170 research outputs found

    Development and characterisation of a process technology for a 0.25µm SiGe:C RF-BiCMOS embedded flash memory

    Get PDF
    Integrating an embedded-flash memory module into a 0.25µm SiGe:C BiCMOS technology provides an important base for realising microelectronic systems that combine complex logic functionality with highest frequency analogue performance („System-on-Chip“). This dissertation presents for the first time an embedded flash memory module integrated in a 0.25µm SiGe:C BiCMOS process technology and describes the implementation into a process pilot line. The principle process flow and important process steps are described in detail, reviewing also the impact on the original BiCMOS process. The results are assessed geometrically by means of electron microscopy and electrically by characterisation of the developed electronic devices. The influence of important technological parameters is hereby investigated. The feasibility of the process for medium density memory production is finally demonstrated by a first 1-Mbit memory circuit that has been developed and produced based on the presented process technology

    Caractérisation, mécanismes et applications mémoire des transistors avancés sur SOI

    Get PDF
    Ce travail présente les principaux résultats obtenus avec une large gamme de dispositifs SOI avancés, candidats très prometteurs pour les futurs générations de transistors MOSFETs. Leurs propriétés électriques ont été analysées par des mesures systématiques, agrémentées par des modèles analytiques et/ou des simulations numériques. Nous avons également proposé une utilisation originale de dispositifs FinFETs fabriqués sur ONO enterré en fonctionnalisant le ONO à des fins d'application mémoire non volatile, volatile et unifiées. Après une introduction sur l'état de l'art des dispositifs avancés en technologie SOI, le deuxième chapitre a été consacré à la caractérisation détaillée des propriétés de dispositifs SOI planaires ultra- mince (épaisseur en dessous de 7 nm) et multi-grille. Nous avons montré l excellent contrôle électrostatique par la grille dans les transistors très courts ainsi que des effets intéressants de transport et de couplage. Une approche similaire a été utilisée pour étudier et comparer des dispositifs FinFETs à double grille et triple grille. Nous avons démontré que la configuration FinFET double grille améliore le couplage avec la grille arrière, phénomène important pour des applications à tension de seuil multiple. Nous avons proposé des modèles originaux expliquant l'effet de couplage 3D et le comportement de la mobilité dans des TFTs nanocristallin ZnO. Nos résultats ont souligné les similitudes et les différences entre les transistors SOI et à base de ZnO. Des mesures à basse température et de nouvelles méthodes d'extraction ont permis d'établir que la mobilité dans le ZnO et la qualité de l'interface ZnO/SiO2 sont remarquables. Cet état de fait ouvre des perspectives intéressantes pour l'utilisation de ce type de matériaux aux applications innovantes de l'électronique flexible. Dans le troisième chapitre, nous nous sommes concentrés sur le comportement de la mobilité dans les dispositifs SOI planaires et FinFET en effectuant des mesures de magnétorésistance à basse température. Nous avons mis en évidence expérimentalement un comportement de mobilité inhabituel (multi-branche) obtenu lorsque deux ou plusieurs canaux coexistent et interagissent. Un autre résultat original concerne l existence et l interprétation de la magnétorésistance géométrique dans les FinFETs.L'utilisation de FinFETs fabriqués sur ONO enterré en tant que mémoire non volatile flash a été proposée dans le quatrième chapitre. Deux mécanismes d'injection de charge ont été étudiés systématiquement. En plus de la démonstration de la pertinence de ce type mémoire en termes de performances (rétention, marge de détection), nous avons mis en évidence un comportement inattendu : l amélioration de la marge de détection pour des dispositifs à canaux courts. Notre concept innovant de FinFlash sur ONO enterré présente plusieurs avantages: (i) opération double-bit et (ii) séparation de la grille de stockage et de l'interface de lecture augmentant la fiabilité et autorisant une miniaturisation plus poussée que des Finflash conventionnels avec grille ONO.Dans le dernier chapitre, nous avons exploré le concept de mémoire unifiée, en combinant les opérations non volatiles et 1T-DRAM par le biais des FinFETs sur ONO enterré. Comme escompté pour les mémoires dites unifiées, le courant transitoire en mode 1T-DRAM dépend des charges non volatiles stockées dans le ONO. D'autre part, nous avons montré que les charges piégées dans le nitrure ne sont pas perturbées par les opérations de programmation et lecture de la 1T-DRAM. Les performances de cette mémoire unifiée multi-bits sont prometteuses et pourront être considérablement améliorées par optimisation technologique de ce dispositif.The evolution of electronic systems and portable devices requires innovation in both circuit design and transistor architecture. During last fifty years, the main issue in MOS transistor has been the gate length scaling down. The reduction of power consumption together with the co-integration of different functions is a more recent avenue. In bulk-Si planar technology, device shrinking seems to arrive at the end due to the multiplication of parasitic effects. The relay has been taken by novel SOI-like device architectures. In this perspective, this manuscript presents the main achievements of our work obtained with a variety of advanced fully depleted SOI MOSFETs, which are very promising candidates for next generation MOSFETs. Their electrical properties have been analyzed by systematic measurements and clarified by analytical models and/or simulations. Ultimately, appropriate applications have been proposed based on their beneficial features.In the first chapter, we briefly addressed the short-channel effects and the diverse technologies to improve device performance. The second chapter was dedicated to the detailed characterization and interesting properties of SOI devices. We have demonstrated excellent gate control and high performance in ultra-thin FD SOI MOSFET. The SCEs are efficiently suppressed by decreasing the body thickness below 7 nm. We have investigated the transport and electrostatic properties as well as the coupling mechanisms. The strong impact of body thickness and temperature range has been outlined. A similar approach was used to investigate and compare vertical double-gate and triple-gate FinFETs. DG FinFETs show enhanced coupling to back-gate bias which is applicable and suitable for dynamic threshold voltage tuning. We have proposed original models explaining the 3D coupling effect in FinFETs and the mobility behavior in ZnO TFTs. Our results pointed on the similarities and differences in SOI and ZnO transistors. According to our low-temperature measurements and new promoted extraction methods, the mobility in ZnO and the quality of ZnO/SiO2 interface are respectable, enabling innovating applications in flexible, transparent and power electronics. In the third chapter, we focused on the mobility behavior in planar SOI and FinFET devices by performing low-temperature magnetoresistance measurements. Unusual mobility curve with multi-branch aspect were obtained when two or more channels coexist and interplay. Another original result in the existence of the geometrical magnetoresistance in triple-gate and even double-gate FinFETs.The operation of a flash memory in FinFETs with ONO buried layer was explored in the forth chapter. Two charge injection mechanisms were proposed and systematically investigated. We have discussed the role of device geometry and temperature. Our novel ONO FinFlash concept has several distinct advantages: double-bit operation, separation of storage medium and reading interface, reliability and scalability. In the final chapter, we explored the avenue of unified memory, by combining nonvolatile and 1T-DRAM operations in a single transistor. The key result is that the transient current, relevant for 1T-DRAM operation, depends on the nonvolatile charges stored in the nitride buried layer. On the other hand, the trapped charges are not disturbed by the 1T-DRAM operation. Our experimental data offers the proof-of-concept for such advanced memory. The performance of the unified/multi-bit memory is already decent but will greatly improve in the coming years by processing dedicated devices.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Synthesis of silicon nanocrystal memories by sputter deposition

    Get PDF
    In Silizium-Nanokristall-Speichern werden im Gate-Oxid eines Feldeffekttransistors eingebettete Silizium Nanokristalle genutzt, um Elektronen lokal zu speichern. Die gespeicherte Ladung bestimmt dann den Zustand der Speicherzelle. Ein wichtiger Aspekt in der Technologie dieser Speicher ist die Erzeugung der Nanokristalle mit einerwohldefinierten Größenverteilung und einem bestimmten Konzentrationsprofil im Gate-Oxid. In der vorliegenden Arbeit wurde dazu ein sehr flexibler Ansatz untersucht: die thermische Ausheilung von SiO2/SiOx (x < 2) Stapelschichten. Es wurde ein Sputterverfahren entwickelt, das die Abscheidung von SiO2 und SiOx Schichten beliebiger Zusammensetzung erlaubt. Die Bildung der Nanokristalle wurde in Abhängigkeit vom Ausheilregime und der SiOx Zusammensetzung charakterisiert, wobei unter anderem Methoden wie Photolumineszenz, Infrarot-Absorption, spektroskopische Ellipsometrie und Elektronenmikroskopie eingesetzt wurden. Anhand von MOS-Kondensatoren wurden die elektrischen Eigenschaften derart hergestellter Speicherzellen untersucht. Die Funktionalität der durch Sputterverfahren hergestellten Nanokristall-Speicher wurde erfolgreich nachgewiesen.In silicon nanocrystal memories, electronic charge is discretely stored in isolated silicon nanocrystals embedded in the gate oxide of a field effect transistor. The stored charge determines the state of the memory cell. One important aspect in the technology of silicon nanocrystal memories is the formation of nanocrystals near the SiO2-Si interface, since both, the size distribution and the depth profile of the area density of nanocrystals must be controlled. This work has focussed on the formation of gate oxide stacks with embedded nanocrystals using a very flexible approach: the thermal annealing of SiO2/SiOx (x < 2) stacks. A sputter deposition method allowing to deposit SiO2 and SiOx films of arbitrary composition has been developed and optimized. The formation of Si NC during thermal annealing of SiOX has been investigated experimentally as a function of SiOx composition and annealing regime using techniques such as photoluminescence, infrared absorption, spectral ellipsometry, and electron microscopy. To proof the concept, silicon nanocrystal memory capacitors have been prepared and characterized. The functionality of silicon nanocrystal memory devices based on sputtered gate oxide stacks has been successfully demonstrated

    A novel low-temperature growth method of silicon structures and application in flash memory.

    Get PDF
    Flash memories are solid-state non-volatile memories. They play a vital role especially in information storage in a wide range of consumer electronic devices and applications including smart phones, digital cameras, laptop computers, and satellite navigators. The demand for high density flash has surged as a result of the proliferation of these consumer electronic portable gadgets and the more features they offer – wireless internet, touch screen, video capabilities. The increase in the density of flash memory devices over the years has come as a result of continuous memory cell-size reduction. This size scaling is however approaching a dead end and it is widely agreed that further reduction beyond the 20 nm technological node is going to be very difficult, as it would result to challenges such as cross-talk or cell-to-cell interference, a high statistical variation in the number of stored electrons in the floating gate and high leakage currents due to thinner tunnel oxides. Because of these challenges a wide range of solutions in form of materials and device architectures are being investigated. Among them is three-dimensional (3-D) flash, which is widely acclaimed as the ideal solution, as they promise the integration of long-time retention and ultra-high density cells without compromising device reliability. However, current high temperature (>600 °C) growth techniques of the Polycrystalline silicon floating gate material are incompatible with 3-D flash memory; with vertically stacked memory layers, which require process temperatures to be ≤ 400 °C. There already exist some low temperature techniques for producing polycrystalline silicon such as laser annealing, solid-phase crystallization of amorphous silicon and metal-induced crystallization. However, these have some short-comings which make them not suitable for use in 3-D flash memory, e.g. the high furnace annealing temperatures (700 °C) in solid-phase crystallization of amorphous silicon which could potentially damage underlying memory layers in 3-D flash, and the metal contaminants in metal-induced crystallization which is a potential source of high leakage currents. There is therefore a need for alternative low temperature techniques that would be most suitable for flash memory purposes. With reference to the above, the main objective of this research was to develop a novel low temperature method for growing silicon structures at ≤ 400 °C. This thesis thus describes the development of a low-temperature method for polycrystalline silicon growth and the application of the technique in a capacitor-like flash memory device. It has been demonstrated that silicon structures with polycrystalline silicon-like properties can be grown at ≤ 400 °C in a 13.56 MHz radio frequency (RF) plasma-enhanced chemical vapour deposition (PECVD) reactor with the aid of Nickel Formate Dihydrate (NFD). It is also shown that the NFD coated on the substrates, thermally decomposes in-situ during the deposition process forming Ni particles that act as nucleation and growth sites of polycrystalline silicon. Silicon films grown by this technique and without annealing, have exhibited optical band gaps of ~ 1.2 eV compared to 1.78 eV for films grown under identical conditions but without the substrate being coated. These values were determined from UV-Vis spectroscopy and Tauc plots. These optical band gaps correspond to polycrystalline silicon and amorphous silicon respectively, meaning that the films grown on NFD-coated substrates are polycrystalline silicon while those grown on uncoated substrates remain amorphous. Moreover, this novel technique has been used to fabricate a capacitor-like flash memory that has exhibited hysteresis width corresponding to charge storage density in the order of 1012 cm-2 with a retention time well above 20 days for a device with silicon films grown at 300 °C. Films grown on uncoated films have not exhibit any significant hysteresis, and thus no flash memory-like behaviour. Given that all process temperatures throughout the fabrication of the devices are less than 400 °C and that no annealing of any sort was done on the material and devices, this growth method is thermal budget efficient and meets the crucial process temperature requirements of 3-D flash memory. Furthermore, the technique is glass compatible, which could prove a major step towards the acquisition of flash memory-integrated systems on glass, as well as other applications requiring low temperature polycrystalline silicon

    High performance floating gate memories using graphene as charge storage medium and atomic layer deposited high-k dielectric layers as tunnel barrier

    Get PDF
    Ankara : Materials Science and Nanotechnology Program of the Graduate School of Engineering and Science of Bilkent Univerity, 2013.Thesis (Master's) -- Bilkent University, 2013.Includes bibliographical references leaves 87-98.With the ongoing development in portable electronic devices, low power consumption, improved data retention rate and higher operation speed are the merits demanded by modern non-volatile memory technology. Flash memory devices with discrete charge-trapping media are regarded as an alternative solution to conventional floating gate technology. Flash memories utilizing Sinitride as charge storage media dominate due to enhanced endurance, better scaling capability and simple fabrication. The use of high-k dielectrics as tunnel layer and control layer is also crucial in charge-trap flash memory devices since they allow further scaling and enhanced charge injection without data retention degradation. Atomic layer deposition (ALD) is a powerful technique for the growth of pinhole-free high-k dielectrics with precisely controlled thickness and high conformality. The application of graphene as charge trapping medium in flash memory devices is promising to obtain improved charge storage capability with miniaturization. Graphene acts as an effective charge storage medium due to high density of states in deep energy levels. In this thesis, we fabricate graphene flash memory devices with ALD-grown HfO2/AlN as tunnel layer and Al2O3 as control layer. Graphene oxide nanosheets are derived from the acid exfoliation of natural graphite by Hummers Method. The graphene layer is obtained by spin-coating of water soluble graphene oxide suspension followed by a thermal annealing process. Memory performance including hysteresis window, data retention rate and program transient characteristics for both electron and hole storage mechanisms are determined by performing high frequency capacitance-voltage measurements. For comparing the memory effect of graphene on device performance, we also fabricate and characterize identical flash capacitors with Si-rich SiN layer as charge storage medium and HfO2 as tunnel oxide layer. The Si-nitride films are deposited with high SiH4/NH3 gas flow ratio by plasma-enhanced chemical vapor deposition system. Graphene flash memory devices exhibit superior memory performance. Compared with Si-nitride based cells, hysteresis window, retention performance and programming speed are both significantly enhanced with the use of graphene. For electron storage, graphene flash memory provides a saturated flat band shift of 1.2 V at a write-pulse duration of 100 ns with a voltage bias of 5 V. The high density of states and high work function of graphene improve the memory performance, leading to increased charge storage capability, enhanced retention rate and faster programming operation at low voltages. The use of graphene as charge storage medium and ALD-grown high-k dielectrics as tunnel and control layers improves the existing flash technology and satisfies the requirements including scalability, at least 10-year retention, low voltage operation, faster write performance and CMOS-compatible fabrication.Kocaay, DenizM.S

    Study of organic molecules and nano-particle/polymer composites for flash memory and switch applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 205-218).Organic materials exhibit fascinating optical and electronic properties which motivate their hybridization with traditional silicon-based electronics in order to achieve novel functionalities and address scaling challenges of these devices. The application of organic molecules and nano-particle/polymer composites for flash memory and switch applications is studied in this dissertation. Facilitating data storage on individual small molecules as the approach the limits in miniaturization for ultra-high density and low power consumption media may enable orders of magnitude increase in data storage capabilities. A floating gate consisting of a thin film of molecules would provide the advantage of a uniform set of identical nano-structured charge storage elements with high molecular area densities which can result in a several-fold higher density of charge-storage sites as compared to quantum dot (QD) memory and even SONOS devices. Additionally, the discrete charge storage in such nano-segmented floating gate designs limits the impact of any tunnel oxide defects to the charge stored in the proximity of the defect site. The charge retention properties of molecular films was investigated in this dissertation by injecting charges via a biased conductive atomic force microscopy (AFM) tip into molecules comprising the thin films. The Kelvin force microscopy (KFM) results revealed minimal changes in the spatial extent of the charge trapping over time after initial injection. Fabricated memory capacitors show a device durability over 105 program/erase cycles and hysteresis window of up to 12.8 V, corresponding to stored charge densities as high as 5.4x 1013 cm-2, suggesting the potential use of organic molecules in high storage capacity memory cells. Also, these results demonstrate that charge storage properties of the molecular trapping layer can be engineered by rearranging molecules and their a-orbital overlaps via addition of dopant molecules. Finally, the design, fabrication, testing and evaluation of a MEMS switch that employs viscoelastic organic polymers doped with nano-particles as the active material is presented in this dissertation. The conductivity of the nano-composite changes 10,000-fold as it is mechanically compressed. In this demonstration the compressive squeeze is applied with electric actuation. Since squeezing initiates the switching behavior, the device is referred to as a "squitch". The squitch is essentially a new type of FET that is compatible with large area processing with printing or photolithography, on rigid or flexible substrates and can exhibit large on-to-off conduction ratio.by Sarah Paydavosi.Ph.D

    Synthesis of silicon nanocrystal memories by sputter deposition

    Get PDF
    In Silizium-Nanokristall-Speichern werden im Gate-Oxid eines Feldeffekttransistors eingebettete Silizium Nanokristalle genutzt, um Elektronen lokal zu speichern. Die gespeicherte Ladung bestimmt dann den Zustand der Speicherzelle. Ein wichtiger Aspekt in der Technologie dieser Speicher ist die Erzeugung der Nanokristalle mit einerwohldefinierten Größenverteilung und einem bestimmten Konzentrationsprofil im Gate-Oxid. In der vorliegenden Arbeit wurde dazu ein sehr flexibler Ansatz untersucht: die thermische Ausheilung von SiO2/SiOx (x < 2) Stapelschichten. Es wurde ein Sputterverfahren entwickelt, das die Abscheidung von SiO2 und SiOx Schichten beliebiger Zusammensetzung erlaubt. Die Bildung der Nanokristalle wurde in Abhängigkeit vom Ausheilregime und der SiOx Zusammensetzung charakterisiert, wobei unter anderem Methoden wie Photolumineszenz, Infrarot-Absorption, spektroskopische Ellipsometrie und Elektronenmikroskopie eingesetzt wurden. Anhand von MOS-Kondensatoren wurden die elektrischen Eigenschaften derart hergestellter Speicherzellen untersucht. Die Funktionalität der durch Sputterverfahren hergestellten Nanokristall-Speicher wurde erfolgreich nachgewiesen.In silicon nanocrystal memories, electronic charge is discretely stored in isolated silicon nanocrystals embedded in the gate oxide of a field effect transistor. The stored charge determines the state of the memory cell. One important aspect in the technology of silicon nanocrystal memories is the formation of nanocrystals near the SiO2-Si interface, since both, the size distribution and the depth profile of the area density of nanocrystals must be controlled. This work has focussed on the formation of gate oxide stacks with embedded nanocrystals using a very flexible approach: the thermal annealing of SiO2/SiOx (x < 2) stacks. A sputter deposition method allowing to deposit SiO2 and SiOx films of arbitrary composition has been developed and optimized. The formation of Si NC during thermal annealing of SiOX has been investigated experimentally as a function of SiOx composition and annealing regime using techniques such as photoluminescence, infrared absorption, spectral ellipsometry, and electron microscopy. To proof the concept, silicon nanocrystal memory capacitors have been prepared and characterized. The functionality of silicon nanocrystal memory devices based on sputtered gate oxide stacks has been successfully demonstrated

    High-Density Solid-State Memory Devices and Technologies

    Get PDF
    This Special Issue aims to examine high-density solid-state memory devices and technologies from various standpoints in an attempt to foster their continuous success in the future. Considering that broadening of the range of applications will likely offer different types of solid-state memories their chance in the spotlight, the Special Issue is not focused on a specific storage solution but rather embraces all the most relevant solid-state memory devices and technologies currently on stage. Even the subjects dealt with in this Special Issue are widespread, ranging from process and design issues/innovations to the experimental and theoretical analysis of the operation and from the performance and reliability of memory devices and arrays to the exploitation of solid-state memories to pursue new computing paradigms

    Computational and Numerical Simulations

    Get PDF
    Computational and Numerical Simulations is an edited book including 20 chapters. Book handles the recent research devoted to numerical simulations of physical and engineering systems. It presents both new theories and their applications, showing bridge between theoretical investigations and possibility to apply them by engineers of different branches of science. Numerical simulations play a key role in both theoretical and application oriented research
    corecore