7,057 research outputs found

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog

    Design Solutions For Modular Satellite Architectures

    Get PDF
    The cost-effective access to space envisaged by ESA would open a wide range of new opportunities and markets, but is still many years ahead. There is still a lack of devices, circuits, systems which make possible to develop satellites, ground stations and related services at costs compatible with the budget of academic institutions and small and medium enterprises (SMEs). As soon as the development time and cost of small satellites will fall below a certain threshold (e.g. 100,000 to 500,000 €), appropriate business models will likely develop to ensure a cost-effective and pervasive access to space, and related infrastructures and services. These considerations spurred the activity described in this paper, which is aimed at: - proving the feasibility of low-cost satellites using COTS (Commercial Off The Shelf) devices. This is a new trend in the space industry, which is not yet fully exploited due to the belief that COTS devices are not reliable enough for this kind of applications; - developing a flight model of a flexible and reliable nano-satellite with less than 25,000€; - training students in the field of avionics space systems: the design here described is developed by a team including undergraduate students working towards their graduation work. The educational aspects include the development of specific new university courses; - developing expertise in the field of low-cost avionic systems, both internally (university staff) and externally (graduated students will bring their expertise in their future work activity); - gather and cluster expertise and resources available inside the university around a common high-tech project; - creating a working group composed of both University and SMEs devoted to the application of commercially available technology to space environment. The first step in this direction was the development of a small low cost nano-satellite, started in the year 2004: the name of this project was PiCPoT (Piccolo Cubo del Politecnico di Torino, Small Cube of Politecnico di Torino). The project was carried out by some departments of the Politecnico, in particular Electronics and Aerospace. The main goal of the project was to evaluate the feasibility of using COTS components in a space project in order to greatly reduce costs; the design exploited internal subsystems modularity to allow reuse and further cost reduction for future missions. Starting from the PiCPoT experience, in 2006 we began a new project called ARaMiS (Speretta et al., 2007) which is the Italian acronym for Modular Architecture for Satellites. This work describes how the architecture of the ARaMiS satellite has been obtained from the lesson learned from our former experience. Moreover we describe satellite operations, giving some details of the major subsystems. This work is composed of two parts. The first one describes the design methodology, solutions and techniques that we used to develop the PiCPoT satellite; it gives an overview of its operations, with some details of the major subsystems. Details on the specifications can also be found in (Del Corso et al., 2007; Passerone et al, 2008). The second part, indeed exploits the experience achieved during the PiCPoT development and describes a proposal for a low-cost modular architecture for satellite

    A method to correct differential nonlinearities in subranging analog-to-digital converters used for digital gamma-ray spectroscopy

    Full text link
    The influence on γ\gamma-ray spectra of differential nonlinearities (DNL) in subranging, pipelined analog-to-digital converts (ADCs) used for digital γ\gamma-ray spectroscopy was investigated. The influence of the DNL error on the γ\gamma-ray spectra, depending on the input count-rate and the dynamic range has been investigated systematically. It turned out, that the DNL becomes more significant in γ\gamma-ray spectra with larger dynamic range of the spectroscopy system. An event-by-event offline correction algorithm was developed and tested extensively. This correction algorithm works especially well for high dynamic ranges

    A Low Power Mid-Rail Dual Slope Analog-To-Digital Converter for Biomedical Instrumentation

    Get PDF
    There are an estimated 15 million babies born preterm every year and it is on the rise. The complications that arise from this can be quite severe and are the leading causes of death among children under 5 years of age. Among these complications is a condition known as apnea. This disorder is defined as the suspension of breathing during sleep for usually 10 to 30 seconds and can occur up to 20-30 times per hour for preterm infants. This lack of oxygen in the bloodstream can have troubling effects, such as brain damage and death if the apnea period is longer than expected. This creates a dire need to continuously monitor the respiration state of babies born prematurely. Given that the breathing signal is in analog form, a conversion to its digital counterpart is necessary.In this thesis, a novel low power analog-to-digital converter (ADC) for the digitization and analyzation of the respiration signal is presented. The design of the ADC demonstrates an innovative approach on how to operate on a single polarity supply system, which effectively doubles the sampling speed. The ADC has been realized in a standard 130 nm CMOS process
    corecore