116 research outputs found

    Design, construction and validation of a registering and analysis system for the electrophysiological properties of an isolated porcine heart model

    Get PDF
    Cardiac fibrillation is as a relevant subject of study in cardiovascular diseases. Its initiation mechanisms, maintenance and interruption processes are still partially misunderstood. Quantifying the complexity of electrocardiographic signals allows researchers to objectify induced modifications by a particular therapeutic treatment. With the aim to study alterations in the cardiac substrate, the objective of this project is to design, build and validate a real-time registering and analysis system for the electrophysiological properties of the epicardial and endocardial tissue of an isolated porcine heart model. We propose a functional computer user interface. We designed and implemented a platform capable of real-time quantifying electrocardiographic signals. The corresponding methodology consists of the use of a combination of time and frequency domain analysis algorithms divided in separate blocks that work together. While the first block detects the heart rhythm and ECG features according to a Pan and Tompkins based algorithm, the second block detects the fundamental frequency of the myocardial activations based on frequency analysis; and the third one detects ventricular fibrillation episodes based on a phase-space reconstruction of the signal. This system was tested by developing an electrocardiographic waveform simulator. We performed five ex-vivo experiments for validation of the platform using isolated porcine hearts in a Langendorff bioreactor, by means of a controlled backward perfusion of the coronary arteries. Whole-heart optical mapping was carried out as the gold standard, and comparisons between the off-line analysis of the optical recordings and real-time results obtained with the developed platform were made. Results showed that electrical signals registered with the developed platform were in accordance with dominant frequency maps obtained from the off-line analysis of the corresponding optical recordings. The developed platform was able to real-time differentiate onset of ventricular fibrillation events from sinus rhythm episodes, as well as automatically detect myocardial rhythm and fundamental frequency of myocardial activations. We conclude that the proposed system is a versatile tool that allows us to easily, quickly and automatically real-timely quantify in a reproducible way electrocardiographic recordings of isolated hearts in a Langendorff bioreactor. This, in turn, would help in the performance of various clinical applications: from ex-vivo studies of the cardiac substrate to the testing of potential antiarrhythmic drugs.Ingeniería Biomédic

    Non-invasive identification of atrial fibrillation drivers

    Full text link
    Atrial fibrillation (AF) is one of the most common cardiac arrhythmias. Nowadays the fibrillatory process is known to be provoked by the high-frequency reentrant activity of certain atrial regions that propagates the fibrillatory activity to the rest of the atrial tissue, and the electrical isolation of these key regions has demonstrated its effectiveness in terminating the fibrillatory process. The location of the dominant regions represents a major challenge in the diagnosis and treatment of this arrhythmia. With the aim to detect and locate the fibrillatory sources prior to surgical procedure, non-invasive methods have been developed such as body surface electrical mapping (BSPM) which allows to record with high spatial resolution the electrical activity on the torso surface or the electrocardiographic imaging (ECGI) which allows to non-invasively reconstruct the electrical activity in the atrial surface. Given the novelty of these systems, both technologies suffer from a lack of scientific knowledge about the physical and technical mechanisms that support their operation. Therefore, the aim of this thesis is to increase that knowledge, as well as studying the effectiveness of these technologies for the localization of dominant regions in patients with AF. First, it has been shown that BSPM systems are able to noninvasively identify atrial rotors by recognizing surface rotors after band-pass filtering. Furthermore, the position of such surface rotors is related to the atrial rotor location, allowing the distinction between left or right atrial rotors. Moreover, it has been found that the surface electrical maps in AF suffer a spatial smoothing effect by the torso conductor volume, so the surface electrical activity can be studied with a relatively small number of electrodes. Specifically, it has been seen that 12 uniformly distributed electrodes are sufficient for the correct identification of atrial dominant frequencies, while at least 32 leads are needed for non-invasive identification of atrial rotors. Secondly, the effect of narrowband filtering on the effectiveness of the location of reentrant patterns was studied. It has been found that this procedure allows isolating the reentrant electrical activity caused by the rotor, increasing the detection rate for both invasive and surface maps. However, the spatial smoothing caused by the regularization of the ECGI added to the temporal filtering causes a large increase in the spurious reentrant activity, making it difficult to detect real reentrant patterns. However, it has been found that maps provided by the ECGI without temporal filtering allow the correct detection of reentrant activity, so narrowband filtering should be applied for intracavitary or surface signal only. Finally, we studied the stability of the markers used to detect dominant regions in ECGI, such as frequency maps or the rotor presence. It has been found that in the presence of alterations in the conditions of the inverse problem, such as electrical or geometrical noise, these markers are significantly more stable than the ECGI signal morphology from which they are extracted. In addition, a new methodology for error reduction in the atrial spatial location based on the curvature of the curve L has been proposed. The results presented in this thesis showed that BSPM and ECGI systems allows to non-invasively locate the presence of high-frequency rotors, responsible for the maintenance of AF. This detection has been proven to be unambiguous and robust, and the physical and technical mechanisms that support this behavior have been studied. These results indicate that both non-invasive systems provide information of great clinical value in the treatment of AF, so their use can be helpful for selecting and planning atrial ablation procedures.La fibrilación auricular (FA) es una de las arritmias cardiacas más frecuentes. Hoy en día se sabe que el proceso fibrilatorio está provocado por la actividad reentrante a alta frecuencia de ciertas regiones auriculares que propagan la actividad fibrilatoria en el resto del tejido auricular, y se ha demostrado que el aislamiento eléctrico de estas regiones dominantes permite detener el proceso fibrilatorio. La localización de las regiones dominantes supone un gran reto en el diagnóstico y tratamiento de la FA. Con el objetivo de poder localizar las fuentes fibrilatorias con anterioridad al procedimiento quirúrgico, se han desarrollado métodos no invasivos como la cartografía eléctrica de superficie (CES) que registra con gran resolución espacial la actividad eléctrica en la superficie del torso o la electrocardiografía por imagen (ECGI) que permite reconstruir la actividad eléctrica en la superficie auricular. Dada la novedad de estos sistemas, existe una falta de conocimiento científico sobre los mecanismos físicos y técnicos que sustentan su funcionamiento. Por lo tanto, el objetivo de esta tesis es aumentar dicho conocimiento, así como estudiar la eficacia de ambas tecnologías para la localización de regiones dominantes en pacientes con FA. En primer lugar, ha visto que los sistemas CES permiten identificar rotores auriculares mediante el reconocimiento de rotores superficiales tras el filtrado en banda estrecha. Además, la posición de los rotores superficiales está relacionada con la localización de dichos rotores, permitiendo la distinción entre rotores de aurícula derecha o izquierda. Por otra parte, se ha visto que los mapas eléctricos superficiales durante FA sufren una gran suavizado espacial por el efecto del volumen conductor del torso, lo que permite que la actividad eléctrica superficial pueda ser estudiada con un número relativamente reducido de electrodos. Concretamente, se ha visto que 12 electrodos uniformemente distribuidos son suficientes para una correcta identificación de frecuencias dominantes, mientras que son necesarios al menos 32 para una correcta identificación de rotores auriculares. Por otra parte, también se ha estudiado el efecto del filtrado en banda estrecha sobre la eficacia de la localización de patrones reentrantes. Así, se ha visto que este procedimiento permite aislar la actividad eléctrica reentrante provocada por el rotor, aumentando la tasa de detección tanto para señal obtenida de manera invasiva como para los mapas superficiales. No obstante, este filtrado temporal sobre la señal de ECGI provoca un gran aumento de la actividad reentrante espúrea que dificulta la detección de patrones reentrantes reales. Sin embargo, los mapas ECGI sin filtrado temporal permiten la detección correcta de la actividad reentrante, por lo el filtrado debería ser aplicado únicamente para señal intracavitaria o superficial. Por último, se ha estudiado la estabilidad de los marcadores utilizados en ECGI para detectar regiones dominantes, como son los mapas de frecuencia o la presencia de rotores. Se ha visto que en presencia de alteraciones en las condiciones del problema inverso, como ruido eléctrico o geométrico, estos marcadores son significativamente más estables que la morfología de la propia señal ECGI. Además, se ha propuesto una nueva metodología para la reducción del error en la localización espacial de la aurícula basado en la curvatura de la curva L. Los resultados presentados en esta tesis revelan que los sistemas de CES y ECGI permiten localizar de manera no invasiva la presencia de rotores de alta frecuencia. Esta detección es univoca y robusta, y se han estudiado los mecanismos físicos y técnicos que sustentan dicho comportamiento. Estos resultados indican que ambos sistemas no invasivos proporcionan información de gran valor clínico en el tratamiento de la FA, por lo que su uso puede ser de gran ayuda para la selección y planificaciLa fibril·lació auricular (FA) és una de les arítmies cardíaques més freqüents. Hui en dia es sabut que el procés fibrilatori està provocat per l'activitat reentrant de certes regions auriculars que propaguen l'activitat fibril·latoria a la resta del teixit auricular, i s'ha demostrat que l'aïllament elèctric d'aquestes regions dominants permet aturar el procés fibrilatori. La localització de les regions dominants suposa un gran repte en el diagnòstic i tractament d'aquesta arítmia. Amb l'objectiu de poder localitzar fonts fibril·latories amb anterioritat al procediment quirúrgic s'han desenvolupat mètodes no invasius com la cartografia elèctrica de superfície (CES) que registra amb gran resolució espacial l'activitat elèctrica en la superfície del tors o l'electrocardiografia per imatge (ECGI) que permet obtenir de manera no invasiva l'activitat elèctrica en la superfície auricular. Donada la relativa novetat d'aquests sistemes, existeix una manca de coneixement científic sobre els mecanismes físics i tècnics que sustenten el seu funcionament. Per tant, l'objectiu d'aquesta tesi és augmentar aquest coneixement, així com estudiar l'eficàcia d'aquestes tecnologies per a la localització de regions dominants en pacients amb FA. En primer lloc, s'ha vist que els sistemes CES permeten identificar rotors auriculars mitjançant el reconeixement de rotors superficials després del filtrat en banda estreta. A més, la posició dels rotors superficials està relacionada amb la localització d'aquests rotors, permetent la distinció entre rotors de aurícula dreta o esquerra. També s'ha vist que els mapes elèctrics superficials durant FA pateixen un gran suavitzat espacial per l'efecte del volum conductor del tors, el que permet que l'activitat elèctrica superficial pugui ser estudiada amb un nombre relativament reduït d'elèctrodes. Concretament, s'ha vist que 12 elèctrodes uniformement distribuïts són suficients per a una correcta identificació de freqüències dominants auriculars, mentre que són necessaris almenys 32 per a una correcta identificació de rotors auriculars. D'altra banda, també s'ha estudiat l'efecte del filtrat en banda estreta sobre l'eficàcia de la localització de patrons reentrants. Així, s'ha vist que aquest procediment permet aïllar l'activitat elèctrica reentrant provocada pel rotor, augmentant la taxa de detecció tant pel senyal obtingut de manera invasiva com per als mapes superficials. No obstant això, aquest filtrat temporal sobre el senyal de ECGI provoca un gran augment de l'activitat reentrant espúria que dificulta la detecció de patrons reentrants reals. A més, els mapes proporcionats per la ECGI sense filtrat temporal permeten la detecció correcta de l'activitat reentrant, per la qual cosa el filtrat hauria de ser aplicat únicament per a senyal intracavitària o superficial. Per últim, s'ha estudiat l'estabilitat dels marcadors utilitzats en ECGI per a detectar regions auriculars dominants, com són els mapes de freqüència o la presència de rotors. S'ha vist que en presència d'alteracions en les condicions del problema invers, com soroll elèctric o geomètric, aquests marcadors són significativament més estables que la morfologia del mateix senyal ECGI. A més, s'ha proposat una nova metodologia per a la reducció de l'error en la localització espacial de l'aurícula basat en la curvatura de la corba L. Els resultats presentats en aquesta tesi revelen que els sistemes de CES i ECGI permeten localitzar de manera no invasiva la presència de rotors d'alta freqüència. Aquesta detecció és unívoca i robusta, i s'han estudiat els mecanismes físics i tècnics que sustenten aquest comportament. Aquests resultats indiquen que els dos sistemes no invasius proporcionen informació de gran valor clínic en el tractament de la FA, pel que el seu ús pot ser de gran ajuda per a la selecció i planificació de procediments d'ablació auricular.Rodrigo Bort, M. (2016). Non-invasive identification of atrial fibrillation drivers [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/75346TESISPremios Extraordinarios de tesis doctorale

    Numerical implementation of the Hilbert transform

    Get PDF
    Many people have abnormal heartbeats from time to time. A Holter monitor is a device used to record the electrical impulses of the heart when people do ordinary activities. Holter monitoring systems that can record heart rate and rhythm when you feel chest pain or symptoms of an irregular heartbeat (called an arrhythmia) and automatically perform electrocardiogram (ECG) signal analysis are desirable.The use of the Hilbert transform (HT) in the area of electrocardiogram analysis is investigated. A property of the Hilbert transform, i.e., to form the analytic signal, was used in this thesis. Subsequently pattern recognition can be used to analyse the ECG data and lossless compression techniques can be used to reduce the ECG data for storage.The thesis discusses one part of the Holter Monitoring System, Input processing.Four different approaches, including the Time-Domain approach, the Frequency-Domain approach, the Boche approach and the Remez filter approach for calculating the Hilbert transform of an ECG wave are discussed in this thesis. By comparing them from the running time and the ease of software and hardware implementations, an efficient approach (the Remez approach) for use in calculating the Hilbert transform to build a Holter Monitoring System is proposed. Using the Parks-McClellan algorithm, the Remez approach was present, and a digital filter was developed to filter the data sequence. Accurate determination of the QRS complex, in particular, accurate detection of the wave peak, is important in ECG analysis and is another task in this thesis. A program was developed to detect the wave peak in an ECG wave.The whole algorithm is implemented using Altera’s Nios SOPC (system on a program chip) Builder system development tool. The performance of the algorithm was tested using the standard ECG waveform records from the MIT-BIH Arrhythmia database. The results will be used in pattern recognition to judge whether the ECG wave is normal or abnormal

    Analysis of Atrial Electrograms

    Get PDF
    This work provides methods to measure and analyze features of atrial electrograms - especially complex fractionated atrial electrograms (CFAEs) - mathematically. Automated classification of CFAEs into clinical meaningful classes is applied and the newly gained electrogram information is visualized on patient specific 3D models of the atria. Clinical applications of the presented methods showed that quantitative measures of CFAEs reveal beneficial information about the underlying arrhythmia

    Automatic analysis and classification of cardiac acoustic signals for long term monitoring

    Get PDF
    Objective: Cardiovascular diseases are the leading cause of death worldwide resulting in over 17.9 million deaths each year. Most of these diseases are preventable and treatable, but their progression and outcomes are significantly more positive with early-stage diagnosis and proper disease management. Among the approaches available to assist with the task of early-stage diagnosis and management of cardiac conditions, automatic analysis of auscultatory recordings is one of the most promising ones, since it could be particularly suitable for ambulatory/wearable monitoring. Thus, proper investigation of abnormalities present in cardiac acoustic signals can provide vital clinical information to assist long term monitoring. Cardiac acoustic signals, however, are very susceptible to noise and artifacts, and their characteristics vary largely with the recording conditions which makes the analysis challenging. Additionally, there are challenges in the steps used for automatic analysis and classification of cardiac acoustic signals. Broadly, these steps are the segmentation, feature extraction and subsequent classification of recorded signals using selected features. This thesis presents approaches using novel features with the aim to assist the automatic early-stage detection of cardiovascular diseases with improved performance, using cardiac acoustic signals collected in real-world conditions. Methods: Cardiac auscultatory recordings were studied to identify potential features to help in the classification of recordings from subjects with and without cardiac diseases. The diseases considered in this study for the identification of the symptoms and characteristics are the valvular heart diseases due to stenosis and regurgitation, atrial fibrillation, and splitting of fundamental heart sounds leading to additional lub/dub sounds in the systole or diastole interval of a cardiac cycle. The localisation of cardiac sounds of interest was performed using an adaptive wavelet-based filtering in combination with the Shannon energy envelope and prior information of fundamental heart sounds. This is a prerequisite step for the feature extraction and subsequent classification of recordings, leading to a more precise diagnosis. Localised segments of S1 and S2 sounds, and artifacts, were used to extract a set of perceptual and statistical features using wavelet transform, homomorphic filtering, Hilbert transform and mel-scale filtering, which were then fed to train an ensemble classifier to interpret S1 and S2 sounds. Once sound peaks of interest were identified, features extracted from these peaks, together with the features used for the identification of S1 and S2 sounds, were used to develop an algorithm to classify recorded signals. Overall, 99 features were extracted and statistically analysed using neighborhood component analysis (NCA) to identify the features which showed the greatest ability in classifying recordings. Selected features were then fed to train an ensemble classifier to classify abnormal recordings, and hyperparameters were optimized to evaluate the performance of the trained classifier. Thus, a machine learning-based approach for the automatic identification and classification of S1 and S2, and normal and abnormal recordings, in real-world noisy recordings using a novel feature set is presented. The validity of the proposed algorithm was tested using acoustic signals recorded in real-world, non-controlled environments at four auscultation sites (aortic valve, tricuspid valve, mitral valve, and pulmonary valve), from the subjects with and without cardiac diseases; together with recordings from the three large public databases. The performance metrics of the methodology in relation to classification accuracy (CA), sensitivity (SE), precision (P+), and F1 score, were evaluated. Results: This thesis proposes four different algorithms to automatically classify fundamental heart sounds – S1 and S2; normal fundamental sounds and abnormal additional lub/dub sounds recordings; normal and abnormal recordings; and recordings with heart valve disorders, namely the mitral stenosis (MS), mitral regurgitation (MR), mitral valve prolapse (MVP), aortic stenosis (AS) and murmurs, using cardiac acoustic signals. The results obtained from these algorithms were as follows: • The algorithm to classify S1 and S2 sounds achieved an average SE of 91.59% and 89.78%, and F1 score of 90.65% and 89.42%, in classifying S1 and S2, respectively. 87 features were extracted and statistically studied to identify the top 14 features which showed the best capabilities in classifying S1 and S2, and artifacts. The analysis showed that the most relevant features were those extracted using Maximum Overlap Discrete Wavelet Transform (MODWT) and Hilbert transform. • The algorithm to classify normal fundamental heart sounds and abnormal additional lub/dub sounds in the systole or diastole intervals of a cardiac cycle, achieved an average SE of 89.15%, P+ of 89.71%, F1 of 89.41%, and CA of 95.11% using the test dataset from the PASCAL database. The top 10 features that achieved the highest weights in classifying these recordings were also identified. • Normal and abnormal classification of recordings using the proposed algorithm achieved a mean CA of 94.172%, and SE of 92.38%, in classifying recordings from the different databases. Among the top 10 acoustic features identified, the deterministic energy of the sound peaks of interest and the instantaneous frequency extracted using the Hilbert Huang-transform, achieved the highest weights. • The machine learning-based approach proposed to classify recordings of heart valve disorders (AS, MS, MR, and MVP) achieved an average CA of 98.26% and SE of 95.83%. 99 acoustic features were extracted and their abilities to differentiate these abnormalities were examined using weights obtained from the neighborhood component analysis (NCA). The top 10 features which showed the greatest abilities in classifying these abnormalities using recordings from the different databases were also identified. The achieved results demonstrate the ability of the algorithms to automatically identify and classify cardiac sounds. This work provides the basis for measurements of many useful clinical attributes of cardiac acoustic signals and can potentially help in monitoring the overall cardiac health for longer duration. The work presented in this thesis is the first-of-its-kind to validate the results using both, normal and pathological cardiac acoustic signals, recorded for a long continuous duration of 5 minutes at four different auscultation sites in non-controlled real-world conditions.Open Acces

    ECG analysis and classification using CSVM, MSVM and SIMCA classifiers

    Get PDF
    Reliable ECG classification can potentially lead to better detection methods and increase accurate diagnosis of arrhythmia, thus improving quality of care. This thesis investigated the use of two novel classification algorithms: CSVM and SIMCA, and assessed their performance in classifying ECG beats. The project aimed to introduce a new way to interactively support patient care in and out of the hospital and develop new classification algorithms for arrhythmia detection and diagnosis. Wave (P-QRS-T) detection was performed using the WFDB Software Package and multiresolution wavelets. Fourier and PCs were selected as time-frequency features in the ECG signal; these provided the input to the classifiers in the form of DFT and PCA coefficients. ECG beat classification was performed using binary SVM. MSVM, CSVM, and SIMCA; these were subsequently used for simultaneously classifying either four or six types of cardiac conditions. Binary SVM classification with 100% accuracy was achieved when applied on feature-reduced ECG signals from well-established databases using PCA. The CSVM algorithm and MSVM were used to classify four ECG beat types: NORMAL, PVC, APC, and FUSION or PFUS; these were from the MIT-BIH arrhythmia database (precordial lead group and limb lead II). Different numbers of Fourier coefficients were considered in order to identify the optimal number of features to be presented to the classifier. SMO was used to compute hyper-plane parameters and threshold values for both MSVM and CSVM during the classifier training phase. The best classification accuracy was achieved using fifty Fourier coefficients. With the new CSVM classifier framework, accuracies of 99%, 100%, 98%, and 99% were obtained using datasets from one, two, three, and four precordial leads, respectively. In addition, using CSVM it was possible to successfully classify four types of ECG beat signals extracted from limb lead simultaneously with 97% accuracy, a significant improvement on the 83% accuracy achieved using the MSVM classification model. In addition, further analysis of the following four beat types was made: NORMAL, PVC, SVPB, and FUSION. These signals were obtained from the European ST-T Database. Accuracies between 86% and 94% were obtained for MSVM and CSVM classification, respectively, using 100 Fourier coefficients for reconstructing individual ECG beats. Further analysis presented an effective ECG arrhythmia classification scheme consisting of PCA as a feature reduction method and a SIMCA classifier to differentiate between either four or six different types of arrhythmia. In separate studies, six and four types of beats (including NORMAL, PVC, APC, RBBB, LBBB, and FUSION beats) with time domain features were extracted from the MIT-BIH arrhythmia database and the St Petersburg INCART 12-lead Arrhythmia Database (incartdb) respectively. Between 10 and 30 PCs, coefficients were selected for reconstructing individual ECG beats in the feature selection phase. The average classification accuracy of the proposed scheme was 98.61% and 97.78 % using the limb lead and precordial lead datasets, respectively. In addition, using MSVM and SIMCA classifiers with four ECG beat types achieved an average classification accuracy of 76.83% and 98.33% respectively. The effectiveness of the proposed algorithms was finally confirmed by successfully classifying both the six beat and four beat types of signal respectively with a high accuracy ratio

    Multimodal Signal Processing for Diagnosis of Cardiorespiratory Disorders

    Get PDF
    This thesis addresses the use of multimodal signal processing to develop algorithms for the automated processing of two cardiorespiratory disorders. The aim of the first application of this thesis was to reduce false alarm rate in an intensive care unit. The goal was to detect five critical arrhythmias using processing of multimodal signals including photoplethysmography, arterial blood pressure, Lead II and augmented right arm electrocardiogram (ECG). A hierarchical approach was used to process the signals as well as a custom signal processing technique for each arrhythmia type. Sleep disorders are a prevalent health issue, currently costly and inconvenient to diagnose, as they normally require an overnight hospital stay by the patient. In the second application of this project, we designed automated signal processing algorithms for the diagnosis of sleep apnoea with a main focus on the ECG signal processing. We estimated the ECG-derived respiratory (EDR) signal using different methods: QRS-complex area, principal component analysis (PCA) and kernel PCA. We proposed two algorithms (segmented PCA and approximated PCA) for EDR estimation to enable applying the PCA method to overnight recordings and rectify the computational issues and memory requirement. We compared the EDR information against the chest respiratory effort signals. The performance was evaluated using three automated machine learning algorithms of linear discriminant analysis (LDA), extreme learning machine (ELM) and support vector machine (SVM) on two databases: the MIT PhysioNet database and the St. Vincent’s database. The results showed that the QRS area method for EDR estimation combined with the LDA classifier was the highest performing method and the EDR signals contain respiratory information useful for discriminating sleep apnoea. As a final step, heart rate variability (HRV) and cardiopulmonary coupling (CPC) features were extracted and combined with the EDR features and temporal optimisation techniques were applied. The cross-validation results of the minute-by-minute apnoea classification achieved an accuracy of 89%, a sensitivity of 90%, a specificity of 88%, and an AUC of 0.95 which is comparable to the best results reported in the literature

    Standardizing Single-Frame Phase Singularity Identification Algorithms and Parameters in Phase Mapping During Human Atrial Fibrillation

    Full text link
    [EN] Purpose Recent investigations failed to reproduce the positive rotor-guided ablation outcomes shown by initial studies for treating persistent atrial fibrillation (persAF). Phase singularity (PS) is an important feature for AF driver detection, but algorithms for automated PS identification differ. We aim to investigate the performance of four different techniques for automated PS detection. Methods 2048-channel virtual electrogram (VEGM) and electrocardiogram signals were collected for 30 s from 10 patients undergoing persAF ablation. QRST-subtraction was performed and VEGMs were processed using sinusoidal wavelet reconstruction. The phase was obtained using Hilbert transform. PSs were detected using four algorithms: (1) 2D image processing based and neighbor-indexing algorithm; (2) 3D neighbor-indexing algorithm; (3) 2D kernel convolutional algorithm estimating topological charge; (4) topological charge estimation on 3D mesh. PS annotations were compared using the structural similarity index (SSIM) and Pearson's correlation coefficient (CORR). Optimized parameters to improve detection accuracy were found for all four algorithms usingF(beta)score and 10-fold cross-validation compared with manual annotation. Local clustering with density-based spatial clustering of applications with noise (DBSCAN) was proposed to improve algorithms 3 and 4. Results The PS density maps created by each algorithm with default parameters were poorly correlated. Phase gradient threshold and search radius (or kernels) were shown to affect PS detections. The processing times for the algorithms were significantly different (p< 0.0001). TheF(beta)scores for algorithms 1, 2, 3, 3 + DBSCAN, 4 and 4 + DBSCAN were 0.547, 0.645, 0.742, 0.828, 0.656, and 0.831. Algorithm 4 + DBSCAN achieved the best classification performance with acceptable processing time (2.0 +/- 0.3 s). Conclusion AF driver identification is dependent on the PS detection algorithms and their parameters, which could explain some of the inconsistencies in rotor-guided ablation outcomes in different studies. For 3D triangulated meshes, algorithm 4 + DBSCAN with optimal parameters was the best solution for real-time, automated PS detection due to accuracy and speed. Similarly, algorithm 3 + DBSCAN with optimal parameters is preferred for uniform 2D meshes. Such algorithms - and parameters - should be preferred in future clinical studies for identifying AF drivers and minimizing methodological heterogeneities. This would facilitate comparisons in rotor-guided ablation outcomes in future works.This work was supported by the NIHR Leicester Biomedical Research Centre, UK. XL received research grants from Medical Research Council UK (MRC DPFS Ref: MR/S037306/1). TA received research grants from the British Heart Foundation (BHF Project Grant No. PG/18/33/33780), BHF Research Accelerator Award funding and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP, Brazil, Grant No. 2017/00319-8). MG research was funded by a research grant from the Instituto de Salud Carlos III (Ministry of Economy and Competitiveness, Spain: PI13-00903). GN received funding from the British Heart Foundation (BHF Programme Grant, RG/17/3/32774).Li, X.; Almeida, TP.; Dastagir, N.; Guillem Sánchez, MS.; Salinet, J.; Chu, GS.; Stafford, PJ.... (2020). Standardizing Single-Frame Phase Singularity Identification Algorithms and Parameters in Phase Mapping During Human Atrial Fibrillation. Frontiers in Physiology. 11:1-16. https://doi.org/10.3389/fphys.2020.00869S11611ALHUSSEINI, M., VIDMAR, D., MECKLER, G. L., KOWALEWSKI, C. A., SHENASA, F., WANG, P. J., … RAPPEL, W.-J. (2017). Two Independent Mapping Techniques Identify Rotational Activity Patterns at Sites of Local Termination During Persistent Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 28(6), 615-622. doi:10.1111/jce.13177Allessie, M. A., de Groot, N. M. S., Houben, R. P. M., Schotten, U., Boersma, E., Smeets, J. L., & Crijns, H. J. (2010). Electropathological Substrate of Long-Standing Persistent Atrial Fibrillation in Patients With Structural Heart Disease. Circulation: Arrhythmia and Electrophysiology, 3(6), 606-615. doi:10.1161/circep.109.910125Benharash, P., Buch, E., Frank, P., Share, M., Tung, R., Shivkumar, K., & Mandapati, R. (2015). Quantitative Analysis of Localized Sources Identified by Focal Impulse and Rotor Modulation Mapping in Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 8(3), 554-561. doi:10.1161/circep.115.002721BRAY, M.-A., LIN, S.-F., ALIEV, R. R., ROTH, B. J., & WIKSWO, J. P. (2001). Experimental and Theoretical Analysis of Phase Singularity Dynamics in Cardiac Tissue. Journal of Cardiovascular Electrophysiology, 12(6), 716-722. doi:10.1046/j.1540-8167.2001.00716.xBray, M.-A., & Wikswo, J. P. (2002). Use of topological charge to determine filament location and dynamics in a numerical model of scroll wave activity. IEEE Transactions on Biomedical Engineering, 49(10), 1086-1093. doi:10.1109/tbme.2002.803516Buch, E., Share, M., Tung, R., Benharash, P., Sharma, P., Koneru, J., … Shivkumar, K. (2016). Long-term clinical outcomes of focal impulse and rotor modulation for treatment of atrial fibrillation: A multicenter experience. Heart Rhythm, 13(3), 636-641. doi:10.1016/j.hrthm.2015.10.031Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679-698. doi:10.1109/tpami.1986.4767851Clayton, R. H., & Nash, M. P. (2015). Analysis of Cardiac Fibrillation Using Phase Mapping. Cardiac Electrophysiology Clinics, 7(1), 49-58. doi:10.1016/j.ccep.2014.11.011Davis, J., & Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd international conference on Machine learning - ICML ’06. doi:10.1145/1143844.1143874De Groot, N. M. S., Houben, R. P. M., Smeets, J. L., Boersma, E., Schotten, U., Schalij, M. J., … Allessie, M. A. (2010). Electropathological Substrate of Longstanding Persistent Atrial Fibrillation in Patients With Structural Heart Disease. Circulation, 122(17), 1674-1682. doi:10.1161/circulationaha.109.910901Earley, M. J., Abrams, D. J. R., Sporton, S. C., & Schilling, R. J. (2006). Validation of the Noncontact Mapping System in the Left Atrium During Permanent Atrial Fibrillation and Sinus Rhythm. Journal of the American College of Cardiology, 48(3), 485-491. doi:10.1016/j.jacc.2006.04.069Gianni, C., Mohanty, S., Di Biase, L., Metz, T., Trivedi, C., Gökoğlan, Y., … Natale, A. (2016). Acute and early outcomes of focal impulse and rotor modulation (FIRM)-guided rotors-only ablation in patients with nonparoxysmal atrial fibrillation. Heart Rhythm, 13(4), 830-835. doi:10.1016/j.hrthm.2015.12.028GOJRATY, S., LAVI, N., VALLES, E., KIM, S. J., MICHELE, J., & GERSTENFELD, E. P. (2009). Dominant Frequency Mapping of Atrial Fibrillation: Comparison of Contact and Noncontact Approaches. Journal of Cardiovascular Electrophysiology, 20(9), 997-1004. doi:10.1111/j.1540-8167.2009.01488.xGrandi, E., Pandit, S. V., Voigt, N., Workman, A. J., Dobrev, D., Jalife, J., & Bers, D. M. (2011). Human Atrial Action Potential and Ca 2+ Model. Circulation Research, 109(9), 1055-1066. doi:10.1161/circresaha.111.253955Gray, R. A., Pertsov, A. M., & Jalife, J. (1998). Spatial and temporal organization during cardiac fibrillation. Nature, 392(6671), 75-78. doi:10.1038/32164Guillem, M. S., Climent, A. M., Millet, J., Arenal, Á., Fernández-Avilés, F., Jalife, J., … Berenfeld, O. (2013). Noninvasive Localization of Maximal Frequency Sites of Atrial Fibrillation by Body Surface Potential Mapping. Circulation: Arrhythmia and Electrophysiology, 6(2), 294-301. doi:10.1161/circep.112.000167Guillem, M. S., Climent, A. M., Rodrigo, M., Fernández-Avilés, F., Atienza, F., & Berenfeld, O. (2016). Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovascular Research, 109(4), 480-492. doi:10.1093/cvr/cvw011Gurevich, D. R., & Grigoriev, R. O. (2019). Robust approach for rotor mapping in cardiac tissue. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(5), 053101. doi:10.1063/1.5086936HAISSAGUERRE, M., HOCINI, M., SHAH, A. J., DERVAL, N., SACHER, F., JAIS, P., & DUBOIS, R. (2013). Noninvasive Panoramic Mapping of Human Atrial Fibrillation Mechanisms: A Feasibility Report. Journal of Cardiovascular Electrophysiology, 24(6), 711-717. doi:10.1111/jce.12075Iyer, A. N., & Gray, R. A. (2001). An Experimentalist’s Approach to Accurate Localization of Phase Singularities during Reentry. Annals of Biomedical Engineering, 29(1), 47-59. doi:10.1114/1.1335538Jalife, J. (2002). Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovascular Research, 54(2), 204-216. doi:10.1016/s0008-6363(02)00223-7Jalife, J., Filgueiras Rama, D., & Berenfeld, O. (2015). Letter by Jalife et al Regarding Article, «Quantitative Analysis of Localized Sources Identified by Focal Impulse and Rotor Modulation Mapping in Atrial Fibrillation». Circulation: Arrhythmia and Electrophysiology, 8(5), 1296-1298. doi:10.1161/circep.115.003324Jarman, J. W. E., Wong, T., Kojodjojo, P., Spohr, H., Davies, J. E., Roughton, M., … Peters, N. S. (2012). Spatiotemporal Behavior of High Dominant Frequency During Paroxysmal and Persistent Atrial Fibrillation in the Human Left Atrium. Circulation: Arrhythmia and Electrophysiology, 5(4), 650-658. doi:10.1161/circep.111.967992Kuklik, P., Zeemering, S., Maesen, B., Maessen, J., Crijns, H. J., Verheule, S., … Schotten, U. (2015). Reconstruction of Instantaneous Phase of Unipolar Atrial Contact Electrogram Using a Concept of Sinusoidal Recomposition and Hilbert Transform. IEEE Transactions on Biomedical Engineering, 62(1), 296-302. doi:10.1109/tbme.2014.2350029Identification of Rotors during Human Atrial Fibrillation Using Contact Mapping and Phase Singularity Detection: Technical Considerations. (2017). IEEE Transactions on Biomedical Engineering, 64(2), 310-318. doi:10.1109/tbme.2016.2554660Lee, Y.-S., Song, J.-S., Hwang, M., Lim, B., Joung, B., & Pak, H.-N. (2016). A New Efficient Method for Detecting Phase Singularity in Cardiac Fibrillation. PLOS ONE, 11(12), e0167567. doi:10.1371/journal.pone.0167567Li, X., Chu, G. S., Almeida, T. P., Salinet, J. L., Dastagir, N., Mistry, A. R., … André Ng, G. (2017). 5Characteristics of ablated rotors in terminating persistent atrial fibrillation using non-contact mapping. EP Europace, 19(suppl_1), i3-i3. doi:10.1093/europace/eux283.145Li, X., Salinet, J. L., Almeida, T. P., Vanheusden, F. J., Chu, G. S., Ng, G. A., & Schlindwein, F. S. (2017). An interactive platform to guide catheter ablation in human persistent atrial fibrillation using dominant frequency, organization and phase mapping. Computer Methods and Programs in Biomedicine, 141, 83-92. doi:10.1016/j.cmpb.2017.01.011Mandapati, R., Skanes, A., Chen, J., Berenfeld, O., & Jalife, J. (2000). Stable Microreentrant Sources as a Mechanism of Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 101(2), 194-199. doi:10.1161/01.cir.101.2.194Narayan, S. M., Baykaner, T., Clopton, P., Schricker, A., Lalani, G. G., Krummen, D. E., … Miller, J. M. (2014). Ablation of Rotor and Focal Sources Reduces Late Recurrence of Atrial Fibrillation Compared With Trigger Ablation Alone. Journal of the American College of Cardiology, 63(17), 1761-1768. doi:10.1016/j.jacc.2014.02.543NARAYAN, S. M., KRUMMEN, D. E., & RAPPEL, W.-J. (2012). Clinical Mapping Approach To Diagnose Electrical Rotors and Focal Impulse Sources for Human Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 23(5), 447-454. doi:10.1111/j.1540-8167.2012.02332.xNarayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022Nattel, S. (2002). New ideas about atrial fibrillation 50 years on. Nature, 415(6868), 219-226. doi:10.1038/415219aNattel, S. (2003). Atrial Electrophysiology and Mechanisms of Atrial Fibrillation. Journal of Cardiovascular Pharmacology and Therapeutics, 8(1_suppl), S5-S11. doi:10.1177/107424840300800102Ortigosa, N., Fernández, C., Galbis, A., & Cano, Ó. (2015). Phase information of time-frequency transforms as a key feature for classification of atrial fibrillation episodes. Physiological Measurement, 36(3), 409-424. doi:10.1088/0967-3334/36/3/409Pandit, S. V., & Jalife, J. (2013). Rotors and the Dynamics of Cardiac Fibrillation. Circulation Research, 112(5), 849-862. doi:10.1161/circresaha.111.300158VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. (1896). Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 187, 253-318. doi:10.1098/rsta.1896.0007Pertsov, A. M., Davidenko, J. M., Salomonsz, R., Baxter, W. T., & Jalife, J. (1993). Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circulation Research, 72(3), 631-650. doi:10.1161/01.res.72.3.631Podziemski, P., Zeemering, S., Kuklik, P., van Hunnik, A., Maesen, B., Maessen, J., … Schotten, U. (2018). Rotors Detected by Phase Analysis of Filtered, Epicardial Atrial Fibrillation Electrograms Colocalize With Regions of Conduction Block. Circulation: Arrhythmia and Electrophysiology, 11(10). doi:10.1161/circep.117.005858Wieser, L., Stühlinger, M. C., Hintringer, F., Tilg, B., Fischer, G., & Rantner, L. J. (2007). Detection of Phase Singularities in Triangular Meshes. Methods of Information in Medicine, 46(06), 646-654. doi:10.3414/me0427Ríos-Muñoz, G. R., Arenal, Á., & Artés-Rodríguez, A. (2018). Real-Time Rotational Activity Detection in Atrial Fibrillation. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.00208Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation: Arrhythmia and Electrophysiology, 10(9). doi:10.1161/circep.117.005008Rodrigo, M., Guillem, M. S., Climent, A. M., Pedrón-Torrecilla, J., Liberos, A., Millet, J., … Berenfeld, O. (2014). Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm, 11(9), 1584-1591. doi:10.1016/j.hrthm.2014.05.013Roney, C. H., Cantwell, C. D., Bayer, J. D., Qureshi, N. A., Lim, P. B., Tweedy, J. H., … Ng, F. S. (2017). Spatial Resolution Requirements for Accurate Identification of Drivers of Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 10(5). doi:10.1161/circep.116.004899Salinet, J., Schlindwein, F. S., Stafford, P., Almeida, T. P., Li, X., Vanheusden, F. J., … Ng, G. A. (2017). Propagation of meandering rotors surrounded by areas of high dominant frequency in persistent atrial fibrillation. Heart Rhythm, 14(9), 1269-1278. doi:10.1016/j.hrthm.2017.04.031Salinet, J. L., Madeiro, J. P. V., Cortez, P. C., Stafford, P. J., André Ng, G., & Schlindwein, F. S. (2013). Analysis of QRS-T subtraction in unipolar atrial fibrillation electrograms. Medical & Biological Engineering & Computing, 51(12), 1381-1391. doi:10.1007/s11517-013-1071-4Salinet, J. L., Oliveira, G. N., Vanheusden, F. J., Comba, J. L. D., Ng, G. A., & Schlindwein, F. S. (2013). Visualizing intracardiac atrial fibrillation electrograms using spectral analysis. Computing in Science & Engineering, 15(2), 79-87. doi:10.1109/mcse.2013.37Schilling, R. J., Peters, N. S., & Davies, D. W. (1998). Simultaneous Endocardial Mapping in the Human Left Ventricle Using a Noncontact Catheter. Circulation, 98(9), 887-898. doi:10.1161/01.cir.98.9.887Schricker, A. A., Lalani, G. G., Krummen, D. E., & Narayan, S. M. (2014). Rotors as Drivers of Atrial Fibrillation and Targets for Ablation. Current Cardiology Reports, 16(8). doi:10.1007/s11886-014-0509-0Steinberg, J. S., Shah, Y., Bhatt, A., Sichrovsky, T., Arshad, A., Hansinger, E., & Musat, D. (2017). Focal impulse and rotor modulation: Acute procedural observations and extended clinical follow-up. Heart Rhythm, 14(2), 192-197. doi:10.1016/j.hrthm.2016.11.008THIAGALINGAM, A., WALLACE, E. M., BOYD, A. C., EIPPER, V. E., CAMPBELL, C. R., BYTH, K., … KOVOOR, P. (2004). Noncontact Mapping of the Left Ventricle:. Insights from Validation with Transmural Contact Mapping. Pacing and Clinical Electrophysiology, 27(5), 570-578. doi:10.1111/j.1540-8159.2004.00489.xUmapathy, K., Nair, K., Masse, S., Krishnan, S., Rogers, J., Nash, M. P., & Nanthakumar, K. (2010). Phase Mapping of Cardiac Fibrillation. Circulation: Arrhythmia and Electrophysiology, 3(1), 105-114. doi:10.1161/circep.110.853804WITTKAMPF, F. H. M., & NAKAGAWA, H. (2006). RF Catheter Ablation: Lessons on Lesions. Pacing and Clinical Electrophysiology, 29(11), 1285-1297. doi:10.1111/j.1540-8159.2006.00533.xWang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4), 600-612. doi:10.1109/tip.2003.81986
    corecore