972 research outputs found

    Une plate-forme sans fil pour electrochimique spectroscopie d'impédance

    Get PDF
    Avec l’émergence soutenue de capteurs et de dispositifs électrochimiques innovants, la spectroscopie d'impédance électrochimique est devenue l'un des outils les plus importants pour la caractérisation et la modélisation de la matière ionique et de l'interfaçage des capteurs. La capacité de détecter automatiquement, à l’aide de dispositifs électrochimiques peu couteux, les caractéristiques physiques et chimiques de la matière ionique ouvre une gamme d’application très variée pour la compréhension et l’optimisation des procédés ou interviennent les processus électrochimiques. Cette thèse décrit le développement d’une plate-forme microélectronique miniaturisée, connectée, multiplexée, et à faible coût pour la spectroscopie d'impédance diélectrique (SID) conçue pour les mesures électrochimiques in-situ et adaptée aux architectures de réseau sans fil. La plate-forme développée durant ce travail de maitrise a été testée et validée au sein d’une maille ZigBee et a été en mesure d'interfacer jusqu'à trois capteurs SID en même temps et de relayer l'information à travers le net Zigbee pour l'analyse de données et le stockage. Le système a été construit à partir de composants microélectroniques disponibles commercialement et bénéficie des avantages d'une calibration système on-the-fly qui effectue la calibration du capteur de manière aisée. Dans ce mémoire de maitrise, nous rapportons la modélisation et la caractérisation de senseurs électrochimiques de nitrate; notamment nous décrivons la conception microélectronique, la réponse d'impédance de Nyquist, la sensibilité et la précision de la mesure électrochimique, et les résultats de tests de la plate-forme pour les applications de spectroscopie d'impédance relatives à la détection du nitrate, de la détection de la qualité de l'eau, et des senseurs tactiles.The emergence of the various applications of electrochemical sensors and devices, electrochemical impedance spectroscopy became one of the most important tools for characterizing and modeling of the material and interfacing the sensors. The ability to sense in an automatic manner enables a wide variety of processes to be better understood and optimized cost-effectively. This thesis describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS) designed for in-situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on a ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the Zigbee net for data analysis and storage. The system was built from commercial microelectronics components and benefits from an on-the-fly calibration system that makes sensor calibration easy. The thesis reports characterizing and modeling of two electro-chemical devices (i.e. nitrate sensor and optically-transparent electrically-conductive glasses) and also describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in-situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing

    Comparison of techniques for measuring the water content of soil and other porous media

    Get PDF
    The measurement of water in soil on a potential, gravimetric or volumetric basis is considered, with studies concentrating on the measurement of water by dielectric and neutron moderation methods. The ability of the time-domain reflectometry technique to measure water content simultaneously at different spatial locations is an important advantage of the technique. The reported apparent dielectric by the TRASE� time-domain reflectometer and Pyelab time-domain reflectometry systems is sensitive to change in extension cable length. In some soil, e.g. a commercial sand, the response to increasing extension length of extension cable is linear. For other soil a linear response occurs for certain lengths of cable at different moisture contents. A single model accounting for clay content, extension cable length, time-domain reflectometry system, probe type and inherent moisture conditions explained 62.2 % of variation from the control (0 m extension) cable. The extension cable causes a decrease in the returning electromagnetic-wave energy; leading to a decline in the slope used in automatic end-point determination. Calibration for each probe installation when the soil is saturated, and at small water contents is recommended. The ability of time-domain reflectometry, frequency-domain and neutron moderation techniques in measuring soil water content in a Brown Chromosol is examined. An in situ calibration, across a limited range of water contents, for the neutron moderation method is more sensitive to changing soil water content than the factory supplied 'universal' calibration. Comparison of the EnviroSCAN� frequency-domain system and the NMM count ratio indicates the frequency-domain technique is more sensitive to change in soil water conditions. The EnviroSCAN� system is well suited to continuous profile-based measurement of soil water content. Results with the time-domain reflectometry technique were disappointing, indicating the limited applicability of time-domain reflectometry in profile based soil water content measurement in heavy-textured soil, or soil with a large electrical conductivity. The method of auguring to a known depth and placement of the time-domain reflectometry probe into undisturbed soil is not recommended. A time-domain reflectometry system is adapted for in situ measurement of water in an iron ore stockpile. The laboratory calibration for water content of the processed iron ore compares favourably to a field calibration. In the field study, the 28 m extension cable used to connect the probes to the time-domain reflectometry affected the end-point determination of the time-domain reflectometry system. To account for this, 0.197 should be subtracted from the reported apparent dielectric before calculation of volumetric moisture content

    Comparison of techniques for measuring the water content of soil and other porous media

    Get PDF
    The measurement of water in soil on a potential, gravimetric or volumetric basis is considered, with studies concentrating on the measurement of water by dielectric and neutron moderation methods. The ability of the time-domain reflectometry technique to measure water content simultaneously at different spatial locations is an important advantage of the technique. The reported apparent dielectric by the TRASE� time-domain reflectometer and Pyelab time-domain reflectometry systems is sensitive to change in extension cable length. In some soil, e.g. a commercial sand, the response to increasing extension length of extension cable is linear. For other soil a linear response occurs for certain lengths of cable at different moisture contents. A single model accounting for clay content, extension cable length, time-domain reflectometry system, probe type and inherent moisture conditions explained 62.2 % of variation from the control (0 m extension) cable. The extension cable causes a decrease in the returning electromagnetic-wave energy; leading to a decline in the slope used in automatic end-point determination. Calibration for each probe installation when the soil is saturated, and at small water contents is recommended. The ability of time-domain reflectometry, frequency-domain and neutron moderation techniques in measuring soil water content in a Brown Chromosol is examined. An in situ calibration, across a limited range of water contents, for the neutron moderation method is more sensitive to changing soil water content than the factory supplied 'universal' calibration. Comparison of the EnviroSCAN� frequency-domain system and the NMM count ratio indicates the frequency-domain technique is more sensitive to change in soil water conditions. The EnviroSCAN� system is well suited to continuous profile-based measurement of soil water content. Results with the time-domain reflectometry technique were disappointing, indicating the limited applicability of time-domain reflectometry in profile based soil water content measurement in heavy-textured soil, or soil with a large electrical conductivity. The method of auguring to a known depth and placement of the time-domain reflectometry probe into undisturbed soil is not recommended. A time-domain reflectometry system is adapted for in situ measurement of water in an iron ore stockpile. The laboratory calibration for water content of the processed iron ore compares favourably to a field calibration. In the field study, the 28 m extension cable used to connect the probes to the time-domain reflectometry affected the end-point determination of the time-domain reflectometry system. To account for this, 0.197 should be subtracted from the reported apparent dielectric before calculation of volumetric moisture content

    The WISDOM Radar: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling

    Get PDF
    The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples

    Modelado de las propiedades dieléctricas del suelo. Aplicación en el diseño de sensores para sistemas de control en agricultura de precisión

    Get PDF
    [SPA] Esta tesis doctoral se presenta bajo la modalidad de compendio de publicaciones. El agua es una sustancia clave para el desarrollo de la vida en La Tierra. Es por ello que la búsqueda de oportunidad de vida en otros planetas y satélites se basa en la presencia de agua en los mismos. La gestión ecológica del agua es necesaria para la sostenibilidad de los ecosistemas. Uno de los ecosistemas más amplios y donde el agua juega un papel más importante es el suelo, que alberga multitud de variedades de microorganismos cuya actividad, en parte resultante en la generación de nutrientes para el desarrollo de las especies vegetales, es totalmente dependiente del contenido de agua en el suelo. En zonas áridas y semiáridas, como es el caso de la cuenca Mediterránea, la escasez de agua supone un grave problema a la hora de gestionar los pocos recursos hídricos disponibles. En este caso, donde las condiciones geográficas son idóneas para el desarrollo de la agricultura, las soluciones pasan por una optimización de las técnicas de riego y un mayor control sobre los recursos hídricos. En este sentido, las técnicas de riego deficitario controlado se han mostrado exitosas en la reducción de la dotación hídrica a los cultivos en fases no críticas. Sin embargo, para realizar una aplicación prudente y eficiente de las mismas, resulta necesario monitorizar el estado hídrico de los cultivos, con el objetivo de que éstos no alcancen situaciones de estrés irreversible en términos de producción o estado vegetativo. Los indicadores que mayor información aportan sobre el estado hídrico de la planta suelen estar relacionados con variables medibles a partir de la propia planta, pero que son difícilmente automatizables debido a las operaciones de manejo asociadas. Este es el caso del potencial hídrico de tallo a mediodía medido con cámara de presión, considerado hasta la fecha como el indicador más fiable del estado hídrico de los cultivos en general. Es por ello que, para lograr una monitorización continua de esta variable, se busquen otras variables del continuo suelo-planta-atmósfera que puedan estar relacionadas y a partir de las cuales obtener una estimación indirecta. El suelo es la matriz de donde la planta adquiere la mayor parte del agua y los nutrientes que necesita para realizar la fotosíntesis. La relación entre el estado hídrico del suelo y el estado hídrico de los cultivos está más que demostrada. Sin embargo, la precisión alcanzada en los modelos de correlación entre ambos estados requiere de una mejora considerable para hacer un uso realmente fiable de los mismos, y esta mejora no solo pasa por encontrar mejores métodos de correlación, sino también por mejorar la precisión de las medidas obtenidas del suelo. Para monitorizar el estado hídrico del suelo, existen diversas metodologías que ofrecen parámetros medibles como el contenido de agua. El método de medida más extendido para monitorizar el contenido de agua en el suelo es a través del uso de sensores dieléctricos. Sin embargo, la precisión de los mismos está sujeta a diversos factores, entre ellos las características propias del suelo donde se instalan y su coste, relativamente alto para el pequeño y mediano agricultor, condicionando una implantación extensiva de la Agricultura de Precisión y limitando a veces la aplicación de algunos desarrollos únicamente a trabajos de investigación. Esta tesis, elaborada bajo la modalidad de compendio de publicaciones, aborda a través de cuatro artículos científicos la propuesta de soluciones accesibles para la medida del estado hídrico del suelo, con especial enfoque en el contenido de agua; explora las limitaciones y retos asociados con la calibración de los sensores dieléctricos de suelo; participa en la generación de nuevos conocimientos y propuestas para un mejor entendimiento del comportamiento del agua en el suelo y de su interacción con las ondas electromagnéticas; y establece nuevos enfoques y modelos que mejoran la predicción del estado hídrico de los cultivos a partir de medidas indirectas y automatizables en suelo y atmósfera. [ENG] This doctoral dissertation has been presented in the form of thesis by publication. Water is a fundamental substance for the development of life on Earth. That is why the search for life on other planets and satellites is based on the presence of water on them. Ecological water management is necessary for the sustainability of ecosystems. One of the most extensive ecosystems where water plays a major role is soil, which hosts a large variety of micro-organisms whose activity, partly resulting in the generation of nutrients for the development of plant species, is totally dependent on the water content of the soil. In arid and semi-arid regions, as it is the case in the Mediterranean basin, water scarcity is a serious problem when it comes to managing the few water resources available. In this case, where the geographical conditions are ideal for the development of agriculture, the solutions involve optimization of irrigation techniques and greater control over water resources. In this sense, regulated deficit irrigation strategies have proven to be successful in reducing the water supply to crops in non-critical periods. However, in order to apply them prudently and efficiently, it is necessary to monitor the water status of the crops, so that they do not reach irreversible stress situations in terms of yield or vegetative state. The indicators that provide the highest amount of information on the water status of the plant are usually related to variables that can be measured from the plant itself, but which are difficult to automate due to the labor and time-consuming associated operations. This is the case of the midday stem water potential measured with a pressure chamber, considered to date to be the most reliable indicator of the crop's water status in general. In order to achieve a continuous monitoring of this variable, it is necessary to look for other variables of the soil-plant-atmosphere continuum that may be related and from which to obtain an indirect estimate. Soil is the matrix from which the plant acquires most of the water and nutrients it needs for photosynthesis. The relationship between soil water status and crop water status is well established. However, the accuracy achieved in the correlation models between the two requires considerable improvement to make a truly reliable use of them, and this improvement is not only to find better correlation methods, but also to improve the accuracy of the measurements obtained from the soil. To monitor soil water status, there are several methodologies that provide measurable parameters such as water content. The most widespread measurement method for monitoring soil water content is through the use of dielectric sensors. However, the accuracy of these sensors is subject to various factors, including the characteristics of the soil where they are installed, and their relatively high cost for small and medium-sized farmers, conditioning the extensive implementation of precision agriculture and sometimes limiting the application of some developments only to research work. This thesis, elaborated under the modality of a compendium of publications, addresses through four scientific articles the proposal of affordable solutions for the measurement of soil water status, with special focus on water content; it explores the limitations and challenges associated with the calibration of soil dielectric sensors; participates in the generation of new insights and proposals for a better understanding of the behavior of water in soil and its interaction with electromagnetic waves; and establishes new approaches and models that improve the prediction of crop water status from indirect and automatable measurements in soil and atmosphere.Esta tesis doctoral se presenta bajo la modalidad de compendio de publicaciones. Está formada por un total de cuatro artículos: Article I. González-Teruel, J.D., Torres-Sánchez, R., Blaya-Ros, P.J., Toledo-Moreo, A.B., Jiménez-Buendía, M., Soto-Valles, F., 2019. Design and Calibration of a Low-Cost SDI-12 Soil Moisture Sensor. Sensors, 19, 491. DOI: 10.3390/s19030491 - Article II. González-Teruel, J.D., Jones, S.B., Soto-Valles, F., Torres-Sánchez, R., Lebron, I., Friedman, S.P., Robinson, D.A., 2020. Dielectric Spectroscopy and Application of Mixing Models Describing Dielectric Dispersion in Clay Minerals and Clayey Soils. Sensors, 20, 6678. DOI: 10.3390/s20226678 Article III. González-Teruel, J.D., Jones, S.B., Robinson, D.A., Giménez-Gallego, J., Zornoza, R., Torres-Sánchez, R., 2022. Measurement of the broadband complex permittivity of soils in the frequency domain with a low-cost Vector Network Analyzer and an Open-Ended coaxial probe. Computers and Electronics in Agriculture, 195, 106847. DOI: 10.1016/J.COMPAG.2022.106847 Article IV. González-Teruel, J.D., Ruiz-Abellon, M.C., Blanco, V., Blaya-Ros, P.J., Domingo, R., Torres-Sánchez, R., 2022. Prediction of Water Stress Episodes in Fruit Trees Based on Soil and Weather Time Series Data. Agronomy, 12, 1422. DOI: 10.3390/agronomy12061422Escuela Internacional de Doctorado de la Universidad Politécnica de CartagenaUniversidad Politécnica de CartagenaPrograma de Doctorado en Tecnologías Industriale

    Use of Large Lysimeters to Monitor Unsaturated Hydraulic Properties of Amended Soils

    Get PDF
    The design and construction of large 1.21.2~mm diameter lysimeters has been implemented to monitor the soil water retention behaviour and permeability characteristics of contaminated soils under remediation. The work was carried out as part of a larger project focussing on the sustainable remediation of low value brownfield land. Three lysimeters have been filled with lead contaminated soil: one control; one with a \ac{WTR} amendment; and one with a \ac{WTR} and compost amendment. A new software system was built to control the \ac{TDR} point water content measurement and irrigation system, which could log data to an online unified data repository; provided an interface for connectivity to any serial port device; deal with templating for simplified setup; and realtime feedback for the end user. High capacity tensiometers were used in conjunction with the \ac{TDR} point water content measurement system to read volumetric water contents and suctions in the large control lysimeter over a series of wetting and drying cycles, each lasting several months. The results demonstrate that there was a difference between small scale laboratory tests and the data obtained from the lysimeters, particularly in the near surface soil due to cracking. Where cracking was not present, the agreement was stronger, but differences suggested that the drying curves in the lysimeter was predominantly scanning behaviour whereas the element tests were likely more representative of primary drying behaviour

    Relevance of Dielectric Properties in Microwave Assisted Processes

    Get PDF
    Microwaves are electromagnetic radiation with wavelength ranging from 1 mm to 1 m in free space with a frequency from 300 GHz to 300 MHz, respectively. International agreements regulate the use of the different parts of the spectrum; the frequencies 915 MHz and 2.45 GHz are the most common among those dedicated to power applications for industrial, scientific and medical purposes (Metaxas & Meredith, 1983). Although microwaves have been firstly adopted for communications scope, an increasing attention to microwave heating applications has been gained since after World War II (Meredith, 1998; Chan & Reader, 2002). Reasons for this growing interest can be found in the peculiar mechanism for energy transfer: during microwave heating, energy is delivered directly to materials through molecular interactions with electromagnetic field via conversion of electrical field energy into thermal energy. This can allow unique benefits, such as high efficiency of energy conversion and shorter processing times, thus reductions in manufacturing costs thanks to energy saving. Moreover, other effects have been pointed out, such as the possibility to induce new structural properties to irradiated materials (development of new materials) and to apply novel strategies in chemical syntheses (green techniques). Crucial parameters in microwave heating are the dielectric properties of matter; they express the energy coupling of a material with electromagnetic microwave field and, thus, the heating feasibility (Metaxas & Meredith, 1983; Schubert & Regier 1995; Tang et al., 2002). On the bases of dielectric properties, microwave devices (applicators) can be adopted in heating operations and optimized working protocols can be used. This chapter is divided into four sections dealing with: i. fundamentals of microwave heating and relevance of dielectric properties of materials; ii. different techniques used in dielectric properties measurements of materials (test fixtures characteristics, technique applicability, advantages and disadvantages); iii. application of the open-ended coaxial-probe method in dielectric properties measurements of food, pharmaceutical ingredients, living materials, to understand specific heating phenomenology and, thus, to optimize thermal treatments / to define safety limits of exposition; iv. basics of heat and mass transfer modeling in microwave assisted processes

    Study of moisture in concrete utilizing the effect on the electromagnetic fields at UHF frequency on an embedded transmission line

    Get PDF
    A thesis submitted to the Faculty of Creative Arts and Technologies, University of Luton, in partial fulfilment of the requirements for the degree Doctor of Philosophy.The aim of the research was to find an effective, reliable and cost-effective method for long-term monitoring of moisture in concrete structures. The slow diffusion rate of moisture through concrete requires that monitoring should be done over time scales of several years without periodic re-calibration. The solution arrived at was to use a quasi-coaxial transmission line, termed a cagecoaxial transmission line, as the sensing element. The transmission line, terminated in a short circuit, is encapsulated in a porous dielectric medium. It was found that the microstructure of the encapsulating medium had to be similar to the concrete in terms of capillary characteristics in order to track the moisture content of the material under test. The moisture in the encapsulating medium would change the electrical length of the transmission line by increasing the relative permittivity of the medium. The method used makes it possible to measure moisture levels to full saturation. Moisture content can be measured in terms of a percentage of saturation, which will be of considerable help as an early warning system of possible frost damage. A mathematical model was derived to calculate the relative permittivity in terms of moisture content in concrete. It was shown that to calculate the total permittivity of a solid porous medium with a dielectric mix formula, the formula must be expanded to include air, water and solid, before realistic values for the permittivity of the ingredients could be assigned. A dielectric mix formula was derived to account for the liquid to solid boundary effect on the permittivity of water in a solid porous material. The foundations were laid for the development of a reliable and cost-effective probe based on an oscillator, operating around 1 GHz, using the transmission line as a tuning element. The frequency of oscillation is a function of the apparent length, determined by the permittivity and therefore the moisture content, in the transmission line dielectric material. A method to convert this frequency to a format that can be monitored on a data logger system is described. The high oscillation frequency eliminates the effect of ionic conduction from dissolved substances

    Evaluation of capacitance moisture sensors for use in municipal solid waste

    Get PDF
    Current municipal solid waste (MSW) practices have encouraged rapid waste degradation (stabilization) as an alternative to past methods of isolating the waste from the surrounding environment. There are challenges to rapid-stabilization technology, in particular, the management of the in-situ MSW moisture content. The primary objective of this study was to evaluate the use of capacitance moisture probes for the purpose of measuring the moisture content within MSW. Capacitance moisture probes have not previously been used in MSW, however their use in agriculture is extensive and knowledge of their potential for monitoring MSW is limited. The specific objectives of this research were to: i) establish a laboratory based correlation between sensor data and volumetric moisture content in MSW, ii) establish a correlation between field-installed capacitance sensors and moisture content derived from continuous-depth in-situ sampling of MSW, and iii) demonstrate the ability of capturing advancing/receding moisture fronts with the field-installed capacitance sensors. Laboratory trials were conducted using hand-compacted MSW at volumetric moisture contents ranging from 15%-55% and a manual type of capacitance sensor. This series of laboratory trials successfully produced a correlation between sensor output and volumetric moisture content. To evaluate the sensors in a real-world application, two configurations of capacitance moisture probes were installed in the field: i) an in-place, continuous-time capacitance probe, and ii) a portable, continuous-depth at discrete time, capacitance probe. Field results indicated that capacitance moisture probes were able to capture the passing of both an artificially and naturally induced moisture front, though quantitative correlation between the in-situ moisture content of the sampled MSW and the readings of the sensors could not be achieved. The reasons for this were a combination of three factors: 1. The introduction of void-space during sensor installation significantly reduced sensor output; 2. Poor MSW sampling technique resulted in 57% recovery (causing the exact origin of samples to be unknown); and 3. The sampling technique disturbed the MSW samples, resulting in incorrect volumetric moisture contents in the samples
    • …
    corecore