling procedure of DBD actuators by adopting the drift-diffusion as

n approximation to the species transport in the non-equilibrium

ir plasma and by considering the process of ionization, electron

ttachment, detachment, bulk, and ion–ion recombination. More-

ver, the effects and quantifications of Joule heating, periodic elec-

rostatic force, as well as the Lorentz acceleration for flow control

ere also considered. Singh and Roy [24] extended the asymmet-

ic DBD model by considering real gas air chemistry using a self-

onsistent multibody system of plasma, dielectric and neutral gas.

ikhanskii et al. [25] developed a detailed physical model for asym-

etric DBD in air considering both positive and negative ions, and

lso electrons with relevant plasma kinetics such as recombina-

ion, ionization, attachment and secondary electron emission from

etallic and dielectric surfaces. They used a second-order accurate

acCormack scheme, with flux corrected transport, as the algo-

ithm for the numerical simulation of the plasma kinetics. The

omputed force and heating rate from the plasma model was then

oupled to a viscous flow solver. Recently Unfer et al. [26] devel-

ped an asynchronous scheme with local time stepping for solv-

ng a 2D discharge model. This technique reduces the CPU time re-

uired for the explicit solution of the Poisson and transport equa-

ions while permitting the use of high order spatial schemes. Wang

nd Roy [27] used a three-species physical model for DBD actua-

ors. The plasma model was loosely coupled with the compressible

avier–Stokes equations through momentum and energy source

erms. The influence of DBD actuator was considered through a

ime averaged electrohydrodynamic (EHD) force and power depo-

ition to the neutral gas. The power deposition accounts for ion

oule heating and a certain percentage of electron Joule heating.

This brief review provides details of some of the numerical

echniques that have been used in plasma–fluid modeling, how-

ver, it should be added that there are no published reports, as far

s we are aware, in which a comparison between those approaches

s carried out and their merits discussed. In this paper the coupled

lasma–fluid flow physics simulations were conducted after imple-

entation of a suitable physical model, represented by a set of par-

ial differential equations, in a computational fluid dynamics code.

s a test platform, we choose the unstructured, finite volume-

ased method in the open-source C++ library OpenFOAM. The
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lasma fluid was then implemented in the OpenFOAM CFD toolbox

28]. Formation of plasma discharges involves multiple-scale pro-

esses such as convection, diffusion and reaction/ionization mech-

nisms which make the transport equations of the plasma dynam-

cs stiff. To obtain a stable and accurate solution, several numerical

rocedures, including a sequential finite-volume operator-splitting

lgorithm [29,30], semi-implicit treatment of Poisson equation and

uper-time-stepping, were implemented and tested. The applica-

ion of super-time-stepping approach in modeling DBD plasma ac-

uators is reported here for the first time. In addition, the in-

uence of the selected time step and grid size on the accuracy

f the results obtained by each numerical scheme is discussed.

hen, a body force or localized heating treatment is devised to

ink the plasma dynamics and fluid dynamics. The fluid dynamics

s solved using a density-based algorithm in a multi-region frame-

ork. The rest of the paper is arranged in the following format:

detailed description of the fluid–plasma model is provided in

ection 2 and the numerical model is summarized in Section 3.

ection 4 presents the results. Finally, conclusions are drawn in

ection 5.

. Governing equations and boundary conditions

DBD can be operated at sub-atmospheric, atmospheric and

igher than atmospheric pressures. However, atmospheric-pressure

lasmas have higher technical importance in contrast with low-

ressure plasma or high-pressure plasma. Production of low or

igh pressure plasma needs cost-intensive chambers making them

ighly expensive. For the type of applications, we envisage, where

BDs are used for active flow separation control and to improve

he aerodynamics of high-altitude aircraft [7,8,31–33], the plasma

ill be subject to close to atmospheric pressures. By assuming that

BD is operating at atmospheric pressure, a reasonable and com-

utationally efficient approximation can be made using a time-

ependent plasma–fluid model instead of a kinetic model. Plasma

uid models (hydrodynamic models) are based on the Boltzmann

quation and its moments [34–36]. The fluid model description

sing the continuity equations for the various particle densities

s satisfactory at atmospheric pressure, when the particles relax-

tion times for equilibrium of momentum and energy are gen-

rally small compared with any macroscopic time scale variation

f the system [11]. The core of the model consists of solving the

ompressible Navier–Stokes equation, the Maxwell equation for

he electromagnetic field and multiple species continuity equa-

ions, including non-equilibrium chemical reactions, to obtain the

patial-temporal distributions of each particle species and electric

eld.

For simplicity, the plasma is considered as a multi-component

uid considering global categories of charged particles, comprising

he four primary species, namely, neutrals, positive and negative

ons and electrons. Multiple charged ions will be neglected. This

mplies the assumption that positive ions or negative ions are in

lose equilibrium with other positive or negative ions which re-

ults in one type of effective positive ion and one type of effec-

ive negative ion [37]. The model does not describe the kinetics

f excited species and their influence on the plasma evolution. The

odel only considers that at any instance during the discharge, the

onized species concentration is the net balance between ioniza-

ion, detachment, attachment and recombination processes. More-

ver, the model accounts for the charging of the dielectric surface

ue to the incident charged particles.

In modeling gaseous plasma discharges using a fluid model,

everal important assumptions have to be made. Here, it is as-

umed that the DBD plasma is a weakly ionized plasma which is

perating at atmospheric conditions. The imbalance of net space

harge due to the charged species densities will generate self-
onsistent electric forces. In the absence of externally magnetic

eld and by assuming that the current densities are small (weakly

onized plasma), self-consistent magnetic fields can be safely ne-

lected and the Maxwell equations can be reduced to solving a

ingle Poisson equation for the electric potential [23]. We assumed

wo characteristic temperatures, the heavy species temperature

nd a separate electron temperature [38]. Each temperature could

e obtained separately by solving energy conservation equations.

owever, as ions tend to thermalize effectively with neutrals by

requent charge exchange collisions, it might be assumed that the

on temperature is in the order of the neutral gas temperature (It

s assumed that all heavy species are in thermal equilibrium with

ach other). In other words, since the ion mass is very nearly the

ame as the mass of the background gas, the ions are assumed

o be in thermal equilibrium with the background, and no en-

rgy equation is solved for the ions. For the electrons, due to their

ower mass, the exchange of kinetic energy with the other parti-

les is poor, and their temperature can be significantly higher than

he other species. Thus, for simplification, a high constant electron

emperature is assumed [39].

The species flux �� = n�vs can be obtained by solving separate

omentum equations for each species. However, at atmospheric

ressure, a reasonable and computationally efficient approxima-

ion can be made using the so called drift-diffusion approximation

40]. In this approximation, the fluxes of charged particles are cal-

ulated by neglecting the inertial and unsteady terms of the mo-

entum equation and balancing the thermodynamic pressure gra-

ient with the drift force and collision terms. This assumption for

eduction of the momentum equation for the species is valid at

igh pressures (e.g. atmospheric conditions) [39]. Such an approx-

mation requires the pressure tensor to be isotropic and is strictly

alid only for a Maxwellian distribution. Moreover, this approxi-

ation is valid when the mean free path is significantly smaller

han the characteristic length scale of the problem. This is typically

he case at atmospheric pressures and length scales of the order of

illimeters or greater [41]. In other words, as long as the ther-

al velocity is comparable to the drift velocity and the continuum

egime is applicable (Knudsen number Kn is low, λ/L = Kn << 1,

s the mean free path λ at atmospheric conditions is O (10−7 m)

nd the actuator characteristic length L is O (10−3 m)), the inertial

omponents in the momentum equation can be neglected. Such

pproximation yields a balance between the collision/ionization

ffects and the drift-diffusion components, instead of the full

omentum equation. Thus the fluxes of charged particles are

iven by:

�
k = nk�vk = ±μknk

�E − Dk∇nk + nk�vb (1)

In Eq. (1), the drift-diffusion flux consists of a mobility flux

erm (for charged species), a diffusive flux term, and the species

ux due to the flow velocity field.

The simplest set of equations within the fluid model frame-

ork, containing the basic physics necessary for gaseous plasma

ischarges, is the continuity equations for electrons, positive ions

nd negative ions (to account for the development of the space-

harge), coupled with Poisson’s equation (to account for the modi-

cation of the electric field due to space-charge), which is summa-

ized in Table 1.

.1. Transport properties

The production and loss terms in the continuity equations of

he charged particles include different reactions. If we assume that

he working fluid is air, composed of N2 and O2 only, then the fol-

owing reactions are considered.
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Table 1

Summary of the governing equations.

Equations

Continuity equations:

Electron; ∂ne

∂t
+ ∇ .��e = Se − Le

Se = α
∥∥��e

∥∥
Le = repnenp + η

∥∥��e

∥∥ (2)

Positive ions; ∂np

∂t
+ ∇ .��p = Sp − Lp

Sp = α
∥∥��e

∥∥
Lp = repnenp + rnpnnnp

(3)

Negative ions ∂nn

∂t
+ ∇ .��n = Sn − Ln

Sn = η
∥∥��e

∥∥
Ln = rnpnnnp

(4)

Momentum equations

��e = ne�ve = −μene
�E − De∇ne + ne�vb

(5)
��p = np�vp = μpnp

�E − Dp∇np + np�vb

(6)
��p = np�vp = μpnp

�E − Dp∇np + np�vb

(7)

Poisson equation:

∇ .(ε∇ϕ) = −e(np − ne − nn) − δsσ

(8)
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- Ionization

e + N2(O2) → 2e+N+
2(O+

2) (9)

- dissociative electron-ion recombination,

e+O+
2 → O + O (10)

e+O+
4 → O2+O2 (11)

- Ion-ion recombination

A+ + B− + M → A + B + M (12)

- dissociative electron attachment and detachment

e+O2 → O−+O (13)

O−+N2 → e+N2O (14)

In the above equations the ionization coefficient α needs be de-

fined; it measures the number of ionization by electron per unit

distance. In other words, it is a measure of energy gain by the

charged particles between collisions. The dissociative electron-ion

recombination is the fastest mechanism of the bulk recombina-

tion of the weakly ionized gas. The rate is given as −repnenp. At

low pressure environment the ion-ion recombination process takes

place through binary collisions and the reaction is similar to charge

transfer, and at moderate pressures the reaction proceeds through

triple collisions. The rate of ion-ion recombination is also given

as rnpnnnp. The electron attachment is the formation and deple-

tion of negative charged ions in the partially ionized air. The elec-

tron detachment is the main mechanism of removing electron from

negatively charged ions. This loss of electron number density is

given by −vane, where νa is the attachment frequency. However,
or the sake of stability of the numerical simulation, the rate of

ttachment is defined in a similar way to the ionization rate, as

‖��e‖.

An accurate gas discharge plasma modeling requires an exten-

ive knowledge of the transport parameters of the gas in ques-

ion. The fluid model uses transport parameters found from the ki-

etic model or from experimental results. In the former approach,

he parameters are obtained by solution of the stationary Boltz-

ann equation. However, we should mention that there are de-

iations between different correlations reported in the literature,

hich may affect the results significantly. The gas properties such

s transport coefficients (momentum transfer rate such as μ, and

), collisional ionization coefficient α and energy loss rates may be

btained simply by considering the local-field approximation(LFA)

42]. This implies that the dependence of these coefficients on the

ean energy is supposed to be the same as at equilibrium. The lo-

al equilibrium assumption implies that the transport coefficients

epend on space and time only through the local value of the elec-

ric field �E(x, t) (functions of the reduced electric field E/N where

is the field amplitude and N the gas number density [41]). In

his way, the transport coefficients are assumed to be the same

s those which could be measured or calculated under a uniform

nd constant electric field �E (hydrodynamic regime). Essentially

his means that the electron distribution function is in local equi-

ibrium with the neutral plasma. This assumption is valid as long

s the relaxation time for achieving a steady state electron en-

rgy distribution function is short compared with the characteristic

ime of discharge development. To obtain the properties of elec-

ron transport such as mobility, diffusivity, mean energy, etc., as a

unction of E/N, the solution of a steady state Boltzmann equation

s considered, under constant field condition, to obtain the elec-

ron energy distribution function in the gas under investigation.

or most of the electron-induced processes the reaction rates are

alculated on the basis of energy-dependent cross-sections with a

eparate program, called BOLSIG [43]. This program is applied for

wide range of different, fixed reduced electric fields and gives

he dependence of the rates of ionization, dissociation, and excita-

ion of the particles in plasma discharges as a function of the re-

uced electric field E/N by solving the Boltzmann kinetic equation

n a homogeneous field with uniform and steady conditions. In this

tudy, rate constants of the different electron-induced processes in

he above reactions and the transport coefficients, including mo-

ility of the electrons (the corresponding diffusion coefficients are

hen calculated using Einstein’s relation), were obtained with the

OLSIG Solver or were extracted from [37] and are presented in

able 2.

.2. Boundary and initial conditions

.2.1. Initial condition

The initial condition to start the simulation requires specify-

ng the starting number densities for the various species. The

alue of n0 is used as a reference value (and also as a mea-

ure of pre-ionization of the neutral gas) to define the initial val-

es. Thus, the initial positive ion and electron number densities

re assumed to be uniform and equal to n0 in the plasma do-

ain, while the negative ion charge density is assumed to be

ero.

.2.2. Electric potential boundary conditions

The boundary value of the electric potential is defined at the

wo electrodes (anode and cathode) using a Dirichlet boundary
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Table 2

Summary of property models employed for discharge simulation.

Transport/reaction properties Value

α
p
(m−1 Torr−1)

0.21

[{
4.71 × 10−11|E/p|3

, |E/p| < 1.4 × 104Vm−1 Torr−1

3.32(|E/p| − 12, 500)0.5 |E/p| > 1.4 × 104Vm−1 Torr−1

]

+ 0.79

⎡
⎣

⎧⎨
⎩

1.17 × 10−10|E/p|3
, |E/p| < 1.1 × 104Vm−1 Torr−1

0.0319|E/p| − 211 1.1 × 104
< |E/p| < 2.1 × 104Vm−1 Torr−1

6.32(|E/p| − 16, 300)0.5 |E/p| > 2.1 × 104Vm−1 Torr−1

⎤
⎦

(15)
μe p(m2 TorrV−1 s−1)

0.21
[
24.32 exp( −E/p

1057
) + 19.38 exp( −E/p

23430
) + 14.45

]
+

0.79
[
173.1 exp( −E/p

195.1
) + 36.19 exp( −E/p

12763
) + 31.73

]
,

(16)

μp p(m2 TorrV−1 s−1)

0.79
[
0.05492 exp( −E/p

6858
) + 0.07509 exp( −E/p

38175
) + 0.0308

]
+0.21

[
0.06841 exp( −E/p

59678
) + 0.09194 exp( −E/p

12763
) + 0.0320

]
,

(17)

μn p(m2 TorrV−1 s−1)

0.181225, (18)
η
p
(m−1 Torr−1)

0.21

[
1.307 + 33200

|E/p| exp

(
(ln(|E/p|) − 9.04)

2

2.53

)]
(19)

Dk

kBTkμk (20)
rnp

1.7 × 10−13 m3 s−1 (21)
rep

2 × 10−13 m3 s−1 (22)
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ondition as follows;

= V0 f (t) at anode, (23)

= 0 at cathode, (24)

(t) is a function representing the time-dependent voltage wave-

orm. A homogeneous Neumann boundary condition is applied for

he electrostatic potential at the open boundaries (far field):

∂ϕ

∂n
= 0 at far field, (25)

In addition, the boundary conditions for the electric field and

lectric potential at the dielectric barrier and plasma interface pre-

cribe a continuous tangential component of �E and a jump of the

ormal component due to the presence of localized electric charge.

onsidering the accumulated surface charges, and based on Gauss’s

ivergence law for the electric displacement and Faraday’s induc-

ion law [23], these boundary conditions are written as:

× (�E − �Ed) = 0 (26)

0
�E.�n − εdε0

�Ed.�n = σ (27)

In the above equations, ɛ0 is the permittivity of the space, ɛd
s the relative permittivity of the dielectric layer, �E and �Ed are re-

pectively the electric field in the gas and the dielectric, and σ is

alculated by integrating the net charge density over the surface

nd has the dimension of C/m2. This charge accumulation on the

urface is considered as the result from instantaneous recombina-

ion of the charged particles after satisfying the imposed boundary

onditions for the charged species, includes accumulation of both

ositive and negative charges (σ = σ+ + σ−) and is computed us-

ng the flux of charged species to the surface [22] as:

=
∫ t

−e
(
��p − ��e − ��n

)
.
⇀

ndt =
∫ t

−�j.
⇀

ndt (28)

0 0
here �j is the current due to fluxes of charged particles. We note

hat, in view of the relatively short duration of the micro-discharge

ompared to the microsecond time scale of the AC cycle, the in-

tantaneous surface recombination is an acceptable approximation.

q. (26) states that that the tangential electrical field strength is

ontinuous across the media interface. For a Cartesian grid, this

eans that the rate of change for electric potential in z must be

dentical across the interface along the x coordinate and the rate of

hange of electrical potential in x must be equal along the z coordi-

ate across the media interface. This requirement is automatically

atisfied by the two-dimensional formulation.

The second condition expressed by Eq. (27), is the balance of

he discontinuity of the normal component of the electric dis-

lacement across the plasma/dielectric interface by the net sur-

ace charge density on the interface by emission, desorption, and

ccumulation. This condition is independent of all the chemical-

hysical processes at the interface. This equation could be rewrit-

en by considering the electric potential as:

0
∂φ

∂n

∣∣∣∣
air

− ε0εd

∂φ

∂n

∣∣∣∣
d

= σ (29)

In other words, the current continuity is enforced by equating

he drift current and the displacement current in the fluid domain

o the displacement current inside the dielectric material [44].

.2.3. Charge number density boundary conditions

At the domain boundary away from the dielectric/electrode sur-

ace, incoming/outgoing flux of particles is negligible. Thus a zero

ormal gradient boundary condition is assigned (i.e. the slopes of

he solution variables are equal to zero) which assumes that im-

act far away from the fluid–actuator interface is insignificant. This

oundary condition is expressed as:
⇀

�k.�n = 0,
∂nk = 0,

(30)
∂n
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Boundary conditions for the charged particle number density

are given on the electrode and dielectric layer surface through a

balance between the fluxes of the charge particles absorbed by

the surface and the fluxes reflected from the surface. When the

surfaces are in anodic behavior (e.g. exposed electrode as anode

and σ > 0), the incident positive ion fluxes at the surface is col-

lected considering thermal equilibrium, while the electron fluxes

are reflected from the surface. In this case, the electron and neg-

ative ion fluxes are also based on the electron thermal veloc-

ity (vth =
√

8kBT/(πm)), and have magnitudes given by �th = nvth
4 .

Those fluxes are directed towards the wall and it is implied that

the hydrodynamic flux equals the flux from the dielectric surface:

⇀

�p = −1

4
npvth,p (31)

⇀

�n = −μnnn
�E − 1

4
nnvth,n (32)

⇀

�e = −μene
�E − 1

4
nevth,e (33)

In a similar way, when the exposed electrode is a cathode and

the dielectric barrier is in cathodic behavior (σ < 0), positive ion

fluxes are reflected from the surface and thus the positive ion flux

will be equal to its drift part. For the electrons and negative ions,

we assume that their fluxes are collected at the surface and thus:

⇀

�p = μpnp
�E − 1

4
npvth,p (34)

⇀

�n = −1

4
nnvth,n (35)

⇀

�e = −1

4
nevth,e (36)

These boundary conditions (Eqs. (31–36)) can be written in a

compact form as follows:

⇀

�p.�n = min(μpnp
�E.�n, 0.0) − 1

4
npvth,p (37)

⇀

�n.�n = min(−μnnn
�E.�n, 0.0) − 1

4
nnvth,n (38)

⇀

�e.�n = min(−μene
�E.�n, 0.0) − 1

4
nevth,e (39)

The above equations are in fact preventing charged particle

fluxes at the wall when the driving force is directed towards the

wall. In Eqs. (37) and (38), the second term is the thermal flux of

ions to the wall and the first term is a drift flux contribution due to

the sheath potential. This term gives a nonzero drift flux for pos-

itively charged ions in a positive sheath (i.e., decreasing potential

toward the wall) and zero flux in the same sheath for negatively

charged ions. The opposite is true for negative sheaths.

When positive ions hit the cathode (either the electrode surface

or the dielectric surface), it releases γ sec secondary electron(s). The

secondary emission coefficient γ sec is generally between 0 and 1.

Its value depends on the particle, its energy, the surface material

and temperature. In this case, the expression of the electron flux

due to secondary emission is:

⇀

�sec = γsec

⇀

�p (40)

Thus the total electron flux at the wall (Eq. (39)) becomes,

⇀

�e.�n = min(−μene
�E.�n, 0.0) − 1

4
nevth,e − γsec

⇀

�p.�n (41)

This boundary condition is essential because the mechanism

and speed of the streamer breakdown process depend on the avail-
bility of these secondary electrons. As mentioned in [45], this im-

lementation of the secondary emission is not consistent with the

xperimental value of γ sec at the cathode. In experiments, γ sec is

alculated as the ratio between the flux of secondary electrons and

he particle flux to the electrodes. As a solution, thermal velocity

f zero at the cathode is imposed. However, due to the variation of

he plasma potential responding to the applied voltage, it is fairly

elicate to detect which wall represents the instantaneous cathode.

n alternative solution is suggested in [46,47].

Here for simplicity, we assume that the thermal velocity is zero

n all surfaces. As mentioned before, variation of the potential

auses the drift flux of electrons to change along the surface lead-

ng to a jump of the electron concentration at a point where E = 0.

n some cases, this creates numerical problems because the steep

radients of the solution cannot be resolved in the vicinity of the

ump. Hence to determine the instantaneous cathode and ensure a

mooth and stable variation of the charge boundary condition on

he surface, the exact solution of the boundary conditions men-

ioned above is obtained and the boundary condition is imple-

ented as follows:

p = e
max(�up .�n,0.0)�

−Dp (nInt
p ) (42)

n = e
max(�un .�n,0.0)�

−Dn (nInt
n ) (43)

e = γ npμp

μe
× (1 − e

max(�ue .�n,0.0)�
−De ) + e

max(�ue .�n,0.0)�
−De (nInt

e ) (44)

The above equations are general boundary conditions and are

alid at any surface.

.3. Interaction of the discharge and the flow

The problem can be separated into two parts. One of them is

odeling of plasma phenomena (ionization, recombination, evo-

ution of electric field, etc.) that occur on a sub nanosecond-to-

icrosecond time scale on the background of “frozen” flow field.

he second problem consists in coupling the plasma with the flow

y means of plasma-induced force and heating rate. In the first

pproach, the coupling between the plasma solver and the flow

olver is one way, that is, a gas heating and source term is imposed

o the plasma solver and the plasma is only influencing the flow

eld through the electro-hydrodynamic force or gas heating. The

lectro-hydrodynamic (EHD) force associated with the momentum

ransfer from charged particles to neutral molecules in the volume

bove the dielectric layer is given by [19]:

=
∑

k=p,e,n

�jk

μk

≈ e(np − ne − nn)�E (45)

This equation thus provides the total force per unit volume act-

ng on the neutral molecules and is equal to the Coulomb force

cting on the charged particles. In other words, the momentum

ained by the charged particles in the electric field is exactly and

ocally balanced by collisions, and entirely transmitted to neutral

olecules.

When the plasma equations are solved sequentially with an ex-

ernal flow model, the gas heating source terms are collected and

ommunicated to the flow model which is then responsible for de-

ermining the bulk temperature [3]. The gas heating source terms

re calculated by the plasma solver and include the ion Joule heat-

ng term due to the work done on the ions by the electric field,

nelastic collisional heating term due to the quenching of electron-

cally excited species such as nitrogen, oxygen metastables, and the

lastic collisional heating term due to elastic electron impacts with

he background gas. These gas heating source terms are impor-

ant for atmospheric DBD plasma actuator driven by a nanosecond

oltage.
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In this paper, for the sake of simplicity, the one-way coupling of

he plasma solver and the flow solver is adopted. We should men-

ion that this is a valid assumption in a large range of applications,

ue to the large difference of the fluid characteristic time scales

nd the time scales of operating plasma dynamics.

However, when the plasma solver and the flow solver are com-

unicating in two-way coupling, the flow influences the plasma as

momentum source for the species. This momentum source enters

n the drift-diffusion equations. This effect is particularly impor-

ant for the neutral species, as there are no electric forces to mod-

fy their speed. Moreover, if the fluid dynamic time scales become

omparable to the plasma time scales, then the two-way coupling

ill need to be handled and the fluid solution advancement should

e performed using the DBD time scale.

. Numerical procedures

The coupled plasma–fluid problem is inherently nonlinear and

xhibits wide ranges of time and length scales. Numerical solu-

ion of the charged particles governing equation coupled with Pois-

on equation is subjected to serious limitations in the selection of

umerical time step. Sufficiently small time steps provide stable

nd accurate solution, however the computational run time will be

assively high for the purpose of simulation. Thus, the approach

elected for treating the time discritization and advancing the time

tep should be capable of both providing the required accuracy and

tability while providing a reasonable computational cost. In this

iew, different approaches could be found in the literatures which

ave been tested to reach this purpose. Moreover, there are dif-

erent time scales in the plasma formation, originating from fast

onization and slow recombination processes along with drift and

iffusion of the species, which typically lead to a stiff problem due

o the vastly differing time scales. Moreover, high accuracy may

e required for all time scales. To resolve this issue, special treat-

ents need to be considered for solving the governing equation of

he plasma dynamics some possible remedies could be:

– Implicit methods are favored for stiff problems. They are often

used but may be expensive and difficult to derive. Marching the

solution in time will typically need to be implicit because of

the diffusion terms, which otherwise would cause a severe time

step restriction. The reaction terms may also contribute to the

need of using an implicit method if some fast reactions reach

equilibrium on a much faster time scale than the processes be-

ing modeled (i.e., if the reaction terms are “stiff”).

– Operator splitting [6,39,48] (or fractional step method) treats

the separate processes independently, i.e. solves the homoge-

nous (convective part) and the inhomogeneous (source terms)

part of the equations separately. Although splitting allows each

component to be modeled efficiently, none should be allowed

to vary significantly before interacting with others. In this case,

the simulation could take advantage of the best scheme that

can be chosen in each case (which is useful when some terms

are insignificant). Moreover, accuracy and stability issues can be

dealt with at each stage (aiding robustness) and also it is rela-

tively simple to deal with processes acting on widely differing

time scales, due to flexibility in the choice of time-stepping.

This is relatively simple, cheap to run and fairly stable. But it

also ignores the fact that the processes are coupled and do in-

teract, so it may misinterpret the results. Formally, the scheme

is only first order accurate.

– Sub-cycling or dual time-stepping is used as a simpler alterna-

tive, particularly when the source terms are complicated and

highly nonlinear. This uses many steps of an explicit method to

reach the same time level as the global time step.
– Adaptive time-stepping might be desirable allowing larger time

steps when it is possible.

Although these remedies could benefit the solution procedure,

hey all require that the dependent variables do not change dra-

atically within a global time step. Moreover, small time steps are

equired to resolve the effects of rapid transient phenomena. But,

arger time steps may be necessary to allow the simulation to be

un within a reasonable time. In other words, numerical stability

overns the size of the time step which can be used to get any

esults at all. In general, the time step is constrained by accuracy

hich must also be balanced against efficiency and stability. In the

ollowing sections, some of the numerical treatments used in this

aper for the solution of the governing equations of plasma–fluid

odel are presented.

.1. Temporal discretization

The plasma/flow interaction is fundamentally a multi-scale

roblem [6] with a large range of time scales, from shorter than

he pico-second (e.g. dielectric relaxation time) to time scale of the

irflow [10]. In the present study, we have employed an operator-

plitting sequential solution algorithm. In using time-split algo-

ithms for processes operating in a wide range of time scales, the

hoice of time step size is typically determined by the smallest

ime scale, but need not necessarily be chosen as such. To speed

p the solution procedure, an adaptive intermediate time scale is

hosen to advance the overall system in time.

.1.1. The fractional step method and sub-cycling

The continuity equations of the electron, positive and negtive

ons (Eqs. (2)–(4)) can be handled by the fractional step method.

similar procedure was adopted in [44] for modeling DBD plasma

ctuators. To this purpose, the main problem needs to be split in

wo sub-problems. One issue regarding the solution of the continu-

ty of the charged particles arises due to the presence of very fast

hemical rates, and in particular by large decay rates, which makes

he coupling of source terms with the drift diffusion terms quite

nstable. Therefore, we will treat the terms separately by rewrit-

ng the governing equation as follows;

∂nk

∂t
= H(nk) + R(nk), (46)

nd splitting them into;

∂nk

∂t
= H(nk), (47A)

∂nk

∂t
= R(nk), (47B)

Two approaches may be considered to deal with the above

quations. In the first, Eq. (47A) is solved with a time step �t, and

hen the result will be used to solve Eq. (47B) with the same time

tep �t.

This approach is often known as Godunov splitting and essen-

ially needs two sub-cycles. However, it is possible to use more cy-

les using an even number of overall steps while keeping the order

n which the solution of Eq. (47A) and Eq. (47B) are carried out. An

lternative approach which requires three sub-cycles is the Strang

plitting [49]. In this case,

• Eq. (47A) is solved with time step �t/2,
• Eq. (47B) is solved with time step �t,
• Eq. (47A) is solved again with time step �t/2.

The small modification in Strang splitting allows the overall

cheme to be second order accurate. It is also possible to use more

ub-cycles. In such case, the first �t/2 step (Eq. (47A)) is followed

y a series of �t steps (Eq. (47B)) and finishing with one �t/2 step.
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The Strang splitting is a symmetric version of this more general

procedure. Another variant of Strang splitting method is obtained

by splitting up the solution procedure into independent steps cor-

responding to the advection, diffusion and reaction processes, and

handling them independently at each step [50]. A similar method-

ology that uses both explicit and implicit formulation of the advec-

tion and diffusion part is described in [51].

3.1.2. Adaptive time-stepping

As mentioned before, for accuracy and stability of the numerical

scheme, the time step is defined by the CFL condition, i.e. particles

cannot move more than a grid size during the time step. The mod-

ified or adaptive time step concept is based on an estimation of

the onset of the breakdown. In this way, the time step is defined

by electron velocities, considering a threshold, based on maximum

electron number density for onset of breakdown [52].

3.1.3. Super-time-stepping

As noted above, explicit methods are easy to implement but

have very restrictive time step constraints. Implicit solution meth-

ods can be unconditionally stable but have the disadvantage of

being computationally costly or difficult to implement. Recently,

super-time-stepping methods [53] for treating the unsteady terms

were developed and occupy an intermediate position. In such

methods each super step takes s explicit Runge–Kutta like time

steps to advance the parabolic terms by a time step that is larger

than a single explicit time step. Meyer et al. [54] derived first and

second order super-time-stepping schemes based on the Runge–

Kutta–Legendre (RKL) methods. The general recursion formula of

first order (RKL2) and second order RKL (RKL4) are respectively as

follows:

n0 = nt ,

n1 = n0 + μ̃1�tP
(
n0

)
,

nj = ζ̄ jn
j−1 + ς̄ jn

j−2 + μ̃ j�tP
(
nj−1

)
, 2 ≤ j ≤ s

nt+�t = nj

where

μ̃ j = 2 j − 1

j

2

s2 + s
, ζ̄ j = 2 j − 1

j
, ς̄ j = 1 − j

j

, (48)

and

n0 = nt ,

n1 = n0 + μ̃1�tP(n0),

nj = ζ̄ jn
j−1 + ς̄ jn

j−2 + (1 − ζ̄ j − ς̄ j)n0 + μ̃ j�tP(nj−1)
+γ̃ j�tP(nj−1), 2 ≤ j ≤ s

nt+�t = nj

where

μ̃ j = (2 j − 1)( j + 2)( j − 1)
2

j( j − 2)( j + 1)
2

4

s2 + s − 2
,

ζ̄ j = (2 j − 1)( j + 2)( j − 1)
2

j( j − 2)( j + 1)
2

, ς̄ j = ( j − 1)
3
( j3 − 4)

j3( j + 1)( j − 3)

μ̃1 = 4

3
(
s2 + s − 2

) , γ̃ j = (2 j − 1)( j + 2)( j − 1)( j2 + j − 2)

2 j2( j − 2)( j + 1)
2

(49)

The above described super-time-stepping method can be used

to solve the charged particles conservation equation. However, to

be used for advection-diffusion problems, the equations need to

be solved in operator splitting manner. The number of stages of

RLK2 may be chosen as the lowest odd value that satisfy the sta-

bility criteria mentioned in [54]. Hence, the continuity equations

of the number density of the charged particles will be divided in

a

wo sub-problems, considering the homogenous (transport terms)

nd non-homogenous (source terms) operators as in Eq. (46).

In this way, an entire time step is completed by taking a half-

ength time step using s-stage super-time-stepping strategy for the

perator H, and then a full length time step explicitly for the op-

rator R, and finally a second half-length step using s-stage super-

ime-stepping. An entire, time step, representing the action of all

perators, contains the following stages:

• Solve (nt+�t
k

)∗ = H(�t/2) + nt
k

over time �t/2 with data nt
k

to

obtain (nt+�t
k

)∗

• Solve (nt+�t
k

)∗∗ = R(�t) + (nt
k
)∗ over time �t with data

(nt+�t
k

)∗ to obtain (nt+�t
k

)∗∗

• Solve nt+�t
k

= H(�t/2) + (nt
k
)∗∗ over time �t/2 with data

(nt+�t
k

)∗∗ to obtain nt+�t
k

.1.4. Semi-implicit solution of Poisson and transport equations

When time integration of the Poisson-transport system is

reated explicitly, the Poisson equation and the charged particles

ransport equations are solved successively, while the electric field

alculated at time tk is supposed to be constant during the inte-

ration of the charged particles transport equations between times
k and tk+1. However, the strong coupling between the charge den-

ity equations and the electric potential results in a severe time

tep restriction for explicit methods (the time step must be smaller

han the dielectric relaxation time, the so-called “dielectric re-

axation time step constraint”). In order to overcome this con-

traint, the Poisson equation is solved in a semi-implicit manner

or the electric potential [55]. Semi-implicit treatment of the Pois-

on equation has been proven to provide stable results and allow

arger time steps (similar approach were used by [39,48]). To de-

ive the semi-implicit version of the Poisson equation, the species

umber densities in the source term of the Poisson equation need

o be linearized implicitly. This is accomplished by substitution of

he charges number density in the source term using the species

ransport equations, and expanding the right hand side with a first

rder Taylor series expansion:

.
(
ε∇ϕt+1

)
= −e

(
np

t+1 − ne
t+1 − nn

t+1
)

= ρt+1
c = ρt

c + ρ�t
c

= −e

(
np

t + �t
∂np

∂t
− ne

t − �t
∂ne

∂t
− nn

t − �t
∂nn

∂t

)
(50)

Using the species conservation equations and treating the terms

ontaining drift velocities (thus electric field), the Poisson equation

an be rewritten as,

.([ε + �t(μpnp + μene + μnnn)]∇ϕ)

= −e(np
t + �t∇ .(∇np

t ) − ∇ .(np�u) − ne
t − �t∇ .(∇ne

t )

+∇ .(ne�u) − nn
t − �t∇ .(∇nn

t ) + ∇ .(nn�u)) (51)

The charge continuity equations are also solved with a semi-

mplicit method. In this way, the flux terms are evaluated with

he value of charge densities at new time step, while the source

erms (ionization, recombination, and attachment) are estimated

ith charge densities from the previous time step. Semi-implicit

reatment of the Poisson and transport equations could be attrac-

ive in terms of computation time when using larger time steps

ompared to the stability constraint (CFL or Maxwell relaxation

ime). However, such scheme is only first order in space and said

o be quite diffusive. On the other hand, fully explicit second order

oisson/transport coupling is feasible but at prohibitive computa-

ional cost.

.2. Implementation of the model

The coupled systems of species equations (Eqs. (2)–(7)) as well

s Poisson’s equation (Eq. (8)) are solved using OpenFOAM. As
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Fig. 1. A multi-region coupled domain for electric potential.
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entioned in [21], The 2D Cartesian geometry can provide realistic

esults if the plasma is not filamentary in the direction perpendic-

lar to the simulation plane or if the width of the filaments in

his direction is large with respect to the thickness of the filament

bove the dielectric surface.

The implementation of the plasma–fluid model needs some ex-

ra treatment regarding the multi-region coupled solution of the

oisson equation and inter-coupling between the transport equa-

ions and the electric field, which are described in the next sec-

ions.

.2.1. Multi-region coupling of the electric potential

The presence of the dielectric layer brings the need of the solu-

ion of the electric potential equation in the gas (e.g. air) and the

olid domains (e.g. dielectric layer). In Fig. 1, a schematic of the

ulti-region problem is shown. To be able to obtain the solution

f the Poisson equation in multiple regions, a multi-region solver

s developed based on the partitioning approach.

In the partitioned approach, the governing equations (Poisson

quation) are solved in each zone separately with the appropri-

te boundary conditions using a segregated solver. In other words,

he iterative solution is obtained region by region, and the inter-

ace boundary conditions are treated also in a segregated manner,

here one of the interface equations is applied as a boundary con-

ition to one sub domain and the other boundary condition to the

econd sub domain. These boundary conditions are implemented

sing a mixed type BCs for PDE on different parts of the boundary

f the domain of the equations. In this way, the resulting condi-

ions are responsible for coupling between different regions and

ave to be used for each region according to the updated values in

he neighboring region. The schematic of the partitioned approach

or the plasma–fluid problem is illustrated in Fig. 2.

In this approach the convergence is assured by using a PIMPLE

ike plasma loop for solution of the governing equations. In other

ords, for each time step, given a maximum number of iterations,

he governing equations will be solved alternatively for every cell

f the coupled regions and when the convergence is reached, the

olution will be proceeded to the next time step.

.2.2. Coupling of Poisson and charged particles transport

In the plasma model, there are two issues regarding the cou-

ling of the variables. First, there is the coupling of the number

ensity of the particles and electric potential, and the second is

elated to the multi-region solution of the Poisson equation. We

sed the partitioned approach for solving the Poisson equation. In

his way, separate governing equations will be solved by solving

eparate matrix equation systems, coupled at the boundary inter-

ace, and then sub-iterate until coupled convergence is reached. In
his context, a PIMPLE like algorithm is used to guarantee the cou-

ling between the electrical potential and charged particles den-

ity equation and the coupling at the dielectric interface of solid

one (dielectric material) and fluid zone (air). This iterative solu-

ion of the discretized equations in each time step with sufficient

nternal iterations will guarantee enhanced coupling between the

ependent variables. The schematic of the algorithm is shown in

ig. 3. The working steps (The iterative procedure of the PIMPLE

ike plasma loop) for a generic i-th iteration are as follows:

(i) At the beginning of each time step, the values of charge

number densities and transport coefficients are known, and

they will be used to solve the Poisson equation. The gov-

erning equations for the electric field in the fluid region are

solved with the interface boundaries conditions on the basis

of the values estimated at the previous iteration (i−1)-th.

(ii) When the electric field is updated, all the transport proper-

ties and source terms of the charge continuity equations will

be updated according to the new value of the electric field.

(iii) Continuity equations for the charge densities will be solved

with updated values of the electric field, source terms and

the interface boundary conditions on the basis of the values

estimated at the previous (i−1)-th. Then, the source term

and artificial permittivity arising due to the semi-implicit

treatment of the Poisson equation will be recalculated.

(iv) The governing equations of electric field in the solid phase

is solved with the interface boundary conditions on the ba-

sis of the new values of new estimated electric field in the

fluid region and on the basis of the electric field in the solid

region estimated at (i−1)-th iteration. Moreover, the surface

charge density will be corrected also at this step.

(v) Convergence check the new fluid and solid fields at gas/solid

interface boundaries by means of the absolute and rela-

tive residuals; if convergence is not reached the procedure

restarts.

(vi) If the convergence criteria are satisfied, the solver computes

the gas dynamics. Then this solution is used as starting point

for the next iteration.

.3. Grid requirements

The plasma processes are very sensitive to the local electric

eld, which in the DBD case varies on a characteristic scale of the

rder of 10 microns for high applied voltages. The necessity of the

orrect resolution of the plasma dynamics leads to a grid size of

he order of several microns. However, the increase of the operat-

ng voltage leads to the further decrease of the grid size. Thus, the

omputational grid needs to be selected based on the outcome of

esting several grid sizes to ensure enough resolution of the steep
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Fig. 2. Schematic of the partitioned approach for the plasma–fluid problem.

Fig. 3. Flowchart.
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Fig. 4. Influence of time step of implicit Euler scheme on the current density: (a) first order upwind scheme; (b) second order deferred correction Gamma scheme.

Fig. 5. Evolution of the current density: (a) Grid dependency of the results for the implicit Euler scheme with first order Upwind. (b) Comparison of different time dis-

cretization for �t = 5 × 10−12 s,�x = 0.5 μm.
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lectric field and electron-ion density gradients relevant to the ion-

zation wave front, and to ensure the plasma sheath near the wall–

as interface can be adequately resolved, while balancing the con-

ideration of the computational costs.

. Results and discussion

Since there is no benchmark case for comparison, we have cho-

en the recent numerical work of Unfer [56] and Boeuf and Pitch-

ord [21] (identified here respectively by Explicit Asynchronized

TS and Semi-Implicit (SG Method)) for the purpose of assessing of

he influence of the each numerical issue previously described for

lleviating the stiffness of the numerical solution of the plasma–

uid model. Firstly, a simple case of constant positive voltage is

onsidered. Although this case is simple, it can provide the pos-

ibility of correctly analyzing different numerical issues. This case

omprises a 2D geometry with an exposed electrode as the anode
with constant positive voltage). Secondly, we will present some

dditional validation cases, on basically the same geometry but

ith different voltage waveforms.

One of the important aspects of the numerical simulation of

lasma dynamics is the proper choice of a global time step �t,

decision that requires an adequate balancing of computing effi-

iency with stability. In Fig. 4, the effect of the time step on the

ccuracy of the current density behavior is shown for a coarse

rid with the cell length of 2 μm. The current represented is the

isplacement current on the bottom electrode. In Fig. 4a, the up-

ind scheme is used for the discretization of the convective term

n the continuity equation and the Euler scheme is used for treat-

ng the unsteady terms. The results are clear in showing that when

he time step is large, the solution is more diffusive and the peak

alue of the current happens later and has a smaller maximum

agnitude. In addition, computation becomes unstable when the

ime step is reduced below 10−11 s. In Fig. 4b, a second order
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Fig. 6. Influence of the super-time-stepping levels on the resolution of the current

density behavior for the case of positive constant voltage.
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deferred-correction gamma scheme is applied for the convective

terms. Comparing Fig. 4a and b, we see that the upwind scheme,

as expected, shows a more diffusive behavior in comparison with

the second order gamma scheme. While this kind of diffusive er-

ror makes the scheme highly stable even for large time steps, it

produces wrong physical solutions.

In Fig. 5a, the grid independency test results are presented for

simulations with Euler discretization in time and first order up-

wind spatial discretization. When the grid density is low, the ef-

fect of numerical diffusion appears to me more intense, and in

contrast when the grid is refined, the resolution of the results is

better. Moreover, as shown in Fig. 5b, all the time discretization

schemes including the Euler, backward and splitted super-time-

stepping present similar accuracy on the refined grid with suffi-

ciently small time steps.

We have also investigated the super-time-stepping which al-

lows the schemes to overcome the CFL condition. In Fig. 6, the
a

Fig. 7. Comparison of the current density obtained in the present study for: (a) a const

nano-second pulsed voltage, with the work of Unfer and Boeuf [57].
ffect of the number of the super-time-stepping stages with RKL

s demonstrated on a medium refined grid with �x = 1 μm and

t = 5 × 10−12 s. For lower number of super-time-stepping stages,

he results are more diffusive. This was expected, as an increase

f n should allow larger time steps to be used for the simula-

ion. However, increasing further the number of the super-time-

tepping, in this case more than 21, did not change the resolution

f the results obtained. We should mention that, while splitted

uper-time-stepping is an important technique for improving accu-

acy and stability, its ability to increase the global time step is lim-

ted. Although the results in Fig. 6 show that super-time-stepping

llows much larger time steps than the limitation imposed by the

FL condition of explicit schemes, they do not prove that the sav-

ngs in computer time are as substantial as with implicit schemes.

Up to now the influences of the main numerical treatments

ere shown for a positive constant voltage case, for which we

an readily select the numerical approach for the simulations. In

he following we will present validation studies for different volt-

ge waveforms. In Fig. 7, the current density behavior in the case

f a constant negative voltage and positive nano-second voltage

s shown and the results are compared with numerical results of

oeuf and Pitchford [21] and Unfer and Boeuf [57]. The results of

he present study are correctly capturing the current evolution ver-

us time.

In Fig. 8, the current density behavior is analysed for the cases

f a positive and a negative voltage ramp. The results show similar

eatures as described in previous papers [16,17,19] and are qual-

itatively valid when compared with those of these authors. It is

clear from the results that there is a difference between the dis-

charge characteristic in these cases. In the case of positive ramp,

the electrode above the dielectric layer plays the role of an an-

ode. Once the size and density of the positive ion cloud reach crit-

ical values, a high current breakdown occurs, characterized by the

development of high amplitude pulses in the current profile. The

discharge during the positive part of the cycle is composed of suc-

cessive phases of ion cloud formation and high current breakdown.

When a negative voltage ramp is applied, the current profile is also

composed of current pulses, but with a frequency much larger than

in the positive ramp case and of much lower intensity.

In the last case, an AC sinusoidal voltage with frequency of

8 kHz and amplitude of 8 kV is applied to the exposed electrode of

the DBD and the results are shown in Fig. 9. These results are again
b

ant negative applied voltage, with the work of Beouf and Pitchford [21] and (b) a
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a b

Fig. 8. Current characteristic of the dielectric barrier discharge with: (a) positive ramp voltage and (b) negative ramp voltage.

Fig. 9. Voltage and current of a DBD actuator with an AC-sinusoidal applied volt-

age.
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Fig. 10. Component of the EHD force parallel to the surface for actuation with AC

sinusoidal voltage.
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n qualitative agreement with results presented in [17,58]. The dif-

erences observed in Fig 8 between the positive and negative ramp

oltages are replicated in Fig. 9 for the ascending and descending

arts of the AC sinusoidal voltage. This difference implies that the

HD force is important not only during the positive part of the

inusoidal voltage cycle but also during the negative part of the

ycle.

The component of the force parallel to the plate is shown in Fig.

0 for a duration of the voltage similar to Fig. 9. During the pos-

tive part of the cycle, the EHD force is due to the formation of a

ositive ion cloud which is periodically interrupted by high current

reakdown. The EHD force during the negative part of the cycle is

ue to the development of a negative ion cloud that continuously

rows during the successive high frequency current pulses which

orm in this regime [19].
. Conclusions

Different assumptions and considerations regarding the plasma

uid model are discussed. In addition, various numerical issues re-

arding the stability and accuracy of the methods are also dis-

ussed and explained. To solve these issues, a number of numer-

cal remedies proposed in literature were implemented and tested.

o this aim, a three-particle fluid model of plasma discharge in air,

hich is able to provide the spatial distribution and the time evo-

ution of the charged particle densities, electric field and surface

harges, was implemented in OpenFOAM. Different voltage wave-

orms, including positive and negative constant and ramp voltages,

nd a case of AC sinusoidal voltage have been considered for test-

ng the accuracy of the implementation.
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