24 research outputs found

    AUTOMATIC FACE MASK DETECTION BASED ON MOBILENET V2 AND DENSENET 121 MODELS

    Get PDF
    The COVID-19 pandemic has brought significant impacts to the world. In Indonesia, public places such as malls, restaurants, shops, private and government offices, and public areas obliged visitors to wear masks. Unfortunately, there are times when visitors do not obey the rules by not wearing a mask; therefore, surveillance must be conducted. However, manual surveillance to check if a person wearing a mask can be a tedious task. This research aims to propose an automatic face mask detection that can detect if a person is using a mask or not. The proposed method combines face detection and classification using deep learning. The face detection is done using USM sharpening, CenterFace, and two pre-trained models, the MobileNet V2 and DenseNet 121 are used to classify if a person wears a face mask or not. The pre-trained models were fine-tuned using two datasets. Google Colab and libraries such as Tensorflow, Keras, and Scikitlearn were utilized. The research results show that the MobileNet V2 achieves higher performance and has a faster execution time

    Digital image forensics via meta-learning and few-shot learning

    Get PDF
    Digital images are a substantial portion of the information conveyed by social media, the Internet, and television in our daily life. In recent years, digital images have become not only one of the public information carriers, but also a crucial piece of evidence. The widespread availability of low-cost, user-friendly, and potent image editing software and mobile phone applications facilitates altering images without professional expertise. Consequently, safeguarding the originality and integrity of digital images has become a difficulty. Forgers commonly use digital image manipulation to transmit misleading information. Digital image forensics investigates the irregular patterns that might result from image alteration. It is crucial to information security. Over the past several years, machine learning techniques have been effectively used to identify image forgeries. Convolutional Neural Networks(CNN) are a frequent machine learning approach. A standard CNN model could distinguish between original and manipulated images. In this dissertation, two CNN models are introduced to recognize seam carving and Gaussian filtering. Training a conventional CNN model for a new similar image forgery detection task, one must start from scratch. Additionally, many types of tampered image data are challenging to acquire or simulate. Meta-learning is an alternative learning paradigm in which a machine learning model gets experience across numerous related tasks and uses this expertise to improve its future learning performance. Few-shot learning is a method for acquiring knowledge from few data. It can classify images with as few as one or two examples per class. Inspired by meta-learning and few-shot learning, this dissertation proposed a prototypical networks model capable of resolving a collection of related image forgery detection problems. Unlike traditional CNN models, the proposed prototypical networks model does not need to be trained from scratch for a new task. Additionally, it drastically decreases the quantity of training images

    Passive Techniques for Detecting and Locating Manipulations in Digital Images

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, leída el 19-11-2020El numero de camaras digitales integradas en dispositivos moviles as como su uso en la vida cotidiana esta en continuo crecimiento. Diariamente gran cantidad de imagenes digitales, generadas o no por este tipo de dispositivos, circulan en Internet o son utilizadas como evidencias o pruebas en procesos judiciales. Como consecuencia, el analisis forense de imagenes digitales cobra importancia en multitud de situaciones de la vida real. El analisis forense de imagenes digitales se divide en dos grandes ramas: autenticidad de imagenes digitales e identificacion de la fuente de adquisicion de una imagen. La primera trata de discernir si una imagen ha sufrido algun procesamiento posterior al de su creacion, es decir, que no haya sido manipulada. La segunda pretende identificar el dispositivo que genero la imagen digital. La verificacion de la autenticidad de imagenes digitales se puedellevar a cabo mediante tecnicas activas y tecnicas pasivas de analisis forense. Las tecnicas activas se fundamentan en que las imagenes digitales cuentan con \marcas" presentes desde su creacion, de forma que cualquier tipo de alteracion que se realice con posterioridad a su generacion, modificara las mismas, y, por tanto, permitiran detectar si ha existido un posible post-proceso o manipulacion...The number of digital cameras integrated into mobile devices as well as their use in everyday life is continuously growing. Every day a large number of digital images, whether generated by this type of device or not, circulate on the Internet or are used as evidence in legal proceedings. Consequently, the forensic analysis of digital images becomes important in many real-life situations. Forensic analysis of digital images is divided into two main branches: authenticity of digital images and identi cation of the source of acquisition of an image. The first attempts to discern whether an image has undergone any processing subsequent to its creation, i.e. that it has not been manipulated. The second aims to identify the device that generated the digital image. Verification of the authenticity of digital images can be carried out using both active and passive forensic analysis techniques. The active techniques are based on the fact that the digital images have "marks"present since their creation so that any type of alteration made after their generation will modify them, and therefore will allow detection if there has been any possible post-processing or manipulation. On the other hand, passive techniques perform the analysis of authenticity by extracting characteristics from the image...Fac. de InformáticaTRUEunpu

    Camera Spatial Frequency Response Derived from Pictorial Natural Scenes

    Get PDF
    Camera system performance is a prominent part of many aspects of imaging science and computer vision. There are many aspects to camera performance that determines how accurately the image represents the scene, including measurements of colour accuracy, tone reproduction, geometric distortions, and image noise evaluation. The research conducted in this thesis focuses on the Modulation Transfer Function (MTF), a widely used camera performance measurement employed to describe resolution and sharpness. Traditionally measured under controlled conditions with characterised test charts, the MTF is a measurement restricted to laboratory settings. The MTF is based on linear system theory, meaning the input to output must follow a straightforward correlation. Established methods for measuring the camera system MTF include the ISO12233:2017 for measuring the edge-based Spatial Frequency Response (e-SFR), a sister measure of the MTF designed for measuring discrete systems. Many modern camera systems incorporate non-linear, highly adaptive image signal processing (ISP) to improve image quality. As a result, system performance becomes scene and processing dependant, adapting to the scene contents captured by the camera. Established test chart based MTF/SFR methods do not describe this adaptive nature; they only provide the response of the camera to a test chart signal. Further, with the increased use of Deep Neural Networks (DNN) for image recognition tasks and autonomous vision systems, there is an increased need for monitoring system performance outside laboratory conditions in real-time, i.e. live-MTF. Such measurements would assist in monitoring the camera systems to ensure they are fully operational for decision critical tasks. This thesis presents research conducted to develop a novel automated methodology that estimates the standard e-SFR directly from pictorial natural scenes. This methodology has the potential to produce scene dependant and real-time camera system performance measurements, opening new possibilities in imaging science and allowing live monitoring/calibration of systems for autonomous computer vision applications. The proposed methodology incorporates many well-established image processes, as well as others developed for specific purposes. It is presented in two parts. Firstly, the Natural Scene derived SFR (NS-SFR) are obtained from isolated captured scene step-edges, after verifying that these edges have the correct profile for implementing into the slanted-edge algorithm. The resulting NS-SFRs are shown to be a function of both camera system performance and scene contents. The second part of the methodology uses a series of derived NS-SFRs to estimate the system e-SFR, as per the ISO12233 standard. This is achieved by applying a sequence of thresholds to segment the most likely data corresponding to the system performance. These thresholds a) group the expected optical performance variation across the imaging circle within radial distance segments, b) obtain the highest performance NS-SFRs per segment and c) select the NS-SFRs with input edge and region of interest (ROI) parameter ranges shown to introduce minimal e-SFR variation. The selected NS-SFRs are averaged per radial segment to estimate system e-SFRs across the field of view. A weighted average of these estimates provides an overall system performance estimation. This methodology is implemented for e-SFR estimation of three characterised camera systems, two near-linear and one highly non-linear. Investigations are conducted using large, diverse image datasets as well as restricting scene content and the number of images used for the estimation. The resulting estimates are comparable to ISO12233 e-SFRs derived from test chart inputs for the near-linear systems. Overall estimate stays within one standard deviation of the equivalent test chart measurement. Results from the highly non-linear system indicate scene and processing dependency, potentially leading to a more representative SFR measure than the current chart-based approaches for such systems. These results suggest that the proposed method is a viable alternative to the ISO technique

    Semantic models of scenes and objects for service and industrial robotics

    Get PDF
    What may seem straightforward for the human perception system is still challenging for robots. Automatically segmenting the elements with highest relevance or salience, i.e. the semantics, is non-trivial given the high level of variability in the world and the limits of vision sensors. This stands up when multiple ambiguous sources of information are available, which is the case when dealing with moving robots. This thesis leverages on the availability of contextual cues and multiple points of view to make the segmentation task easier. Four robotic applications will be presented, two designed for service robotics and two for an industrial context. Semantic models of indoor environments will be built enriching geometric reconstructions with semantic information about objects, structural elements and humans. Our approach leverages on the importance of context, the availability of multiple source of information, as well as multiple view points showing with extensive experiments on several datasets that these are all crucial elements to boost state-of-the-art performances. Furthermore, moving to applications with robots analyzing object surfaces instead of their surroundings, semantic models of Carbon Fiber Reinforced Polymers will be built augmenting geometric models with accurate measurements of superficial fiber orientations, and inner defects invisible to the human-eye. We succeeded in reaching an industrial grade accuracy making these models useful for autonomous quality inspection and process optimization. In all applications, special attention will be paid towards fast methods suitable for real robots like the two prototypes presented in this thesis

    Multi-Projective Camera-Calibration, Modeling, and Integration in Mobile-Mapping Systems

    Get PDF
    Optical systems are vital parts of most modern systems such as mobile mapping systems, autonomous cars, unmanned aerial vehicles (UAV), and game consoles. Multi-camera systems (MCS) are commonly employed for precise mapping including aerial and close-range applications. In the first part of this thesis a simple and practical calibration model and a calibration scheme for multi-projective cameras (MPC) is presented. The calibration scheme is enabled by implementing a camera test field equipped with a customized coded target as FGI’s camera calibration room. The first hypothesis was that a test field is necessary to calibrate an MPC. Two commercially available MPCs with 6 and 36 cameras were successfully calibrated in FGI’s calibration room. The calibration results suggest that the proposed model is able to estimate parameters of the MPCs with high geometric accuracy, and reveals the internal structure of the MPCs. In the second part, the applicability of an MPC calibrated by the proposed approach was investigated in a mobile mapping system (MMS). The second hypothesis was that a system calibration is necessary to achieve high geometric accuracies in a multi-camera MMS. The MPC model was updated to consider mounting parameters with respect to GNSS and IMU. A system calibration scheme for an MMS was proposed. The results showed that the proposed system calibration approach was able to produce accurate results by direct georeferencing of multi-images in an MMS. Results of geometric assessments suggested that a centimeter-level accuracy is achievable by employing the proposed approach. A novel correspondence map is demonstrated for MPCs that helps to create metric panoramas. In the third part, the problem of real-time trajectory estimation of a UAV equipped with a projective camera was studied. The main objective of this part was to address the problem of real-time monocular simultaneous localization and mapping (SLAM) of a UAV. An angular framework was discussed to address the gimbal lock singular situation. The results suggest that the proposed solution is an effective and rigorous monocular SLAM for aerial cases where the object is near-planar. In the last part, the problem of tree-species classification by a UAV equipped with two hyper-spectral an RGB cameras was studied. The objective of this study was to investigate different aspects of a precise tree-species classification problem by employing state-of-art methods. A 3D convolutional neural-network (3D-CNN) and a multi-layered perceptron (MLP) were proposed and compared. Both classifiers were highly successful in their tasks, while the 3D-CNN was superior in performance. The classification result was the most accurate results published in comparison to other works.Optiset kuvauslaitteet ovat keskeisessä roolissa moderneissa konenäköön perustuvissa järjestelmissä kuten autonomiset autot, miehittämättömät lentolaitteet (UAV) ja pelikonsolit. Tällaisissa sovelluksissa hyödynnetään tyypillisesti monikamerajärjestelmiä. Väitöskirjan ensimmäisessä osassa kehitetään yksinkertainen ja käytännöllinen matemaattinen malli ja kalibrointimenetelmä monikamerajärjestelmille. Koodatut kohteet ovat keinotekoisia kuvia, joita voidaan tulostaa esimerkiksi A4-paperiarkeille ja jotka voidaan mitata automaattisesti tietokonealgoritmeillä. Matemaattinen malli määritetään hyödyntämällä 3-ulotteista kamerakalibrointihuonetta, johon kehitetyt koodatut kohteet asennetaan. Kaksi kaupallista monikamerajärjestelmää, jotka muodostuvat 6 ja 36 erillisestä kamerasta, kalibroitiin onnistuneesti ehdotetulla menetelmällä. Tulokset osoittivat, että menetelmä tuotti tarkat estimaatit monikamerajärjestelmän geometrisille parametreille ja että estimoidut parametrit vastasivat hyvin kameran sisäistä rakennetta. Työn toisessa osassa tutkittiin ehdotetulla menetelmällä kalibroidun monikamerajärjestelmän mittauskäyttöä liikkuvassa kartoitusjärjestelmässä (MMS). Tavoitteena oli kehittää ja tutkia korkean geometrisen tarkkuuden kartoitusmittauksia. Monikameramallia laajennettiin navigointilaitteiston paikannus ja kallistussensoreihin (GNSS/IMU) liittyvillä parametreillä ja ehdotettiin järjestelmäkalibrointimenetelmää liikkuvalle kartoitusjärjestelmälle. Kalibroidulla järjestelmällä saavutettiin senttimetritarkkuus suorapaikannusmittauksissa. Työssä myös esitettiin monikuville vastaavuuskartta, joka mahdollistaa metristen panoraamojen luonnin monikamarajärjestelmän kuvista. Kolmannessa osassa tutkittiin UAV:​​n liikeradan reaaliaikaista estimointia hyödyntäen yhteen kameraan perustuvaa menetelmää. Päätavoitteena oli kehittää monokulaariseen kuvaamiseen perustuva reaaliaikaisen samanaikaisen paikannuksen ja kartoituksen (SLAM) menetelmä. Työssä ehdotettiin moniresoluutioisiin kuvapyramideihin ja eteneviin suorakulmaisiin alueisiin perustuvaa sovitusmenetelmää. Ehdotetulla lähestymistavalla pystyttiin alentamaan yhteensovittamisen kustannuksia sovituksen tarkkuuden säilyessä muuttumattomana. Kardaanilukko (gimbal lock) tilanteen käsittelemiseksi toteutettiin uusi kulmajärjestelmä. Tulokset osoittivat, että ehdotettu ratkaisu oli tehokas ja tarkka tilanteissa joissa kohde on lähes tasomainen. Suorituskyvyn arviointi osoitti, että kehitetty menetelmä täytti UAV:n reaaliaikaiselle reitinestimoinnille annetut aika- ja tarkkuustavoitteet. Työn viimeisessä osassa tutkittiin puulajiluokitusta käyttäen hyperspektri- ja RGB-kameralla varustettua UAV-järjestelmää. Tavoitteena oli tutkia uusien koneoppimismenetelmien käyttöä tarkassa puulajiluokituksessa ja lisäksi vertailla hyperspektri ja RGB-aineistojen suorituskykyä. Työssä verrattiin 3D-konvoluutiohermoverkkoa (3D-CNN) ja monikerroksista perceptronia (MLP). Molemmat luokittelijat tuottivat hyvän luokittelutarkkuuden, mutta 3D-CNN tuotti tarkimmat tulokset. Saavutettu tarkkuus oli parempi kuin aikaisemmat julkaistut tulokset vastaavilla aineistoilla. Hyperspektrisen ja RGB-datan yhdistelmä tuotti parhaan tarkkuuden, mutta myös RGB-kamera yksin tuotti tarkan tuloksen ja on edullinen ja tehokas aineisto monille luokittelusovelluksille

    Remote Sensing and Geosciences for Archaeology

    Get PDF
    This book collects more than 20 papers, written by renowned experts and scientists from across the globe, that showcase the state-of-the-art and forefront research in archaeological remote sensing and the use of geoscientific techniques to investigate archaeological records and cultural heritage. Very high resolution satellite images from optical and radar space-borne sensors, airborne multi-spectral images, ground penetrating radar, terrestrial laser scanning, 3D modelling, Geographyc Information Systems (GIS) are among the techniques used in the archaeological studies published in this book. The reader can learn how to use these instruments and sensors, also in combination, to investigate cultural landscapes, discover new sites, reconstruct paleo-landscapes, augment the knowledge of monuments, and assess the condition of heritage at risk. Case studies scattered across Europe, Asia and America are presented: from the World UNESCO World Heritage Site of Lines and Geoglyphs of Nasca and Palpa to heritage under threat in the Middle East and North Africa, from coastal heritage in the intertidal flats of the German North Sea to Early and Neolithic settlements in Thessaly. Beginners will learn robust research methodologies and take inspiration; mature scholars will for sure derive inputs for new research and applications

    Photo response non-uniformity based image forensics in the presence of challenging factors

    Get PDF
    With the ever-increasing prevalence of digital imaging devices and the rapid development of networks, the sharing of digital images becomes ubiquitous in our daily life. However, the pervasiveness of powerful image-editing tools also makes the digital images an easy target for malicious manipulations. Thus, to prevent people from falling victims to fake information and trace the criminal activities, digital image forensics methods like source camera identification, source oriented image clustering and image forgery detections have been developed. Photo response non-uniformity (PRNU), which is an intrinsic sensor noise arises due to the pixels non-uniform response to the incident, has been used as a powerful tool for image device fingerprinting. The forensic community has developed a vast number of PRNU-based methods in different fields of digital image forensics. However, with the technology advancement in digital photography, the emergence of photo-sharing social networking sites, as well as the anti-forensics attacks targeting the PRNU, it brings new challenges to PRNU-based image forensics. For example, the performance of the existing forensic methods may deteriorate due to different camera exposure parameter settings and the efficacy of the PRNU-based methods can be directly challenged by image editing tools from social network sites or anti-forensics attacks. The objective of this thesis is to investigate and design effective methods to mitigate some of these challenges on PRNU-based image forensics. We found that the camera exposure parameter settings, especially the camera sensitivity, which is commonly known by the name of the ISO speed, can influence the PRNU-based image forgery detection. Hence, we first construct the Warwick Image Forensics Dataset, which contains images taken with diverse exposure parameter settings to facilitate further studies. To address the impact from ISO speed on PRNU-based image forgery detection, an ISO speed-specific correlation prediction process is proposed with a content-based ISO speed inference method to facilitate the process even if the ISO speed information is not available. We also propose a three-step framework to allow the PRNUbased source oriented clustering methods to perform successfully on Instagram images, despite some built-in image filters from Instagram may significantly distort PRNU. Additionally, for the binary classification of detecting whether an image's PRNU is attacked or not, we propose a generative adversarial network-based training strategy for a neural network-based classifier, which makes the classifier generalize better for images subject to unprecedented attacks. The proposed methods are evaluated on public benchmarking datasets and our Warwick Image Forensics Dataset, which is released to the public as well. The experimental results validate the effectiveness of the methods proposed in this thesis

    Pertanika Journal of Science & Technology

    Get PDF

    Bowdoin Orient v.131, no.1-24 (1999-2000)

    Get PDF
    https://digitalcommons.bowdoin.edu/bowdoinorient-2000s/1000/thumbnail.jp
    corecore