9,671 research outputs found

    Shared genetic contribution of type 2 diabetes and cardiovascular disease: Implications for prognosis and treatment

    Get PDF
    Purpose of Review: The increased cardiovascular disease (CVD) risk in subjects with type 2 diabetes (T2D) is well established. This review collates the available evidence and assesses the shared genetic background between T2D and CVD: the causal contribution of common risk factors to T2D and CVD and how genetics can be used to improve drug development and clinical outcomes. Recent Findings: Large-scale genome-wide association studies (GWAS) of T2D and CVD support a shared genetic background but minimal individual locus overlap. Summary: Mendelian randomisation (MR) analyses show that T2D is causal for CVD, but GWAS of CVD, T2D and their common risk factors provided limited evidence for individual locus overlap. Distinct but functionally related pathways were enriched for CVD and T2D genetic associations reflecting the lack of locus overlap and providing some explanation for the variable associations of common risk factors with CVD and T2D from MR analyses

    A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease

    Get PDF
    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz

    Early diagnosis of cardiovascular diseases in workers: role of standard and advanced echocardiography

    Get PDF
    Cardiovascular disease (CVD) still remains the main cause of morbidity and mortality and consequently early diagnosis is of paramount importance. Working conditions can be regarded as an additional risk factor for CVD. Since different aspects of the job may affect vascular health differently, it is important to consider occupation from multiple perspectives to better assess occupational impacts on health. Standard echocardiography has several targets in the cardiac population, as the assessment of myocardial performance, valvular and/or congenital heart disease, and hemodynamics. Three-dimensional echocardiography gained attention recently as a viable clinical tool in assessing left ventricular (LV) and right ventricular (RV), volume, and shape. Two-dimensional (2DSTE) and, more recently, three-dimensional speckle tracking echocardiography (3DSTE) have also emerged as methods for detection of global and regional myocardial dysfunction in various cardiovascular diseases, and applied to the diagnosis of subtle LV and RV dysfunction. Although these novel echocardiographic imaging modalities have advanced our understanding of LV and RV mechanics, overlapping patterns often show challenges that limit their clinical utility. This review will describe the current state of standard and advanced echocardiography in early detection (secondary prevention) of CVD and address future directions for this potentially important diagnostic strategy

    Proteomics in cardiovascular disease: recent progress and clinical implication and implementation

    Get PDF
    Introduction: Although multiple efforts have been initiated to shed light into the molecular mechanisms underlying cardiovascular disease, it still remains one of the major causes of death worldwide. Proteomic approaches are unequivocally powerful tools that may provide deeper understanding into the molecular mechanisms associated with cardiovascular disease and improve its management. Areas covered: Cardiovascular proteomics is an emerging field and significant progress has been made during the past few years with the aim of defining novel candidate biomarkers and obtaining insight into molecular pathophysiology. To summarize the recent progress in the field, a literature search was conducted in PubMed and Web of Science. As a result, 704 studies from PubMed and 320 studies from Web of Science were retrieved. Findings from original research articles using proteomics technologies for the discovery of biomarkers for cardiovascular disease in human are summarized in this review. Expert commentary: Proteins associated with cardiovascular disease represent pathways in inflammation, wound healing and coagulation, proteolysis and extracellular matrix organization, handling of cholesterol and LDL. Future research in the field should target to increase proteome coverage as well as integrate proteomics with other omics data to facilitate both drug development as well as clinical implementation of findings

    Development and Micro Manufacturing of Coronary Stents in Hungary

    Get PDF
    Revascularisation by endovascular implant (stent) has great importance in the treatment of coronary artery diseases. Stents are high-technology implants that are the creation of the knowledge of health sciences, physics, chemistry, material science and engineering. Its development can be carried out only by the involvement of these areas of knowledge. Hungary has a stent production since 1995, which is the only one in the new EU member countries. The aim of the project that has been started within the frameworks of the National Research and Development Program, is the development of a new stent family based on the results of the material science researches have started for 10 years and the clinical and production experiences of experts, which could result an equivalent Hungarian product to the market leader products in case of several product lines. The original wire-mesh cut for those replaced welded stents made of wire later from tubes laser cutted ones. The stents are made of biocompatible materials: 316LVM stainless steel, Co-Cr alloys and nitinol. Stents made from wires are produced by weaving, or reeling and resistance projection welding. Nowadays, stents are produced mostly by high-precision laser cutting. These were large steps forward in the development of production technology, following the appearance of balloon catheters. Independently of what kind of manufacturing process is used, it has to be very precise because a connecting goal of the development is to increase the biocompatibility of the stents with surface treatment and to create a coating that is able to carry drug on the smooth surface. The paper presents the antecedents, achievements and main future objectives in micro manufacturing speciality of that special medical device, that is just before the surface treatment and coating process of the stent

    Effect of metabolic syndrome and aging on Ca2+ dysfunction in coronary smooth muscle and coronary artery disease severity in Ossabaw miniature swine

    Get PDF
    BACKGROUND: Metabolic syndrome (MetS) and aging are prevalent risk factors for coronary artery disease (CAD) and contribute to the etiology of CAD, including dysregulation of Ca2+ handling mechanisms in coronary smooth muscle (CSM). The current study tested the hypothesis that CAD severity and CSM Ca2+ dysregulation were different in MetS-induced CAD compared to aging-induced CAD. METHODS: Young (2.5 ± 0.2 years) and old (8.8 ± 1.2 years) Ossabaw miniature swine were fed an atherogenic diet for 11 months to induce MetS and were compared to lean age-matched controls. The metabolic profile was confirmed by body weight, plasma cholesterol and triglycerides, and intravenous glucose tolerance test. CAD was measured with intravascular ultrasound and histology. Intracellular Ca2+ ([Ca2+]i) was assessed with fura-2 imaging. RESULTS: CAD severity was similar between MetS young and lean old swine, with MetS old swine exhibiting the most severe CAD. Compared to CSM [Ca2+]i handling in lean young, the MetS young and lean old swine exhibited increased sarcoplasmic reticulum Ca2+ store release, increased Ca2+ influx through voltage-gated Ca2+ channels, and attenuated sarco-endoplasmic reticulum Ca2+ ATPase activity. MetS old and MetS young swine had similar Ca2+ dysregulation. CONCLUSIONS: Ca2+ dysregulation, mainly the SR Ca2+ store, in CSM is more pronounced in lean old swine, which is indicative of mild, proliferative CAD. MetS old and MetS young swine exhibit Ca2+ dysfunction that is typical of late, severe disease. The more advanced, complex plaques in MetS old swine suggest that the "aging milieu" potentiates effects of Ca2+ handling dysfunction in CAD
    • …
    corecore