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ABSTRACT 

 

There are an estimated 15 million babies born preterm every year and it is on the rise. The 

complications that arise from this can be quite severe and are the leading causes of death 

among children under 5 years of age. Among these complications is a condition known as 

apnea. This disorder is defined as the suspension of breathing during sleep for usually 10 

to 30 seconds and can occur up to 20-30 times per hour for preterm infants. This lack of 

oxygen in the bloodstream can have troubling effects, such as brain damage and death if 

the apnea period is longer than expected. This creates a dire need to continuously monitor 

the respiration state of babies born prematurely. Given that the breathing signal is in analog 

form, a conversion to its digital counterpart is necessary.   

 

In this thesis, a novel low power analog-to-digital converter (ADC) for the digitization and 

analyzation of the respiration signal is presented. The design of the ADC demonstrates an 

innovative approach on how to operate on a single polarity supply system, which 

effectively doubles the sampling speed. The ADC has been realized in a standard 130 nm 

CMOS process. 
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CHAPTER ONE  

INTRODUCTION 

In this chapter, the biomedical background of the project is introduced in section 

1.1. Then the goal of this research is presented in section 1.2. The overview of the thesis is 

given in section 1.3. 

 

1.1  Motivation 

 Apnea is a dangerous breathing condition that can be potentially life threatening. 

This disorder is defined as the suspension of breathing during sleep for usually 10 to 30 

seconds and can occur up to 20-30 times per hour [1]. This lack of oxygen in the 

bloodstream can have troubling effects, such as brain damage and death if the apnea period 

is longer than expected. Up to 18 million people suffer from apnea in North America alone 

[2]. There are two different types of apnea: obstructive sleep apnea syndrome (OSAS) and 

central sleep apnea syndrome (CSAS). Obstructive sleep apnea is the more common of the 

two. This type is caused by the partial or complete obstruction of the upper airway. This 

type of the disorder affects 2-4% of the adult population [3]. Central sleep apnea is brought 

about by improper communication between the brain and the muscles that control the 

breathing. Figure 1.1 demonstrates a patient with OSAS [4]. 
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Figure 1.1 Obstructed Airway of Patient with OSAS [4]. 
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 Apnea is also a serious issue for infants. 15% of term infants and 29% of late 

preterm infants are admitted to the NICU for respiratory distress [5]. This presents a dire 

need for the monitoring of the respiration of infants. Around $24 million is already spent 

annually within the United States on respiration monitoring systems for infants in the NICU 

[6]. If this disease were to go untreated, it can lead to a variety of cardiovascular diseases 

and even death. The aim of this research is to monitor the respiration of infants in the 

neonatal intensive care unit (NICU) and detect an occurrence of apnea. 

Monitoring and detecting this disorder can prove to be quite difficult due to the 

sleeping process needed to be observed and analyzed by experienced scientists. Many of 

these detection methods require sensors to be placed on the skin and other invasive 

techniques. A non-intrusive respiration monitoring system is being developed by 

researchers that can be very impactful in the detection of apnea [7]. This system records 

the breathing signal and converts it to digital form at the output. It functions by monitoring 

a period where there is little to no activity in the breathing signal and acting on it. The need 

for the digital output calls for an analog-to-digital converter (ADC) within the system 

because the breathing signal introduced into the system is analog. The motivation for this 

work is to develop a low power analog-to-digital converter that will be utilized in a 

respiration monitoring system for infants in the NICU. 
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1.2  Research Goal    

The purpose of this research is to create a low power analog-to-digital converter 

implemented in a nonintrusive wireless respiration monitoring system. The ADC to be 

designed will be a mid-rail dual slope architecture operating on a 1.2 Volt supply system. 

This converter aims for low power to prolong the life of the wireless unit. The ADC should 

take up as little room as possible and be cost efficient while maintaining proper operation 

throughout the entire conversion cycle.  

 

1.3  Thesis Overview 

The rest of this thesis is organized as follows: Chapter 2 will review the various 

analog-to-digital converter topologies. Chapter 3 will present the system overview and 

discuss each aspect of the ADC design. Chapter 4 will demonstrate the simulated results 

of the assorted components of the converter and the ADC. Chapter 5 will discuss 

conclusions and possible future work.  
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CHAPTER TWO  

LITERATURE REVIEW 

Data converters facilitate interfacing the real world analog signals to the digital 

world. Analog signals are continuous signals that vary with time while digital signals can 

only be represented as a combination of discrete values. The real world consists of vital 

analog signals that need to be converted, processed, and controlled by digital systems. 

Digital-to-analog converters (DAC) and analog-to-digital converters (ADC) are necessary 

in every system that requires to interface between the real world and the digital world. 

 ADCs are a critical component of our modern-day electronics. The differing 

topologies permit a wide range of customizable converters with respect to the parameters 

of conversion time, sampling rate, and resolution. These various architectures allow for a 

wide range of applications from the biomedical field to being utilized in recording audio. 

There are two main types of data converters: Nyquist rate and oversampling. Nyquist rate 

ADCs generate a series of output values in which each output value has a one-to-one 

correspondence with a single input value. According to the Nyquist theory, the sampling 

frequency should be at least twice the bandwidth of the input signal. To avoid degradation 

in the least significant bit (LSB) conversion, the ADC needs to function well above the 

Nyquist frequency. Oversampling converters operate at a much faster rate than that of a 

Nyquist-rate converter. The oversampling method functions by applying noise shaping to 

filter out the quantization noise. For this reason, the signal-to-noise ratio (SNR) of the data 
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converter is increased. Common ADC topologies of both types of sampling techniques will 

be discussed throughout this chapter along with their advantages and disadvantages. 

 

2.1  Successive-Approximation-Register (SAR) 

ADC 

        A successive-approximation-register (SAR) analog-to-digital converter is one of the 

most widely used conversion architectures. It is a desirable middle ground between the 

other data converter structures to convert at moderate rate, has medium accuracy, and 

medium complexity. Applications requiring a resolution and sampling rates up to 5 

megasamples per second (Msps) are suitable for the SAR data converter. The SAR 

structure is a reliable converter with a small form factor, low power consumption, and is 

relatively inexpensive. The tradeoffs between the speed and the converter complexity make 

the structure suitable for a wide range of applications. The downside to this specific design 

is that it has poor immunity to noise. It is commonly employed in applications such as data 

acquisition, portable instruments, and industrial controls [8]. Biomedical applications 

frequently utilize this data converter as they call for a structure that has a moderate 

resolution, low cost, and is power-effective. 

2.1.1 Structure and Conversion Procedure 

 The structure of the SAR ADC is considerably straightforward. Figure 2.1 depicts 

how the SAR data converter is constructed [9]. This type of ADC employs a binary search  
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Figure 2.1 Architecture of a SAR ADC []. 
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algorithm. It functions by multiple comparisons of the analog input voltage to a 

dynamically changing reference voltage. The method effectively inserts a logic ’1’ at 

each bit of the digital output one step at a time and decides if that bit should remain a 

logic ‘1’ or logic ‘0’ by comparing the equivalent reference voltage to the input voltage. 

At the start of the conversion, the reference voltage and the register are set to mid-

rail. In the first step of the conversion process the analog input is fed into the sample-and-

hold amplifier (SHA). A SHA has two types of modes: track and latch. When the amplifier 

is in track mode, its output will follow the input as it will be in unity gain configuration. 

During the latch stage, the analog input is cut off from the amplifier and the voltage is held 

on a capacitor. The output will then proceed to be a constant direct current (DC) voltage. 

The latch stage allows the converter to perform the conversion for a constant signal, as a 

changing input would severely affect the accuracy of the desired digital output. To acquire 

the analog input, the SHA has the latch stage enabled. The output SHA voltage is then 

directed into the comparator, which decides whether the input DC voltage (VIN) is larger 

or smaller than half the reference voltage (VREF). The comparator will output a logic ‘1’ if 

𝑉𝐼𝑁 >
𝑉𝑅𝐸𝐹

2
 and a logic ‘0’ if 𝑉𝐼𝑁 <

𝑉𝑅𝐸𝐹

2
 for the first conversion cycle. Each bit of the digital 

output will require the comparator to compare the constant input voltage against a varying 

reference voltage.  

The logic signal is then input into the register, which will store it as the most 

significant bit (MSB). Once the bit has been stored, a logic ‘1’ will be inserted into the next 

MSB. Depending on whether the input into the successive approximation register is logic 

‘high’ or logic ‘low’, the reference voltage will be again halved in the respective side of 
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the voltage range. For instance, if the comparator output is a logic ‘high’ for the first 

conversion, it will be stored in the register and a logic ‘1’ will be inserted into the next 

MSB of the digital output. The digital-to-analog converter then takes the output of the 

register and converts it to an analog output voltage that will then be used as the next 

reference for the comparator for the next bit comparison. Once the conversion has been 

completed, the end of conversion (EOC) output will signal that the ADC is not busy. Figure 

2.2 displays the successive approximation conversion procedure [10]. 

 

 

 Figure 2.2 Successive approximation conversion procedure [10]. 

 



 

10 

 

2.1.2 Summary 

 Due to the converter only being capable of comparing one bit at a time, the process 

will require n clock periods to encode an n-bit binary value. The resolution of the data 

converter output is 2𝑁 − 1. One digital code will be affected since an analog input which 

is at mid-rail, the same as the starting reference voltage, will impair the conversion process. 

A four-bit SAR ADC can complete a conversion cycle in 8µs given a clock period of 1µs. 

As with any data converter, the accuracy of the digital output decreases as the speed of the 

conversion increases. The speed and accuracy of the SAR converter are limited by DAC 

implemented in the architecture. If the DAC were not accurate, the reference voltage would 

be awry and the whole algorithm is in turn ruined. Other sources of error arise from the 

need for the transient signals to subside before the converter can continue to the next step. 

The DAC requires an adequate amount of time to reach its final value and the settling time 

is greatly affected at the MSB. Due to the limitations of the DAC, resolutions of 12 bits 

and higher will require calibration of the ADC. Also, the comparator necessitates an ample 

amount of time to recover from the previous input and to generate an output dependent on 

its new input from the DAC [11]. 

 

2.2  Pipelined ADC 

The pipelined analog-to-digital converter is desired when the SAR ADC 

architecture fails to hold up for high sampling rates. The pipelined methodology is a 

prominent Nyquist rate architecture for sampling rates from a few mega samples per second  
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Figure 2.3 Pipeline ADC architecture [13]. 

 

up to 100 Msps. The structure is capable of moderate resolutions of 8 – 16 bits. It can 

sample faster on the low end of the resolution scale and is restricted to sampling slower 

approaching sixteen-bit resolution due to the circuit limitations and increased complexity. 

The high sampling rates and the resolution range establish the pipeline ADC appropriate 

for a wide range of applications, such as digital receivers, base stations, Ethernet, and 

ultrasonic medical imaging [12]. Architecture of the pipelined converter combines 

elements of successive approximation and flash conversion techniques into a system that 

utilizes pipeline-type signal processing.  

2.2.1 Structure and Conversion Procedure 

Figure 2.3 depicts the composition of the pipelined ADC [13]. In pipelined signal 

processing, the analog-to-digital (ADC) conversion is executed on each sample of the 

analog data during a period of two or more samples times of the analog data. This concept 
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means that the stages of the parallel structure of the pipelined data converter can work on 

a few bits concurrently.  

 The analog-to-digital conversion starts by sampling the analog input and holding it 

on the sample-and-hold amplifier (SHA). The first stage of the ADC converts a few of the 

most significant bits during this hold time and then passes the residue onto the next stage 

of the converter. When the residue has been passed, the SHA has a new analog input ready 

and has latch mode enabled. The first stage repeats what it has done before and converts 

the MSBs of the analog input while the second stage of the pipeline now converts the 

residue of the previous sample to the next MSBs. This cycle continues as more inputs are 

fed into the first stage and the residue is be passed on to more stages until all the bit values 

have been determined. Each stage acts as a partial data converter since only a few bits are 

converted per stage. 

The digital encoding and correction component will be utilized in storing of the 

digital output bits from each stage. In addition, it corrects the output from the stages by 

employing shift registers to reorder the output bits appropriately to form a full n-bit digital 

value. Additional error correction methods are typically added due to the appeal of it 

reducing the accuracy requirements for the analog-to-digital conversion. 

2.2.2 Summary 

Due to the combination of continual intake of analog inputs and each stage 

performing a partial conversion, very high sampling rates can be achieved. Although, the 

digital output for each sample is delayed since it must pass through numerous stages in the 

pipeline. The latency of the digital output value caused by the circuitry is insignificant to 
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many applications as the analog sampling rate is the upmost of importance [14]. SAR 

converters may convert an analog value quicker than the pipeline method, but it samples 

at a much slower speed.  

 Capacity of high sampling rates and medium-to-high resolution makes the pipeline 

framework an ideal data converter for numerous applications. However, as the desired 

resolution increases, power dissipation and area grow linearly with the number of bits [15].  

 

2.3  Delta-Sigma ADC 

 The delta-sigma analog-to-digital converter realizes a high resolution and can be 

applied to a wide range of sampling frequencies. It is one of the more advanced data 

converter technologies since it relies on the oversampling technique, which will be 

discussed further below. SAR converters are often chosen over Delta-Sigma ADCs due to 

the simplicity of its structure. The Delta-Sigma converter architecture is often overlooked 

since it is not widely understood and the design process can be quite challenging. Although, 

the Delta-Sigma ADC is the more advantageous design since it does not require trimming 

or calibration when a high resolution is needed. This type of converter trades speed for 

resolution. 2N
  steps are required for the ADC to complete a conversion, which is quite slow 

when compared to a SAR converter that only needs n steps. Applications that typically 

employ this analog-to-digital converter are communication systems, professional audio, 

and precision measurements [16].  

The aim of the converter is to take advantage of the inherent speed of analog circuits 

and combine that with the dependability of digital circuits. Since the structure of the 
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converter is predominantly digital, a reduced number of analog components are necessary. 

Consequently, the analog circuity does not call for a high accuracy. The ADC is generally 

composed of a Delta-Sigma modulator, a filter, and a decimator. The structure of the ADC 

can be seen in Figure 2.4 [17]. Each of these components will be discussed in a following 

section. 

 

 

Figure 2.4 Architecture of a Delta-Sigma ADC [17]. 

 

2.3.1 Oversampling 

 The analog input signal into an ADC is continuous and can be an infinite amount 

of values between the supply voltages. In contrast, the digital output is represented as 

discrete bits. As a result, the analog input into the system cannot always be fully 

represented by its true value and the information is lost in the conversion. The difference 

between the analog input and output can be referred to as quantization noise.  

 In a Nyquist rate converter, the quantization noise has a higher noise floor because 

more information is lost when implementing the Nyquist sampling frequency. This 

happens because the sampling takes much larger steps when sampling the input compared 

to oversampling. Oversampling technique typically samples from 20 to 512 times faster 

than the Nyquist rate of the input signal [18]. When oversampling, the noise is spread out 
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over the spectrum as its sampling frequency is much more defined. Figures 2.5 and 2.6 

demonstrate the difference between the noise floors for the two techniques [16]. 

The components within the architecture operate at the oversampling frequency and 

not the output data rate. Due to the need of sampling much faster than the output data rate, 

the converter is limited by the operation of the internal components and cannot be operated 

of a bandwidth of a few megahertz (MHz) [8]. As a result, the Delta-Sigma ADC is 

commonly adopted for lower frequencies. 

 

 

Figure 2.5 Noise floor when sampling at Nyquist frequency [16]. 
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Figure 2.6 Noise floor when implementing oversampling technique [16]. 
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2.3.2 Delta-Sigma Modulator 

The purpose of a modulator is to perform a process called noise shaping and 

function as a 1-bit ADC. Noise shaping is performed when the noise power of the amplifier 

is distributed out from the low frequency spectrum and pushed onto the high frequency 

side. The overall noise power of the converter does not change in this process, but instead 

is simply pushed towards higher frequencies. The modulator structure, which can be 

observed in Figure 2.7, accomplishes this feat by having an integrator functioning as a low-

pass filter for the analog input and a high-pass filter for the quantization noise [19]. It 

performs this process by summing the error voltage.  

 

 

Figure 2.7 Block diagram of a Delta-Sigma modulator [19]. 

 

Figure 2.8 exhibits the effect of noise shaping has on a signal [16]. A pulse train of 

1s and 0s are generated at the output of the modulator. 
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Figure 2.8 Illustration of the mechanism of noise shaping [16].  

 

2.3.3 Digital Filter and Decimator 

After the data has been processed in the Delta-Sigma modulator, a digital 1-bit 

pulse stream is fed into the decimator and the digital filter. The goal of these elements is to 

convert the data stream into a high-resolution digital code. In addition, it aims to slow down 

the code to that of a Nyquist sampling rate. 

Once the noise has been shaped by the modulator, the digital filter filters out the 

high frequency noise power to where the signal and a minute amount of noise power are 

left. Decimation can be described as the method of eliminating unnecessary samples. It 

effectively reduces the data rate from the digital filter to a usable amount. 

2.3.4 Summary 

The Delta-Sigma ADC employs a unique and complicated process to convert the 

analog input to a digital output. Oversampling is not widely employed due to the added 
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complexity in the design process even though it may possess better qualities that Nyquist 

rate ADCs cannot attain. It achieves a reduced signal-to-noise ratio and does not require 

error correction such as calibration and trimming to obtain a high resolution. 

 

2.4  Flash ADC 

Flash analog-to-digital converters, often referred to as simultaneous or parallel 

converters, offer the highest speed of any type of ADC. The conversion takes place in just 

one step, enabling the data converter to achieve conversion rates of hundreds of megabits 

per second. The speed may only be limited by the propagation delays of the comparators 

and the encoding logic, which will be discussed in the next section. Other characteristics 

of the ADC include a low resolution, low complexity, high cost, high power consumption, 

and a large area required for implementation on-chip. Applications typically requiring this 

type of data converter include satellite communication, sampling oscilloscopes, high-

density disk drives, radar processing, and data acquisition [20]. This Nyquist rate converter 

is typically utilized for resolutions of 8 bits and below due to the circuitry required. 

2.4.1 Structure and Conversion Process 

A parallel converter is commonly constructed in three stages: a resistor ladder, 

network of comparators, and combination encoding logic. Figure 2.9 below demonstrates 

the formation of a low-resolution flash ADC [21]. The conversion process functions by 

using the resistor ladder to set reference levels at each VLSB, which can be defined as the 

voltage change when one least significant bit changes over. Each resistor in the string  
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Figure 2.9 Architecture of a low-resolution flash ADC [21]. 
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provides a voltage drop of VLSB, except for the first and the last resistors which are 

sometimes half the size of the others due to the want of creating a 0.5 LSB offset in the 

ADC. 

The voltage references provided by the resistor ladder are then fed into a parallel 

comparator structure. The architecture requires 2𝑛 resistors and 2𝑛−1 comparators, 

resulting in an exponential expanding composition for each bit of resolution. Owing to the 

resistor string setting the threshold voltage for each comparator, the input can be connected 

to the other input of every comparator so that it can easily be compared against every VLSB 

at once. When the input is larger than one of the reference voltages, the comparator will 

flip from 0 to 1, as will all the ones further down the resistor ladder will do. As a result, a 

thermometer code is generated at the output of the parallel comparator structure.  

 The thermometer code then needs to be decoded to the correct digital output code. 

A priority encoder is typically utilized for this application. It takes in the code and generates 

a binary number based on the location of the MSB that is a one. All the other LSBs after 

the first active high is encountered are ignored.  The architecture of the encoder is 

composed of a combination of various logic gates. 

 The code generated from the comparators does not always exactly come out as 

thermometer code. A ‘0’ or ‘1’ may be missing or arise earlier than expected, resulting in 

incorrect code. This occurrence is known as a bubble error. Correction schemes are 

commonly implemented to fix this issue if it arises. The correction structure is often 

composed of a combination of NAND and inverter gates, or it can be implemented with a 

mux structure. 
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2.4.2 Summary 

The flash ADC has the upper hand over other converter architectures since it can 

convert the analog input to a digital output in less than a 100ns [21]. Coupled with its 

straightforward design process, the ADC is essential for applications that require high 

conversion rates although, it does not come without its disadvantages. As the desired 

resolution of the ADC increases, the resistors, comparators, and encoding logic required 

are exponentially increased. For this reason, the power consumption and the area on chip 

can be very high, which also results in an increase in cost. Due to the exponential nature of 

the flash converter as the resolution is increased, it is only feasible for applications 

requiring 8 bits or less.  

 

2.5  Integrating ADC 

 Integrating analog-to-digital converters are a popular architecture for DC or slowly 

varying analog inputs. Additionally, it is favorable for high accuracy data conversions. It 

possesses a low complexity design process and a small amount of circuitry is required. 

Consequently, a low cost can be achieved. The integrating Nyquist rate converter is highly 

linear, has good noise rejection, and bears low offset and gain errors. Integrating ADCs are 

known for their slow conversion rates and high resolutions. The conversion rate for the 

standard integrating ADC, single or dual slope, can only be as fast as 2𝑁 clock cycles. 

When compared against other ADC architectures, the integrating structure is exceptionally 

slower. Due to the slow conversion times, it will not be found in either signal processing  
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Figure 2.10 Block diagram of a single slope ADC [23].  

 

or audio applications. This type of converter finds its use in high accuracy applications 

such as drivers for LCD or LED displays and measurement instruments [22].  

2.5.1 Single Slope Architecture 

The conversion time of a single slope ADC takes place in 2𝑁 clock cycles. This is 

as twice as fast as the dual slope architecture, which will be discussed later. However, the 

difference in conversion time is not as meaningful as both designs are very slow 

comparatively to other types of ADC. 

Structure and Conversion Process 

The single slope architecture is the simplest of all the prominent ADCs and requires 

a very small amount of area on chip. The design of the single slope ADC can be seen in 

Figure 2.10 [23]. The conversion begins with the sample-and-hold amplifier sampling a 
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low bandwidth analog signal. It is then put into hold mode and input into a voltage 

comparator.  

The reference signal is fed into a component called an integrator. This component 

produces an output voltage that is proportional to the integral of the input voltage. The 

current generated by the reference voltage flows through the resistor and into the capacitor, 

which will begin to charge up. Current flowing through the resistor can be modeled by the 

following equation [24],  

𝐼𝑅 =
𝑉𝑅𝐸𝐹

𝑅
        (2.1) 

No current will flow into the operational amplifier due to the input impedance. The current 

in the capacitor, IC, is equivalent to the current flowing through the resistor, IR, and can be 

described by the following equation [24], 

𝐼𝐶 = 𝐶
𝑑𝑉𝑂𝑈𝑇

𝑑𝑡
= 𝐼𝑅             (2.2) 

Rearranging the equations, the output voltage can be found as a function of the analog input 

voltage and passive components. The result will be negative due to the virtual earth 

condition at the noninverting input. The relation of the equations can be expressed as [24], 

𝑉𝑂𝑈𝑇 =  −
1

𝑅𝐶
∫ 𝑉𝑖𝑛𝑑𝑡

𝑡

0
      (2.3) 

 The larger the input voltage is, the larger the current will be that is fed into the 

capacitor which results in a larger output voltage. The RC network controls how quickly 

the analog input signal is integrated. If it is needed for 𝑉𝑂𝑈𝑇 to be equivalent to 𝑉𝐼𝑁 at the 

end of the conversion, the RC components should be sized accordingly using the following 

equation [25], 

𝑅𝐶 = 2𝑁 ∙ 𝑇𝐶𝐿𝐾           (2.4) 
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 The ramp generator integrates the analog input voltage and the output is connected 

to the other input of the voltage comparator. At the beginning of the conversion, the digital 

counter at the output begins counting. As the reference voltage continuously ramps up, it 

is compared with the unknown analog input voltage. When it eclipses the value of the input 

voltage the comparator will flip states causing the counter to shut off. The value at time of 

shut off will be stored in the latch and wait for the output to be sampled. The output digital 

count can be represented by the following equation [26], 

𝑉𝑂𝑈𝑇 =
𝑉𝑅𝐸𝐹𝑇𝐶𝐿𝐾

𝑅𝐶
=

𝑉𝐼𝑁

𝑅𝐶∙𝑓𝐶𝐿𝐾
2𝑁          (2.5)  

 The control logic serves many functions for the converter. It controls when the 

counter is shut off and subsequently latches the output bits of the counter so that a stable 

output can be achieved and so that the digital output can be held, even if another conversion 

begins to take place. Another duty it serves is to reset the integrator and the counter. 

Summary 

The single slope architecture is an effective low-cost analog-to-digital conversion 

method for systems realizing high resolutions on low bandwidth analog input signals. It is 

inexpensive, has a simple design cycle, and is area efficient. The analog-to-digital 

conversion for the single slope architecture is heavily reliant on the accuracy of the resistor 

and capacitor values. High tolerances can cause the linear slope of the integrator to deviate 

off course. This may result in the comparator shutting off at the incorrect time causing an 

imprecise digital output. The dual slope architecture is often implemented to remedy these 

errors. 
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2.5.2 Dual Slope Architecture 

A dual slope architecture requires twice the time of the single slope methodology 

for it performs two integration cycles. The analog-to-digital conversion time can be 

expressed as [18], 

𝑇𝐶 = 2𝑁+1 ∙ 𝑇𝐶𝐿𝐾                   (2.6) 

Through the addition of simple circuitry to the single slope design, a dual slope 

ADC can be realized. The resistor and capacitor tolerance errors are corrected because each 

integration cycle for one conversion are affected the same. For this reason, the dual slope 

design does not have any gain error. 

Structure and Conversion Process 

 A dual-slope analog-to-digital converter integrates an unknown analog input for a 

set amount of time, which is determined by the overflow of the counter at the output. The 

resulting ramped voltage returns to zero through the integration of a reference signal of 

opposite polarity to that of the input signal. The ADC normally begins the integration from 

ground and ramps with a positive slope by integrating a negative analog voltage. Then it is 

returned to ground by integrating a known positive voltage at the input. The design of a 

dual slope ADC is illustrated in Figure 2.11 [27]. A sample and hold amplifier is generally 

utilized at the input for the analog voltage, but it is not shown here for simplicity reasons. 

 The first half of the conversion is a fixed time interval of length T1. A binary counter 

will begin to count when the first integration begins and will trigger the switch at the input 

to connect to the reference voltage once it overflows. The equation for this time can be 

modeled by [27], 
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Figure 2.11 Schematic of a dual slope ADC architecture [27]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

28 

 

𝑇1 = 2𝑁𝑇𝐶𝐿𝐾          (2.7) 

At the end of the first integration cycle, the output voltage of the integrator can be expressed 

as [27], 

𝑉𝑂 =
𝑉𝐼𝑁𝑇1

𝑅𝐶
        (2.8) 

 The larger the input voltage is, the higher the value will be at the end of the first 

integration period. The switch at the input is then connected to the reference voltage for 

the next integration period and the binary counter begins counting. The value of the 

integrator at the end of the second integration period is [27], 

𝑉𝑂 =
𝑉𝑅𝐸𝐹𝑇2

𝑅𝐶
          (2.9) 

The reference voltage will discharge the capacitor at a constant slope, regardless of 

the analog input. Figure 2.12 demonstrates the integrator output voltage over multiple 

conversion cycles with increasing analog inputs [28]. 

 

 

Figure 2.12 Integration of the output voltage for increasing analog input voltages [28]. 

 



 

29 

 

 Once the output voltage of the integrator crosses zero volts during the discharging 

period, a ground sensing comparator will flip states and cause the counter to turn off and 

enable the latch. A digital binary number is then represented at the output of the system.  

 Equating and rearranging the equations 2.8 and 2.9, the resulting expression is 

found [29], 

𝑉𝐼𝑁

𝑉𝑅𝐸𝐹
=

𝑇2

𝑇1
        (2.10) 

 The left side of equation 2.10 represents the expected digital output while the right 

side represents the actual digital output of the ADC. As the equation implies, there is no 

dependence on the resistor and capacitor. Thus, capitalizing on the disadvantage of the 

single slope ADC.  At the end of the analog-to-digital conversion, control logic is 

implemented to reset the integrator by implementing a closed switch in parallel to reset the 

voltage on the capacitor back to mid-rail. It also serves the purpose of resetting the counter 

and controlling when the latch will attain new values. 

 

Summary 

 The dual slope converter design eliminates the inherent errors of the single slope 

converter at the price of additional conversion time and a minor amount of added circuitry. 

The design process remains very simple and a low power can be achieved since very few 

components are required. The converter has exceptional noise rejection capability as it can 

reject noise frequencies on the analog input that have periods that are equal or divisible of 

the first integration period T1. If the time of T1 is chosen to be a multiple of 
1

(60 𝐻𝑧)
, 60 Hz 
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power line noise will be filtered out [18]. Sources of error may arise from the offset of the 

comparator and integrator. 
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CHAPTER THREE  

MATERIALS AND METHODS 

 Chapter 3 details the design of a mid-rail dual slope analog-to-digital converter. 

Each component will be dissected and discussed in the following sections. The simulated 

results are also presented for each component to provide a better design flow. 

 Section 3.1 will discuss the overview and specifications needed for the data 

converter. Next, Section 3.2 discusses the process behind selecting the appropriate data 

converter. Then, Section 3.3 will present the methodology behind the mid-rail dual slope 

ADC approach. The overview of the system is demonstrated in Section 3.6. Design of the 

integrator and the comparator are covered in Sections 3.5 and 3.6, respectively. Section 3.7 

will detail the design of the n-bit counter. The design of the register is discussed in Section 

3.8. Finally, the control logic is presented in Section 3.9. 

 

3.1 Design Overview and Specifications 

3.1.1 Overview 

The aim of this project is to utilize the ADC in a low power wireless piezoelectric 

sensor-based respiration monitoring system. A block diagram of the system can be seen in 

Figure 3.1 [7]. 
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Figure 3.1 Block diagram of respiration monitoring system [7]. 
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 The piezoelectric sensor produces a charge signal that is generated in response to 

vibration in the respiration system due to breathing. The charge amplifier is designed to 

convert the output charge of the sensor due to the temperature change into a proportional 

voltage signal. Subsequently, the voltage signal is transferred to an ADC, which will 

digitize the analog signal. The digital data output by the ADC is input into a radio ultra-

wideband (IR-UWB) transmitter which transmits the data wirelessly. A signal processing 

block is employed between the charge amplifier and the data converter. It monitors the 

voltage signal and will detects if it remains lower than a certain threshold voltage. If the 

charge amplifier output continues to stay below the threshold for a consecutive 15 to 20 

seconds, apnea is occurring.  

 A system level overview is presented in Figure 3.2. The blocks as shown above will 

be realized on a CMOS platform with wireless capabilities. This microchip will be placed 

inside the nasal cannula of the infant for accurate respiration monitoring. Once the 

respiration level falls below the set threshold for 15 to 20 seconds, an apnea occurrence is 

detected and the microchip wirelessly transmits this to a system that can alarm for 

assistance. Figure 3.3 demonstrates the occurrence of an apneic event through the 

monitoring of the breathing signal [30]. 

 The system aims to achieve a low cost and low power for longevity of the device. 

An ADC is critical in this system for it needs to accurately represent the charge amplifier 

voltage. If it were not accurate, the system could completely miss an apnea occurrence, 

which could be very detrimental to the user. 
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Figure 3.2 Overview of the respiration monitoring system.  

 

 

 

 

Figure 3.3 Apneic event when monitoring the breathing signal [30].  
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3.1.2 Specifications 

The analog-to-digital converter will be designed and realized in the standard 130nm 

process.  The charge amplifier will produce an analog respiration signal centered at mid-

rail. As the rail of the 130nm process is 1.2 Volts (V), the signal will be centered at 600 

mV. The input range of the ADC was designed to match the output of the charge amplifier, 

which is 0.2 – 1 V. Within this range, the breathing signal will be continuously monitored 

and if the breathing signal falls below 20% of the regular breathing amplitude for 15 to 20 

seconds, apnea has occurred. The regular breathing amplitude is defined as the output range 

of the charge amplifier. 20% of the output range is, 

        0.2 ∙ (1 − 0.2) = 160 𝑚𝑖𝑙𝑙𝑖𝑉𝑜𝑙𝑡𝑠 𝑝𝑒𝑎𝑘 − 𝑡𝑜 − 𝑝𝑒𝑎𝑘 (𝑉𝑝𝑝).      (3.1) 

Since the signal is centered at mid-rail, our apnea detection range can be defined as 

520 mV – 680 mV. Due to the somewhat large range of detection, a high resolution for the 

data converter is not needed to convey the needed information. For this reason, the 

resolution of the ADC is chosen to be 8 bits. 

The output signal from the charge amplifier is within the frequency range of 01. – 

0.8 Hz range. This is an incredibly slow input signal, greatly relaxing the requirements of 

the ADC to be selected. Following the Nyquist Theorem, the sampling rate of the converter 

should be, 

𝑓𝑠 ≥ 2𝑓𝑖𝑛.           (3.2) 

This means that the sampling frequency should be equal or more than twice as fast as the 

signal it is sampling. Although, for the analog input signal to be accurately represented, 

Nyquist rate converters typically operate at 3 to 20 times the bandwidth of the input signal 



 

36 

 

[17]. To ensure a high accuracy, the sampling frequency can be set as equal to or greater 

than 20 times the bandwidth of the input signal, which is 𝑓𝑠 ≥ 16 𝐻𝑧. 

The conversion time is not of upmost importance for this application as the system 

monitors the breathing signal for up to 15 seconds and then alerts the user. If the converter 

is able to quickly alert the user after an apnea occurrence has occurred.  

The apnea detection system will be powered by a battery, consequently, power 

management is crucial for the chip. The ADC was designed on a1.2V supply with the goal 

of achieving the low power of 50 microwatts (µW). 

The accuracy of a data converter is represented by the integral nonlinearity (INL) 

and differential non-linearity (DNL). The DNL is a measure of the deviation of the actual 

output code from an LSB when compared against the expected output. INL is the deviation 

of an ADC’s transfer function from a straight line. For example, an ideal ADC would have 

a transfer function matching that in Figure 3.4 [31]. 
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Figure 3.4 Ideal transfer function of an ideal ADC [31]. 
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For an ideal ADC, each analog step will have both DNL and INL = 0 LSB. To 

guarantee a monotonic transfer function with no missing codes, a DNL of less than or equal 

to 1 LSB and an INL of less than or equal to 0.5 LSB are required. The ADC was designed 

to meet the specifications best as possible. Table 3.1 displays the specifications for the 

analog-to-digital converter to be designed.  

 

Table 3.1 ADC Specifications 

Specifications Values 

Resolution 8 Bits 

Apnea Detection Range 520 – 680 mV 

Input Range 0.2 – 1 V 

Sampling Frequency ≥ 80 Hz 

Power ≤ 50 µW 

 

 

3.2 ADC Selection and Design 

Due to the power and the sampling frequency constraints, the flash and the 

pipelined converter are not suitable for this application. The Delta -Sigma modulator is not 

necessary because of the additional design complexity and the increased SNR is not needed 

for the monitoring of the respiration signal. The SAR and the integrating architectures are 

the most suited for the task. Even though the integrating structures suffer from a low 

conversion time, the combination of the leisurely requirements and a fast-enough clock 

signal will guarantee a suitable conversion time. Both the SAR and the integrating 
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architectures occupy a low area and can attain a low power. Although the SAR converter 

converts much quicker than the alternative, a quick conversion time is not paramount. The 

integrating ADC design offers additional accuracy and better noise performance because 

the signal integration is a method of averaging. Accordingly, an integrating structure is 

chosen for the design of the ADC. 

 Provided that the conversion time is very manageable to obtain, a dual slope 

converter is chosen over a single slope architecture for it is inherently more accurate at the 

expense of little additional circuitry. 

 As the desired integration time increases for the dual slope ADC, the values for the 

resistor and the capacitor increase as well since they set the time constant for the 

integration. This results in an unwanted area increase on chip. Another factor that needs to 

be considered is the dynamic power of the converter. The formula is show by [32],  

𝑃 = 𝐶𝐿𝑉𝐷𝐷2𝑓      (3.3) 

The output of the ADC will have a load capacitance of 200 fF. With this and the area in 

consideration, a clock frequency of 1 MHz is chosen for the ADC. Plugging this into 

equation 3.3, we arrive at a dynamic power of 288 nW, which is essentially negligible for 

the requirements of the ADC. 

 

3.3 Dual Slope Mid-Rail ADC Approach 

 Generally, a dual slope ADC is implemented within a system having opposite 

polarity input and reference voltages due to the need for the ramp up and ramp down cycles. 
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Utilizing the design principles of the integrator for a traditional dual slope ADC, a new 

design methodology can be created without the need for opposite polarity voltages. 

 In a typical dual slope ADC, the voltage at the noninverting input of the integrator 

is at 0V. This voltage controls whether the output will ramp either up or down. For a normal 

dual slope structure, if the voltage at the input is below zero, the output will ramp up due 

to the inverting feedback and vice versa if the input is above zero. It is also generally set in 

the middle of the input voltage range so that the max ramp up and down can be achieved. 

Owing to this convention, the voltage at the noninverting input of the integrator is set to 

mid-rail for this design, which equates to 600mV. This allows the integrator to be able to 

ramp up or down with respect to mid-rail. The following equations demonstrate the polarity 

of the current and how it is dependent on the voltage applied. Iin is the current traveling 

through the resistor and If is the current through the capacitor. 

𝐼𝑖𝑛 =
𝑉𝑖𝑛−𝑉𝑛𝑜𝑛𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔

𝑅
                   (3.4) 

𝐼𝑓 = 𝐶
𝑑(𝑉𝑛𝑜𝑛𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔−𝑉𝑜𝑢𝑡)

𝑑𝑡
                   (3.5) 

𝐼𝑖𝑛 = 𝐼𝑓   (3.6) 

If the voltage is below mid-rail, the voltage will ramp up and vice versa if it is above mid-

rail. With this principle, a mid-rail dual slope ADC can be realized. Figure 3.5 demonstrates 

how the integrator functions with an input below and above mid-rail. 

 A problem lies within the need for a changing reference voltage for the dual-slope 

ADC. For instance, if the input voltage is above mid-rail, the integrator will ramp down. 

To have the reference voltage ramp up, a voltage below mid-rail is required. If the analog 

input voltage is below mid-rail, the integrator will ramp up and an input voltage above mid-
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rail is required to have it ramp down. A comparator is implemented at the front of the data 

converter to decide if the signal is greater or less than mid-rail. Based on the decision, an 

analog multiplexer will choose the appropriate reference voltage for the second half of the 

cycle. 

An advantage of the mid-rail dual slope ADC is that the conversion time is halved. 

Since only one side of the rail is dealt with when a conversion takes place, it can be realized 

with a N-1 counter and register. Figure 3.6 demonstrates the resolution of the ADC is split 

into both sides of the rail. As a result, the amount of digital circuitry is reduced and the 

conversion time is much faster than that of a typical dual slope ADC. 
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Figure 3.5 Demonstration of mid-rail methodology. 
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Figure 3.6 Resolution split into N-1 for each side of mid-rail. 
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3.4 System Overview 

 A dual slope ADC requires 2N+1 steps to complete a conversion, but with the mid-

rail approach, only 2N steps are required. With a clock frequency of 1 MHz, the conversion 

time is found by the following equation, 

𝑡𝑐 = 2𝑁𝑡𝐶𝐿𝐾.                      (3.7) 

The conversion time is found to be 256µs for an 8-bit ADC. The converter is sampled at 

the end of the conversion cycle, which is every 257µs and equates to a sampling frequency 

of 3891 Hz. An extra micro-second is added for the integrator needs to reset the voltage at 

its inverting input. Although this frequency may be overkill for this application, the data 

converter can be applied to a variety of other applications. 

 Given that the sampling frequency is very quick, it can be derived so that a sample-

and-hold amplifier is not needed for this application. For this to be true, the signal at the 

input should change less than 1 LSB for the duration of the sampling time. This relationship 

can be modeled by equation 3.8. The maximum rate of change in a sine wave is 2𝜋𝑓𝑖𝑛𝐴𝑚𝑎𝑥. 

For the equations, it shall be assumed that the input into the analog-to-digital converter is 

a 4Hz sine wave since it is the fastest wave that the system will deal with. 

𝑇𝑠(2𝜋𝐴𝑚𝑎𝑥𝑓𝑖𝑛) < 1 𝐿𝑆𝐵                  (3.8) 

1 LSB for the system is found by the equation, 

𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒 𝐼𝑛𝑝𝑢𝑡 𝑅𝑎𝑛𝑔𝑒

2𝑁 =  
(1−0.2)

28 = 3.125 𝑚𝑉                    (3.9) 

Plugging all the values into the equation, we can derive the needed sampling period so that 

a sample and hold is not needed. This can be seen by equations 3.10 and 3.11, 



 

45 

 

(
1

𝑓𝑠
) (2𝜋)(0.8)(0.4) <  3.125 𝑚𝑉         (3.10) 

𝑓𝑠 > 644 𝐻𝑧 .                              (3.11) 

The sampling rate implemented meets this requirement, thus a SHA will not be constructed 

for the system. 

Figure 3.7 displays the block diagram of the mid-rail dual slope analog-to-digital 

converter. The input analog signal is fed into the decision comparator at the front of the 

ADC, which will decide if the signal is greater or less than 600mV. The signal will then be 

input into the integrator and it will either ramp up or down. When the 7-bit counter 

overflows, the input of the integrator is switched to the reference voltage. The output of 

the integrator ramps toward mid-rail. Once it passes 600mV, a comparator will shut off the 

counter and the register, holding on to the output. 

 

 

Figure 3.7 Overview of the mid-rail dual slope ADC. 
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3.4.1 Mid-Rail Method Design Adjustments 

Since the conversion time is reduced in half and the reference for integration is at 

mid-rail, the principal equations for a dual-slope ADC no longer hold. One conversion for 

a mid-rail ADC requires 2𝑁𝑇𝐶𝐿𝐾 cycles, meaning that the first half integration lasts 

approximately 2𝑁−1𝑇𝐶𝐿𝐾 cycles owing to a 𝑁 − 1 counter being implemented. The output 

value of the integrator at the end of the first integration period is found by, 

𝑉𝑜1 = −
1

𝑅𝐶
∫ (𝑉𝑖𝑛 − 𝑉+)𝑑𝑡

𝑡

0
+ 𝑉+                                    (3.12) 

The output of the integrator at the end of the second integration period when VREF is 

connected is represented by, 

𝑉02 = 𝑉𝑀𝑖𝑑−𝑅𝑎𝑖𝑙 ± 𝑉𝑜1                                     (3.13) 

If the input into the system is above mid-rail, the Vo1 term is to be added, and vice versa if 

the input is below mid-rail. Next, a relationship is found between the values of the VIN and 

VREF to T1 and T2. For a traditional dual slope ADC, the input voltage is a percentage of 

the reference voltage. For a mid-rail ADC, the principle is the same, but both reference 

voltages need to be accounted for. First, the input voltage is normalized by subtracting the 

bottom reference voltage. Next, the reference voltage is normalized by taking the 

difference between the top and bottom reference voltages. Equation 3.14 is then derived as 

the relationship between the input voltage and the reference voltage. 

|𝑉𝐼𝑁−𝑉𝑅𝐸𝐹_𝐵𝑂𝑇|

|𝑉𝑅𝐸𝐹_𝑇𝑂𝑃−𝑉𝑅𝐸𝐹_𝐵𝑂𝑇|
=

𝑇1

𝑇2
            (3.14) 
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3.5 Integrator 

 Provided that the conversion time is 256µs, the first half of the conversion will take 

128µs for that is when the 7-bit counter will overflow and start counting again. In order to 

ease the design complexity, the output range of the integrator will match the input voltage 

range, 0.2 – 1V, of the ADC so that the resolution on the comparator is relaxed. The 

integrator requires an RC time constant of 128µs to have this happen. A resistor value of 

12.8MOhms and a capacitor value of 10pF are chosen. The large resistor will result in a 

smaller current flowing into the capacitor, effectively decreasing the power. Although, it 

may be somewhat area inefficient, it has a few other advantages. Before the integration 

takes place in each cycle, a switch is in parallel with the capacitor and it is closed to reset 

the inverting input to match the voltage at the noninverting input. During this time, the 

capacitor must be charged to the mid-rail voltage. If a larger capacitor is used, it will take 

longer to be reset to the mid-rail voltage, decreasing the conversion time. In addition, the 

bias current of the operational transconductance amplifier can be increased to compensate 

for this, but it comes at the cost of additional power consumption.  

 When the counter overflows at the end of the first half of the cycle, the switch at 

the input of the integrator is changed to VREF. Depending on the front-end comparator, the 

reference voltage will be either 0.2 or 1 Volts. Figure 3.8 presents the architecture of the 

integrator. 

3.5.1 Operational Transimpedance Amplifier (OTA) 

Design 
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The OTA employed should have the following specifications specified in Table 

3.2. It should have a high gain to keep the inverting voltage linear as it integrates over time. 

A folded cascode topology has been selected to meet these requirements. The general 

structure of the amplifier can be found in Figure 3.9. The transistors were sized in weak to 

moderate inversion to maximize transconductance (gm) efficiency of the amplifier. The 

input pair, M1 and M2 are chosen to be PMOS transistors to decrease flicker noise and 

maximize slew rate and unity gain frequency. Although NMOS transistors may have a 

higher transconductance it is not critical for the application. 

 

 

Figure 3.8 Schematic of the integrator architecture. 
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Table 3.2 OTA Specifications 

Specifications Values 

Input Range 0.2 – 1 Volts 

Output Range 0.2 – 1 Volts 

Power ≤ 15 µW 

 

  

 

Figure 3.9 Circuit schematic of a folded cascode PMOS OTA. 
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 When it comes to sizing the transistors, the inversion coefficient (IC) method was 

utilized. The method uses level of inversion as a design variable. The coefficient can is 

defined as, 

𝐼𝐶 =
𝐼𝐷

𝐼𝑂(
𝑊

𝐿
)
                           (3.15) 

IO is defined as the technology current, which is a function of whichever process that is 

being employed to design with and can be expressed as, 

𝐼𝑜 = 2𝑛𝑜𝜇𝑜𝐶𝑜𝑥
′ 𝑈𝑇

2             (3.16) 

The method functions by having three degrees of freedom, the drain current, the channel 

length, and the inversion level. By selecting these three variables, a width is derived for the 

transistor. Moreover, there are three regions of inversion, weak, moderate and strong. The 

level of the inversion primarily controls the transconductance efficiency of the transistor. 

Figure 3.10 demonstrates the inversion coefficient’s relation to gm efficiency [33]. 
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Figure 3.10 Level of impact of inversion on transconductance efficiency [33]. 
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Weak inversion corresponds to an inversion coefficient of 0.1 and provides 

maximum transconductance efficiency and a low bandwidth. Moderate inversion 

corresponds to an IC of 1 and provides an optimal tradeoff between weak and strong 

inversion, giving moderate gain and bandwidth. Strong inversion provides the least gain, 

but the largest bandwidth. As the inversion coefficient increases, the device size decreases. 

Figure 3.11 illustrates the performance tradeoffs versus selected inversion coefficient and 

channel length [35]. 

 

 

Figure 3.11 Tradeoffs for various selected inversion coefficients and channel lengths [34]. 

 

The overall transconductance (GM) of the folded cascode amplifier can be expressed as, 

𝐺𝑀 =  𝑔𝑚1,2 =  
𝐼𝐷

𝑛𝑉𝑇
           (3.17) 
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ID is the drain current of the input pair, 𝑛 is the body effect factor, and VT is the thermal 

voltage. 𝑛 ~ 1.3 in the weak inversion region. The currents from the differential pair are 

folded into the cascode stages at the output, hence the name. Due to the current mirrors 

being cascoded at the output, the voltage gain is greatly increased due to the increased 

output resistance. The gain for the OTA can be found as,  

𝐴𝑣 =
𝑣𝑜𝑢𝑡

𝑣𝑝−𝑣𝑚
= 𝑔𝑚(𝑅𝑜𝑐𝑎𝑠𝑛||𝑅𝑜𝑐𝑎𝑠𝑝) =  

𝑔𝑚
2 𝑟𝑜

2

2
     (3.18) 

With the increase in the gain the bandwidth must decrease. The dominant pole of the 

amplifier is expressed as, 

𝑓𝑝 =  
1

2𝜋(𝑅𝑜𝑐𝑎𝑠𝑛 ||𝑅𝑜𝑐𝑎𝑠𝑝)𝐶𝐿
                   (3.19) 

 The differential pair M1 and M2 are sized for weak inversion to provide a high gain. 

Each MOSFET will carry a current of 
𝐼𝐵

2
. A channel length of 1 µm is used to prevent short 

channel effects and decrease DC mismatch. The input pair was also given a larger shape 

factor to decrease the input offset. The transistors M0 and M3 - M6 are sized for moderate 

inversion with a long channel length so that current matching is superb and they attribute 

less noise to the overall circuit. Transistors M10 – M12 are sized for weak inversion owing 

to the requirement of a high output swing and high input common mode range. The VDSAT 

of the transistors decreases as the inversion coefficient decreases, resulting in larger widths.  

 M8 and M9 are biased at 
𝐼𝐵

2
 since half of the total bias current is taken from each 

branch to the differential pair at the input. M7 on the other hand is biased at IB. All three 

NMOS transistors are placed in weak inversion to increase the output swing. M13 – M16 are 
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sized in weak inversion as well to increase the bottom part of the output swing range. Table 

3.3 exhibits the operating conditions of each transistor within the folded cascode amplifier. 

 A bias current of 3µA is chosen so that the integration capacitor can be reset 

quickly. Additionally, the slew rate is improved for the amplifier. When the 1st integration 

phase is over, the voltage at the input of the OTA will change from the unknown analog 

input voltage to a reference voltage of either 0.2 or 1 Volts, causing a step response. Due 

to the linear nature of the integrator, it is necessary to be able to respond quickly and 

accurately to this occurrence. 

 

Table 3.3 Operating Conditions of Transistors in Folded Cascode Amplifier  

Transistor 𝑾 (𝝁𝒎)

𝑳 (𝝁𝒎)
 

ID (µA)  IC 

M0 and M3- M6 16/2  3 2.038 

M1 – M2 32/1 1.5 0.254 

M7 10/1 3 0.185 

M8 – M9 10/1 1.5 0.093 

M10 – M12 10/0.5 3 0.093 

M13 – M16 40/0.5 1.5 0.102 

 

Results 

 A high gain transconductance amplifier has been realized with a folded cascode 

structure. It has been tested with a 10 pF load capacitance for that will be what will drive 

when configured as an integrator. Performance metrics of the OTA can be observed in table 
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3.4. Figure 3.12 shows the open loop gain response and Figure 3.13 displays the noise 

spectrum of the OTA. Due to the very high load capacitance, the resulting noise is minimal 

and a low flicker noise corner is achieved.  

  

Table 3.4 OTA Performance Metrics 

Performance Metrics Values 

Bias Current 3 µA 

Load Capacitance 10 pF 

Bandwidth 385.6 Hz 

Phase Margin 87.94° 

Unity Gain Bandwidth 602.4 kHz 

Open Loop Gain 63.86 dB 

CMRR 98.84 dB 

Input Common Mode Range 0.08 – 1.01 V 

Output Swing 0.19 – 1.02 V 

Slew Rate 269 mV/µs 

Power 14.5 µW 

Input Referred Noise 44.11 µV 

Flicker Noise Corner 371.5 kHz 
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Figure 3.12 Open loop response of the OTA. 

 

 

Figure 3.13 Noise spectrum of the OTA. 
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3.5.2 Charge Injection 

Given that the mid-rail topology requires a few switches for few tasks such as 

switching the input voltage to the reference voltage, choosing the correct reference voltage, 

and feeding the correct comparator output to the next components. All this switching comes 

with consequence of charge injection, which greatly affects the linearity of the integrator. 

Charge injection can be described as the charge dumped out of a transistor when it is turned 

off. Half of the charge flows out of the source and the other half out of the drain. Figure 

3.14 shows an NMOS transistor exhibiting charge injection [23]. The dump of charge will 

cause the output voltage to jump. Since the integrator is a highly linear component, the 

extra voltage resulting from the charge injection degrades its accuracy. 

   

 

 

Figure 3.14 NMOS switch exhibiting charge injection [24]. 

 

Throughout the design, analog multiplexers built with transmission gates function 

as the controlling switches. One fix for the charge injection issue is to implement dummy 

transistors on each side of the transmission gate. The NMOS dummy transistors turn on 
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when the NMOS transistor within the transmission gate turns off and the PMOS dummy 

transistors turn on when the PMOS transistor within the transmission gate turns off. Due 

to this, the charge dumped out of the transmission gate transistors can be cancelled out with 

the charge flowing out from the dummy switches. The dummy transistors are sized at half 

the size of the transmission gate transistors because only half the charge is dumped in each 

direction. Figure 3.15 demonstrates this phenomenon for a transmission gate.  

 

 

Figure 3.15 Schematic of the transmission gate charge injection compensation method. 

 

Another remedy for charge injection is to precisely control the switching signals on 

the transmission gate. A transmission gate already counteracts charge injection because the 

complementary signals that are used will cancel out each other, but there is a need for 

precise control of these signals. To achieve this, a pseudo-differential switch driver is 

applied, as seen in Figure 3.16 [35]. The driver takes a digital input and creates perfectly 

overlapping digital outputs. 
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Figure 3.16 Circuit schematic of the pseudo-differential switch driver [35]. 
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Lastly, the reference voltages were changed in order to increase the slope during the second 

phase of integration. The voltages were normalized to the largest digital output on each 

side of the rail. The new reference voltages can be found in table 3.5. 

 

Table 3.5 Adjusted Reference Voltages for Charge Injection 

Original Reference Voltages Adjusted Reference Voltages 

0.2 V 0.193 V 

1 V 1.13 V 

 

 

3.5.3 Results 

The integrator was first swept with a series of low input voltages resulting in the 

integration upwards in the first phase and downward for the second phase. With the input 

voltage low, the reference voltage is set to 1 Volt. Next, the integrator was swept with a 

series of high input voltages to simulate the other side of mid-rail. The reference voltage 

for these inputs was set to 0.2 Volt as it needs to integrate back towards mid-rail in the 

second phase. The results are presented in Figure 3.17 and Figure 3.18. The final layout of 

the integrator is shown in Figure 3.19. 
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Figure 3.17 Integrator performance with input voltages below mid-rail. 

 

 

Figure 3.18 Integrator performance with input voltages above mid-rail. 
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Figure 3.19 Layout of the integrator.  
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3.6 Comparator 

 There are two comparators employed in the ADC design. The comparator at the 

front of the ADC analyzes the incoming unknown analog voltage and decides whether it is 

more or less than mid-rail, 600 mV. The second comparator is placed after the integrator. 

Its noninverting input is set at mid-rail and will shut off when the integrator output voltage 

crosses 600 mV in the 2nd phase of integration. 

 

 

Figure 3.20 Block diagram of the comparator.  

 

 The designed comparator was chosen to be a three-stage dynamic latch topology. 

This type of comparator is capable of high speed and resolution. Figure 3.20 displays the 

block diagram of the designed comparator. The latch and the output buffer consume only 

dynamic power while the preamp consumes static power. The preamplifier is applied to 

obtain a higher resolution and minimize the effects of kickback noise. Kickback noise can 

be described as the charge transfer in or out of the inputs as the latch stage switches from 

latch mode to track mode, which will be discussed shortly. The objective of the 

preamplifier is to amplify the signal so that the latch stage can more easily distinguish the 

difference between the incoming signals. It can also be used as a unity gain buffer if speed 



 

64 

 

is more important. Without a preamplifier, kickback noise can cause very large glitches. 

The latch stage performs a comparison each time the clock is high and resets when the 

clock is low. It typically has a high gain and functions somewhat like an open loop 

amplifier. The signals from the preamplifier are further amplified until the voltage is a full-

scale digital signal. If the voltage at the inverting input is greater than the voltage at the 

noninverting input, the output of the latch is a logic ‘1’. Contrarily, it will resemble the 

clock signal if it is less.  The output buffer provides capacitive isolation for the first two 

stages and converts the latch output signals into a logic ‘1’ or logic ‘0’ for both outputs 

independent of the clock signal. 

 The comparator should be low power and should be able to decipher a voltage 

difference equivalent to 1 LSB. Table 3.6 presents the design specifications for the 

comparator.  

 

Table 3.6 Design Specifications for Comparator 

Design Specifications Values 

Resolution < 1 LSB  = 3.125 mV 

Power ≤ 15 µW 

Clock Frequency 1 MHz 

 

3.6.1 Preamplifier 

A simple six transistor fully differential topology was chosen for the topology of 

the preamplifier. The architecture is shown in Figure 3.21. A high speed low gain design  
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Figure 3.21 Schematic of the preamplifier structure. 
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is needed, hence the simple structure. The speed can be crucial for the preamplifier, since 

if it were too low, it would limit the decision time of the latch. Diode connected NMOS 

transistors are used as the load transistors to increase bandwidth, but they also decrease gm. 

The gain of the amplifier can be expressed as, 

𝐴𝑣 = 𝑔𝑚1,2
(𝑟𝑜2||

1

𝑔𝑚4

) ≅
𝑔𝑚1,2

𝑔𝑚3,4

       (3.20) 

The output resistance of the diode connected transistors M3 and M4 is 1/𝑔𝑚3
 and  1/𝑔𝑚4

 

respectively. This in turn increases the bandwidth, but the gain drops. The bandwidth of 

the amplifier can be approximated as, 

𝑓𝑝 =
1

2𝜋(
1

𝑔𝑚3,4
||𝑟𝑜1,2)𝐶𝐿

 ≅
𝑔𝑚3,4

2𝜋𝐶𝐿
                            (3.21) 

Given that the comparators need to be accurate at mid-rail, the input common mode range 

design requirements are very relaxed.  

The transistors in this stage were designed with the inversion coefficient 

methodology. The biasing current mirror is placed in strong inversion with a long channel 

to copy the current correctly since only a single mirror and not a cascoded mirror is 

implemented. The input pair is set in moderate inversion to provide a moderate gain. 

Although, the gain is not just set by the input pair for this configuration since it is limited 

by the gm of the load transistors. The load transistors are sized for moderate inversion to 

provide an optimal tradeoff between gain and bandwidth. The sizes of the transistors are 

presented in Table 3.7. 
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Table 3.7 Operating Conditions of MOSFETs in Preamplifier 

Transistor 𝑾 (𝝁𝒎)

𝑳 (𝝁𝒎)
 

ID (µA)  IC 

M0 and M5 12/4  5 9.06 

M1 – M2 20/0.5 2.5 0.34 

M3 – M4 3/1 2.5 0.514 
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3.6.2 Latch 

The latch circuit is known as the decision circuit for making the decision of which 

voltage is greater or less than the other and act on it. The structure can be observed in 

Figure 3.22. Positive feedback is implemented in the cross-gate connection of M8 and M7. 

If 𝑉𝑝 > 𝑉𝑛 at the input, the current iop at the output node Vop is increased.  This turns on M8 

for the gate to source voltage (Vgs) is raised. The drain to source voltage of M8 is then 

lowered, turning off transistor M7. Another form of positive feedback is seen where the 

output nodes connect back to the gate of transistors M2 and M3.  

The gain of this circuit should not be very large as it will create too large of time 

constants, thus limiting the speed of the comparator. Another important factor in the design 

of the comparator is whether their memory is transferred from one decision cycle to the 

next, which is also known as hysteresis. To eliminate this, M6 and M9 create a reset path 

from the output nodes to the supply voltage. Then when the clock goes high, a new 

comparison is made each cycle.  

Due to the dynamic latch structure, the inversion coefficient procedure was not used 

to size the transistors. Sizing the transistors in the latch is a tradeoff between the mismatch 

and speed. To increase the speed of the decision time, short channel lengths were 

employed. The widths were sized in favor of increasing gate area and decreasing offset. 

The cross coupled PMOS transistors were sized larger in favor of copying the current. The 

properties of the latch transistors are represented in Table 3.8. 
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Figure 3.22 Schematic of the decision circuit. 
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Table 3.8 Operating Conditions of MOSFETs in Latch 

Transistor 𝑾 (𝝁𝒎)

𝑳 (𝝁𝒎)
 

M0 - M5 3/0.3  

M6 and M9 2/1 

M7 – M8 1/3 
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3.6.3 Output Buffer 

The main goal of the output buffer is to generate a full scale digital signal that is 

not reliant on the clock signal, as the latch stage does. To accomplish this, a cross-coupled 

NAND gate configuration is employed, as seen in Figure 3.23.  

 

 

Figure 3.23 Schematic of the output buffer. 
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3.6.3 Results 

To test the comparator, the inverting input is given a sine wave and the noninverting 

input is held at mid-rail. Once the voltage at the inverting terminal crosses mid-rail, the 

comparator should flip states. If Vn > Vp, the comparator output should be a logic ‘1’ and 

vice versa if Vp < Vn. Figure 3.24 presents the functionality verification of the designed 

comparator. 

 

 

Figure 3.24 Functional verification of the comparator. 

 

 For characterizing the comparator, the resolution needs to be found, or in other 

words, the smallest voltage difference required for the comparator to change states. The 

resolution desired for the ADC is ½ LSB, which is also equivalent to 9 bits. The exact 

voltage required is found by, 
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𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 1 𝐿𝑆𝐵 =
𝐹𝑆𝑅

2𝑁
=

0.8

256
= 3.125 𝑚𝑉   (3.22) 

Resolution is the combination of the influence of noise and offset. The offset is 

found as the difference between the voltage of the input that is changing and the mid-rail 

voltage when the comparator flips states. Offset relies on the varying mismatch between 

the transistors, which can be simulated by a Monte Carlo Analysis. The offset results in a 

sigma delta of 731.62 µV. 

 The noise of the comparator is discovered through means of a transient noise 

analysis. A known small offset of a 100 µV is applied forcing the Vo1 output to go low. 

1000 transitions were tested to determine if the mismatch of the transistors would cause 

the comparator to flip states. The testing configuration is found in Figure 3.25 and the 

resulting transient output is presented in Figure 3.26. From these results, a histogram is 

plotted with 2 bits, meaning the number of times either a logic ‘1’ or logic ‘0’ resulted, 

which is shown in Figure 3.27. The resulting probability of a logic ‘1’ in this case is found 

and normalized to a standard deviation scale, represented by the following equation, 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 1𝑠 = 0.244               (3.23) 

The normalized standard deviation is then determined to be equivalent to 0.693. The 

standard deviation can then be established with the following equations, 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  
1

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
 ∗ 𝑜𝑓𝑓𝑠𝑒𝑡 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑           (3.24) 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
1

0.693
∗ 100𝜇𝑉 = 144.3 µ𝑉𝑟𝑚𝑠                (3.25) 

Now that the noise and offset have been determined, the resolution can be represented as, 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 2√𝑂𝑓𝑓𝑠𝑒𝑡2 + 𝑁𝑜𝑖𝑠𝑒2                 (3.26) 
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𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 2 √(731.62𝜇𝑉 )2 + (144.3𝜇𝑉)2 = 1.491 𝑚𝑉 ≈ 9 𝑏𝑖𝑡𝑠    (3.27) 

The resolution has met the specification and is able to decipher voltages within a ½ LSB. 

Table 3.9 presents the performance metrics of the comparator. The final layout of the 

comparator can be found in Figure 3.28. 

 

 

Figure 3.25 Noise testing configuration of the comparator.  
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Figure 3.26 Transient output of noise analysis. 

 

 

Figure 3.27 Histogram of the noise analysis. 
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Table 3.9 Comparator Performance Metrics 

Performance Metrics Values 

Power Consumption 12.05 µW 

Propagation Delay 38.35 ns 

Noise 129.786 µVRMS 

Offset 731.62 µV 

Resolution 9 bits 
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Figure 3.28 Layout of the comparator. 
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3.7 Counter 

 Provided that the mid-rail approach requires an N-1 counter, a 7-bit counter is 

required for the ADC to realize a total of 8 bits accuracy. For this step of the ADC, a Gray 

code counter is applied. Gray code behaves by only having one-bit change at a time and 

has many advantages over the ordinary binary code, including a reduced switching activity, 

decreased power consumption, less glitches and noise, and minimal error in the output 

code.  

 

 

Figure 3.29 Schematic of a binary counter structure employing T flip flops [36].  

 

 The Gray code counter is constructed by a chain of master slave synchronous T flip 

flops, which can be observed in Figure 3.29 [36]. The master slave configuration is proven 

to be more reliable and stable. This kind of structure triggers on the negative edge, to 

counteract this for the ADC design, the clock is inverted when fed into the counter to 

produce a normal rising edge triggered counter. The synchronous chain of T-flip flops 

generates a binary output signal. A conversion circuit is utilized to convert the binary code 
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into Gray code, which can be seen in Figure 3.30 [37]. Additionally, table 3.10 displaying 

how the grey code counts differently than if it were to use binary for only 4 bits. 

Once the building blocks had been put together, a 7-bit Gray code counter was 

realized. A full count requires 128µs. The output counting waveforms of the counter is 

shown in Figure 3.31. 

 

 

Figure 3.30 Binary to Gray code conversion circuit [37]. 

 

The layout of the digital portion of the analog-to-digital converter, including the 

Gray code counter, the register, and the control logic, is presented in Figure 3.32. The 

register and the control logic will be discussed in the following sections. 
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Figure 3.31 Gray code counting waveforms. 

 

 

Figure 3.32 Layout of digital portion of the ADC. 
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Table 3.10 Example 4-bit Binary and Gray Code Count 

Binary Grey Code 

B3 B2 B1 B0 G3 G2 G1 G0 

0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 

0 0 1 0 0 0 1 1 

0 0 1 1 0 0 1 0 

0 1 0 0 0 1 1 0 

0 1 0 1 0 1 1 1 

0 1 1 0 0 1 0 1 

0 1 1 1 0 1 0 0 

1 0 0 0 1 1 0 0 

1 0 0 1 1 1 0 1 

1 0 1 0 1 1 1 1 

1 0 1 1 1 1 1 0 

1 1 0 0 1 0 1 0 

1 1 0 1 1 0 1 1 

1 1 1 0 1 0 0 1 

1 1 1 1 1 0 0 0 
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3.8 Register 

 Once the output of the integrator has crossed the mid-rail voltage in the second 

phase of integration, the counter is shut off and its output is stored in the array of latches, 

which make a register. The register will then hold the digital output of the counter through 

the end of the 2nd phase integration and throughout the 1st phase of integration of the next 

cycle. This component of the ADC holds the output isolating it from any changes. The 7-

bit register is realized with a combination of 7 d-latches. A D-latch will follow its input as 

long as the enable input is held high. When the signal falls ‘low’, it will latch holding the 

output at the value of the input of the time of latching and will not change regardless of the 

input signal. The structure of the D-latch is observed in Figure 3.33 and the truth table in 

Figure 3.34 [38].  

 

 

Figure 3.33 D-latch configuration [38]. 
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Figure 3.34 Truth table for D-latch [38]. 
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3.9 Control Logic 

 The mid-rail conversion technique requires a few more switches than the traditional 

dual-slope procedure. For instance, during the second integration phase, the comparator 

needs to go low once the integrator output crosses 600 mV and shut off the counter. Since 

the integration output can be above or below mid-rail, the correct output of the fully 

differential comparator needs to be chosen so that the counter is shut off at the end of the 

conversion.  

 The conversion logic also serves the purpose of creating an overflow bit from the 

MSB of the counter, meaning that it effectively creates an 8th counting bit. This overflow 

bit controls the switch that switches between the input and reference voltage. The 

configuration is realized by utilizing a D flip flop taking in the MSB of the counter to 

generate the overflow bit. 
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CHAPTER FOUR  

RESULTS AND DISCUSSION 

 

 

 In this chapter, the results of the analog-to-digital converter are presented. Section 

4.1 will detail the algorithm utilized to analyze the data and Section 4.2 will discuss the 

ADC performance. 

 

4.1 Analyzation Algorithm 

 Given that the designed ADC is a mid-rail topology with a Gray code output, 

analysis of the results can be quite tricky. A typical dual-slope configuration will have the 

smallest analog input mapped to the smallest digital output. The mid-rail differs for the 

input voltages are taken with respect to mid-rail. To put it differently, the farther away the 

voltage is from mid-rail, the larger the count will be at the output. Additionally, another 

degree of complexity is added since the output is coded in Gray code. This creates a need 

for an algorithm that will accurately convert the mid-rail topology derived Gray coded 

outputs to a full-scale decimal number. The diagram of the conversion algorithm designed 

is depicted in Figure 4.1. The algorithm was developed in C++. 

 Per the specifications of the application, once the breathing signal falls in the range 

of 520 – 680 mV for 15 – 20 seconds, an apneic event has occurred. The apnea detection 

range is equivalent to the decimal range of 100 – 152. 
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Figure 4.1 Analyzation algorithm conversion diagram. 
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Since the sampling frequency and the apnea detection time are known, the amount of 

conversions required for an apneic event can be expressed as, 

𝐶𝑜𝑢𝑛𝑡 =
15 𝑠

257 𝜇𝑠 
= 58366                 (4.1) 

By means of this equation, apnea has occurred if the full-scale decimal output of the 

ADC lies between 100 -152 for 58366 samples. 

 

4.2 ADC Performance 

DC performance of an ADC can be described the integral nonlinearity error and 

differential nonlinearity error. The DNL specifies how far a code is from a neighboring 

code. The INL is defined as the distance in LSB that a code transition has taken place from 

the expected transition point. To guarantee that an ADC is monotonic, the performance 

needs to abide by either of the following equations, 

𝐼𝑁𝐿 ≤ ±
1

2
 𝐿𝑆𝐵            (4.2) 

𝐷𝑁𝐿 ≤ 1 𝐿𝑆𝐵            (4.3) 

The ADC was tested by implementation of a 10-bit sampling of the input, which 

equates to a ¼ LSB step. Once all the voltages have been tested, a transfer function is 

derived. Next, the offset and gain errors are removed and the transfer function can be 

accurately plotted, as seen in Figure 4.2.  
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Figure 4.2 Transfer function of the ADC. 
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The INL and the DNL performances of the designed ADC are displayed in Figure 

4.3. The designed ADC achieves an INL of -1 to 0.75 LSB and a DNL of -1 to 1.25 LSB. 

The charge injection was the biggest issue and affected the output codes in a linear fashion 

on each side of mid-rail. Consequently, two codes were missing from the design, decimal 

79 and 209. One missing code is below mid-rail and the other is above. The algorithm 

designed above can somewhat compensate for the charge injection errors by adding or 

subtracting a decimal. As a result, the INL is decreased, but the missing codes remain. 

Although the missing codes are not desired, for this application, there is no harm done since 

the apnea detection range is of upmost importance and the missing codes do not affect this. 

Moreover, the ADC is quite accurate due to all of the compensation utilized despite the 

two missing outputs. 

The ADC achieves a low power consumption of 40.86 µW, which meets the specification 

of below 50 µW. The final layout can be seen in Figure 4.4. The resulting area is expressed 

as, 

106.37µm x 264.89µm = 28173.7 µm2 = 0.028173 𝑚𝑚2  (4.4) 

The ADC performance metrics are tabulated in table 4.1. The ADC is then compared 

against other dual slope topologies in Table 4.2. 

 The ADC achieves an extremely low area and low power consumption. It could be 

tested with a faster sampling frequency to improve the first Figure of Merit (FOM1), but it 

already suits the application. 
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Figure 4.3 INL and DNL performances of the designed ADC. 
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Figure 4.4 Final layout of the designed ADC. 

 

Table 4.1 ADC Performance Metrics 

Performance Metrics Values 

Analog Power 40.79 µW 

Dynamic Power 64.5 nW 

Total Power 40.855 µW 

INL -1 to 0.75 LSB 

DNL -1 to 1.25 LSB 
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Table 4.2 Performance Comparison 

 [39] [40] [41] [42] This Work 

Bits N 10 9 7 11 8 

Technology 0.6µm 130nm 130nm 0.35µm 130nm 

Power (µW) 250 42 44 19800 40.86 

Sampling Frequency (Hz) 7.1k 10k 15k 11.4k 3.9k 

Area (mm2) 0.6 0.06 0.6 0.0917 0.0282 

FOM1 pJ/2Nfs 34.4 9.1 14.3 848 40.93 

FOM2 µm2/2N 585.94 117.19 4687.5 44.8 110.05 

 

 

To verify the ADC further, all process corners were tested and no variation was recorded. 

This further ensures the stability of the design and how it resists parameter variations 

within a circuit.  
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CHAPTER FIVE  

CONCLUSIONS AND FUTURE WORK 

 In this chapter, section 5.1 discusses conclusions drawn from the design of a mid-

rail dual slope ADC. Then, section 5.2 presents the original contributions. Lastly, section 

5.3 examines future work. 

 

5.1 Conclusions 

 In this work, an 8-bit mid-rail dual slope ADC is presented for the detection of 

apnea. The data converter is low power and is able to accurately represent the input analog 

voltages as a 7-bit digital output for an effective 8-bit resolution. Two codes are missing 

from the transfer function, making the ADC non-monotonic. Although, this does not 

particularly affect the application it is being utilized for since the converter is otherwise 

quite accurate and the apnea detection range is converted properly into a digital output. 

 It can be concluded that the mid-rail topology is viable and can be quite 

advantageous to the traditional dual slope ADC design. 

 



 

94 

 

5.2 Original Contributions 

This work proposed a novel approach for the design of a dual slope analog-to-

digital converter. The unique methodology improves upon the typical design by cutting the 

sampling frequency in half and the ability to operate on a single polarity supply system.  

In addition to the novel data conversion concept, it is realized in the construction 

of an 8-bit mid-rail dual slope ADC. The design is highly accurate and consumes low 

power. 

 

5.3 Future Work 

 Accuracy of the ADC can further be improved up by diminishing the charge 

injection effects even further. This can be done with a fully differential integrator, as it 

reduces charge injection and clock feedthrough effects by CMRR to the first order. 

Furthermore, the power can be reduced by decreasing the bias current for the integrator 

and subsequently design for subthreshold region. 

 The Figure of Merit will greatly improve if the sampling speed is increased, 

although the increase was not needed for the application. The digital power is very low for 

the current design and has the headroom to increase. Moreover, a smaller resistor and 

capacitor are needed to meet the time constant requirements. 

 A different comparator structure can be researched for replacing the front-end 

comparator. This component may not need the preamplifier, which could potentially reduce 
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the power. Alternatively, a Threshold Inverter Quantization (TIQ) comparator or another 

static architecture can be explored. 

The ADC will be fabricated in the standard 130nm CMOS process. The system will 

then be tested to ensure accurate performance and then implemented into the apnea 

detection system. 

Given the performance of the data converter, it could be interesting to investigate 

the other applications in which it could be employed. 
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