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Abstract

With the ever-increasing prevalence of digital imaging devices and the rapid

development of networks, the sharing of digital images becomes ubiquitous

in our daily life. However, the pervasiveness of powerful image-editing tools

also makes the digital images an easy target for malicious manipulations.

Thus, to prevent people from falling victims to fake information and trace

the criminal activities, digital image forensics methods like source camera

identification, source oriented image clustering and image forgery detections

have been developed.

Photo response non-uniformity (PRNU), which is an intrinsic sensor noise

arises due to the pixels non-uniform response to the incident, has been used

as a powerful tool for image device fingerprinting. The forensic community

has developed a vast number of PRNU-based methods in different fields of

digital image forensics. However, with the technology advancement in digital

photography, the emergence of photo-sharing social networking sites, as well

as the anti-forensics attacks targeting the PRNU, it brings new challenges to

PRNU-based image forensics. For example, the performance of the existing

forensic methods may deteriorate due to different camera exposure parameter

settings and the efficacy of the PRNU-based methods can be directly challenged

by image editing tools from social network sites or anti-forensics attacks. The

objective of this thesis is to investigate and design effective methods to mitigate

some of these challenges on PRNU-based image forensics.

We found that the camera exposure parameter settings, especially the

camera sensitivity, which is commonly known by the name of the ISO speed, can

influence the PRNU-based image forgery detection. Hence, we first construct

the Warwick Image Forensics Dataset, which contains images taken with diverse
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exposure parameter settings to facilitate further studies. To address the impact

from ISO speed on PRNU-based image forgery detection, an ISO speed-specific

correlation prediction process is proposed with a content-based ISO speed

inference method to facilitate the process even if the ISO speed information

is not available. We also propose a three-step framework to allow the PRNU-

based source oriented clustering methods to perform successfully on Instagram

images, despite some built-in image filters from Instagram may significantly

distort PRNU. Additionally, for the binary classification of detecting whether

an image’s PRNU is attacked or not, we propose a generative adversarial

network-based training strategy for a neural network-based classifier, which

makes the classifier generalize better for images subject to unprecedented

attacks.

The proposed methods are evaluated on public benchmarking datasets and

our Warwick Image Forensics Dataset, which is released to the public as well.

The experimental results validate the effectiveness of the methods proposed in

this thesis.
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Chapter 1

Introduction

1.1 Digital Image Forensics

‘All warfare is based on deception.’ — The Art of War

This famous quote from Sun Tzu not only depicts the wars on the physical

battlefield but also the ones in the digital world between criminals and forensic

investigators. Digital images are often viewed as a reflection of the real world.

Their capability of precisely recording scenes makes them crucial evidence under

many scenarios. Convinced by the images’ realistic appearance, the viewers

may take the integrity of the information conveyed for granted. However, the

emergence of powerful image editing tools allows even unskilled people to easily

manipulate the images, hiding or altering the content and metadata from the

originals. Deceived by these images, the viewers may fall victim to malicious

or criminal activities, and the forensic investigators could have more difficulty

to trace the source of these activities. In order to win this digital ‘warfare’,

the forensic investigators need to have a clear vision on these information.

The pervasiveness of maliciously edited images makes ‘fact-check’ the new

normal in our daily life. Even images from some seemingly reliable sources may

contain forgeries. In this year’s United States presidential election campaign,

the campaign team for the Republican candidate Donald John Trump was

reportedly using a fake image of their opponent candidate Joseph Robinette

Biden Jr. for social media advertisement1. The image (Figure 1.1) is forged

by showing a fake earpiece worn by the Democratic candidate, indicating

the symptoms of dementia and raising doubts about his ability of carrying

presidential duties. By adding such a small object to an image, the misinformed

voters may change their opinions about the candidates. This could potentially

impact the election outcome and put American and global politics into a

different shape.

1https://www.forbes.com/sites/andrewsolender/2020/10/01/trump-ads-feature-

biden-photo-edited-to-include-airpod-asking-whos-in-joes-ear/
2Image source: https://www.facebook.com/ads/library/?id=618906978778952

1
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Figure 1.1: An advertising image used by the Republican campaign team for
the 2020 United States presidential election2. A fake earpiece is worn by the
Democratic candidate Joseph Robinette Biden Jr.

While the previous example shows how a tampered image can significantly

impact politics, genuine ones can also deceive people by having purposefully

mislabelled sources. During the outbreak of SARS-CoV-2 in Italy earlier this

year, a photo of patients treated outside the hospitals were circulated widely

on the Internet (Figure 1.2). It was claimed that the hospitals had run out of

beds due to the spread of the virus. However, the image was actually taken in

Zagreb, the capital city of Croatia on 22nd March 2020, after an earthquake

hit the country3. An image like this could spread misleading information to

the general public and cause chaos on the health service when it has already

taken heavy pressures from the pandemic.

Falsely claimed image sources are often associated with unlawful economic

gains as well. With the ubiquity of digital photography, the ability to take

attractive photos has become a major selling point for many mobile devices. To

promote their new devices, the phone manufacturer Huawei held a photography

contest featuring images taken by their mobile devices. The two images shown

in Figure 1.3 are told to be from a Huawei smartphone. The consumers are

attracted by their aesthetic visuals, impressed with the camera’s ability to

shoot sharp images with high dynamic ranges. But by revealing the images’

EXIF (Exchangeable image file format) file, the source of the two images is

confirmed to be a Nikon D850 DSLR camera4. By identifying the source of

the images, the consumers can correct their valuation of the device and not be

deceived by the fraudulent advertisement.

3https://www.bbc.co.uk/news/52124740
4https://www.scmp.com/abacus/tech/article/3080698/huawei-apologizes-using-

dslr-shots-promote-smartphone-photo-contest
5Image source: https://500px.com/p/vcg-slayershute

2
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Figure 1.2: An image circulated on the Internet during the outbreak of SARS-
CoV-2 in Italy, claiming the Italian hospitals ran out of beds and had to treat
patients in the streets. However, the image is actually of the survivors to an
earthquake in Croatia, March 2020.

(a) (b)

Figure 1.3: Two photos featured in a Huawei photography contest5, which
supposed to show images from Huawei devices only. The two images are
claimed to be from a smartphone but later to be found out that their source is
a Nikon D850 DSLR camera.

The above examples show us the potential damages by misleading informa-

tion from untrustworthy digital images. Apart from that, digital images are

often presented as evidence to law enforcement for investigation and jurisdic-

tion processes. For crime investigation, revealing the underlying information

regarding the history of an image would help the forensic investigators trace

the criminals. For court jurisdiction, verifying the originality and integrity is

necessary for the validity of an image to be used as evidence. Therefore, the

importance and necessity of researching and developing forensic technologies to
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verify images’ originality, integrity, and authenticity are widely acknowledged.

With these in mind, the digital image forensic community wish to develop

methods to achieve goals including but not limited to the ones shown below:

• Camera Model Identification: Given an image and different models of

cameras (e.g. Canon 6D, Nikon D7200, and etc.), identify the model of

the image’s source camera.

• Source Camera Verification: Given an image and a device, verifying

whether the image is captured by the device.

• Source Camera Identification: Given an image and a set of cameras,

identify the specific camera if the image is captured by one of the cameras

from the set.

• Source-Oriented Clustering: Given a set of images, sort the images to

groups according to their source devices.

• Image Forgery Detection and Localization: Given an image, determine

whether it contains forged pixels and locate them.

• Image History Retrieval: Given an image, retrieving its processing history

and its online sharing footprint.

1.1.1 Active Digital Image Forensics

Active digital image forensics approaches are implemented by actively adding

information about the images’ originality, integrity and authenticity to images.

Similar to the artists putting their signatures or special symbols to remark the

origins of the artworks ever since the time before the Renaissance, inserting

digital watermark [6–11] and signature [12–15] to digital images when they

are captured are a straightforward method to determine the originality, verify

the integrity and analyse the owner authenticity of the images. Despite the

effectiveness of these active methods shown in the literature, the forensic

investigators can only apply them by knowing that the digital watermark or

signature was introduced to an image right after the image acquisition process.

However, digital watermark and signature face several problems and restrictions

that make the camera manufacturers reluctant to embed them in every image.

Firstly, as mentioned above, the digital watermark or signature has to be

introduced right after the image acquisition process, meaning the camera

manufacturer has to add extra steps in the image processing pipeline. As

the manufacturers usually do not benefit from these complementary functions,

not every manufacturer has the incentive to introduce these extra steps in

their camera pipeline. Secondly, the embedded watermark or signature may
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Figure 1.4: The typical image acquisition and storage pipeline of a digital
camera

downgrade the image quality and hence, camera manufacturers may tend not

to use them to keep their cameras’ competitiveness in the market. With the

aforementioned problems and restrictions on these active methods, the forensic

research community has to look for practical passive digital forensic methods

as well.

1.1.2 Passive Digital Image Forensics

Compared with active digital image forensic methods, passive methods do not

require any prior or present information manually added to images. Instead,

passive methods look for certain intrinsic patterns embedded in the images.

These patterns can be considered as traces of different processes or manipula-

tions during different stages in the image processing and editing pipeline. In

general, methods are developed based on three types of traces [16]:

1. Traces left during image acquisition:

There are several steps in the image acquisition process and different

components of a camera could leave unique artifacts and patterns in an

image which could be used for digital image forensics. Figure 1.4 shows

the typical image acquisition pipeline of a digital camera. The light of a
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scene is first captured by the lens of a camera. As a lens usually does not

have perfect optical performance due to the material and manufacturing,

it could introduce two types of lens aberrations to an image: chromatic

aberration and spherical aberration. These lens aberrations can be used

as traces to identify images taken by a particular lens and exposing image

forgery [17, 18]. After passing through the lens, the light will be filtered

by the color filter array (CFA) into different color channels before it is

collected by the image sensor. The image sensor converts the light signal

to electrical signal with a camera model-dependent quantum efficiency

(QE) and in this process, it could exhibit distinctive noise characteristics

and a sensor pattern noise can be introduced to the image. The noise

characteristics of a sensor could be used for camera model identification

[19] while the sensor pattern noise is a more powerful tool which can be

used for more specific source device identification and has been used in

a broader area of digital image forensics as well [20–26]. With the light

captured by the sensor, the camera will perform white balancing (WB)

on the image to adjust its color temperature. Remembering the light was

filtered by CFA, the signal on each pixel at this stage only accounts for one

color channel. Thus, to create a color image, CFA demosaicing has to be

done following the white balancing (note that there are also some camera

manufacturers implementing CFA demosaicing before white balancing).

The demosaicing process interpolates the neighbouring pixels’ intensity

and as a result, artifacts are introduced. CFA demosaicing artifacts

could be used for camera model identification [27, 28] and image forgery

detection [29–31]. After the demosaiced channels being fused together

to form the color image, gamma correction will be applied. The gamma

correction translates the irradiance received on the sensor to the actual

brightness of the displayed image. Together with the aforementioned

quantum efficiency, these two terms generally define the camera’s overall

response to the incident light’s luminance and can be formulated as

a camera response function (CRF). Various forensic methods [32–35]

have been developed based on the characteristics of the camera response

function. After gamma correction, the image will be compressed and

stored. These processes contribute to another group of traces left in

images which can be used for passive forensics.

2. Traces left in image storage and distribution:

With people’s increasing need for images with better details and the

development of digital photography, the resolution of a modern digital

image is usually measured in the unit of million pixels. Without any

compression, the storage and distribution for color images of such a big
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size become rather infeasible. Thus, different compression standards

are used. JPEG is one of the most widely used formats for image

compression. This lossy compression leaves artifacts in images. By

studying the pattern of these artifacts in an image, some information

about the image’s processing history could be revealed, e.g. how many

times the image has been compressed and whether all the regions of the

image have been compressed for the same number of times. Information

like these gives clues about the existence of the tampered region in an

image as for most tampered images, at least two JPEG compressions

have been applied to the original images. Hence, many literature focus on

the study of detecting double JPEG compression and forgery detection

methods based on it [36–45]. With the emergence of social network sites

(SNS) and instant messaging applications (IMA), the fast transmission of

images via the Internet and the storage of the vast number of images on

the sites’ servers require these service providers to further compress the

images. Each SNS or IMA could apply platform-specific manipulations

during the compression process, leaving unique traces that can reveal the

image online-sharing history [46–49].

3. Traces left by image editing:

When an attacker tries to forge an image, they will have to apply one

or more image manipulations to edit the image. Each type of image

manipulation could leave some specific traces in the attacked image.

Thus, corresponding forensic methods could be developed by exploiting

these manipulation-specific traces. These manipulations include median

filtering [50–57], unsharp masking [58–60], resampling [61–63] and copy-

move attacks [64–68]. In addition, contrast enhancement [69–72] and

inconsistent lighting [73–76] introduced by image editing tools could also

be used in image forgery detection.

1.2 Photo Response Non-Uniformity Based Image

Forensics

While different camera artifacts and manipulation traces are used for passive

image forensic, among them, sensor pattern noise (SPN) has shown its strength.

SPN has the following properties which make it a powerful tool for digital

image forensics:

1. SPN is unique to each sensor.

2. SPN is stable against environmental conditions.
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3. SPN is a pixel-level signal presented in the whole image which makes it

suitable for both pixel-level (e.g. image forgery localization) and image-

level (e.g. source camera identification and source-oriented clustering)

applications.

There are two major components of SPN: dark signal non-uniformity (DSNU)

and photo response non-uniformity (PRNU). The DSNU is the pixels’ non-

uniform response to the environment when the sensor is not exposed to light.

Thus, it is also know by the name of dark current noise. This signal is

relatively weak in images under normal lighting conditions and many camera

manufacturers provide calibration function to attenuate this signal. As a result,

it is difficult to build reliable forensic methods based on DSNU. In comparison,

PRNU becomes the physical foundation for SPN based forensic methods.

PRNU mainly arises due to the manufacturing imperfections of the silicon

wafers used to build the image sensors. An image sensor, no matter whether it is

a charge-coupled device (CCD) or a complementary metal-oxide-semiconductor

(CMOS) sensor, will have slightly different quantum efficiency (QE) on each

pixel due to the inhomogeneity introduced by the manufacturing imperfections.

The quantum efficiency defines the pixel’s ability to convert the light signal

to the electrical signal. Consequently, the pixels on a sensor will have a non-

uniform response to the incident light. Hence, this phenomenon gives the name

to PRNU. PRNU can be viewed as the fingerprint of an imaging device and is

applied in different fields of digital image forensics as will be briefly explained

in the following subsections.

1.2.1 PRNU-based Source Camera Identification

Source camera identification is the task of identifying an image’s source device

given a set of candidate cameras. The procedure of a typical PRNU-based

source camera identification framework is shown in Figure 1.5. With a query

image, its PRNU could be estimated by the noise extracted from it. For each

candidate camera, a reference PRNU could be constructed from the noises

extracted from multiple reference images, often by simply taking the average of

the extracted noises. To maximally avoid the interference from image scenes,

usually flatfield images (e.g., blue sky or pure color images) are used for high

quality reference PRNU extraction. With the reference PRNUs extracted, the

similarity between the query PRNU and each camera’s reference PRNU could

be calculated, often using normalized cross correlation as a measurement. After

that, the source camera could be identified as the one that has the highest

similarity with the query PRNU, if this similarity measurement is higher than

a predefined threshold.

8



Query Image Query PRNU

Reference PRNU 1

Reference PRNU 2

Reference PRNU n

Reference Images

Reference Images

Reference Images

Camera 1

Camera 2

Camera n

Figure 1.5: The procedure of a typical PRNU-based source camera identification
framework.

1.2.2 PRNU-based Source-Oriented Clustering

Source-oriented clustering considers the scenario of having multiple images with

unknown sources as the input and grouping them according to common source

devices. It can help the forensic investigators to understand the underlying

connections between images. PRNU-based clustering exploits the similarity

between the images’ extracted PRNUs. The same as it is done in the PRNU

based source camera identification, each image’s PRNU could be estimated

by its extracted noise. The similarity between image pairs could be measured

by the pairwise cross-correlations between all the images. After the pairwise

similarities are computed, by grouping PRNUs with high similarities together,

the corresponding images can be clustered into the same groups according to

their source devices. An illustration is shown in Figure 1.6.

1.2.3 PRNU-based Image Forgery Localization

With PRNU being a pixel-level signal, it allows a localised detection of PRNU’s

presence in an image. This could reveal the location of tampered pixels. The

localised detection is usually done in a block-wise manner due to the weak

nature of PRNU which requires a relatively large number of pixels to deliver a
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Figure 1.6: An illustration of PRNU-based source-oriented image clustering.

reliable detection. A correlation map can be computed between the estimated

PRNU extracted from the image and the camera’s reference PRNU by shifting

the computation block over the whole image. Again, due to the weak nature

of PRNU, the correlation map itself hardly indicates the exact location of

tampered regions. The correlation map has to be compared with a prediction

map, which needs to be constructed using a feature-based predictor, to generate

the detection result. Figure 1.7 demonstrates the pipeline of the PRNU-based

image forgery localization.

1.3 Main Contributions

While PRNU-based image forensics has been a well-studied research area with

a lot of well-established forensic techniques, new challenges are faced due to the

recent development in digital photography. This thesis identifies some of these

challenges and proposes methods to tackle them. The major contributions

made in this thesis are summarised in detail as follows.

1. Over the past few years, the rapid advancement in digital photography

has greatly reshaped the pipeline of image capturing process on consumer-

level imaging devices. The flexibility of camera parameter settings and

the emergence of multi-frame photography algorithms, especially high

dynamic range (HDR) imaging, bring new challenges to PRNU-based
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Figure 1.7: A demonstration of PRNU-based image forgery localization.

image forensics. We identify these challenges and acknowledge the need

for subsequent studies on these topics. To facilitate these studies, we

introduce a new purposefully built image dataset in Chapter 3, namely the

Warwick Image Forensics Dataset. The dataset contains more than 58,600

images captured using 14 digital cameras with various exposure settings.

Special attention to the exposure settings allows studies to be done on

exposure parameters’ impact on PRNU-based image forensics as shown

in Chapter 4. Besides, this feature also makes it easy for the images to be

adopted by different multi-frame computational photography algorithms.

Despite this thesis does not include direct quantitative investigations on

multi-frame computational photography algorithms’ impact on PRNU-

based image forensics, this dataset provides a platform for future work

to be carried out.

2. The Warwick Image Forensics Dataset allows more dedicated and in-depth

investigations into camera sensitivity settings’ impact on PRNU-based

image forgery detection. Camera sensitivity is more commonly known

by the name of ISO speed by photographers. It determines the signal

gain in the image acquisition process. In Chapter 4, we first derived

a theoretical model for PRNU’s relative strength in an image using

a Poissonian-Gaussian noise model. It shows the dependency of the

PRNU’s strength on the camera’s ISO speed. As shown in Figure 1.7,

the localization of image forgery requires an accurate correlation map
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prediction. Due to the dependency of PRNU’s strength on the ISO

speed, we further show how the ISO speed could impact the correlation

prediction process. We propose an ISO-specific correlation prediction

process and a Content-based Inference of ISO speed (CINFISOS) method

to address this problem.

3. The emergence of photo-sharing social networking sites (SNSs) also poses

new challenges to PRNU-based digital forensics. In Chapter 5, we identify

one particular issue that the built-in image editing tools from SNSs could

inflict distortion on PRNUs. One well-known example of such tools is the

image filters on Instagram. We observed that some Instagram image filters

manipulate the high-frequency bands of the images and hence damage

the PRNUs, making source-oriented clustering of the filtered images

unsatisfactory. To address this issue, we propose a three-step clustering

framework by separating the images processed by different filters into

two groups. To identify the filter applied to each image, a convolutional

neural network (CNN) based filter-oriented image classifier is proposed.

By treating the two groups of images separately, the proposed framework

manages to cluster Instagram images despite the heavy distortion of

PRNUs from certain filters.

4. Anti-forensics attacks can be considered as the more direct challenges

to PRNU-based techniques. Being a noise-like signal, PRNU could be

attenuated or removed by some simple manipulations like median fil-

tering or Gaussian blurring. Thus, corresponding counter anti-forensics

methods are required. Recent development in neural network-based meth-

ods has seen successes in extracting features for different anti-forensics

manipulations[77–79]. However, neural network classifier trained using

images attacked by a specific group of manipulations do not generalise

well for other unprecedented attacks. Thus, the aforementioned networks

can perform well on detecting specific attacks but not for the more gen-

eral task: the binary classification of detecting whether the PRNU in an

image is attacked or not. To help a neural network generalise better for

this task despite the limitations of the training images, in Chapter 6 we

propose a training strategy using generative adversarial networks (GAN).

This training strategy can prevent the classifier from putting excessive

emphasis on the manipulation-specific features and the resultant classifier

can generalise better for unprecedented anti-forensics attacks.
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1.4 Outline of Thesis

This chapter briefly introduces the background of digital image forensics and

the application of PRNU-based methods in source camera identification, source-

oriented image clustering, and image forgery detection. The rest of this thesis

is presented in the following structure.

Chapter 2 first reviews the PRNU-based image forgery detection with an

emphasis on correlation prediction and its role in different forgery detection

algorithms. It then revisits the Poissonian-Gaussian noise model built for

the raw image capturing process on digital cameras. After that, different

source-oriented image clustering algorithms are reviewed. The last section of

this chapter reviews the literatures on different counter anti-forensics attack

methods.

Chapter 3 first discusses how camera parameter settings and multi-frame

merging algorithms may impact PRNU-based image forensics. By showing

the limitations of the existing public image forensics datasets, the underlying

design of the Warwick Image Forensics Dataset is then presented in this chapter.

After evaluating the dataset using benchmarking source camera identification

tests, this chapter concludes with a discussion of how this dataset could help

research on PRNU-based forensics to be carried out.

Chapter 4 starts with a further development of the theoretical Poissonian-

Gaussian noise model reviewed in Chapter 2 by including the PRNU factor.

This further development of the model analytically proves that a camera’s ISO

speed may impact PRNU’s strength in flatfield images. In addition to the

studies on the flatfield images, this chapter empirically shows that this impact

is also presented in more general cases and may affect the correlation prediction

process in PRNU-based forgery detection. To address this problem, this chapter

proposes an ISO speed-specific correlation prediction process followed by a

Content-based Inference of ISO speed (CINFISOS) algorithm.

Chapter 5 first investigates the impact of image editing tools used by social

network sites on PRNU-based source camera identification and source-oriented

image clustering. Using Instagram filters as an example, we show the impact

from the image filters on PRNU-based source-oriented image clustering. Hence,

a three-step image clustering framework is proposed in Chapter 5 to allow

PRNU-based source oriented image clustering to perform on Instagram images.

A convolutional neural network-based image filter classifier is also presented in

this chapter.

Chapter 6 identifies the limitations of the existing neural network based

anti-forensics attack detection methods. These methods may put excessive

emphasis on manipulation-specific features and do not generalise well for

unprecedented anti-forensics attacks. A generative adversarial networks-based
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training framework is proposed in this chapter. It makes the neural-network

based classifiers generalise better for the binary classification of detecting

whether the PRNU in an image is attacked or not, despite the training set

may only contain certain types of attacks. The effectiveness of the proposed

framework is tested and demonstrated in the improved accuracy in identifying

images attacked by three different manipulations unprecedented from the

training set.

Chapter 7 concludes this thesis. A summary of the challenges we tackled

and possible future research directions are given in this chapter.
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Chapter 2

Literature Review

This chapter will review some of the existing PRNU-based forensic methods and

point out the challenges they face. Firstly, Section 2.1 reviews the PRNU-based

image forgery detection methods. We will show how the PRNU correlation

predictor is formulated in [23] and its usage in different forgery detection

methods. Following that, Section 2.2 will review a Poissonian-Gaussian noise

model which describes the image capturing process for raw images with digital

cameras. By gaining an insight into this noise model, a solid foundation could

be built for detailed investigations into ISO speed’s impact on the PRNU

correlation predictor. A method to estimate the expectations and the variances

of pixels from noisy images, which will facilitate our studies on camera noise

model, will also be revised. Different source-oriented clustering methods will

be discussed in Section 2.3. Section 2.4.2 discusses anti-forensics attacks on

PRNUs and the corresponding countering and detection methods for these

attacks. Details on how convolutional neural networks can be used for attacks

on PRNU will be presented.

2.1 PRNU-based Image Forgery Detection

2.1.1 Preliminary Method

PRNU-based image forgery detection is first proposed in [21], in which the

authors address the forgery detection problem by verifying the integrity of a

selected Region of Interest (ROI). Two different approaches were devised in

[21]. To conduct PRNU-based forgery detection, first, both the PRNU from

the image in question and the reference PRNU from the camera have to be

extracted and estimated. To construct the reference PRNU, R, of the camera,

C, by which the image in question Y is taken, the average of the noise residuals
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W from N reference images from C is calculated:

R =
1

N

N∑

i=1

Wi (2.1)

The noise residual W of an image I is formulated as:

W = I− F (I), (2.2)

where F (I) denotes the denoised version of an image I. By following Equation

(2.2), the PRNU for Y could be estimated as its noise residual Z.

The first approach from [21] is proposed to verify the integrity of a selected

area Ω in an image Y. The similarity between the reference PRNU R and the

noise residual Z in the selected region Ω can be measured by the normalized

correlation coefficient (NCC):

ρ(RΩ,ZΩ) =

∑
q∈Ω(R[q]− R̄)(Z[q]− Z̄)

‖R− R̄‖ · ‖Z− Z̄‖
, (2.3)

where q denotes a pixel in the region Ω and ‖ · ‖ is the L2 norm. R̄ and Z̄ are

the arithmetic means of R and Z, respectively.

As PRNU is a weak noise, the correlation between the reference and

the noise residual is usually small even for pristine images. Thus, to better

differentiate pristine and tampered regions, the prior knowledge about the

expected correlation distribution of the region if it is tampered is required.

To calculate this statistics, a large set of L image regions Qk, k = 1, . . . , L

of the same size and shape is collected either from the images taken by the

same camera C but a different location within the images or from the images

taken by other cameras. As these regions do not share the same PRNU with

the reference PRNU, they can be considered as ‘tampered’. In addition, as

the inter-class correlation (i.e. the correlation between PRNUs of different

sources) is not content-dependent, the collected correlations follow the same

expected distribution despite the regions depicting different content. Thus,

a generalised Gaussian distribution can be estimated from the correlations,

ρ(RΩ,Wk), k = 1, . . . , L, between these regions’ noise residuals Wk, k =

1, . . . , L with the reference PRNU, RΩ, in the region Ω. Using the estimated

generalised Gaussian distribution, the probability, p, of a tampered region with

correlation bigger than ρ(RΩ,ZΩ) can be given as:

p = 1−G(ρ(RΩ),WΩ)) (2.4)

where G(·) is the cumulative distribution function (CDF) of the estimated

generalised Gaussian distribution. With this probability, the decision statistics
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Figure 2.1: The 12 different sliding blocks used for ROI detection. The size of
the sliding blocks are defined in [21].

could be obtained by setting a constant threshold: Ω has been forged if p > α

and not forged otherwise with α = 10−3 in [21].

The second approach from [21] is able to identify ROI automatically. To

detect forgeries of different shapes, [21] uses twelve sliding blocks of different

shapes and sizes as shown in Figure 2.1. These blocks will slide across the entire

image and the correlation within each block will be calculated for decision

making. This method can be summarised into the following 5 steps:

1. For each block type i from the N types of blocks shown in Figure. 2.1,

compute the correlations between the blocks’ noise residual with the

camera’s reference PRNU over the whole image in a sliding window

manner. This will generate a number of correlations ρj , j = 1, . . . , ni,

where ni is the number of the correlations computed for the ith block

type.

2. For each block type i, select m blocks with the smallest correlations

ρk, k = 1, . . . ,m to form a set Bk. There will be a total of m×N blocks

in Bk

3. Combine all the selected blocks and construct the mask B = ∪m×Nk=1 Bk.

4. For each pixel q ∈ B, count the number of blocks selected in Step 2 with

q included: t(q) = |{Bk|q ∈ Bk}|.

5. The pixels in ROI are the ones with t(q) bigger than the median value T

of t(q) for q ∈ B: R = {q|t(q) > T}

This method can automatically identify ROI and the identified ROI can be

further verified using the first approach from [21]. The two methods from [21]
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are the earliest attempts of using PRNU for image forgery detection and are

further extended by [23] as shown in the following sections.

2.1.2 PRNU Correlation Prediction

The preliminary methods from [21] show the possibility of using PRNU for

image forgery detection. But the use of the generalised Gaussian distribution

of correlations from tampered regions with the threshold α suggests that the

method expects a constant false acceptance rate (FAR, the rate of identifying

tampered pixels as pristine) without considering the false positive rate (FPR,

the rate of misjudging pristine pixels as tampered). With the weak nature

of PRNU, the distribution of correlations for the pristine regions could have

large overlapping with the tampered regions’ correlation distribution. Hence,

it is not uncommon to witness false positives, which limits the applicability of

PRNU-based forgery detection. Thus, a reliable forgery detection algorithm

needs to take the correlation distribution of the pristine regions into the

consideration. Most existing PRNU-based image forgery detection methods

analyse the correlation distribution of the pristine regions via a correlation

predictor proposed in [23]. We use this subsection to present its details.

By dividing an image into blocks, [23] treats the PRNU-based forgery

detection as a binary hypothesis testing problem in each block:




H0 : W = Ξ,

H1 : W = R + Ξ,
(2.5)

where W is the noise residual extracted from the image in question, I. R is

the reference PRNU of the source camera C. Ξ denotes the PRNU-irrelevant

noise in the noise residual. H0 is the hypothesis that the noise residual comes

from a tampered block with no existence of the source camera’s PRNU. H1

considers the extracted noise residual as containing both PRNU component and

other irrelevant noise. With a correlation x calculated from the block following

Equation (2.3), the probability of the block conforming with hypothesis H0,

p(x|H0) can be estimated in the same way as it is done in Equation (2.4) from

[21]. But to compute the probability of having correlation x under hypothesis

H1 requires an expected correlation for pristine block to be predicted.

The prediction of correlation distribution for the pristine blocks is not as

straightforward as the calculation of the distribution for the tampered blocks.

From the form of the pristine noise residual expressed in Equation (2.5), it is

trivial that the correlation would depend on the relative strength of the PRNU

component R in W compared to the PRNU-irrelevant part Ξ. By analysing

the noise residual components, [23] proposed a correlation predictor for the

pristine images as an image feature-based model.
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To find the factors which could affect the relative strength between R and

Ξ, and thus the PRNU correlation, [23] considers the following sensor output

model for an image I:

I = gγ · [(1 + K)Y + Λ]γ + Θq, (2.6)

where g is the camera gain, γ is the coefficient for gamma correction. Y is the

scene light intensity and K denotes the pixel’s non-uniform response to the

light, thus representing the PRNU factor. Λ is a combination of the other noise

sources including the dark current, shot noise, and read-out noise. Θq is the

quantization noise. As in natural images, the image signal is more dominant

than the noise. This allows the Taylor expansion to be applied for the equation

and an approximation can be made by only keeping the lower order terms. It

gives

I ≈ I(0) + I(0)K + Θ. (2.7)

The signal I(0) = (gY)γ is the noise-free sensor output. I(0)K denotes the

PRNU term in the output signal and Θ = γI(0)Λ/Y + Θq is a complex of

independent random noise components.

To extract the noise residual W from I, we use Equation (2.2):

W = I− F (I) = IK + I(0) − F (I) + (F (I)− I)K + Θ = IK + Ξ (2.8)

This expression shows that the PRNU term, IK, in the noise residual is

multiplicative with the image intensity. Thus, the first image feature considered

by [23] is image intensity fI . Within a block, Bb, the feature is defined as:

fI =
1

|Bb|
∑

i∈Bb

att(I[i]), (2.9)

where |Bb| is the size of the block and att(I[i]) is the attenuated pixel intensity

at pixel i:

att(I[i]) =




e−(I[i]−Icrit)2/τ , I[i] > Icrit,

I[i]/Icrit, I[i] ≤ Icrit

(2.10)

The attenuation function is design to account for the clipping effect on the

PRNU term when the pixel is too dark or saturated. The critical intensity Icrit

and the attenuation factor τ is set to be 250 and 6 empirically in [23] for 8-bit

images.

The form of Ξ in Equation (2.8) involves the difference between the noise-

free sensor output I(0) and the denoised image F (I). As it is almost impossible

to find a perfect denoising algorithm, the highly textured image components

may propagate into Ξ. Hence, the second image feature [23] considers is the
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image texture, fT :

fT =
1

Bb

∑

i∈Bb

1

1 + var5(F[i])
, (2.11)

where F is the high-pass-filtered version of the image I. var5(F[i]) computes

the variance of F in the 5× 5 neighbourhood of pixel i.

The authors of [23] also identifies that the image intensity and texture

could collectively influence the the PRNU correlation. Thus, a texture-intensity

combined feature, fTI , is also included in the correlation predictor:

fTI =
1

Bb

∑

i∈Bb

att(I[i])

1 + var5(F[i])
. (2.12)

Another image feature identified by [23] is signal flattening, fS . This

feature accounts for the attenuation on PRNU by low-pass filtering operation

like JPEG compression. fS is defined with respect to the ratio of pixels

with standard deviation in their local 5× 5 neighbourhoods smaller than an

intensity-dependent threshold:

fS =
1

Bb
|{i ∈ Bb|σI [i] < cI[i]}|, (2.13)

where σI [i] is the standard deviation in pixel intensity of the 5×5 neighbourhood

around pixel i and c is a constant and set to 0.03 in [23].

With the four image features defined, [23] models the correlation predictor

as a linear combination of the four features and their second order terms. For

a pixel k, the PRNU correlation within the block Bb around i is formulated as:

ρ[k] = θ0+θ1fI [k] + θ2fT [k] + θ3fS [k] + θ4fTI [k]+

θ5fI [k]fI [k] + · · ·+ θ14fTI [k]fTI [k] + Ψ[k],
(2.14)

where Ψ[k] is the modelling noise and θ is the coefficients to be determined.

Considering we have K image blocks from the same camera and their computed

PRNU correlation, we can rewrite Equation (2.14) into a matrix form: ρ =

Hθ + Ψ with θ = (θ0, θ1, . . . , θ14). As there are in total 15 terms in Equation

(2.14) (1 zeroth order term, 4 first order terms and 10 second order terms), H

is a K × 15 matrix with each entry can be computed following the definition

of the features and their combinations from the K image blocks. By applying

the least square estimator (LSE), the parameters can be estimated as:

θ̂ = (HTH)−1HTρ. (2.15)

Given an image block, its expected correlation ρ̂ can be predicted as:

ρ̂ = [1, fI , fT , fS , fTI , . . . , fTIfTI ]θ̂ (2.16)
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With Equation (2.16) formulating the expected correlation for an image

block, the correlation distribution under hypothesis H1 can be modelled as

the generalised Gaussian distribution GG(ρ̂, σ1, α1), where the mean is the

predicted correlation ρ̂. The scale parameter σ1 and shape parameter α1 can

be estimated by fitting the generalised Gaussian model GG(0, σ1, α1) to the

prediction error ν = ρ− ρ̂ for all the image blocks used in training of θ̂.

2.1.3 Constant False Acceptance Rate Method

By modelling the distribution of the PRNU correlation, the forgery detection

can be performed in a pixel-wise manner over the whole image using a sliding

window (e.g., a window of size 128× 128 pixels), to compute the correlation

map ρ for the image. A pixel qi is deemed as tampered if the correlation

ρi is smaller than a threshold t. In [23], the threshold is determined by the

correlation distribution under hypothesis H0 from Equation (2.5) by setting a

constant false acceptance rate (CFAR) to 10−5

∫ ∞

t
p(x|H0)dx = 10−5. (2.17)

Compared to [21], [23] considers the false positives may be introduced as some

pristine blocks could have small correlations due to saturated pixels or highly

textured content. Thus, to address this problem, pixel qi will be corrected

as pristine if the following relationship regarding the predicted correlation

distribution is satisfied: ∫ t

−∞
p(x|H1)dx > β, (2.18)

, where β can be considered as the expected maximum of the false positive rate

and is set to 0.01 in [23]. Due to the morphology of the tampered regions (for

example, in an image, it requires a relatively large collection of pixels together

to alter the image content), the resultant binary map will be further dilated

with a square kernel of size 20× 20 pixels to remove small detected regions to

obtain the final forgery detection result.

2.1.4 Bayesian-MRF Based Method

The constant false acceptance rate (CFAR) method makes independent decision

for each pixel which ignores the morphological meaning of the tampered region.

Image forgeries are usually used by adding or hiding objects to and from an

image. Thus, the tampered pixels often appear in clusters in the form of the

objects. Without considering this behaviour, the detection result from the

CFAR method made based on the independent pixel statistics could generate

fragmented and inconsistent binary detection map. Thus, the underlying
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spatial relationship between the pixels could be exploited for forgery detection.

Chierchia et al. exploits this relationship by using a Bayesian Markov random

field (MRF) based method in [24]. The Bayesian MRF-based method considers

both the PRNU correlation and neighbouring pixels’ relationships. The forgery

detection is formulated as a binary labelling problem. For an image of size

M ×N pixels, the problem is to find the binary labelling map û ∈ {0, 1}M×N

which maximises the probability of the occurrence given the correlation map ρ:

û = argmax
u∈{0,1}M×N

p(ρ|u, ρ̂)p(u), (2.19)

where p(ρ|u, ρ̂) is the conditional likelihood of observing the real correlation

map ρ under the prior of having the predicted correlation map ρ̂ and the

binary labelling map u. This conditional likelihood can be estimated based on

the correlation predictor from [23]. The probability p(u) considers the spatial

dependencies of the pixels by resorting to the MRF using Gibbs probability

law:

p(u) =
1

Z
e−

∑
c∈C Vc(u), (2.20)

where Z is a normalizing constant and Vc(·) is the potential. Modelling the

potential Vc(·) using the Ising model [80, 81], the potential energy only takes the

single-site cliques {c′} and 4-connected two site cliques {c′′} into considerations

and is the sum of the following two terms:

Vc′(ui) =




−α

2 , if ui = 0,

α
2 , if ui = 1

(2.21)

Vc′′(ui, uj) =




β, if ui 6= uj

0, otherwise
(2.22)

where the single-site potentials are directly related to the prior probability

of being tampered p0 and non-tampered p1 with α = log(p0/p1). β is the

edge-penalty parameter, penalizing the adjacent pixels for having inconsistent

labels. With p(u) defined, Equation (2.19) can be rewritten as:

û = argmin
u∈{0,1}M×N

{
−
M×N∑

i=1

log p(ρi|ui, ρ̂i) + α

M×N∑

i=1

ui + βR(u)
}
, (2.23)

where the regularization term R(u) is the sum of all class transitions over all

four-connected cliques of the image:

R(u) =

M×N∑

i=1

∑

j∈Ni

|uj − ui|, (2.24)
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with Ni the set of four-connected neighbours of pixel i.

By assuming the likelihood probability to be Gaussian under both hypo-

theses H0 and H1 from Equation (2.5), with zero mean and variance σ2
0 under

hypothesis H0, and mean ρ̂i and variance σ2
1 under hypothesis H1, Equation

(2.23) becomes:

û = argmin
u∈{0,1}M×N

{M×N∑

i=1

ui

[(ρi − ρ̂i)2

2σ2
1

− ρ2
i

2σ2
0

− log
σ0

σ1
− log

p1

p0

]
+βR(u)

}
(2.25)

By resorting to the convex-optimization algorithm proposed in [82], the min-

imization problem can be solved and gives the optimal û. Compared to CFAR

method from [23], this method considers the spatial relationships between the

pixels and produces more consistent binary detection results.

2.1.5 Multi-scale Analysis Strategy Based Method

Both the methods proposed in [23, 24] use the block-wise correlation as the

decision statistics for pixel-wise forgery detection. When the detection sliding

window moves across an image with tampered regions, at certain point, the

block covered by the window may include both pristine and tampered pixels.

Thus, for such a heterogeneous block, neither the hypothesis H0 nor H1 from

Equation (2.5) would stand for the whole block as some pixels have the camera’s

PRNU R and the others not. This would result in some tampered pixels or

small forgeries not being correctly identified by the forgery detection methods.

To address this problem, image segmentation based methods [83–85] were

proposed in order to separate the regions. However, image segmentation itself

is a sophisticated computer vision task and a good segmentation depends on

several factors which might not be met, for example, the image might be noisy,

highly textured or under-exposed. Furthermore, the image segmentation based

methods assume the tampered region sharing the same boundary information

as the image contents. However, this is not always true. For example, when

an object is completely covered by the background as shown in Figure 2.2,

the image segmentation based method will not be effective in segmenting the

tampered and pristine regions. Hence, image segmentation based method is

not the best solution for this problem.

Using a smaller detection window would naturally lower the occurrence of

the heterogeneous blocks. However, due to the weak nature of PRNU, a smaller

window size also means a large variance in the PRNU correlation, which will

make the tampered and pristine correlations harder to be discriminated. Thus,

there is a trade-off between using the smaller window sizes for more precise

localization of tampered pixels and using the larger window sizes for better

discriminability of the detection statistics. To balance this trade-off, Korus and
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Original Image Forged Image Forgery Mask

Figure 2.2: An example of an image with tampered region covered by the
background. Image segmentation based methods will not be able to estimate
the tampered region using segmentation method.

Huang proposes the multi-scale analysis strategy in [86] to fuse the detection

results using different detection window sizes.

Korus and Huang first consider the multi-scale analysis of the forgery

detection as a fusion problem. For a set of sliding windows with increasing

size {ωs} for s ∈ {1, . . . , S}, the goal is to fuse their resulting candidate

maps generated using a single-scale forgery detector, like the aforementioned

CFAR and Bayesian-MRF methods, to obtain an optimal binary detection

map t ∈ {0, 1}M×N for an image of size M ×N :

(
{c(s), {p(s),y}

)
→ t ∈ {0, 1}M×N , (2.26)

where c(s) ∈ [0, 1]M×N denotes the sth input candidate map corresponding to

analysis window of size ωs. Each candidate map has a corresponding reliability

map p(s) ∈ [0, 1]M×N , which identifies unreliable detection region, caused by

factors like saturated pixels and highly textured contents. y represents the

image content which is also used to guide tampering localization.

The fusion problem is formulated in terms of random fields and resolves to

finding the optimal labelling of t (with ti = 1 corresponding to tampered pixel

at i) that minimises the following energy function:

1

S

M×N∑

i=1

S∑

s=1

Eτ (c
(s)
i , ti) + α

M×N∑

i=1

ti +
M×N∑

i=1

∑

j∈Ni

βij |ti − tj | (2.27)

The first term penalizes differences with respect to S candidates maps. The

second term is a penalty term which can introduce a bias towards the hypothesis

H0 from Equation (2.5) with α being the weight. The third term penalizes

inhomogeneity in a pixel’s 8-connected neighbourhood, with Ni denoting the

8-connected neighbourhood of pixel i.
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The potential Eτ (c, t) from the first term is defined as:

Eτ (c, t) = − log max(Ψmin,Ψτ (c, t)), (2.28)

with Ψmin ∈ [0, 1] and:

Ψτ (c, t) =





1− c
2τ for t = 0,

1 + c
2(1−τ) −

1
2(1−τ) for t = 1,

(2.29)

where τ ∈ (0, 1) is a quasi-threshold that equalises potentials for both decisions,

i.e., Eτ (τ, 0) = Eτ (τ, 1). Ψmin is set to 10−3 in [86]. Drift thresholding [87] is

applied to sliding windows of different scales:





τ (1) if s = 1,

τ
(s−1)
i + δp

(s−1)
i if s > 1 and c

(s−1)
i ≤ τ (s−1)

i ,

τ
(s−1)
i − δp(s−1)

i if s > 1 and c
(s−1)
i > τ

(s−1)
i ,

(2.30)

where δ ∈ [0, 1] is the strength of the drift and τ (1) is an initial threshold. The

drift is weighted proportionally to the region’s reliability p(s).

The reliability map p(s) indicates regions with reliable detection with pi = 1

while using pi = 0 for unreliable detection. The inclusion of the reliability map

in the first term can reset the score to eliminate false positive detections and

facilitate easier score propagation through neighbourhood interactions. The

reliability map is defined as:

pi = 1− e−ξ0|ci−
1
2 |ξ1 , (2.31)

where ξ0 and ξ1 are set to 30 and 2.5 empirically in [86].

βij denotes the weight for the neighbourhood interaction term from Equa-

tion (2.27):

βij = β0 + β1e
− 1

2
φ−2‖yi′,yj ′‖2L2 , (2.32)

where ‖yi′, yj ′‖L2 denotes L2 distance between two pixels in RGB color space.

With this term, similar neighbouring pixels are more likely to have the same

detection result.

With all the terms defined, the multi-scale fusion problem can be solved

by minimizing the potentials in Equation (2.27). Apart from the multi-scale

fusion based method, two other adaptive detection methods are also presented

in [86], with one using segmentation-guided approach to decide the PRNU

correlation detection window adaptively and the other dynamically choosing

the optimal detection window size until a confident tampering probability

estimation could be made. Despite the multi-scale and the adaptive methods
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from [86] outperform the single-scale forgery detection methods, their base is

using single-scale detection results according to the PRNU correlation statistics

from the correlation predictor proposed by [23]. Thus, a correlation predictor

with good precision under different scenarios becomes the foundation for

generating reliable forgery detection results.

2.2 Poissonian-Gaussian Image Sensor Noise Mod-

elling

2.2.1 Image Sensor Noise Modelling

In the previous subsection, we discussed different PRNU-based forgery detection

algorithms and the important role of the correlation predictor from [23] plays.

However, we found that the performance of the correlation predictor is not

always optimal with several limitations. To understand the sources of these

limitations, we have to revise the noise model the correlation predictor is built

upon.

The noise model from Equation (2.6) is rather simplified. Despite it

considers the camera gain and the gamma correction, the PRNU irrelevant

noise in this model is simply formulated as an independent variable with no

mentioning to the input signal. This is not accurate as the noise contains

signal-dependent components. Without considering this signal-dependency,

the conclusion derived from this simplified model could miss important factors

which can impact the correlation predictor’s performance.

To have a better understanding of this matter, a more detailed noise model

for digital image sensor is required. An important work in this field is done in

[88]. [88] considers a signal-dependent noise model by formulating both the

Poissonian and Gaussian parts for noise in raw image data. [88] starts from a

generic signal-dependent noise model:

z(x) = y(x) + σ(y(x))ξ(x), (2.33)

where x ∈ X is the pixel position in the domain X. z is the observed signal

and y is the original signal. ξ is zero-mean independent random noise with the

standard deviation equal to 1 and σ is a signal-dependent noise which gives

the standard deviation of the overall noise component. By considering two

mutually independent parts, a Poissonian signal-dependent component ηp and

a Gaussian signal-independent component ηg, the noise σ(y(x))ξ(x) can be

written as:

σ(y(x))ξ(x) = ηp(y(x)) + ηg(x) (2.34)
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The two components are characterised as follows:

χ(y(x) + ηp(y(x))) ∼ P(χy(x)) (2.35)

ηg(x) ∼ N (0, b), (2.36)

where χ and b are real scalar parameters and P and N denote the Poisson

and Gaussian distribution, respectively. With the elementary properties of the

Poisson distribution, the mean and the variance for the Poissonian component

have the following relationship:

E{χ(y(x) + ηp(y(x)))} = var{χ(y(x) + ηp(y(x)))} = χy(x). (2.37)

Thus, the Poissonian component ηp has varying variance that is linearly pro-

portional to y(x) and the Gaussian component has a fixed variance b. The

overall variance of the noise model conforms to:

σ2(y(x)) = ay(x) + b, (2.38)

with a being the linear coefficient.

Considering the physical meaning of each component, we will see how the

above Poissonian-Gaussian model is naturally suited for the raw-data of digital

image sensors. The Poissonian component ηp models the photon-counting

process at each pixel on a sensor. The Gaussian component ηg accounts for

the signal-independent errors such as electric and thermal noise. The scalar

parameter χ is related to the quantum efficiency of the sensor, which measures

the sensor’s photoelectric conversion rate, which determines the amount of

electric charge the sensor collects. But in addition to the above model, in digital

image sensors, the collected charge is always added to some base “pedestal”

level p0. This constitutes an offset-from-zero of the output data and it can be

rewritten as a shift in the argument of the signal-dependent part of the noise:

z̊(x) = ẙ(x) + σ̊(ẙ(x)− p0)ξ̊(x)

= ẙ(x) + η̊p(ẙ(x)− p0) + η̊g(x)
(2.39)

Notice the above expression is denoted by the circle superscript .̊ It is done to

differentiate the expression from the final output, which needs to be amplified

by the analogue gain. The analogue gain is the amplification of the collected

charge. The amplification Θ is formalised as the multiplication of the noise-free

signal, of the Poissonian noise, and of a part of the Gaussian noise by a scaling

constant θ:

z(x) = Θ(̊z(x)) = θ(ẙ(x) + η̊p(ẙ(x)− p0) + η̊′g(x)) + η̊′′g (x). (2.40)
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In the above equation, the Gaussian noise term η̊g has been split in two

components η̊′g and η̊′′g , where η̊′′g represents the portion of the noise that is

introduced after the amplification and thus not affected by the factor θ. The

expectation and variance for z are:

E{(x)} = y(x) = θẙ(x) (2.41)

var{z(x)} = θ2χ−1(ẙ(x)− p0) + θ2var{η̊′g(x)}+ var{η̊′′g(x)}. (2.42)

Hence, the above expression conforms to the form of Equation (2.38) with:




a = χ−1θ

b = θ2var{η̊′g(x)}+ var{η̊′′g (x)} − θ2χ−1p0

(2.43)

In digital cameras, the analogue gain θ is controlled by the choice of ISO

speed settings. Thus, this Poissonian-Gaussian model shows how the variance

of the noise is dependent on the ISO speed. However, so far, the model has not

taken the PRNU into consideration. As PRNU is the non-uniform response

of the pixels to the light, which originates from the slight difference of the

quantum efficiencies at pixels, so it will influence the terms with χ. Also,

from observation, we found that the terms with χ are also correlated with the

amplification factor θ, indicating the ISO speed will have an impact on the

noise components related to the PRNU in the raw data. This relationship

needs to be further investigated to evaluate how the ISO speed would impact

the PRNU correlation and detailed studies are presented in Chapter 4.

2.2.2 Local Estimation of the Expectation and Variance for

the Noise Model

Foi et al. [88] not only formulate the Poissonian-Gaussian noise model, but

also provide a method to estimate the sensor signal yi and its variance σ2(yi)

from noisy raw images. This method could be useful for the validation of the

PRNU noise model. [88] facilitates the noise analysis through wavelet domain

analysis. It considers the wavelet detail coefficients zwdet, which is defined as

the downsampled convolution:

zwdet =↓2 (z ~ ψ), (2.44)

where ↓2 denotes the downsampling operation and ψ is a 2-D wavelet function

with zero mean and unity l2-norm. Similarly, the normalized approximation

coefficients, zwapp, are defined as:

zwapp =↓2 (z ~ ϕ), (2.45)
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where ϕ is the corresponding 2-D wavelet scaling function, which is normalized

so that
∑
ϕ = 1.

For noisy images, the detail coefficients zwdet contain mostly noise and it

gives

std{zwdet} =↓2 (std{z ~ ψ}) =↓2 (
√

var{z}~ ψ2)

≈↓2 (std{z}‖ψ‖2) =↓2 (std{z})

=↓2 (σ(y)) = σ(↓2 y) = σ(↓2 (y
∑

ϕ))

≈ σ(↓2 (y ~ ϕ)) = σ(E{zwapp})

, (2.46)

with the approximation becoming accurate in regions, where y is uniform.

Thus, for pixel x in uniform regions, it can be assumed that

zwdet(x) ∼ N (0, σ(E{zwapp(x)})) (2.47)

As
∑
ϕ = 1, it is always true that ‖ϕ‖2 6= 1. Therefore, when considering

std{zwapp}, Equation (2.46) comes to:

std{zwapp} ≈ ‖ϕ‖2σ(zwapp) (2.48)

[88] uses separable kernels with ψ = ψ1 ~ ψT1 and ϕ = ϕ1 ~ ϕT1 , where ψ1 and

ϕ1 are 1-D Daubechies wavelet and scaling functions.

To better facilitate the uniform region assumption, [88] segments an image

into level sets, in each of which the image can be reasonably assumed to be

uniformly close a certain value. Spatial smoothing is deployed to attenuate the

noise in an image to better estimate the segmentations. Also, an edge detector

is used to avoid the impact from edges in the noise analysis.

The spatial smoothing is done by convolving the normalized approximation

coefficients with a uniform 7× 7 kernel ω̄:

zsmo = zwapp ~ ω̄, (2.49)

where ‖ω̄‖1 = 1. After this smoothing operation, in the corresponding regions

where y itself is smooth, zsmo is approximately equal to E{zwapp} and thus to

↓2 y.

The edge detection is carried out by setting a threshold for the smoothed

derivatives of the image against an estimate of the local standard deviation.

As the mean of the absolute deviations of N (0, 1) is equal to
√

2/π, a map for

the rough estimation of the local standard deviations of zwdet can be defined

as:

s =

√
π

2
|zwdet|~ ω̄. (2.50)
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Base on this map, the set of smoothness Xsmo is defined as:

Xsmo = {x ∈↓2 X : |∇(Λ(zwapp))(x)|+ |Λ(zwapp)(x) < τ · s(x)}, (2.51)

with

Λ(zwapp) = ∇2medfilt(zwapp), (2.52)

where ∇ and ∇2 are gradient and Laplacian operators, respectively. medfilt

is a 3 × 3 median filter. ↓2 X denotes the decimated domain of the wavelet

coefficients zwapp and τ is a positive threshold. By thresholding the sum of the

gradient and the Laplacian, it provides a heuristic way to obtain thickened

edges.

With the smoothed images and edges excluded, the pixels can be divided

into level sets to better facilitate the uniform region assumption. [88] divides

the smoothness set Xsmo into a collection of N non-overlapping level sets

Si ⊂ Xsmo, i = 1, . . . , N . For each level set, it is characterised by its center

value ui and allowed deviation ∆i > 0, which is defined as:

Si = {x ∈ Xsmo : zsmo(x) ∈ [ui −∆i/2, ui + ∆i/2)]. (2.53)

As for the pixels in the smoothness set, x ∈ Xsmo, they have the following

properties:

zsmo(x) = E{zwapp(x)} = E{(↓2 z)(x)} = (↓2 y)(x) (2.54)

std{zwdet(x)} = std{(↓2 z)(x)} = (↓2 (σ(y)))(x). (2.55)

Thus, for each level set Si, the local estimation of pixel’s expectation value can

be estimated as ŷi:

ŷi =
1

n

ni∑

j=1

zwapp(xj), {xj}ni
j=1 = Si. (2.56)

The standard deviation of σ(yi) can be calculated as the unbiased sample

standard-deviation of the detail coefficients zwdet on Si:

σ̂i =
1

κni

√∑ni
j=1(zwdet(xj)− z̄wdet

i )2

ni − 1
, (2.57)

where z̄wdet
i = 1

ni

∑ni
j=1 z

wdet(xj) and the factor κ−1
ni

is defined as:

κn =

√
2

n− 1

Γ(n2 )

Γ(n−1
2 )

= 1− 1

4n
− 7

32n2
+O(

1

n3
), (2.58)

where O( 1
n3 ) omits the higher order errors. The factor κn comes from the mean
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of the chi-distribution with n− 1 degrees of freedom.

Equation (2.56) and (2.57) provide a way to estimate the expected pixel

values and pixels’ standard-deviations, hence the variances as well, from noisy

raw images. This method will be used in Chapter 4 to validate the sensor noise

model involving the PRNU term developed in our work.

2.3 PRNU-based Source-oriented Image Clustering

Both PRNU-based image forgery detection discussed previously and image

source camera identification use reference PRNU from candidate cameras to

determine an image’s originality and integrity. The reference PRNU has to be

extracted from a set of images taken by the same camera. This requirement

could be fulfilled if the source camera is available but the availability of the

source camera cannot be assumed in many real-world scenarios. For example,

the forensic investigators may need to carry out investigations on social network

accounts, checking whether and which accounts share images from the same

device and thus, discover the underlying connection between these accounts.

Under such a scenario, the forensic investigators may not have access to the

source cameras. All the information available is the set of images from these

accounts. With the goal of the provenance analysis for these images is to group

them into clusters based on their source devices, the forensic investigators have

to exploit the relationship between images. The pairwise correlations between

the PRNUs extracted from the images could provide vital source information.

However, again, due to the weak nature of the PRNU, the correlation between

two PRNUs extracted from two single images could contain strong noise. To

take this factor into account, a clustering algorithm needs special designs

to be robust to this noise. Thus, several methods have been proposed for

PRNU-based source oriented image clustering.

2.3.1 Markov Random Field Based Methods

One of the first works in source oriented image clustering is proposed in [89].

[89] treats each PRNU extracted from each image as a random variable and

uses the Markov random field approach to iteratively assign the PRNUs into

clusters. Firstly, a subset of M images are randomly selected from all the

images to form a training set. Each image forms a singleton cluster and

the pairwise correlations are computed between the M clusters. Thus, each

cluster’s corresponding PRNU has M − 1 correlations computed with the

others. With the correlations between the clusters computed, for each cluster,

k-means clustering with k = 2 is applied to the M − 1 correlations to group

the correlations into two groups (one as intra-class and the other as inter-
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class). The average of the centroids for the two clusters is used as a reference

correlation. Also, a membership committee consisting of a certain number of

the most similar PRNUs from the training set is formed for each PRNU in

the training set. The reference correlation and the membership committee

are used to estimate the likelihood probability of assigning each class label to

the corresponding PRNU. The class label with the highest probability in its

membership committee is assigned to the PRNUs in question. The clustering

steps can be performed iteratively and stops when there are no label changes

after two consecutive iterations. With the clusters formed in the training data,

each PRNU from the rest of the dataset is classified to its closet cluster to form

the final result. Being one of the earliest works in source oriented clustering,

while this method performs well on small dataset without the need for the

priori knowledge about the dataset, this method has several limitations. First,

the likelihood computation complexity is O(n3) with respect to the number of

images, which makes the method run extremely slow on large dataset. Secondly,

as the final clusters are formed by using the clusters from the training data

to attract the rest of the images, to ensure there is a correct cluster for each

image in the training set, the number of image selected for training set, M ,

needs to be large. A large M will make the likelihood probability computation

more expensive.

A faster MRF based method is presented in [25]. Similar to [89], the

algorithm starts from singleton clusters and iteratively updates each image’s

label with the usage of a membership committee for each cluster. But some

key differences make the performance of this method superior to the one from

[89]. Instead of using correlation as the similarity measurement, [25] uses

the shared nearest neighbours (SNN). SNN-based clustering algorithms have

shown good performance in finding clusters of different sizes and densities.

Thus, the usage of SNN in [25] could help in this aspect. As the likelihood

probability computation in [89] is very time-consuming, a concise yet effective

cost function is used in [25] to address this problem. The cost function enables

the clustering results to converge accurately and efficiently. Furthermore, [25]

uses deterministic relaxation for the MRF to update the labels for images,

which accelerates the rate of convergence. Overall, this method can group

images into clusters very efficiently. In contrast to the method from [89] which

splits the clustering task into two stages by constructing a training set, this

method can be applied to a large dataset directly without worrying about not

finding a representative cluster for each image during the training stage.
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2.3.2 Hierarchical Clustering Based Methods

A hierarchical clustering based method is proposed in [90]. Similar to [89], only

a subset of the images is used as the training set for the clustering stage and

the rest of the images are attracted to the cluster centroids as a classification

problem. The method starts from using singleton clusters in the training set as

well. The algorithm calculates the pairwise similarity matrix for the training

set and merges clusters iteratively. For each iteration, two closest clusters are

merged and the correlation matrix is updated with the correlations between the

newly formed cluster and all other clusters. After each iteration, a silhouette

coefficient, which measures the separation among clusters and the cohesion

within each cluster, is calculated for the cluster. A global measure of the

silhouette coefficients is recorded by taking the average over all the clusters.

This algorithms runs iteratively until all the images are merged into a single

cluster. At the end of the iterative process, an optimal partition will be decided

for the one with the lowest global silhouette coefficient. After finishing the

clustering of the images from the training set, the rest of the dateset is classified

into the formed clusters. A similar hierarchical clustering method is presented

in [91]. Despite that the hierarchical clustering is reportedly faster than the

method presented in [89], the iterative merging process is still computationally

expensive. Also, the accuracy of the method is also dependent on the size of

the training set.

2.3.3 Graph Clustering Based Methods

[92] treats the image clustering as a graph partition problem using a weighted

undirected graph. Each image’s PRNU is considered as a vertex in the graph

and the weight of each edge is represented by the similarity between the two

vertices linked by the edge. To avoid the time-consuming pairwise similarity

computation, [92] constructs a sparse graph instead. A vertex is randomly

selected as the initial center of the graph and the weights of its edge to all

other vertices are then calculated. The (κ+ 1)th closest vertices to the initial

center is selected as the second centers. The weights of edges from these

vertices to all other vertices are calculated as well. κ is a parameter, which

controls the sparsity of the graph. The construction procedure stops when

the number of vertices not considered as centers is less than κ. After the

construction procedures stops, the multi-class spectral clustering (MCSC) [93]

is applied to the constructed graph to partition the vertices into a number of

clusters. However, a drawback for this method is about the stopping criterion

for the iterative partition. To find the optimal partition, the algorithm works

in an iterative manner until the size of the smallest cluster equals 1. Thus,

to overcome this drawback, [94] proposes the use of the silhouette coefficient
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to find the optimal partition. Nonetheless, despite the usage of the silhouette

coefficient, the randomness of the MCSC still exists.

To address the randomness in the performance caused by the MCSC, [95]

proposes a normalized cuts (NC) [96] based clustering method. Again, the

method considers the clustering as a graph partition problem with the PRNUs

as the vertices and the pairwise similarities between the PRNUs as the weights

for edges connecting the vertices. A cut means the partition of a graph into two

disjoint graphs by the removal of the edges connecting the two parts. The total

weight of the removed edges gives a computation of the degree of dissimilarity

between the two parts, defined as the cut value. The optimal bipartition of a

graph is obtained by means of the minimization of the cut value. However, this

would favour cutting small sets of isolated nodes in the graph. Thus, to avoid

such a behaviour, instead of using the cut value directly, a normalized cut is

used and defined as sum of the cut values divided by the total connections

from each partition to all the nodes in the original graph. The clustering can

be carried out by minimizing the normalized cut and bipartitioning the graph

iteratively. Though the normalized cut method addresses the randomness from

MCSC and yields more stable performance, the choice of the stopping criterion

for this method is critical to the performance. The stopping criterion is based

on the comparison of an aggregation coefficient, defined as the mean value of

the edge weights inside a cluster, with a pre-defined threshold. In [96], the

optimal threshold value is estimated by preliminary experiments on a training

set. However, in real-life scenario, it might be difficult to find training images

sharing the exact statistical characteristics as the image in questions.

2.3.4 Consensus Correlation Clustering Based Method

With all the aforementioned methods requiring users to either set the size

of the training set or use priori knowledge to find the optimal threshold, a

consensus correlation clustering based method is proposed in [97], which does

not require any user-defined parameters. Correlation clustering is essentially

a graph-based clustering algorithm. [97] runs the correlation clustering using

a fully-connected graph. It formulates the graph partition problem as a

constrained energy minimization problem with the energy defined as the sum of

the weights for all cut edges. In [97], the weights for the edges are measured as

the similarity between the connected vertices but with a constant shift. As the

goal is to minimize the energy, the constant shift will exert a tendency shift for

the algorithm. With a large and positive shift, the method tends to make less

cuts and therefore, forms a single cluster. A negative shift will encourage the

method to make more cuts and more likely to form singleton clusters. Thus,

the correlation clustering itself needs to find an optimal setting for this shift
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constant. Instead of finding an optimal setting for the correlation clustering,

[97] runs correlation clustering with 50 different settings of the constant shift.

With an ensemble of clustering results formed, consensus clustering is applied.

The large ensemble of the correlation clustering results are fed to the Weighted

Evidence Accumulation Clustering (WEAC) to obtain the consensus clustering

result. The consensus clustering result is further refined by using log-likelihood

estimators to check whether some clusters can be merged with one of the large

clusters, by utilizing the improved PRNU estimation due to the large cluster

size.

Finding an optimal and efficient way to conduct PRNU-based source

oriented clustering is still an open question. Different application scenarios can

put different constraints on the problem. Thus, many other works [5, 26, 98–

101] have been conducted in this field as well. However, all the above mentioned

clustering methods consider the similarity measurement between pristine images’

PRNUs. With the fact that some common image editing tools may impact the

similarity measurement, especially on social networking sites, their influence

on the clustering performance needs to be investigated.

2.4 Anti-forensics Attacks on PRNU and Counter-

ing Methods

As shown in the previous sections, PRNU is a powerful image forensic tool,

which can be used effectively for source camera, image clustering and forgery

detection. Thus, to avoid being traced or detected by the PRNU-based forensic

methods, the image attackers may target the PRNU to make those identification

methods ineffective. Thus, these anti-forensics attacks pose direct threat to

PRNU-based forensic methods. Correspondingly, forensic investigators would

like to develop detection and countering methods on these attacks. Detecting

PRNU attacked images can prevent PRNU-based methods from being applied

to these images, which may lead the investigators to wrong conclusions. In

addition, usually PRNU attacked images also have high probability with their

contents being tampered as well. Thus, revealing these attacked images can

also raise suspicion about the authenticity of their contents and thus, not to

be deceived by them.

Generally speaking, attacks on PRNU can be categorised into two groups,

(1) by introducing pixel-level misalignments and (2) suppression of PRNU. We

will review both categories and the corresponding detection methods.
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Figure 2.3: An example image showing how seams are found within an image.
The red seams run vertically through the image, mostly running through the
flat background which contains less information.

2.4.1 Attacks on PRNU by Disturbing Pixel Alignment

As the PRNU is a pixel-level signal, the computation of the similarity between

PRNUs requires good alignment. Thus, introducing pixel-level misalignment is

an effective way to disturb the methods which rely on the PRNU similarity.

Simple geometric transformations, like resizing, rotation, cropping, etc., are

effective enough to introduce misalignment and anonymise images. However,

it is shown that the parameters for these simple transformations could be

determined by a brute-force search. With the transformation parameters

determined, the PRNU can still be aligned with the distorted image [102, 103]

and hence, the PRNU-based methods can remain effective. With this in mind,

attackers may use an irreversible transformation whose parameters cannot be

found using brute-force search to anonymise an image.

A seam-carving based method is proposed in [104] by Bayram et al. Seam-

carving [105] is a content-aware image resizing method. A seam is defined as

a connected path which runs either horizontally or vertically throughout an

image with an example image shown in Figure 2.3 1. An image can be resized

by removing a certain number of seams and then all remaining pixels are shifted

horizontally or vertically to fill the gap. Each seam is obtained by measuring

the gradient information at each pixel as an energy function and a path that

minimises the energy is selected as the seam. Thus, a seam can be considered

as a set of connected pixels which contains the least content information.

Dirik et al. did an detailed analysis of seam-carving based anonymization

attack on PRNU in [107]. They found that in order to achieve successful

anonymization of the source camera for an image, there should not be many

uncarved blocks larger than the size of 50× 50 pixels. As the seam-carving is

1The image is excerpted from [106]

36



an irreversible manipulation which removes pixels from an image, to meet the

requirement of not having many uncarved blocks will inevitably downgrade

the image quality and may alter the image content as well. In addition, a

source camera identification method for seam-carved images is proposed in

[106], given the knowledge that multiple seam-carved images are from the same

camera. The authors of [106] show that by combining the PRNUs from multiple

seam-carved images with the same source, the source camera identification is

still possible even if the sizes of the uncarved blocks in the images are less than

the recommended size of 50× 50 pixels.

2.4.2 Attacks on PRNU by Suppression of PRNU

With the PRNU being a high-frequency signal, it can be easily attenuated or

even removed by some simple manipulation, including denoising and median

filtering. Ever since the first PRNU-based method is proposed in [20], the

authors have tested removing PRNU using denoising filters. It is found that

the denoising filter used in [20] could decreases the correlation value between

the extracted PRNU and the reference. By repetitive application of a denoising

filter or use some aggressive denoising filters, the PRNU can be sufficiently

suppressed to prevent successful source camera identification. Other low-pass

filtering manipulations like median filtering, wavelet transform based low-pass

filtering and Wiener filter are found to be effective in removing or suppressing

the PRNUs in images [108, 109]. Thus, detecting these attacks have drawn

attentions from the digital forensic research community.

Median Filtering Detection

Median filtering is a nonlinear operation which can preserve edges within an

images. It is commonly used to perform image denoising, removing outlying

pixel values and image smoothing. Thus, attackers may use median filtering

to suppress an image’s PRNU while preserving the edge information. Several

early techniques had been developed to detect median filtering [50–53], but

their detection performance could be downgraded in several important real-

life scenarios. For example, they generally do not perform well on JPEG

compressed images. To address this problem, Kang et al. propose a detection

method [54] that analyses the statistical properties of an image’s median filter

residual defined as the difference between an image and its median filtered

version. The median filter residual is fitted to an autoregressive (AR) model

to extract the AR coefficients. A support vector machine (SVM) is used in

[54] as a binary classifier to detect whether median filtering is applied. Using

the extracted autoregressive coefficients as the features, the median filtering

detection can be performed.
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Wavelet-based Compression Detection

Not only the wavelet-based compression can suppress PRNU, it is also pointed

out in [110] that wavelet-based method can be used to hide other image manip-

ulation footprints. Thus, developing method to discriminate uncompressed and

wavelet-based compressed images would contribute to the forensic community.

In [110], anti-forensics attacks are carried out by dithering the discrete wavelet

transform (DWT) histogram, which removes the quantization artifacts in the

DWT histogram. In [111], Wang et al. notice that despite the dithering

operation from [110] can successfully remove the quantization artifacts, the

image spatial-domain information is not taken into account. The magnitudes

of DWT coefficients at the same spatial location across different levels are

highly correlated, especially for the typical localized image structured, such as

edges. Thus, this inspired Wang et al. to study the statistical change in the

image caused by the wavelet-based compression and dithering using a joint his-

togram of DWT coefficients across different levels. The Hough transformation

is applied to the joint DWT histogram and the first four standardised moments

of the Hough transform parameters are used as features. A SVM-based binary

classifier can be trained by using the four features to detect whether an image

is subject to wavelet-based anti-forensics attacks.

Generic Manipulation Detection

The methods developed in [54] and [110] construct specific features to detect

specific types of anti-forensic attacks. With the vast number of the types of

potential attacks on PRNU, constructing a specific set of features for every

type of attacks becomes infeasible. Thus, researchers have been working in

the direction of constructing universal feature sets that can be used to detect

multiple types of attacks. Several works [112–115] were done in this field.

As PRNU is a high-frequency signal, the studies of the attacks on PRNU

often focus on the high-frequency component in an image. For example,

Verdoliva et al. extract features from the high-pass residual of an image in

[113]. The residual image is extracted using a linear high-pass filter of the

third order:

rij = xi,j−1 − 3xi,j + 3xi,j+1 − xi,j+2, (2.59)

where x and r are the original and residual images, respectively. i and j are

the Cartesian coordinates of a pixels.

The residual image is quantised such that a manageable number of bins can

be set for the histogram of co-occurrences for the residual. The quantization

and truncation is performed as:

r̂ij = trunc(T )(round(rij/q)), (2.60)
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where T and q are the truncation value and the quantization step, respectively.

They are set to T = 2 and q = 1 in [113]. The co-occurrence is computed on

four pixels in a row:

C(k0, k1, k2, k3) =
∑

i,j

r̂(qi,j = k0, qi+1,j = k1, qi+2,j = k2, qi+3,j = k3). (2.61)

This eventually gives a histogram h of 625 bins.

To use this residual-based feature for manipulation detection, Verdoliva et

al. consider a binary hypothesis test, with H0 being genuine image blocks and

H1 for tampered. As [113] considers H1 being image blocks with heterogeneous

sources, the detection problem is tackled through H0. The H0 training samples

are fitted through a multidimensional Gaussian distribution. The mean vector

and covariance matrix for the multidimensional Gaussian for the features h is

defined as:

µ =
1

N

N∑

n=1

hn

Σ =
1

N

N∑

n=1

(hn − µ)(hn − µ)T

(2.62)

With the distribution formulated, for each new feature under test h′, the

log-likelihood with respect to the Gaussian model can be computed as:

L(h′) = (h′ − µTΣ−1(h′ − µ)) (2.63)

The log-likelihood can be compared with a threshold to make the final detection.

Though this method is designed for heterogeneous manipulations, the choice

of the threshold is challenging for this heterogeneous setting. In addition, this

method is a local descriptor using a block-wise comparison method, which

means the multidimensional Gaussian model built from one block can only be

reliable for the image blocks from the same position of the same camera. Thus,

it cannot be applied to images from other sources. But overall, this method

shows the potential of using high-pass residuals to detect generic anti-forensics

manipulations.

With the emergence of convolutional neural-network (CNN) based classifiers

and their successful application in the closely related research fields of computer

vision and pattern recognition, the digital forensic community starts to use

neural networks for detecting generic anti-forensics attacks as well. Inspired by

the usage of high-pass residual based features, Bayar and Stamm [77] proposed

a manipulation detection method using a constrained CNN architecture with

the first convolutional layer forced to perform high-pass filtering. In [78],

Cozzolino et al. further prove that local features can be extracted using CNN
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Figure 2.4: The processing Scheme (1) for extracting a spatial rich model with
filter and shifters can be replaced by a bank of filters in Scheme (2). The bank
of independent scalar quantization (SQ) and coder can be replaced by a vector
quantiser. The figure is excerpted from [78].
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Figure 2.6: The constrained CNN shown in Scheme (3) with the extracted
features fed to an external classifier (SVM) can be replaced by a fully connected
layer with all constraints removed. The figure is excerpted from [78].

even without the high-pass filtering constraint. They prove it step-by-step,

moving from local features to a Bag-of-Words (BoW) paradigm, and then

proceed to the implementation of CNN as shown in Figure 2.4, 2.5 and 2.6 2.

Scheme (1) in Figure 2.4 shows the feature extraction process for the spatial

rich model, which is a model built on residual-based local descriptors, similar to

the method from [113] reviewed above. X is the input image, which is passed

through a filter to extract the residual image R. Afterwards, the residual image

is shifted by pixels using z to create N versions of the residual images. The N

shifted residual images are then quantised and encoded as I∗. The histogram

of the I∗ can be computed and used as feature, for example, like in Equation

(2.62) and (2.63). Cozzolino et al. point out that the filter and the shifters from

Scheme (1) can be replaced by a bank of filters, all identical to one another

except for the position of the non-zero weights (for example, the weights in

Equation (2.59), which are [1,−3, 3, 1]). The quantiser and coder group can be

regarded as a constrained form of vector quantization. Thus, the structure and

function of Scheme (1) is equivalent to Scheme (2) and Scheme (2) actually

implements the Bag-of-Words paradigm.

From the BoW paradigm, Cozzolino et al. further point it out that the

scheme can be implemented through a CNN. The bank of filters from Scheme

(2) can be replaced by a convolutional layer and the vector quantiser can be

replaced by convolutional-hardmax layers. The computation of the histogram

2The images are excerpted from [78]
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can be done through an average pooling layer as shown in Figure 2.5 to extract

the residual-based features. These features are then passed to an external

classifier, for example, a SVM. Cozzolino et al. replace the external classifier

with internal fully-connected layers to complete the CNN structure. Hence,

they prove the residual-based local descriptors can be entirely extracted by a

CNN.

Yu et al. show that the features extracted using a CNN can discriminate

multiple types of anti-forensics manipulations [79]. However, despite the CNN

can discriminate different types of anti-forensics manipulations, it requires

the training set to include every type of possible manipulations. In real-life

scenario, before the forensic investigators applying PRNU-based methods, often

the question of whether an image’s PRNU is attacked needs to be answered, no

matter which type of manipulation it has undergone. For a training set with a

finite size, it would not be able to include all potential types of manipulations.

Thus, the binary classification of discriminating whether an image’s PRNU is

attacked or not remains an open question.

2.5 Summary

In this chapter, we first introduced different methods on PRNU-based image

forgery detection. We show how the PRNU correlation predictor is developed

and its important role in different forgery detection methods. We then revised

a Poissonian-Gaussian sensor noise model, which gives us some hints about the

ISO speed’s impact on the noise component corresponding to the PRNU in an

image. As this impact may put limitations on the existing correlation predictor,

more detailed investigations are required. In addition, different PRNU-based

source-oriented clustering methods are revised with detailed explanations on

how they use the similarity measurements between the PRNUs to group

images into clusters. These methods assume the similarity measurements are

pristine. But with the emergence of common image editing tools used by social

networks sites, the validity of this assumption is challenged and the impact

from these editing tools needs to be investigated. We then discussed anti-

forensics attacks on PRNUs and the corresponding detection methods. CNN

based classifiers have been proved to be effective for detecting different types

of manipulations but the binary classification of detecting whether an image’s

PRNU is attacked or not remains an open question. With the aforementioned

problems and challenges in mind, studies are carried out in the following

chapters to investigate and address these problems.
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Chapter 3

Warwick Image Forensics

Dataset

In Section 2.2 of Chapter 2, we discussed how the ISO speed may have an

impact on the PRNU correlation and image forgery detection. Thus, studies

need to be carried out to further investigate this phenomena and develop

effective methods to improve the forgery detection performance on images of

different ISO speeds. In order to carry out these studies, we need to have

a large number of images taken at different ISO speeds. However, existing

forensic datasets cannot meet this requirement on the quantity of the images

taken at different ISO speeds. Therefore, it is necessary for us to construct

a new dataset to facilitate the study of ISO speed’s impact on PRNU-based

image forensics.

In this chapter, we present a novel forensics image dataset, namely the

Warwick Image Forensics Dataset. The dataset consists of more than 58, 600

images from 14 different cameras. The images are taken with special attentions

to the camera exposure settings, especially the ISO speed and the exposure

time, as well as using exposure bracketing and burst shot functions to take

multiple frames of the same scene. With these special designs for the image

compositions, not only the study of the ISO speed’s impact on PRNU-based

image forgery detection allowed to be carried out, but also it enables different

multi-frame merging algorithms (e.g. HDR imaging) to be applied to the

images such that forensic techniques for images subject to these algorithms

can be developed as well. Thus, this dataset can provide a solid platform for

studies on different topics in image forensics.

The rest of the chapter is organised as follows. In Section 3.1, a brief over-

view of the background, including existing forensic datasets, will be discussed.

The details of the Warwick Image Forensics Dataset are presented in Section

3.2 and experimental evaluations are carried out in Section 3.3. A conclusion

is given in Section 3.4.
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3.1 Introduction

As introduced in the previous chapter, PRNU-based device fingerprinting

methods have important roles in digital image forensics. Many studies have

been carried out in this field. Public datasets like Dresden Image Dataset

[116] and VISION Image Dataset [117], which can be used as benchmarking

platforms, are very important for the study of device fingerprint analysis and

the development of relevant techniques.

As the digital forensic community is gaining more understanding of image

device fingerprinting, digital and computational photography has undergone

huge development as well. Driven by the need for consumer-level devices to

produce better images, we witness significant advances in both hardware and

software development. As far as hardware is concerned, the improvement in the

design of electronic components like complementary metal-oxide-semiconductor

(CMOS) brings better noise immunity. Such improvements allow cameras

to have greater flexibility in camera parameter settings, especially for using

high signal gain (commonly known by the name of ISO speed in photography)

without introducing too much noise to images. Thus, digital photography

becomes more versatile under different lighting conditions and can be used for

high-speed photography. In addition, the ever-increasing computational power

of consumer-level mobile devices brought by the improvement in hardware

allows more sophisticated computational photography algorithms to be pro-

cessed in real-time. Among these algorithms, merging multiple time-sequential

image frames is a very popular computational photography strategy used by

consumer-level devices, especially for high dynamic range (HDR) imaging [118].

By processing a burst shots of images, the resultant image can be of higher

dynamic range, less noisy and often aesthetically more appealing. Thus, the

HDR imaging mode has received great popularity and become available in

most mobile imaging devices.

While the above mentioned improvements are beneficial to the users, new

challenges are faced by existing PRNU-based device fingerprinting methods.

Often, existing PRNU-based device fingerprinting methods are working on

the correlation between the noise residuals extracted from the images. The

intra-class correlations (the correlations between noise residuals of images from

the same source device) can be greatly affected by images’ ISO speeds and

the alignment operation used in multi-frame computational photography al-

gorithms. This results in compromised forensic accuracy when running existing

PRNU-based methods on these images. Thus, insightful investigations are

required to understand the problems behind and develop effective forensic

methods accordingly. However, the images of the existing datasets in the

public domain are not purposefully collected to help answer these problems.
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Therefore, we have built a new dataset called Warwick Image Forensics Data-

set, which can not only serve the same purposes as the existing datasets, but

also includes images with their source cameras working in different exposure

settings. With the diverse exposure settings, not only systematic investigations

in the exposure parameter settings’ impact on digital image forensics allowed

to be conducted, but also it provides a platform to study different multi-frame

computational photography algorithms, which could not be done with the

existing forensic datasets. Thus, the dataset paves the way for finding methods

to deal with the impact on the accuracy of device fingerprinting due to expos-

ure parameter settings and multi-frame computational photography algorithms.

3.1.1 ISO Speed’s Impact On PRNU-Based Digital Forensics

As introduced in Chapter 2, the correlation predictor from [23] is built by

considering the following sensor output model as:

I = gγ · [(1 + K)Y + Λ]γ + Θq (3.1)

where g is the camera gain, γ is the gamma correction factor and Y is the

scene light intensity. The model considers two major noise terms, represented

by Λ and Θq, respectively. Λ is a combination of noise sources including dark

current, shot noise and the read-out noise. Θq represents the quantization noise.

The PRNU term of our interest is represented by K, showing the non-uniform

response to the scene light intensity Y. The model is simplified in [23] by

exploiting the Taylor expansion of the gamma correction and can be written

as:

I
.
= I(0) + I(0)K + Θ (3.2)

with I(0) = (gY)γ , being the sensor output in the absence of noise, and Θ =

γI(0)Λ/Y+Θq, being a complex of PRNU-irrelevant random noise components.

Written in this form, the PRNU component I(0)K is a multiplicative term with

the noise free image I(0). While this expression can make people easily miss

the role of camera gain, g, in the sensor output model, we still can make some

qualitative observations on the impact from camera gain on PRNU. Given

similar I(0) from different images, the size of Θ would differ with different

camera gain g as higher g requires less input intensity Y to produce the same

output signal I(0). As Θ = γI(0)Λ/Y + Θq, a smaller Y will induce more

PRNU-irrelevant noise in an image’s noise residual. Because PRNU is often

estimated as the noise residual of an image, the addition of PRNU-irrelevant

noises will make this image’s noise residual less correlated with noise residuals

extracted from other intra-class images (images from the same source device).
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With the above relationship in mind, in [119], the authors empirically

show that given similar contents in images taken with different ISO speed

settings, the intra-class correlation distributions can vary according to ISO

speeds, which directly control the camera gain g. This results in higher error

rates in source camera identification for images of higher ISO speeds. Due to

this phenomenon, [119], an empirical study on how ISO speed would affect

PRNU-based source camera identification, suggests that camera exposure

parameters like ISO speed should be considered from a forensic perspective.

It is also suggested that the construction of forensic image datasets should

include images of different exposure parameter settings, which can also be

beneficial for studies in steganalysis.

3.1.2 High Dynamic Range Imaging

HDR images can capture more details from scenes compared to standard

dynamic range (SDR) images and hence receive much attention from computa-

tional photography researchers. From the early works in [120, 121] to the more

recent works like HDR+ [122] and deep neural network based methods [123],

different HDR imaging techniques are developed to allow them to be used

under different conditions. Despite the differences, these methods also share

a few things in common, which make HDR images a hard subject in general

for PRNU-based device fingerprinting. For most HDR imaging algorithms,

conventional exposure methods of taking a set of time-sequential images are

often used, despite some methods have images with the same exposure time

and some others use images with different exposure time. A radiance map can

be reconstructed from a set of time-sequential images and provides a larger

dynamic range than single exposure images. However, as it is almost impossible

to avoid object or camera motion during the capturing process of the time-

sequential image sets, the reconstruction of the radiance map usually involves

pixel-wise alignment to compensate the object motions across different image

frames to avoid motion blurring. Such an operation will mix the PRNU signal

from different pixel and cause misalignment between the PRNU embedded in

the resultant HDR images and reference PRNU extracted from single exposure

images taken by the same camera. Due to such misalignment, intra-class PRNU

pairs will be less correlated and cause difficulty in PRNU-based provenance

analysis.

In addition to the misalignment problem, tone mapping is another operation

commonly used in HDR algorithms, which can cause trouble for existing PRNU-

based forensic methods. Tone mapping is used to reconstruct a color image

from a radiance map. Each implementation of different HDR algorithms

may have its unique tone mapping curve and on top of that, different tone
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mapping curves can be applied either globally or locally on the same image.

As mentioned in Chapter 2, PRNU-based forgery localization methods often

use a content dependent correlation predictor to estimate the block-wise intra-

class correlations to discover pixels with its PRNU absent, without the prior

knowledge of the tone mapping curve, reliable predictions from the correlation

predictor can hardly be expected. These problems require specific adjustment

for existing PRNU-based methods to make them effective on HDR images.

3.1.3 Existing Public Image Datasets

As a rapidly developing topic, device fingerprinting draws many researchers’

attention and several image datasets are constructed over the years to facilitate

the researches. One of the earliest image datasets adopted for device finger-

printing is the Uncompressed Colour Image Dataset (UCID)[124]. From then

on, more dedicated image datasets for provenance analysis are constructed.

Notably, the Dresden Image Dataset [116], RAISE dataset [125] and VISION

dataset [117] are three datasets widely used for benchmarking in device finger-

printing. Each dataset consists of a large number of high resolution images

from multiple devices, either digital cameras or smartphone cameras. More

recent datasets like the SOCRatES [126] and DAXING datasets [127] feature

images from a vast number of source devices (103 smartphone cameras from

SOCRatES and 90 smartphone cameras from DAXING dataset). Despite the

images from these datasets show good diversity and heterogeneity in terms

of contents, all the above mentioned datasets focus on SDR images only and

the diversity in camera exposure parameter settings was not given adequate

consideration during the construction of these datasets.

The ‘HDR dataset’ from [128] is the first forensic dataset featuring HDR

images. The images in this dataset are taken with 23 smartphone cameras and

for each scene included in this dataset, both a SDR image and a HDR image

are provided. The images are taken under three different conditions: taken

from the tripod, by the hand and by a shaky hand. Despite [128] featuring

both SDR and HDR images, its real contribution of the image pairs towards

the understanding of HDR images’ impact on source device identification is

limited. Firstly, the SDR images included in the dataset are not the SDR

images used for the construction of the HDR images. As a result, these pairs

may not best reflect the impact of HDR algorithms on device fingerprints

in SDR images. Secondly, as the HDR images in this dataset are generated

directly from the smartphones, the coverage of different implementations of

HDR algorithms are confined by the choice of smartphones included in this

dataset. As the development of new HDR algorithms continues, research

findings stemmed from this dataset are unlikely to be applicable to other
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HDR images produced by future algorithms. Acknowledging this problem,

our Warwick Image Forensics Dataset takes the flexibility of generating HDR

images using different implementations of HDR algorithms into account as we

shall see from the following section.

The details of the datasets mentioned above are summarized in Table 3.1.

3.2 Dataset Details

In this section, we present the details of our Warwick Image Forensics Dataset.

3.2.1 The Selection of Cameras

The images from the Warwick Image Forensics Dataset are captured by 14

digital cameras. The details and the technical specifications of the cameras

are shown in Table 3.2. The primary goal of this dataset is helping the

digital forensic community to develop better understanding of the impacts

from both camera exposure parameter settings and multi-frame computational

photography algorithms, especially HDR imaging, on device fingerprinting.

The choice of using digital cameras instead of smartphone cameras in this

dataset allows us to have better control on camera exposure parameter settings

during the image capturing process. With these fine controls, the images

captured are suitable for different HDR algorithms, whether they are using

images of the same or different exposures to produce HDR images. The 14

cameras are from 11 different models and cover a good range of major camera

manufacturers. Also, the 14 cameras show good diversity of different image

sensor formats with the smallest sensor of comparable size to the sensors used

on smartphones cameras.

3.2.2 Image Acquisition

The images from this dataset can be categorised into the following three classes:

• Flatfield images

• SDR images

• HDR-ready SDR images

The flatfield images are mainly for reference PRNU extraction. For each

camera, 100 flatfield images are captured by taking photos of a flat blue board

with the lenses adjusted to be out of focus. For each image shot, the camera

is set to its lowest ISO speed to reduce the amount of read-out noise in the
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image. The exposure metering of each shot is adjusted to normal exposure,

making the images neither too dark nor too saturated.

The SDR images in this dataset are the standard dynamic range images

taken with the cameras’ single-shot mode and thus cannot be used for HDR

merging algorithms. These images are taken with systematic control of the

cameras’ ISO speed. For each camera, images are taken with the ISO speed set

to be one of the following values: ISO 100, 200, 400, 800, 1600, 3200 and 6400,

with the only exceptions from the two Panasonic Lumix DC-TZ90 as their ISO

speeds go only up to 3200. 30 images of different scenes in different conditions

are taken for each above mentioned ISO speed on each camera. For each image

shot, with the camera’s ISO speed set, we enable the camera’s Program Mode,

allowing the camera to adjust its aperture size and exposure time automatically

to allow sufficient exposure. Almost all the images from this set are taken in a

hand-held style. This set of images provide good diversity in scenes as well as

camera exposure parameter settings at the same time.

The HDR-ready SDR images are the set of standard dynamic range images,

which can be used with different algorithms to produce HDR images. Images

of 20 different scenes are taken for this set. Different HDR algorithms may

require different sets of images. For example, [121] uses set of images of varying

exposure times and [122] expects a burst shot of under-exposure images with

the same exposure time, we took continuous shots of images using three different

modes. The first one is using the auto exposure bracketing (AEB) function

on each camera. The AEB function allows us to take continuous shots of

images with varying exposure times. The second and third modes both use

fast continuous shot mode to take at least 7 continuous shots of images with

the same exposure. However, one set is taken at normal exposure and the

other is taken as under-exposed, usually by 1 or 2 stops measured by the

cameras’ exposure metering system. An example of the images taken with

these three modes are shown in Fig. 3.1. Furthermore, to increase the diversity

in exposure parameter settings, we systematically repeat these three modes

with cameras set to 7 different ISO speeds as mentioned above. Thus, for each

camera, more than 120 images of the same scene with various camera parameter

settings are taken. The 20 different scenes included in this dataset are carefully

selected, covering both indoor and outdoor, day-light and night environment,

still and dynamic scenes as well as objects with different texture. The images

are taken with the cameras either hand-held or sat on a tripod. The dataset

does not provide any generated HDR images from a specific HDR algorithm

directly as it would not be useful considering the existence of different HDR

algorithms. Instead, the good diversity of camera exposure parameter settings

in this dataset provides the users with the flexibility of adopting different

HDR imaging algorithms for the images, allowing the research findings to
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be more generic but not just limited to a specific HDR algorithm. Also, the

good diversity of camera exposure parameter settings means that the images

from this dataset can be used for other camera exposure parameter setting

dependent studies.

For every image from our Warwick Image Forensics Dataset, both the

unaltered RAW image file and the camera generated JPEG image file are

available.

3.3 Experimental Evaluations

In this section, we conduct experimental evaluations on PRNU-based source

camera identification and clustering’s performance on the Warwick Image

Forensics Dataset. In particular, we will show how the performance varies by

using images of different ISO speeds for the tests.

For source camera identification, from each camera, we extract the reference

PRNUs from 100 flatfield JPEG images using the BM3D de-noising algorithm

[129]. The extracted reference PRNUs are processed by a spectrum equaliser

from [130] to remove unwanted artefacts. We test the performance of source

camera identification method from [20] on the SDR images from the dataset.

For each image, we crop a region of 512× 512 pixels from its center to extract

the noise residual and compute the correlations with the corresponding pixels

from the reference PRNUs. The receiver operator characteristics (ROC) curves

for the method on images of ISO speed 100, 200, 400, 800, 1600 and 3200

are shown in Fig. 3.2. Apparently, as the ISO speed gets higher, smaller

under curve area is observed indicating worse performance. Fig. 3.3 shows the

correlation matrices of pairwise correlations between noise residuals extracted

from SDR images of ISO speed 100, 200, 400, 800, 1600 and 3200. On the

plots, we use red squares to highlight the intra-class correlations belonging to

each camera, marked by the number which follows the order in Table 3.2. The

six color-maps follow the same color scheme as shown in the bar on the right.

The cluster structures in each plot become less clear as the ISO speed gets

larger. The clustering performance show the same general trend with smaller

F1 score for the higher ISO speed despite the F1 score for ISO 200 images is

slightly higher than the one for ISO 100 images. By applying the method from

[25], we have F1 score of 84.33%, 84.51%, 83.12%, 82.86%, 80.97% and 80.13%

for ISO speed 100, 200, 400, 800, 1600 and 3200, respectively.

All experiments mentioned above prove that different camera exposure

settings have different levels of impact on the quality of PRNU and the forensic

analyses, which need to be considered in forensic research and real-world

investigations. Therefore, it is important to include images of diverse camera

parameter settings in the image datasets in order to facilitate researches.
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Figure 3.2: The ROC curves of source camera identification using the method
from [20] on SDR images with ISO speed 100, 200, 400, 800, 1600 and 3200.

3.4 Conclusion

In this chapter, we demonstrated the impact of camera exposure parameter

settings like ISO speed on the quality of PRNU and the importance of having

an image dataset that can facilitate future research into the development of

better solutions to deal with this impact. We presented the Warwick Image

Forensics Dataset, a novel forensic image dataset consisting of more than 58,600

images, captured with special attentions to exposure parameter settings. The

images are from 14 different digital cameras. The good diversity of camera

parameter settings allows studies on different exposure parameters’ impact

on device fingerprinting to be carried out on this dataset. With the diverse

ways of taking these images, they can easily be used by different multi-frame

computational photography algorithms including HDR imaging. Thus, HDR

image related studies in device fingerprinting can be carried out using this

dataset as well. In addition, the dataset can also be used for other studies like

steganalysis. Thus, we believe it is beneficial for the digital forensic community

with the dataset released as an open-source.
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Chapter 4

Impact of ISO Speed upon

PRNU and Forgery Detection

With the Warwick Image Forensics Dataset constructed, this platform allows

more detailed investigations into the ISO speed’s impact on PRNU-based

image forgery detection to be carried out. Hence, we use this chapter to

present the work done on this topic. We will use Section 4.1 to further explain

the background. The analysis of the impact of ISO speed on PRNU-based

image forgery detection and the proposed methods to mitigate this impact are

presented in Section 4.2, 4.3 and 4.4. Specifically, we first analytically and

empirically prove in Section 4.2 that the correlation between an image’s noise

residual and its reference PRNU is not only content-dependent as previously

known, but also dependent on the camera sensitivity setting (i.e. the ISO

speed). We then validate our postulate in Section 4.3 that, due to such ISO

speed dependency, reliable predictions of the correlation between an image’s

noise residual and its reference PRNU can only be accurately made when a

correlation predictor is trained on images of similar ISO speeds to the image

in question. Base on the postulate, we propose an ISO specific correlation

prediction process. Recognizing that in the real-world, information about

the ISO speed may not be available to facilitate the implementation of our

postulate in the correlation prediction process, we propose a method called

Content-based Inference of ISO Speeds (CINFISOS, /’sin.f@.s@s/) in Section

4.4 to infer the ISO speed from the image content. Comprehensive experiments

to test the proposed CINFISOS and the ISO specific correlation prediction

process for forgery detection are presented in Section 4.5. Section 4.6 concludes

this chapter.
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4.1 Introduction

Photo Response Non-Uniformity (PRNU) based methods have shown their

unique strength in image forgery detection. Many different algorithms have

been proposed for PRNU-based image forgery detection [21, 23, 24, 83, 84, 86].

In most of these works, PRNU is utilised by computing the image-wise or

block-wise correlations between the source device’s reference PRNU and the

test image’s PRNU. The corresponding pixel-wise decision (forgery detection)

can be made by comparing the correlations with a decision threshold.

As mentioned in the previous sections, the PRNU is often estimated in

the form of the noise residual of an image, which can be extracted from an

image by simply subtracting the de-noised image from the original image. By

nature, PRNU is a weak noise. The existence of camera artifacts and other

PRNU-irrelevant noises (e.g. shot noise, thermal noise, etc.) in an image’s

noise residual can reduce the correlation between the noise residual and the

device’s reference PRNU. It becomes a non-trivial problem to separate the

inter-class (images from different source devices) from the intra-class (images

from the same source device) correlations. It becomes particularly problematic

when the PRNU quality in the noise residual is poor such that these two types

of correlations’ distributions can have large overlaps.

Despite a large number of works that have been done to better extract, es-

timate and enhance the PRNU [22, 23, 131–135], the overlap between inter- and

intra-class correlations cannot be completely avoided. Thus, many researchers

have been working on refining the choice of the decision thresholds to better

separate the two classes, especially for image forgery detection [23, 24, 86].

The decision thresholds are often set with reference to the expected intra-class

correlations predicted by a correlation predictor. The correlation between an

image’s noise residual and the device’s reference PRNU reflects the strength

of the PRNU in the image. As the strength of the PRNU is multiplicative of

the pixel intensity and some highly textured image content or post-processing

may damage the PRNU’s quality, correlation prediction should be performed

in an adaptive manner. A content-dependent correlation predictor is pro-

posed by Chen et al. in [23], which formulates the correlation predictor as a

regressor model of four image features, namely the intensity, texture, signal-

flattening and a texture-intensity combinative term. This correlation predictor

has been adopted by many PRNU-based forgery detection algorithms (e.g.

[23, 24, 83, 84, 86]). Due to the complex nature of the PRNU correlation,

despite different attempts to re-engineer the correlation predictor over the past

decade, we have not witnessed much success. Thus, the digital forensic com-

munity still relies greatly on the correlation predictor from [23] for PRNU-based

forgery detection.
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However, over the last decade, we have also witnessed great advancement

in the digital camera industry, especially in sensor design. Such advancement

also brings new challenges to PRNU-based digital forensics. Therefore, we

have observed a few issues about the correlation predictor proposed in [23]. An

important feature ignored by the correlation predictor is the camera sensitivity

setting, which is commonly known by the name of ISO speed. Many camera

manufacturers have been working on improving sensor performance and provid-

ing more and higher ISO speeds to digital cameras. It allows the photographers

to take photos under different lighting conditions. While the improvements

have been brought to sensor technology, it is also a known fact that high ISO

speeds may introduce more noise to an image. As a result, the quality of the

PRNU left in the noise residual will be reduced when a high ISO speed is used.

[119] empirically shows that source camera identification performance could be

degraded for images taken at higher ISO speeds, which is further validated in

Chapter 3 by testing source camera identification performance at multiple ISO

speeds. With camera manufacturers increasingly supporting broader ranges of

ISO speed settings on digital cameras and mobile devices, a proper analysis of

the ISO speed’s influence on PRNU-based image forensics, especially on the

correlations and image forgery detection, needs to be carried out.

As this chapter focuses on the correlation between an image’s noise residual

with its reference PRNU, for simplicity, we will call it the correlation.

4.2 ISO Speed Dependent Correlation

In this section, we demonstrate that an image’s ISO speed can affect its

correlation. As a general noise model can be complicated, to show the existence

of such an ISO Speed-Correlation relationship in a concise manner, we use a

special case to prove this relationship analytically and then empirically show it

with more general cases. The special case considered is a single color channel

of a flat-field RAW image, from which we expect the same value for every pixel

if they are noise-free. To conduct PRNU-based pixel-wise forgery detection,

the correlation between the noise-residual of a block centered at each pixel and

the corresponding block of the reference PRNU is calculated. Let z be a noise

residual within a block Ni centered at pixel i and ω be the reference fingerprint

within the corresponding block. Assume both z and ω are standardised, which

means they follow the normal distribution N (0, 1). We can model both signals

as the sum of a PRNU component and a PRNU-irrelevant part. At pixel

j ∈ Ni: 


ωj = xj + αj

zj = yj + βj
(4.1)
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where x and y are the PRNU components of ω and z while α and β are

the PRNU-irrelevant noises. As for a flat-field image, we can approximate

its PRNU component, x in this case, as a normal distribution N (0, σx
2) and

α conforms to N (0, 1 − σx2). For intra-class pairs, x and y represent the

same PRNU. As they may differ in strength, without losing generality, we can

express y as N (0, σy
2) with σy =

√
λσx and y =

√
λx. α and β are mutually

independent. So when we compute the correlation ρi of the block Ni, the

correlation ρi becomes:

ρi ∼ N (µi,Σi) (4.2)

with 


µi = σxσy =

√
λσx

2

Σi = (1 + λσx
4)/|Ni|

(4.3)

From the above expression, we can see that the expected correlation value,

µi, is proportional to the standard deviation σy of the PRNU component,

y, in the image’s noise residual, z. Based on the Poissonian-Gaussian noise

model [88, 136, 137], we can see that the ISO speed would affect this standard

deviation σy and eventually exert influence on the PRNU correlations.

The relationship between the camera gain, g, which is directly determined

by the camera’s ISO speed, and the noisy raw pixel intensity, I, is analysed

in [88]. The raw pixel intensity is proportional to the number of electrons

counted on the sensor. Photo-electron conversion is the main source of the

electrons collected from the sensor. [88] considers the Poissonian statistics of

the incident photon counting process as follows. At pixel i, the number of the

counted electrons is the sum of the electrons generated from photo-electron

conversion Npi and dark electrons Nti from the thermal noise. It is assumed

that the variance of the thermal noise is uniform across the sensor and all other

electronic noises can be modelled as a zero-mean Gaussian noise with variance

s2. So the raw pixel intensity, Ii, at pixel i, can be written as:

Ii ∼ g · [p0 + P(ηiNpi +Nti − p0) +N (0, s2)] (4.4)

where P(·) represents the Poisson distribution and ηi is the photon-electron

conversion rate at pixel i. p0 is a base pedestal parameter introduced in the

camera design to provide an offset-from-zero of the pixel’s output intensity. For

each pixel, as a large number of electrons are counted, the normal approximation

of Poisson distribution can be exploited. Therefore, Ii can be modeled as:

Ii ∼ N (ϕi, gϕi + t) (4.5)

59



with 


t = g2s2 − g2p0

ϕi = g · (ηiNpi +Nti)
, (4.6)

ϕ can be viewed as the expected pixel intensity. Notice that this model from

[88] has not yet considered the PRNU. To include the PRNU in this model,

we write the photo-electron conversion rate ηi as the following expression by

considering the non-uniform response of each pixel to the photons:

ηi = η̄(1 + ki), (4.7)

where η̄ is the average photo-electron conversion rate and ki is the PRNU

factor at pixel i. k follows normal distribution N (0, σ2
k). As we are considering

the case of a flat-field image here so we can fix the number of photons, Npi ,

collected at every pixel. By expanding Equation (4.5), we have:

Ii ∼ N ((1 + ki)ϕ− gkiNti, g(1 + ki)ϕ+ t− g2kiNti) (4.8)

As in most cases, both the PRNU and the thermal noise are weak noises. We

can ignore the terms involving kiNti. When we consider a block Ni, often it

consists of thousands of pixels (e.g. 4096 pixels for a 64× 64 block). Such a

large number of pixels allow us to approximate the overall distribution of the

pixel values in this block by another normal distribution. By substituting t of

Equation (4.8) with the expression for t in Equation (4.6), we approximate the

distribution of the pixel values in block Ni as:

INi ∼ N (ϕ,ϕ2σk
2 + gϕ+ g2s2 − g2p0) (4.9)

We expect the de-noised version of this block to have pixels of uniform intensity,

ϕ. Thus, we can approximate the variance of the noise residual of this block

as:

σres
2 ≈ ϕ2σ2

k + gϕ+ g2s2 − g2p0 (4.10)

The PRNU component in the noise residual has a variance of ϕ2σ2
k. By

normalizing the noise residual, the standard deviation of the PRNU component

in the normalized noise residual becomes:

σy =

√
ϕ2σ2

k

ϕ2σk2 + gϕ+ g2s2 − g2p0
(4.11)

Clearly, σy is dependent on the camera gain g. By substituting this expression

back to Equation (4.3), we can conclude that the correlation ρi can be affected

by the camera gain g and thus affected by ISO speed.

Notice that when we introduce PRNU by considering different photo-
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electron conversion rate, ηi, at each pixel to the raw pixel intensity model from

[88], the noise residual variance model described in Equation (4.10) becomes a

quadratic function of the expected pixel intensity ϕ, which can be expressed

as:

σres
2 = Aϕ2 +Bϕ+ C (4.12)

with 



A = σk
2

B = g

C = g2s2 − g2p0

(4.13)

It differs from the linear model in [88]. We will empirically validate Equation

(4.10) to show the physical importance of the PRNU term, ϕ2σk
2, in the

equation despite the approximations made.

We use four cameras for the test, namely a Nikon D7200, a Canon 6D

MKII, a Canon 80D, and a Canon M6. Each of the four cameras can generate

14-bits RAW images, which means their pixel values can vary between the

range of [0, 16383]. To better show the physical meaning of the coefficients

in Equation (4.10), we standardise the pixel values to the range of [0, 1]. To

validate Equation (4.10), we plot the variance of the noise in the flat-field

images against different pixel values in Fig.4.1. We use the cameras to take

images of a screen of flat color to make the captured images as plain as possible

to avoid the interference from image content. Each camera’s ISO speed is set

to 100. The exposure time is varied to change the pixel intensity for different

shots. As the cameras use Bayer-filter as their color filtering array (CFA), we

subsample the RAW images with a stride of 2 in both vertical and horizontal

directions to make sure the pixels we test are from the same color channel.

Despite the set-up, the images are not completely flat due to other camera

artifacts, e.g. vignetting. Thus, we use the method from [88] to estimate the

expected pixel value and variance for multiple image blocks from each noisy

RAW image. Fig.4.1 shows the fitting of Equation (4.12) to the experiment

data, which is computed using ordinary least squares (OLS). Despite the noisy

nature of the data, the large correlation coefficients (r2) for the plots show

that a good agreement between the model and the data can be observed.

In addition to showing the good agreement of the derived model and the real

data, we would like to show the physical meaning of the first order coefficient,

B = g in the model as well. We use the RAW images from the same Canon 6D

MKII from the previous test for this test. We repeat the previous experiment

four times but set the cameras’ ISO speed to ISO 200, 400, 800, and 1600,

respectively. Again, we fit Equation (4.12) to the data. As for the same camera,

despite the change of ISO speed, we can assume that the PRNU factor on

the sensor should remain the same and so does the variance of the PRNU
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(a) Nikon D7200 (b) Canon 6D MKII
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(c) Canon 80D (d) Canon M6
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Figure 4.1: Plots of noise’s variance σres
2 against pixel intensity ϕ, with a

quadratic fitting (red curve) as described by Equation (4.10) and (4.12), of
RAW flat-field ISO 100 images from four cameras: (a) Nikon D7200, (b)
Canon 6D MKII, (c) Canon 80D and (d) Canon M6. The fitted coefficients for
Equation (4.12) and the correlation coefficient (r2) for each plot are shown in
Table 4.1.

factor, σ2
k. Thus, it is reasonable for us to fix the second order coefficient

A = σ2
k to 5.24× 10−5, the value estimated from Fig.4.1, in Equation (4.12) for

these fittings and the corresponding fittings generated using OLS are shown in

Fig.4.2. Once again, good agreement between the fitted curve and the data

can be observed with the large correlation coefficients. In addition, we show a

log− log plot of the estimated first order coefficients B from Fig.4.1(b) and

4.2 against the ISO speed of their corresponding images in Fig.4.3. We fitted

a straight line to the plot given slope close to 1. As a camera’s ISO speed is

proportional to its camera gain, g, the straight line with slope close to 1 in

Fig.4.3 shows that B and g follow a linear relationship, which validates our

noise model from Equation (4.10) with B = g. Therefore, it confirms that the

correlation model is dependent on ISO speed.

The above conclusions are made for the special condition when we consider

the images to be RAW flat-field image. When we take post-processings (e.g.

color interpolation and JPEG compression) and the influence due to the image
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Table 4.1: The fitted coefficients for Equation (4.12) and the correlation
coefficient (r2) for each plot shown in Fig. 4.1.

A B C r2

Nikon D7200 1.14× 10−5 2.23× 10−5 −2.20× 10−7 0.8747

Canon 6D MKII 5.24× 10−5 1.41× 10−5 −4.33× 10−7 0.8967

Canon 80D 3.15× 10−5 4.20× 10−5 −1.70× 10−6 0.8377

Canon M6 4.85× 10−5 4.18× 10−5 −3.51× 10−7 0.8263

(a) ISO 200 (b) ISO 400

0 0.25 0.5 0.75 1

Pixel Intensity

0

0.5

1

N
o

is
e 

V
ar

ia
n

ce

10
-4

0 0.25 0.5 0.75 1

Pixel Intensity

0

0.5

1

N
o
is

e 
V

ar
ia

n
ce

10
-4

(c) ISO 800 (d) ISO 1600
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Figure 4.2: Plots of noise’s variance σres
2 against pixel intensity ϕ of images

with different ISO speed from a Canon 6D MKII. We fit Equation (4.10) to the
plots with a fixed second order coefficient, A = σ2

k = 5.24× 10−5, estimated
from Fig.4.1(b). The first order coefficient B and the correlation coefficients
for the four fittings are shown in Table 4.2.

Table 4.2: The fitted first order coefficient B and the correlation coefficients
for the four fittings shown in Fig. 4.2.

B r2

ISO 200 2.81× 10−5 0.8605

ISO 400 5.56× 10−5 0.8172

ISO 800 1.09× 10−4 0.7503

ISO 1600 2.02× 10−4 0.7516
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Figure 4.3: log-log plot of the estimated first order coefficient B against the
ISO speeds of the images used to estimate B. A straight line is fitted with a
slope of 0.99

content into consideration, the noise model could become rather complicated.

This is both because the PRNU is multiplicative of image content and image

content may propagate into the noise residual due to imperfect denoising.

Actually, higher ISO images are more likely to suffer from strong JPEG

compression and imperfect denoising (see Appendix A). Thus, though Equation

(4.10) cannot be translated directly to the general conditions, all the factors

suggest a higher ISO speed can introduce more PRNU-irrelevant noise. As a

result, this will reduce the proportion of signals corresponding to the PRNU

in the noise residual and eventually reduce the correlation. We use Fig.4.4

to empirically show that the correlation is dependent on the image’s ISO

speed when post-processings such as de-mosaicing, gamma correction, JPEG

compression, etc., are applied to a non-flat RAW image.

The images shown in Fig.4.4 are from a Canon 6D MKII camera in the

Warwick Image Forensics Dataset. All the images shown here are saved in the

JPEG format by the camera’s default setting. Images of two scenes are taken

under different ISO speeds using different exposure times to ensure that every

image can reach the same exposure level. Thus, there is nearly no difference

in pixel intensity between the images of the same scene. As the PRNU is a

multiplicative signal, having images of the same pixel intensity of the same

image content allows us to make a fair comparison with ISO speed’s impact

on the correlation. The correlation heat maps in Fig.4.4 are computed by

correlating the noise residuals from the images’ green channel with the device’s
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reference green channel PRNU. The reference PRNU is extracted from 50 flat-

field images. The block size for the computation of the correlation at each pixel

is 128× 128 pixels. We use yellow to show high correlation regions and blue

to show the opposite. Apparently, as the ISO speed increases, the correlation

map shows more regions with low correlation. It can be concluded that despite

these images with complex image content have undergone post-processing,

their correlation with the reference PRNU is still dependent on the image’s

ISO speed.

4.3 ISO Speed’s Impact Upon Correlation Predic-

tion

A correlation predictor is an important component of many PRNU-based

tampering localization methods. Many PRNU-based tampering localization

methods are applied by comparing the block-wise correlations with a decision

threshold set according to the predicted correlation. As a result, the choice of

the decision threshold and the performance of these methods can be greatly

affected by the accuracy of the correlation prediction. As the correlation

is content dependent, without considering the ISO speed, [23] models the

correlation as a function of four image features, namely the intensity, texture,

signal flattening and a texture-intensity combinative term. However, due to the

correlation’s dependency on the ISO speed, we postulate that: a correlation

predictor can only produce accurate predictions for images with the same ISO

speed as the training images. We call such a correlation predictor as a matching

ISO correlation predictor.

To show the ISO speed’s influence on correlation predictor and validate our

postulate, we first compare the performance of the correlation predictors trained

with (a) images with mixed ISO speeds and (b) images with the same ISO

speed as the test images. We did the test on 13 cameras from the Warwick

Image Forensics Dataset (An Olympus EM10 MKII camera from the dataset

doesn’t show strong existence of PRNU, possibly due to its image stabilization

mechanism. Thus it is not included in this test). 50 flat-field images from

each camera are used to extract the cameras’ reference fingerprints. For each

camera, we select images from three ISO speeds to form three test sets, namely

ISO 100, 800, and 6400, apart from the two Panasonic LumixTZ90, which

do not have ISO 6400. For these two cameras, we test on ISO 3200 images

instead. Accordingly, we trained three matching ISO correlation predictors,

0ISO 3200 for Panasonic Lumix TZ90 1 and TZ90 2

66



T
ab

le
4.

3:
r2

an
d

R
M

S
E

fr
om

co
rr

el
at

io
n

p
re

d
ic

ti
on

s
m

ad
e

fr
om

m
at

ch
in

g
IS

O
an

d
m

ix
ed

IS
O

co
rr

el
at

io
n

p
re

d
ic

to
rs

fo
r

13
ca

m
er

as
in

W
ar

w
ic

k
Im

ag
e

F
or

en
si

cs
D

at
as

et

M
at

ch
in

g
IS

O
C

or
re

la
ti

on
P

re
d

ic
to

r
M

ix
ed

IS
O

C
o
rr

el
a
ti

o
n

P
re

d
ic

to
r

IS
O

10
0

IS
O

80
0

IS
O

64
00

a
IS

O
1
0
0

IS
O

8
0
0

IS
O

6
4
0
01

r2
R

M
S

E
r2

R
M

S
E

r2
R

M
S

E
r2

R
M

S
E

r2
R

M
S

E
r2

R
M

S
E

C
an

on
6D

0
.7

9
7
4

0
.0

1
9
4

0
.7

1
9
6

0
.0

1
6
9

0
.5

5
7
4

0
.0

1
1
6

0.
7
8
3
9

0
.0

2
0
0

0
.3

9
8
3

0
.0

2
4
7

0
0
.0

2
9
2

C
an

on
6D

M
K

II
0
.9

5
1
8

0
.0

2
7
0

0
.6

8
7
0

0
.0

2
5
1

0
.6

9
1
2

0
.0

1
4
4

0.
9
3
7
3

0
.0

3
0
7

0
.2

5
9
9

0
.0

3
8
6

0
0
.0

4
2
0

C
an

on
80

D
0
.8

5
9
3

0
.0

7
3
8

0
.6

9
2
0

0
.0

2
4
4

0
.4

1
0
8

0
.0

1
2
4

0
0
.1

4
0
6

0
0
.1

5
7
4

0
0
.0

8
3
6

C
an

on
M

6
0
.8

5
8
4

0
.0

1
8
2

0
.9

0
7
6

0
.0

1
2
5

0
.7

2
4
6

0
.0

0
8
3

0.
5
4
3
9

0
.0

3
2
7

0
.8

0
4
2

0
.0

1
8
3

0
.2

9
1
2

0
.0

1
3
4

F
u

ji
fi
lm

X
A

-1
0

1
0
.5

5
6
2

0
.0

4
2
6

0
.0

5
8
2

0
.0

2
0
3

0
.1

1
4
3

0
.0

1
5
5

0
0
.0

7
8
0

0
.0

1
2
3

0
.0

2
0
8

0
.0

8
0
9

0
.0

1
5
8

F
u

ji
fi
lm

X
A

-1
0

2
0
.4

6
4
8

0
.0

3
9
4

0
0.

04
09

0
.1

3
2
4

0
.0

1
5
1

0.
1
6
4
9

0
.0

4
9
2

0
0
.0

3
8
4

0
0
.0

2
5
1

N
ik

on
D

72
00

0
.7

3
4
4

0
.0

1
4
5

0
.6

3
3
9

0
.0

1
1
6

0
.4

8
6
8

0
.0

1
0
1

0.
3
7
5
3

0
.0

2
2
3

0
.1

7
3
7

0
.0

1
7
4

0
0
.0

1
7
0

P
an

as
on

ic
L

u
m

ix
T

Z
90

1
0
.6

8
7
8

0
.0

1
4
9

0
0
.0

2
1
3

0
0
.0

1
2
5

0.
2
0
3
2

0
.0

2
3
9

0
0
.0

2
4
3

0
0
.0

2
0
8

P
an

as
on

ic
L

u
m

ix
T

Z
90

2
0
.7

7
6
6

0
.0

1
3
5

0
.1

4
4
8

0
.0

1
3
1

0
.0

4
5
8

0
.0

1
2
2

0
0
.0

1
8
7

0
0
.0

1
4
0

0
0
.0

1
3
0

S
ig

m
a

S
d

Q
u

tt
ro

0
.6

7
5
8

0
.0

2
6
1

0
.6

4
0
4

0
.0

2
7
4

0
.6

3
6
1

0
.0

1
0
2

0
0
.0

5
2
0

0
0
.0

8
7
1

0
0
.0

6
9
3

S
on

y
A

lp
h

a6
8

0
.8

6
1
4

0
.0

1
7
1

0
.8

2
0
2

0
.0

1
3
1

0
.4

6
8
4

0
.0

0
7
2

0.
7
5
7
8

0
.0

2
2
6

0
.7

4
9
4

0
.0

1
5
5

0
0
.2

5
2

S
on

y
R

X
10

0
1

0
.4

5
6
0

0
.0

4
4
6

0
.7

1
2
8

0
.0

1
8
5

0
.7

3
9
3

0
.0

1
5
1

0
0
.1

0
2
1

0
.5

2
3
3

0
.0

2
3
9

0
.5

2
9
9

0
.0

2
0
3

S
on

y
R

X
10

0
2

0
.7

0
7
5

0
.0

1
9
7

0
.6

5
2
8

0
.0

1
6
8

0
.4

7
5
2

0
.0

1
4
2

0.
5
7
1
3

0
.0

2
3
8

0
.3

6
1
4

0
.0

2
2
7

0
0
.0

2
0
8

a

67



Table 4.4: r2 and RMSE for the correlation predictors generated from the
matching and non-matching ISO correlation predictors for 9 cameras from
Dresden Image Dataset

Matching ISO
Correlation Predictor

Non-matching ISO
Correlation Predictor

r2 RMSE r2 RMSE

Canon Ixus55 0 0.7012 0.0234 0.6558 0.0251
Canon Ixus70 0 0.7111 0.0297 0 0.0567
Canon Ixus70 1 0.7161 0.0267 0.2251 0.0441
Canon Ixus70 2 0.6631 0.0306 0 0.0664

FujiFilm FinePixJ50 0 0.8940 0.0195 0.5130 0.0417
FujiFilm FinePixJ50 1 0.8928 0.0190 0.8726 0.0207
FujiFilm FinePixJ50 2 0.9013 0.0199 0.8326 0.0260
Nikon CoolPixS710 0 0.5400 0.0168 0.3005 0.0207
Pentax OptioA40 0 0.3811 0.0315 0 0.0596

each with 20 images of the corresponding ISO speed following the method from

[23]. The correlations are computed between image blocks of 128× 128 pixels.

To make the comparison, for each camera, we trained another correlation

predictor with 20 images randomly selected from the 60 images used for the

training of the camera’s three matching ISO correlation predictors. We call

this correlation predictor as a mixed ISO correlation predictor. Block-wise

correlation predictions are made for the test sets. For each set, we computed

the coefficient of determination (r2) and the root mean square error (RMSE)

for the matching ISO and mixed ISO correlation predictors as shown in Table

4.3. We highlighted the better performance for each test set in terms of larger

r2 and smaller RMSE with bold font.

The matching ISO correlation predictors show superior performance over

the mixed correlation predictors for all test sets except for the two Fujifilm

XA-10 and the two Panasonic Lumix TZ90 at high ISO speeds. These two

models of cameras are more prone to strong noise at high ISO speeds. As a

result, the correlations with their reference PRNU become close to zero despite

different image features. Due to the relatively large variance of the correlations

introduced by the PRNU-irrelevant signal in the noise residuals, neither of

the correlation predictors managed to produce large r2 for the correlation

predictions. However, by using the Matching ISO correlation predictor for

these cameras, we notice small RMSE still can be observed. This is particularly

important as the correlation predictors would not generate predictions that

deviate too much from the actual correlation. False positives can be significantly

reduced when we apply these correlation predictors for forgery detection.

In addition to the test on the Warwick Image Forensics Dataset, the

experiments are extended to 9 cameras from the Dresden Image Dataset [116]

as well. In the Dresden Image Dataset, about 150 images of natural scenes
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are produced by each camera. However, as the dataset was created without

considering the ISO speed as an influential factor, the images’ ISO speeds

span over many different values. For most ISO speeds, the number of images

available is not enough for us to train a matching ISO correlation predictor

using the method mentioned above and to test it with the matching ISO images.

So we test the matching ISO correlation predictor on the most popular ISO

speed from each camera only, each with 20 test images. For each camera,

we trained a matching ISO correlation predictor with 20 images of the same

ISO speed as the test images and another 20 images are selected randomly

from all the images available for the training of the mixed ISO correlation

predictor. r2 and RMSE of the predictions are shown in Table 4.4. Again,

the superior performance of the matching ISO correlation predictors can be

observed in every case. Both the tests on images from Warwick Image Forensics

Dataset and Dresden Image Dataset show that the performance of a correlation

predictor may degenerate by completely ignoring the impact of ISO speed and

trained images of mixed ISO speed.

Knowing that we cannot ignore the ISO speed in the correlation predic-

tion training process, we also would like to investigate how mismatched ISO

speeds of training and testing images would affect correlation prediction and

subsequent forgery detection. In specific, we would like to investigate to what

extent, a correlation predictor trained with images with a particular ISO speed

can predict reliable correlation with images taken at other ISO speeds without

significantly influencing the forgery detection results. We use Fig.4.5 to demon-

strate the potential outcomes of forgery detection when the training image’s

ISO speed is significantly different from the test image’s ISO speed.

Fig.4.5 shows the forgery detection results from tampered images with ISO

speed 100, 800 and 6400 from a Canon M6. Images of the same scene taken

at different ISO speeds are manipulated using Adobe Photoshop. For each

image, the tampered region is replaced by using Photoshop’s content-aware

filling function, which leaves the tampered region at a similar noise level as its

surrounding regions. We apply the Bayesian-MRF forgery detection algorithm

from [24] to the images. For all the images, we set the same parameters for the

forgery detection algorithm: with the interaction parameter β set to 10 and

probability prior p0 set to 0.01. The detection results show that the forgery

detection algorithm works the best in terms of false detections when it is

equipped with the matching ISO correlation predictor. We also notice that

when we use ISO 100 correlation predictor for the forgery detection of the ISO

6400 forgery, despite the tampered region is correctly identified, there are a lot

of false positives in the result. When ISO 6400 correlation predictor is used for

the detection of forgery in ISO 100 forgery image, while the entire authentic

region is regarded as tampered, there are parts of the tampered region still
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undetected.

To explain these observations, we have to consider the two potential out-

comes of using images of different ISO speeds for the training of correlation

predictors: the predicted correlation being either overestimated or underestim-

ated.

Overestimation of the correlations (when correlation predictions are larger

than the actual values) often occur when we use a correlation predictor trained

with images of lower ISO speeds than the test image’s ISO speed. As the

actual intra-class correlations will be smaller than the predicted correlation,

the corresponding pixels are more likely to be labeled as tampered, which

results in an increased number of false detections as we have seen in Fig.4.5.

This is particularly harmful to real-life forensics. For most forgery detection

algorithms, the authenticity of a pixel is checked by comparing its actual

correlation with a threshold set with reference to the predicted correlations

and expected inter-class correlation, which is expected to be zero. Though

the actual algorithms can be different with more complexity by considering

the distribution of the correlations from both inter- and intra-class as well

as neighboring pixels’ correlations, the comparison of whether the actual

correlation sits closer to the predicted correlation or inter-class correlation

when the correlation is overestimated can be a good indicator of how likely

false detections can be introduced by a correlation predictor. Thus we would

like to compare the two values: d1 = ρ− ρ̄inter, which is the relative position

from the inter-class correlation, ρ̄inter, to the actual computed correlation ρ

and d2 = ρ̄intra − ρ, which is the relative position of the actual correlation, ρ,

to the predicted intra-class correlation, ρ̄intra. Instead of comparing the L1

distances, we compare these two values to focus more on the situation when

the correlation is overestimated, which causes the actual correlation to be a

value between the expected inter-class correlation and predicted correlation.

We estimate ρ̄inter as zero and use the predicted correlation to estimate ρ̄predict,

and it gives d1 − d2 ≈ 2ρ − ρ̄predict. When d1 − d2 is negative, it indicates

that the correlation has a large chance of being misidentified as an inter-class

correlation.

Again, use the camera Canon M6 as an example, we show the percentages

of the image blocks with d1 − d2 smaller than 0 in Fig.4.6 when we use an ISO

100 and 800 correlation predictors to predict for test images with ISO speed

number of stops above the training images. The plot shows that when the test

images’ ISO speeds are within the one-stop range of the training images’ ISO

speed, there is only a relatively small portion of blocks (i.e. less than 10%) with

d1 − d2 smaller than 0 for both ISO 100 and ISO 800 correlation predictors.

As the deviation from the test images’ ISO speed to the training images’ ISO

speed increases, we start to see a higher percentage from Fig.4.6, indicating an
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Figure 4.6: A plot of the percentages of image blocks with d1− d2 smaller than
0 against the number of ISO stops the test image’s ISO speed is above the ISO
speed of the images used to train the correlation predictor for a Canon M6.
The percentage indicates the portion of the authentic image blocks at risk of
being misidentified as tampered blocks by forgery detection algorithms.

increased number of false detections could be introduced into forgery detection

results. As we approximate d1 − d2 as 2ρ − ρ̄predict, it becomes an universal

problem when ρ < 1
2 ρ̄predict.

Base on the correlation model derived from Equation (4.11) and observations

from experiments, we found that for image blocks of the same scene from images

taken at different ISO speeds, it is generally true that the block-wise correlation

in an image taken with ISO speed G1 is twice larger than the correlation of

the corresponding block from an image taken at ISO speed G2 = 2G1. Thus,

we claim that G2 = 2G1 is a safe choice to be set as the largest ISO speed a

correlation predictor trained with images of ISO speed G1 can reliably predict

for. Similar behavior can be observed on other cameras as well and we show the

receiver operating characteristic (ROC) curve for forgery detection in Fig.4.7

for further validation.

Each ROC curve in Fig.4.7 and 4.8 is plotted by running the Bayesian-

Markov random field (MRF) based forgery detection algorithm from [24] on

80 synthetic forgery images at each of the 7 presented ISO speeds. Three

correlation predictors, each trained with 20 natural images taken at ISO speed

100, 800 and 6400, respectively, are used to predict the correlations for the

forged images. We vary the interaction parameter β in the range of [1, 1200]
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Figure 4.7: Receiver Operating Characteristic (ROC) curves of tampering loc-
alization using Bayesian-MRF forgery detection method on synthetic forgeries
taken at different ISO speeds from a Canon M6. The legend shows the ISO
speeds corresponding to the correlation predictors used to generate the ROC
curves.
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Figure 4.8: Receiver Operating Characteristic (ROC) curves of tampering loc-
alization using Bayesian-MRF forgery detection method on synthetic forgeries
taken at different ISO speeds from a Sigma SdQuattro. The legend shows the
ISO speeds corresponding to the correlation predictors used to generate the
ROC curves.
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and the probability prior p0 between [0, 1] to set different combinations of

the parameters for the algorithm. This allows us to generate the enveloping

curves for the ROCs to show the best performance. The 80 synthetic forged

images are generated from 20 full-sized authentic images. From each full-sized

image, we select 4 regions of 1024× 1024 pixels. We replace the center of each

1024× 1024 pixel region’s center with a tampered patch of 256× 256 pixels.

The patch used to replace the center is cropped from the same original image

but from a different position to ensure that it does not have the same PRNU.

The Warwick Image Forensics Dataset provides images of the same content at

different ISO speeds. This allows us to generate the synthetic forged images

in the way that for one synthetic forged image at one ISO speed, we can find

images of the same content at other ISO speeds as well. By doing this, Fig.4.7

and 4.8 not only allow us to compare the performance of different correlation

predictors for forged images at one ISO speed but we can also systematically

compare the performance of one correlation predictor for different ISO speeds.

We run the test on different cameras from Warwick Image Forensics Dataset.

We show the ROC curves of two most representative cameras, a Canon M6

and a Sigma SdQuattro in Fig.4.7 and 4.8. Canon M6 represents the cameras

that can generate relatively less noisy images (with a large peak to noise

ratio (PSNR)) for most ISO speeds from the camera while Sigma SdQuattro

represents the cameras whose image quality is highly dependent on the selected

ISO speed. The false positive rate (FPR) and true positive rate (TPR) are

computed at the pixel-level. As for real-life tampering localization application,

we usually require the method to produce a small FPR, thus we focus on the

range of [0, 0.2] of FPR in the plots.

From Fig. 4.7 and 4.8, we first notice that for ISO 100, 800 and 6400

forgery images, the matching ISO correlation predictor works the best in both

cameras in almost every case. The only exception is for Sigma SdQuattro ISO

6400 forgery images. In this case, despite the ISO 6400 correlation predictor

can make predictions accurately as we have seen from Table 4.3, none of the

three correlation predictors can produce accurate detections. This is because,

for high ISO images from this camera, the images’ intra-class correlations

are generally very close to zero and hard to be separated from inter-class

correlations. For such images, PRNU-based methods may not be the best tool

to perform forgery localization. However, the ISO specific correlation predictor

can still be helpful in such a scenario as it will be able to accurately predict the

correlations close to zero. Thus, the users can be warned that the PRNU based

methods may not be suitable under such a scenario. Overall, the results show

the benefit of using a matching ISO correlation predictor for forgery detection.

For both cameras, we observe that the detection results of using the ISO

100 correlation predictors (i.e. predictors trained with images taken at ISO
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speed 100) are better when the forged image’s ISO speed is smaller than 400.

While the Canon M6’s relatively good high PSNR at higher ISO speeds allows

the ISO 100 correlation predictor to perform reasonably well for a forged image

with ISO speed up to 1600, it is not the case for the Sigma SdQuattro camera.

From ISO 400 and above, the ISO 100 correlation predictor for the Sigma

SdQuattro starts to struggle. The similar effect can be observed for ISO 800

correlation predictors when they are used to predict for images with ISO speed

much higher than 800. Thus, it conforms to our argument that a predictor

trained with images taken at ISO speed G1 can perform reliably on the images

taken at an ISO speed G2 that is lower than or equal to 2G1. While depending

on the camera, some correlation predictors may perform when the test image’s

ISO speed is above the range, the above argument provides a safe range for the

choice of correlation predictor’s training ISO speed without risking too many

false detections.

Fig.4.7 and 4.8 also show the situation when the correlation predictors

underestimate the test image’s correlations. Underestimation often occurs

when we use a correlation predictor trained with images of a much higher

ISO speed than the test image’s ISO speed. In the plots, we noticed that the

ISO 6400 correlation predictors, especially for the Canon M6 camera, appear

to have difficulty in correctly localizing the forgery for images with low ISO

speed. This is because when the correlation predictor underestimates the

correlations, it eventually reduces the forgery detection algorithm’s capability

of correctly identifying tampered pixels. Thus, to avoid the underestimation

but still provide a practical range from which a training ISO speed can be

conveniently selected, we empirically set the lower bound of the ISO speed a

correlation predictor can be used for to half of the ISO speed of its training

images. From the plots, we see by using this range, the corresponding detection

results either outperform other correlation predictors or are on par with the

best performance. Altogether, we conclude that for a test image taken at ISO

speed G1, using correlation predictors trained with images of ISO speed, G2,

which is in the one-stop range of G1 (G2 ∈ [G1/2, 2G1]) can produce forgery

detection result without risking false detections being excessively introduced

due to the correlation predictor.

4.4 ISO Specific Correlation Prediction Process

Observing the ISO speed’s impact on correlation prediction, we concluded that

reliable correlation predictions should be made in an ISO specific way. Thus, we

propose an ISO specific correlation prediction process. To predict correlations

for an image of ISO speed G1, we have to use a correlation predictor, preferably

trained with images of the same ISO speed at G1, or similar to G1. An ISO
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speed G2 is considered as similar to G1 if G2 is in the one-stop range of G1.

The images used for the training of the correlation predictor should cover

diverse image feature settings: including both bright and dark scenes, highly

textured and flat patterns, etc. To cover such a diverse set of image features, it

usually requires a large number of images. Thus, a good correlation predictor

should be trained with no less than 20 full-sized images. With a relatively large

collection of images of good feature diversity taken at an ISO speed similar to

the test image, the weight for each defined feature can be learned following the

process presented in [23] for the correlation predictor.

In order to complete the correlation prediction process, we need to have

the knowledge of the ISO speed G1 to find images of the same or similar

ISO speeds to form the training set. However, as the image in question may

have undergone some unknown manipulations, either on its image content

or metadata, the ISO speed information presented in the metadata can be

unreliable or even unavailable. Thus, we can often face the problem when we

have an image of unknown ISO speed and we would like to select images with

the closest ISO speed to the image to train a correlation predictor.

As a known factor, for the same camera, the higher the ISO speed is, the

higher the level of noise is introduced to the content of images. Thus, it is

intuitive to infer an image’s ISO speed by exploiting its noise characteristics in

the content. Based on the Poissonian-Gaussian noise model [136], methods are

proposed in [19, 88, 137] to infer the camera gain, g, from a RAW image, which

then can be directly related to the camera’s ISO speed. Despite these methods

showing promising performance on RAW images, as the noise model generally

cannot be applied directly to non-RAW image formats, their performance

is suboptimal and cannot be practically used to infer a JPEG image’s ISO

speed. Furthermore, for similar reasons, though many noise level estimation

algorithms [138–141] may work well on RAW images to give clues about an

image’s ISO speed, JPEG images still pose challenges. As JPEG is one of the

most common image formats, being able to identify a JPEG image’s ISO speed

is a prerequisite for ISO specific correlation prediction.

Though finding an accurate noise model for a JPEG image can be of great

complexity, we can simplify this problem by making the following assumption:

image patches from the same camera with similar content and JPEG quality

factor should show similar noise characteristics if they are of the same ISO

speed, and vice versa as shown in Fig.4.9. Thus, we propose a method called

Content-based Inference of ISO Speed (CINFISOS, pronounced as /’sin.f@.s@s/)

to determine an image’s ISO speed by doing patch-wise noise comparison with

patches of similar content from images taken with the same camera at different

ISO speeds.

Consider the case when we have a query image, Q, and t candidate training
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Figure 4.9: A demonstration of the idea behind the proposed ISO speed
inferring method. We expect patches from different images to show similar
noise characteristics if they have similar content and the same ISO speed. The
example shows a patch from an ISO 3200 query image. It shows similar noise
characteristics with a patch of similar content from an ISO 3200 training image.

sets, S = {S1, ..., St}, each consists of multiple images and the sets are with

different ISO speeds. We would like to find the set with the ISO speed closest

to the query image Q. The query image is first partitioned into a set of

non-overlapping patches, P = {pi}, each patch of size d × d pixels. As we

would like to use the patches to best represent the image’s noise characteristics,

patches with too many dark and saturated pixels in any color channel should

be removed. We consider the patches in the RGB color space. For each pixel q

in the jth channel of the patch, pji , the pixel is considered as dark or saturated

if its pixel value I(q) is not in the range [λ1, λ2]:

U(q) =





1, if I(q) < λ1 or I(q) > λ2

0, otherwise
(4.14)

To form a set P̂, which does not contain dark or saturated patches, the ith

patch is removed from P if ∀j(
∑
q∈pji

U(q) > λτd
2), when the ratio of the dark

or saturated pixels in every channel of the patch is over a limit λτ . In addition

to removing the dark and saturated pixels, the image’s noise characteristics

can be better revealed by including only the less textured patches. Thus, we

only keep m least textured patches in PQ, the set of patches that we believe

can best represent the query image’s noise characteristics. To evaluate how
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textured a patch is, we use the texture feature definition from [23] but extends

its definition to patches of three color channels by a simple summation:

fT (pi) =

3∑

j=1

(
1

d2

∑

q∈pji

1

1 + var5(F(q))
) (4.15)

where F() is the high-pass filter and var5() measures the variance of 5 × 5

neighbourhood. The feature fT is defined in the range [0, 1] with lower values

for more textured patches. We select m least textured patches from P̂ to form

the set of qualified query image patches PQ:

PQ = {pi|(pi ∈ P̂) ∧ (fT (pi) > fTm+1)} (4.16)

fTm+1 is the texture feature of the m+ 1th least textured patch from P̂. As

PQ only contains patches with relatively smooth texture, we can approximate

their image content by applying a low pass filter. We implement the method

of finding patches with similar content using a block-matching method similar

to [129]. The distance between two patches in each color channel is measured

as the Euclidean distance between the discrete cosine transforms (DCT) of the

two with hard thresholding applied. The overall distance between two patches

is the summation of the distances in the three color channels:

∆(pi, pk) =

3∑

j=1

‖Γ(DCT(pji ), λDCT)− Γ(DCT(pjk), λDCT)‖2 (4.17)

where Γ(x, λDCT) is the hard thresholding operation:

Γ(x, λDCT) =




x, if x > λDCT,

0, otherwise
(4.18)

For each patch pi in PQ, from each candidate training set Sk, n patches with

the least distance to pi will be selected. Though the exhaustive search for

the patches with the shortest distance is computationally expensive, this step

can be easily parallelised. We call this set of selected patches as P ik. We

define the distance, which measures the sum of the absolute differences in noise

characteristics in all three color channels from each patch pi in PQ to each

candidate training image set Sk, as:

D(pi, Sk) =

3∑

j=1

(|var(pji − p̃
j
i )−

1

n

∑

pl∈Pi
k

var(pjl − p̃
j
l )|) (4.19)
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where p̃jl is the low-pass filtered version of the patch pl of the jth channel:

p̃jl = IDCT(Γ(DCT(pjl ), λDCT)) (4.20)

For each patch pi in PQ, it will have a vote for a candidate training set, Sk,

who has the smallest D(pi, Sk). The candidate training set with the closest

ISO speed to the query image will be determined by a simple majority vote

from all the patches in PQ. The ISO speed that receives the majority votes will

be deemed as the ISO speed of the query image and the correlation predictor

can be trained with the corresponding images.

4.5 Experiments

4.5.1 Inferring ISO Speed with CINFISOS

To test the performance of the proposed CINFISOS, we conduct experiments

on our Warwick Image Forensics Dataset. In the previous section, we concluded

that for a correlation predictor trained with ISO speed G1, reliable correlation

predictions can be made for images taken with ISO speed in the range of

[G1/2, 2G1]. Therefore, to select a correlation predictor trained with images of

an ISO speed suitable for the image in question, the inferred ISO speed only

needs to be within the one-stop range of the real value. As a result, we only

need a few candidate training sets, Sk, to cover a broad range of ISO speeds

to give reliable correlation predictions.

In our experiments, for each camera in the Warwick Image Forensics Dataset,

we have three candidate training sets with images of ISO speed 100, 800 and

6400, respectively (with the exception for the two Panasonic Lumix TZ90, of

which we select the ISO 3200 candidate training set instead of the ISO 6400

training set). These three ISO speeds are selected as they cover a broad range

of commonly used ISO speeds. Besides, we deliberately avoid overlapping

between the one-stop range of the ISO speeds, each of the three candidate ISO

speed can predict for, to make it easier for the performance evaluation.

To apply CINFISOS, we set the following parameters. The size of each

query image patch is 32× 32 pixels. m = 50 is the number of patches in the

qualified query set PQ. λDCT is set to 13.0315 in a similar manner as how

it is set in [129]. For each query patch, we find 5 similar patches from each

candidate set. For each camera in the Warwick Image Forensics Dataset apart

from the two Panasonic Lumix TZ90, we have 20 query images, each with

ISO speed 100, 200, 400, 800, 1600, 3200 and 6400 in the JPEG format. Each

candidate training set consists of 20 images. For the two Panasonic Lumix

TZ90, in addition to the fact that ISO 6400 images are unavailable, we also

excluded ISO 1600 query images as both ISO 800 and 3200 can be considered
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as inferred correctly.

We run the experiment with a desktop equipped with an Intel Core i7-

9700K CPU. With the afore-mentioned setup, it takes around 130 seconds for

CINFISOS to run on a full-resolution query image (e.g. 4160× 6240 pixels for

an image from a Canon 6D MKII), including the exhaustive search for similar

patches among 60 full-resolution training images. The patch-level accuracy,

which measures the percentage of patches voting correctly for the inferred ISO

speed, is reported in Table 4.5. We notice that the accuracy varies greatly

between cameras at different ISO speeds but the accuracy is above 0.5 in

every case. It means that overall, every single patch is more likely to vote

correctly. Given this patch-level accuracy, a 99.52% accuracy at the image-level

is observed with only 9 out of 1880 test images wrongly inferred.

4.5.2 Forgery Detection with ISO Specific Correlation Predic-

tion

The high accuracy of CINFISOS in identifying the ISO speed of an image within

its one-stop range allows us to conduct the proposed ISO specific correlation

prediction process even when we do not know the test image’s ISO speed. Thus,

we would like to test the performance of the proposed ISO specific correlation

prediction process in terms of forgery detection.

We apply the Bayesian-MRF forgery detection algorithm[24] on the syn-

thetic forgery images from two cameras: a Canon M6 and a Sigma SdQuattro

for the test. The images are the same as the ones used in Section 4.3. There

are 560 synthetic images from each camera and they are equally distributed

over 7 different ISO speeds (namely ISO speed 100, 200, 400, 800, 1600, 3200

and 6400). We carry out the proposed ISO specific correlation prediction

process in two ways: (a) using the proposed CINFISOS to determine whether

a correlation predictor is suitable for the test image, and (b) with an oracle

correlation predictor. With the aforementioned one-stop range setting, we

only need three correlation predictors, namely an ISO 100, an ISO 800 and an

ISO 6400 correlation predictor to cover the whole range of the ISO speeds we

need to predict for with CINFISOS. We apply CINFISOS on each synthetic

image to determine which of the three correlation predictors should be used to

produce the predictions of each image. The oracle correlation predictor uses a

matching-ISO correlation predictor for each image according to its ISO speed

information. We trained 7 different correlation predictors for the 7 different

ISO speeds presented in this test, each with 20 natural images, to realise the

oracle correlation predictor.

We compare the forgery detection results by our proposed ISO specific

correlation prediction process against the results by using correlation predictions
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Figure 4.10: The ROC curves depicting the performance of detector with vari-
ous correlation predictors tested on 560 synthetic forgery images of 7 different
ISO speeds for two cameras (a) a Canon M6 and (b) a Sigma SdQuattro.
Forgery detections are carried out with the Bayesian-MRF forgery detection
algorithm with correlation predictions generated from (i) a mixed ISO correl-
ation predictor (ii) an ISO 100 correlation predictor (iii) the proposed ISO
specific correlation prediction process with CINFISOS and (iv) the proposed
ISO specific correlation prediction process with an oracle correlation predictor.
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with a mixed ISO correlation predictor and an ISO 100 correlation predictor.

Mixed ISO correlation predictors represent the situation when we select training

images randomly without considering the images’ ISO speeds. Thus, the mixed

ISO correlation predictors’ performance can be viewed as the baseline for the

forgery detection results when we disregard the impact from ISO speed on

correlation prediction completely. For each camera, the mixed ISO correlation

predictor is trained with 20 training images randomly selected from the 60

images of three different ISO speeds. The ISO 100 correlation predictor is

the same as the one used in our proposed ISO specific correlation prediction

process. We vary the interaction parameter β and the probability prior p0 for

the Bayesian-MRF forgery detection method to generate the enveloping ROC

curves. Each data point on the curve is generated by summing the detection

results of the 560 synthetic images from each camera. The ROC curves for the

detection results are shown in Fig.4.10. We focus on the low false positive rate

range of [0, 0.2].

Unsurprisingly, the detection result from the oracle correlation predictor

comes as the best above all the predictors for both cameras. However, the

detection results based on the proposed CINFISOS are comparable to the

oracle correlation predictor’s ones. It shows the effectiveness of the proposed

CINFISOS and validates that the one-stop range for ISO speed prediction

is a feasible choice without significantly sacrificing the forgery detection per-

formance. In comparison, the mixed ISO and ISO 100 correlation predictors

have worse performance. Though in Fig.4.7, we have noticed that the ISO 100

correlation predictor can predict well for images with ISO speed up to 1600,

its poor performance on images of higher ISO speed is evident. Thus, it is not

a good choice to use a correlation predictor trained with low ISO speed for

all the images. To conclude, the proposed ISO specific correlation prediction

process shows superior performance in terms of forgery detection.

4.6 Conclusion

In this chapter, we did both analytical and empirical studies on the impact

of different camera sensitivity (ISO speed) settings on PRNU-based digital

forensics. First, we show how the correlation between an image’s noise residual

with the device’s reference PRNU can be dependent on the image’s ISO speed.

With this dependency in mind, we empirically show how mismatched ISO

speeds may influence the correlation prediction process. Thus, we proposed an

ISO-specific correlation prediction process to be used in PRNU-based forgery

detection. To address the problem that the information about the ISO speed

of an image may not be available, a method called Content-based Inference

of ISO Speed (CINFISOS) is proposed to infer the image’s ISO speed from
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its content. Clear improvements are observed in correlation predictions and

forgery detection results by applying our proposed ISO specific correlation

prediction process with CINFISOS. By pointing out the influence of camera

sensitivity setting on PRNU-based forensic methods, the provided solutions

from this chapter can make the forensic analysis more reliable and trustworthy.
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Chapter 5

PRNU-based Provenance

Analysis for Instagram Photos

In Section 2.3 of Chapter 2, we discussed how PRNU-based source-oriented

image clustering can be performed using the similarity measurements between

PRNUs extracted from images. Most PRNU-based source-oriented image

clustering methods assume that the extracted PRNUs are pristine such that

there are no external factors that may alter the similarity measurements.

However, this might not be true for images from social networking sites, e.g.

Instagram, Facebook, etc. These image-sharing sites usually provide users with

some image editing tools at the image uploading stage, for example, the image

filters used by Instagram. Thus, the users may apply common image editions

on the uploaded images. These common image manipulations may accidentally

increase the similarity measurements between the extracted PRNU and exert

influence on the PRNU-based source-oriented image clustering methods. Thus,

in this chapter, using the image filters from Instagram as an example, we

investigate these common image editing tools’ impact. Realizing that the

existing PRNU-based source oriented clustering methods may fail completely

on Instagram images due to these common image editing tools, we propose a

novel three-step clustering framework to perform source-oriented clustering on

Instagram images.

The rest of this chapter is organized as follows. An introduction to the

background is given in Section 5.1. Section 5.2 shows the preliminary test of the

existing PRNU-based source camera identification and clustering methods on

images from Instagram. The proposed three-step clustering method is shown

in Section 5.3. Section 5.4 presents the experimental results while Section 5.5

draws the conclusion.
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5.1 Introduction

With the rapid development of mobile networks and the ever-increasing pre-

valence of smartphones, photo-sharing social networking sites (SNSs), such as

Instagram, Facebook and Flickr, have become ubiquitous in our daily life. With

millions of daily active users, these SNSs not only provide effective platforms

for information sharing but also exert huge influence on commerce and politics.

However, due to the convenient and broad reach of these platforms, they have

been increasingly exploited for various malicious purposes, e.g. fraudulent

advertisement, fictitious news or even terrorism. Meanwhile, the sheer volume

of user-generated content on these platforms provides a rich source of evidence

acquisition for forensic investigations. Thus, in recent years there have been

growing interests in developing forensic tools and techniques to facilitate the

investigations on the data collected from SNSs. One important related topic

is the provenance analysis of images from SNSs. The provenance information

of digital images is essential for forensic investigations. For example, when a

forensic investigator is dealing with a set of images of unknown sources from

multiple social network accounts, revealing the source devices of the images can

help the investigator to focus on the images from the same source. In addition,

linked and fake social network accounts can be discovered by finding images

from the same source device across different accounts. This is because different

accounts with photos taken with the camera are likely to be closely linked

(e.g., between family members or friends) or fake accounts used in sybil attacks.

With these telltale provenance information, more effective investigations can

then be carried out. Though occasionally, one may use the metadata of an

image to retrieve its provenance information, these information can still be

questionable as the metadata could be edited easily. Moreover, many SNSs

deliberately delete metadata from the images when they are uploaded. The

unavailability of the provenance information may entail content-based analyses

when rigorous forensic investigations are required.

Among various techniques used for analyzing images’ provenance, the

PRNU-based methods have drawn extensive attention from researchers. PRNU

has been proved to be a powerful tool for provenance analysis, such as source

camera identification (SCI) [22, 130, 142], source-oriented clustering (SOC)

[25, 26, 90, 92, 95, 97, 98, 101]. Generally speaking, SCI is a relatively easy task

provided that the high-quality reference PRNUs are available. In comparison, it

is more challenging for SOC, where we aim to group a set of images of unknown

sources into a number of clusters, such that the images in the same cluster are

taken by the same camera. For this task, we often face the challenges of an

unknown number of source devices and low-quality of the PRNUs extracted from

single images. Many techniques or combinations of them have been proposed
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for PRNU-based SOC, including the methods based on hierarchical clustering

[90, 91], graph-based approaches [26, 92, 95, 97], constraint optimization [98]

and Markov random field [25] as reviewed in Chapter 2. However, due to

the unavailability of the reference PRNUs, these algorithms have to rely on

the pairwise correlations between individual noise residuals, which are more

susceptible to PRNU-irrelevant interferences, especially for the images from

SNSs that may have undergone a series of post-processing operations. This

raises doubts about whether PRNU-based provenance analysis methods remain

effective on images from social network sites.

Goljan et al. [143] perform a large-scale test of PRNU-based camera

identification on images downloaded from Flicker and show very promising

results with a small false rejection rate <0.0238 at a false acceptance rate

<2.4×10−5 for 6896 cameras with 150 different camera models. However,

comparing to other social networking platforms, Flickr allows the uploaded

images to be stored in their original resolution with no or very little compression,

so it does not fully reflect the difficulty of the problem we usually face when

performing image provenance analysis on other SNSs. Satta and Stirparo

[144] use PRNUs to build the link between a photo and the user accounts

of the person that has shot the photo. A probe photo is considered to be

from the account containing the image with the highest matching score to the

probe photo. Their method achieves a recognition rate of ∼ 50% by evaluating

2896 images from 30 different accounts across different SNSs, namely Flickr,

Facebook, Google+ and personal blogs. The low recognition rate and the lack

of in-depth investigation into the effect of image operations make it necessary

to conduct further studies on the PRNU-based provenance analysis of images

from SNSs.

More recent work [145, 146] discover that different SNSs may apply different

image manipulations, which leave distinctive artifacts that can be used to trace

the origin SNSs of the images. Moreover, they show how common it is for

the SNSs to apply ‘hidden’ image manipulations, such as resizing and re-

compression, to fulfill the system requirement, which may affect the PRNU

and pose challenges to PRNU-based provenance analysis. Apart from the

above-mentioned image manipulations, many SNSs also provide explicit image

manipulation tools to allow the users to edit image effects according to their own

preferences, with the ‘Filters’ from Instagram being the most famous example.

While these tools enrich the user experience, they may also manipulate the

images in a way that may make the PRNU-based provenance analysis method

ineffective. In this chapter, we will investigate the effects of Instagram filters

and propose a new method to mitigate the impact of image filtering.

To carry out the investigation, we prepared a dataset D with a large number

of images of known sources and applied different image filters to them. We
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Table 5.1: An overview of different datasets used for different parts of the
work with information including the source of the original images. D , which
is derived from VISION dataset, is the main dataset used in this chapter,
including the training and testing of the proposed CNN-based filter classifier
in Section 5.4.1. DSCI is a subset of D , which is used to test device fingerprint
based SCI in Section 5.2.1. DDresden is derived from Dresden Image Database
and used to show the proposed CNN-based filter classifier is not overfitted to
the training cameras in Section 5.4.1. D2, D3, D4, D5, D6 are subsets of D
with different sizes, used to test proposed clustering framework in Section 5.4.3

Dataset Source No. of Devices
No. of Images

total per device per filter

D VISION 25 96,660 > 2466 5370

DSCI VISION 25 22,500 900 1250

DDresden Dresden 11 29,700 2700 1650

D2 VISION 25 900 36 50

D3 VISION 25 1,350 54 75

D4 VISION 25 1,800 72 100

D5 VISION 25 2,250 90 125

D6 VISION 25 2,700 108 150

selected 5, 370 images captured by 25 cameras, with at least 137 images from

each camera, from the VISION image dataset [117]. The images are aligned to

the same horizontal orientation according to their EXIF data and cropped to

the size of 1080× 1080× 3 pixels to match the default image size on Instagram.

For each image, we applied 17 different Instagram image filters by running the

Instagram application on an iOS simulator. Thus, together with the original

version, we generated 18 different versions of each image and in total 96, 660

images for the use in our work. Fig. 5.1 shows a sample image for each filter

together with the original image (labelled as ‘Normal’ filter as it is termed on

Instagram). In addition, we also processed images from Dresden Image Dataset

[116] and form various subsets of D to carry out tests on different aspects of

device fingerprint based provenance analysis and our proposed framework. An

overview of these datasets are shown in Table 5.1.

5.2 Existing PRNU-based Provenance Analysis on

Instagram Images

5.2.1 PRNU-based SCI for Instagram Images

In this section, we investigate the effect of different Instagram image filters

on the task of PRNU-based SCI. Specifically, we perform SCI by examining
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Table 5.2: Source camera identification accuracy (Acc.) for different Instagram
image filters

Filter Normal 1977 Amaro Brannan Earlybird Hefe

Acc. (%) 95.52 95.04 95.04 95.04 95.28 95.12

Filter Hudson Inkwell Lomofi LordKelvin Nashville Rise

Acc. (%) 95.04 95.20 95.12 95.20 95.04 95.04

Filter Sierra Sutro Toaster Valencia Walden XproII

Acc. (%) 95.20 95.44 95.36 95.52 95.20 95.28

the correlations between the noise residuals extracted from the filtered images

with the reference PRNUs, each of which is estimated from 50 flat-field images

taken by the same camera. Note that these flat-field images are original images

to ensure the high quality of reference PRNUs. Thus, the performance of the

source camera identification task can serve as the baseline for the quality of the

PRNU embedded in the Instagram images. BM3D de-noising algorithm [129]

is used to extract the noise residual for each image. For the reference PRNU

of each camera, its correlations with 21, 150 inter-class original images (i.e.

the ones from different source cameras) are computed to estimate the inter-

class correlation distribution. After the inter-class distribution is estimated,

we determine a decision threshold {τi}25
i=1 for each camera according to the

corresponding inter-class correlation distribution based on the Neyman-Pearson

criterion (by setting the false positive rate as 1×10−3). We formed a testing

dataset DSCI with 50 test images {Iijl }
50
l=1 for each camera i processed by

each filter j randomly selected from D . For each test image Iijl , the largest

correlation ρi? among the correlations {ρi}25
i=1 between its noise residual nijl

and the reference PRNUs {ri}25
i=1 of candidate cameras is compared with the

pre-defined threshold τi∗ to examine whether the image is from the camera i∗

or from an unknown source. The accuracy of the SCI for each filter is shown

in Table 5.2. In addition, as all devices show similar behaviour, to explicitly

demonstrate the quality of PRNU embedded in the filtered images, we select

one camera (an iPhone4s) as an example and plot the intra-class correlation

distributions between the test images with the reference PRNU for different

filters in Fig. 5.2, where we use central points and error bars to represent the

means and standard deviations of the distributions, respectively.

Table 5.2 shows that for each filter, the identification accuracy for the

images processed by the same filter is comparable to that for the ‘Normal’

images. This is no surprise when we look at the correlation distribution plot

in Fig. 5.2. As different devices show similar behaviour, we use an iPhone4s

as an example. First, we notice that different Instagram image filters have

almost no impact on the inter-class distribution. Secondly, when we compare
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the intra-correlation distributions from different image filters to the original

images (‘Normal’), we can only notice small reductions in intra-class correlation

values and such reductions are insignificant compared to the difference between

intra- and inter-class distributions. This explains why SCI remains accurate

when image filters are applied to the images. Most importantly, these results

imply that the PRNU is well preserved in the filtered images though it may be

affected differently by filtering operations. In other words, PRNU is still useful

for image provenance analysis even after the Instagram image filters have been

applied.

5.2.2 PRNU-based SOC for Instagram Images

While the above SCI results show that the PRNU is preserved in the filtered

images, SOC relying on the pairwise similarities between the noise residuals of

individual images can be more challenging. For SCI, as the reference PRNU is

immune from the filter-related artifacts, the inter-class correlation is unlikely

to be altered. However, for SOC, the common artifacts introduced by the same

filter may falsely increase the pairwise correlations between inter-class images,

which might lead to filter-oriented rather than source-oriented clustering results.

Thus, SOC is more vulnerable to these filter-related artifacts.

To investigate further, we test the images with the fast clustering (FC)

method from [25], which has shown good precision and recall rates when

applied on unedited original images from public image datasets. As a whole,

we perform the SOC task on a test dataset, namely D4, which consists of 1800

images with 72 images from each of the 25 cameras in D . The 72 images

of each camera consist of 4 images randomly selected from those filtered by

each of the 18 filters, which results in 4×25=100 filtered images for each

filter. As shown in Table 5.3, the precision, recall and F1-measure are 61.11%,

39.17% and 47.74%, respectively, which are much lower even than the results

(precision: 92.1%, recall: 81.2%, F1-measure: 86.3%) reported for the hard

dataset D4 in [25]. To show that the performance is not biased to a specific

algorithm, results are also shown in Table 5.3 for the hierarchical clustering

(HC) method [90], the normalized cut-based clustering (NCUT) method [95]

and consensus correlation clustering (CCC) method [97]. These methods show

good performance on the task of clustering 1000 ‘Normal’ images from 25

different devices, with F1-measures of 83.69%, 85.30% and 86.75% for HC,

NCUT and CCC, respectively. This shows that these PRNU-based clustering

methods are effective for Instagram images when the filters are not applied.

However, for the task of clustering images with different filters applied, the

low F1-measure rates in Table 5.3 for all the algorithms clearly show that it

is a common challenge for existing PRNU-based SOC algorithms to analyze
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Instagram images.

Additionally, to investigate how each filter affects the PRNU-based clus-

tering method, we also perform separate clustering on the images filtered by

the same filter. Because the fast clustering method from [25] shows the best

performance among the 4 methods shown in Table 5.3, which means it is least

affected by the Instagram filters, we use it as an example for this investigation.

For each filter, we select 40 images from each of the 25 cameras in D . Thus,

for this experiment, the clustering for each filter is evaluated on 1000 images.

The results are shown in Table 5.4. An interesting observation made from

Table 5.4 is that, among the filters we have tested, some filters dramatically

deteriorate the clustering performance while the others result in comparable

clustering performance to that on original images. We, therefore, refer to

the former set of filters as Group M because the filters are malignant for

PRNU-based SOC and the latter set of filters as Group B because the filters

are ‘benign’. When there is no ambiguity, we will also use Group M and Group

B to refer to the images filtered by the former and the latter set of filters,

respectively. We find that for Group M filters, the images are clustered into a

single cluster, which is responsible for the low precision rate of 4.0%, i.e. each

of the 25 camera accounts for 40 images in the resultant single cluster. This

can be largely attributed to the common artifacts shared between the images

filtered by the same filter. An example is shown for filter ‘Hefe’ in Fig. 5.3(a),

where we plot the intra- and inter-class correlation distributions for original

images (i.e. ‘Normal’) and the images processed by filter ‘Hefe’. We also show

the two corresponding grayscale plots of the 1000×1000 pairwise correlation

matrices computed with 1000 ‘Normal’ and ‘Hefe’ images, respectively, in Fig.

5.3(b). We can see that there is an apparent increase in mean and variance for

both inter- and intra-class distributions for filter ‘Hefe’. It is noteworthy that

the increase of intra-class correlations is caused by the filter-related artifacts,

thus it is not beneficial for camera-oriented clustering but rather gives rise to

misleading filter-oriented results. Such an increase in inter-class correlations

can be observed for all Group M filters. Therefore, a clustering algorithm that

can mitigate the effect of the artifacts introduced by the filters in Group M is

needed for the effective provenance analysis of Instagram images.

5.3 Proposed Method

In the previous section, we have demonstrated the difficulty in PRNU-based

SOC on Instagram images, which arises mainly because of the artifacts intro-

duced by the filters in Group M. Inspired by the success of the PRNU-based

SCI, for which the reference PRNUs are available, we develop a framework

that first performs clustering on the images in Group B and use the resultant
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Table 5.3: Clustering result on 1800 images with mixed filters and native
images using the fast clustering (FC) method, the hierarchical clustering (HC)
based method, the normalized cut-based clustering (NCUT) based method and
the consensused correlation clustering (CCC) based method.

% Precision Recall F1-measure

FC 61.11 39.17 47.74

HC 56.06 37.88 45.21

NCUT 5.61 46.76 10.02

CCC 98.95 2.74 5.33

Table 5.4: SOC results for different Instagram Image filters using the fast
clustering method from [25]. The filters in Group M are highlighted with gray
background.

% Precision Recall F1-measure

Normal 94.70 78.92 86.09
1977 93.90 78.25 85.36

Amaro 4.00 100 7.69
Brannan 95.30 79.42 86.64
Earlybird 93.60 80.69 86.67

Hefe 4.00 100 7.69
Hudson 4.00 100 7.69
Inkwell 95.60 74.69 83.86
Lomofi 93.40 75.32 83.39

LordKelvin 91.30 81.52 86.13
Nashvile 95.10 78.92 86.45

Rise 4.00 100 7.69
Sierra 4.00 100 7.69
Sutro 4.00 100 7.69

Toaster 4.00 100 7.69
Valencia 93.30 75.24 83.30
Walden 93.50 75.40 83.48
XproII 90.30 83.61 86.83
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Figure 5.3: Comparison of the pairwise correlations between images with no
filters applied (‘Normal’) and between images filtered by ‘Hefe’ filter. (a) Dis-
tributions plot for the pairwise intra- (yellow) and inter-class (red) correlations
from 25 different cameras. (b) Visualization of the pairwise correlations for
images from 25 different cameras. The intra-class correlations are delimited by
red squares. The brighter color indicate larger correlation values.
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clusters to process the images in Group M. We, therefore, propose a three-step

strategy for the SOC on Instagram images. In the first step, a classifier is

constructed for filter-oriented image classification to separate the images pro-

cessed by Group B filters from the rest. In the second step, SOC is performed

only on the images classified as processed by the filters in Group B. In the

final step, we use the centroids of the clusters discovered in the second step as

the reference PRNUs to identify the source cameras for the remaining images,

similarly to the task of SCI as described in Section 5.2.1.

The three steps of our proposed framework are illustrated in Fig. 5.4.

Specifically, we first pass the images to a convolutional neural network (CNN)

based classifier to identify the image filter that has been applied to each image.

Based on the classification result, we can separate the images into two sets, S†B
and S†M for the images filtered by a filter from Group B and M, respectively.

Due to classification errors, there might be images filtered by a Group M filter

left in S†B. To further purify S†B, we refine the images S†B by comparing the

pairwise correlations and the number shared nearest neighbours (SNN) [147]

for images in S†B. If we found that some images in S†B are more likely to be

from S†M , we will remove them (i.e. S††M , a set of images identified during the

classification refinement process which may contain both Group M and Group

B filtered applied images) from S†B to form a purified SB. After that, we apply

the clustering algorithm to the images in SB to find the set of clusters C.

Using the centroids of the clusters in C as the reference PRNUs {ci}, we can

approach the clustering as a SCI problem by attracting the images remained

in S†M and S††M with {ci} to form the final clustering result. We will present

the details about the CNN-based classifier and the classification refinement

step in the following parts of this section.

5.3.1 CNN-based Instagram Filter Classifier

The proposed method mainly mitigates the negative impact of the filters in

Group M by segregating the images according to the filter classification result.

Thus, the performance of the classifier is key to the proposed framework and

the classifier needs to be designed carefully. As the Instagram filters may differ

from each other greatly, manual feature engineering requires a great amount of

study for each filter and the fixed definition of image features might not be

helpful when we need to deal with forthcoming filters that are not covered by

this study. Moreover, the artifacts introduced by the filters can be content

dependent, which may result in very different artifacts for the same filter.

Therefore, we use a Convolutional Neural Network (CNN) based classifier

to automatically extract features for the filter-oriented image classification

task. The CNN architecture used in this chapter takes inspiration from the
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well-known Very Deep Neural Networks (VGG-net) [148], which has shown

great performance on different image classification tasks. Particularly, Gatys

et al. [149] manage to use VGG-net to extract and transfer the artistic styles

of an image from one artwork to another, which is similar to adding visual

effects to an image by applying Instagram filters. This shows that the network

architecture is capable of extracting the features from dissimilar styles and

inspires us to adopt a similar network architecture for classifying Instagram

filters.

The network architecture used in this chapter is shown in Fig. 5.5. It

consists of 7 convolutional layers for feature extraction and 3 fully connected

layers for classification. Batch normalization is applied to all the hidden layers.

The input size of the network is set to 1080×1080×3, which is the default image

size of Instagram. As we aim to classify the images into 18 different classes,

the network produces a vector of 18 elements. Softmax function is applied to

the vector such that each element in the vector represents the probability of

the corresponding image filter being applied to the input image. The network

design shares a few similar characteristics with the VGG-net. The VGG-net

features small kernel size for the convolutional layers (e.g., 3× 3 pixels). This

enables the convolutional layers to focus on microscopic features such as texture.

Combined with a large number of layers resulting in a large receptive field, the

network can extract the macroscopic feature such as color tone at the same

time. This makes VGG-net an ideal choice to distinguish the filters. However,

the requirement of large input size makes directly adopting the ordinary VGG-

net very memory-consuming. Hence, our proposed network has two major

differences compared to the ordinary VGG-net. The first difference is that the

number of channels for each layer in the proposed network is much smaller than

that used in VGG-net. Secondly, in our proposed network, each convolutional

layer is followed by a max-pooling layer with a stride of 2. The max-pooling

layers help the network extract features more efficiently and the input size of

each layer is reduced significantly as the network gets deeper. With these two

modifications in place, the memory consumption and the computational cost

are significantly reduced, making the training of the network more practicable.

5.3.2 Image Filter Classification Refinement Based on SNN-

Correlation Difference

Though a CNN-based classifier is proposed to distinguish Group M and B

image filters and its effectiveness can be seen in the following section, its

imperfect accuracy does not guarantee a complete separation between images

with filtered by Group M and B filters. Thus, some images with Group M filters
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Figure 5.5: The network architecture of the proposed filter-oriented image
classifier. The network takes 1080× 1080× 3 images as input and outputs a
vector of length 18 for the classification. The network consists of 7 convolutional
layers (shown in yellow) and 3 fully connected layers (shown in purple). In
addition, every convolutional layer is followed by a max-pooling layer. The
kernel size for the convolutional layers is 3× 3 pixels throughout the network.
The number at the bottom is the number of channels for the layer while the
number at the sides are the dimension of the layer.

applied could remain in S†2, which can affect the performance of the proposed

clustering method. For example, a cluster contains a significant proportion of

images processed by a Group M filter, the centroid the cluster is more likely to

mistakenly attract images processed by the same filter later. Thus, to alleviate

this problem, a classification refinement step is proposed below.

The main challenge we face by the inclusion of Group M filter applied images

in S†B is that they may falsely increase the correlations between inter-class

images and ultimately bring the risk of grouping the inter-class images into

the same cluster. However, for these falsely increased inter-class correlations,

the image pairs corresponding to them may share very different neighbours

with each other. Figure 5.6 shows three clusters of images from three different

cameras (represented by three orange circles) and four images (node a, b, c

and d) filtered by the same Group M filter. The dashed lines between a, b, c

and d indicate the correlations between them might be falsely increased due

to the same applied filter. Statistically, the intra-class correlations should

be higher than the inter-class correlations which makes the intra-class image

pairs to be closer neighbours to each other. As a result, even though a and b

may have a large correlation between them, these two images share very few

close neighbours with only c and d as the shared neighbours. It gives us a

clue that the disagreement between the pairwise correlations and SNN [147]

can be used to discover the images with Group M filters applied left in S†B.

Thus, we aim to find the image pairs with large correlation between their noise

residuals but sharing few neighbours by the measure of correlation distances.

More specifically, we remove the ith and jth image from S†B if ρij > τ1 and
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sij < τ2, where ρ and s are the pairwise correlation matrix and the SNN matrix,

respectively. τ1 and τ2 are the two threshold determined from the estimated

intra-class correlations and intra-class SNN for each image. To estimate the

intra-class correlation and SNN values, we follow the method from [25] using

k-means clustering with k set to 2 to differentiate the pairwise correlations and

SNNs. Empirically, we set τ1 to the top 5% of the intra-class correlations and

set τ2 to the smallest value of the intra-class SNNs.

In the demonstration, we assume that the Group M filter applied images

left in S†B are from multiple cameras and there are only a few of them in S†B.

Apparently, it is not always the case as described by these two assumptions and

they may not hold. However, when these two assumptions do not hold, though

the proposed method may become less effective, its mechanism of finding the

obvious disagreement between the pairwise correlations and SNNs prevents it

from repeatedly removing Group B filter applied images and deteriorate the

performance of the clustering step. Thus, it is beneficial to apply the proposed

refinement to S†B to purify S†B after the classification step.

5.4 Experiment

5.4.1 CNN-based Instagram Filter-oriented Image Classifier

We first perform a comprehensive evaluation for the proposed CNN-based

Instagram filter-oriented image classifier before using it in our proposed three-

step SOC framework. As mentioned in Section 5.1, we generate a dataset

by filtering 5, 370 images of 25 different source devices from the VISION

image dataset using 18 different Instagram filters, which results in a dataset D

consisting of 96, 660 images. These images are divided into training, validation

and test sets with a ratio of 60%:20%:20% by randomly selecting an equal

number of images filtered by each filter. The proposed network is trained on a

desktop with an Intel Core i7-9700K CPU and a Nvidia Geforce RTX 2080 Ti

GPU. The special design of the network significantly reduces the consumption

of GPU memory, which allows us to train the neural network with a batch size

of up to 64. The validation set was used for the tuning of the hyperparameters

for the training process. For the rest of this chapter, we will report the results

generated with the classifiers trained with a batch size of 64. We train the

classifier for 50 epochs using cross-entropy loss and a learning rate of 2×10−3

with a SGD optimizer.

Instead of altering the semantic content of an image, most Instagram filters

change the image’s visual style and introduce different levels of textures, which

mainly affects the high-frequency components of the image, where PRNUs

reside. This motivates us to investigate the contributions of the image content
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Figure 5.6: A demonstration of how the proposed filter classification refinement
method may discover the images filtered by Group M filters remained in S†B.
Each node in the figure represents a candidate image to be clustered and the
three circles represents the three ground truth clusters these images belonged
to. Nodes a, b, c, d are four images with the same Group M filter applied.
Dashed lines are used to indicate the correlations between them may be falsely
increased due to the filter.
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Table 5.5: The precision (P), recall (R) rates and F1-measures for different
filters from the proposed CNN-based filter-oriented image classifier trained
with different inputs (I-net, Î-net and n-net). The best precision, recall rates
and F1-measure for each filter are marked by gray background.

Filters
P(%) R(%) F1-measure(%)

I-net Î-net n-net I-net Î-net n-net I-net Î-net n-net

Normal 52.89 76.70 96.61 65.55 58.85 98.04 58.54 66.60 97.32

1977 86.47 92.03 91.34 79.14 93.48 95.25 82.64 92.75 93.25

Amaro 83.74 85.54 87.49 69.55 79.33 87.90 75.99 82.32 87.69

Brannan 72.90 80.81 93.44 94.41 88.64 88.92 82.27 84.54 91.12

Earlybird 84.90 88.48 93.10 85.85 95.16 94.23 85.37 91.70 93.66

Hefe 83.00 81.96 92.10 85.94 91.81 94.41 84.44 86.61 93.24

Hudson 87.58 95.97 98.60 91.90 93.11 98.14 89.69 94.52 98.37

Inkwell 94.10 93.22 99.53 56.42 92.18 97.77 70.54 92.70 98.64

Lomofi 58.88 71.12 81.96 69.46 72.91 89.66 63.73 72.00 85.64

LordKelvin 90.19 95.41 98.22 94.97 94.88 97.86 92.52 95.14 98.04

Nashville 81.76 92.58 94.67 85.57 95.25 92.55 83.62 93.90 93.60

Rise 80.32 81.71 87.77 64.62 79.05 85.57 71.62 80.36 86.66

Sierra 72.44 79.93 97.84 77.09 86.41 96.83 74.69 83.04 97.33

Sutro 87.21 91.25 97.91 88.27 96.18 91.62 87.74 93.65 94.66

Toaster 98.21 96.93 97.13 92.27 96.93 97.77 95.15 96.93 97.45

Valencia 66.11 82.74 89.92 69.55 69.65 89.66 67.79 75.63 89.79

Walden 91.47 95.08 96.46 88.83 95.44 96.28 90.13 95.26 96.37

XproII 87.78 88.27 90.77 78.96 91.81 90.69 83.14 90.01 90.73

itself and the high-frequency components (noise residual) to the classification

result. Thus, we pre-process the 96, 660 images and generate two more versions

of input to the network, namely the denoised image and the noise residual of

the image. Again, we use BM3D denoising algorithm [129] to generate the

denoised version of the images and extract the noise residuals from three color

channels of each image. In such a way, n will have the same dimension as

I and Î, which allows them to be fed to the network without changing the

network structure. Finally, we train three networks with these three different

inputs, namely I-net for the original images, Î-net for the denoised images

and n-net for the noise residuals.

The precision P , recall R rates and F1-measures for 18 filters are reported

in Table 5.5. Interestingly, we notice that n-net, which takes the noise residuals

as the input, outperforms the other two networks for almost all image filters.

Though for some filters, I-net and Î-net have higher precision or recall rates

than n-net, the performance gap is very small (within about 1% for P and

1% ∼ 5% for R). Compare the performance based on the F1-measures, n-net

shows consistently better performance apart from the result on ‘Nashville’ filter.

And the performance on Nashville filter from n-net is very close to the best

performed Î-net. Furthermore, both I-net and Î-net have problems identifying

‘Normal’ images, which are the unedited original images. In comparison, the

n-net has a precision rate of 96.61% and 98.04% for the ‘Normal’ class. The
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Table 5.6: Confusion matrix for the classification of Group M and B applied
images produced by the proposed CNN-based filter-oriented image classifiers.

Real/Predict
I-net Î-net n-net

M B M B M B

M 0.889 0.111 0.925 0.075 0.985 0.015

B 0.047 0.953 0.048 0.952 0.010 0.990

high performance of n-net can help the forensic investigators to better identify

unedited images. Overall, the n-net achieves a precision of 93.52% for all

filters while I-net and Î-net reach 79.92% and 87.29%, respectively. The high

precision of n-net shows the effectiveness of the proposed CNN-based classifier.

We also show the confusion matrix for the classification of Group M and Group

B filters as a whole in Table 5.6. Again, n-net shows superior performance

with only 1.5% of the images in Group M misidentified. Due to the better

performance of n-net, we will use it as the filter-oriented image classifier for

the following experiments of this chapter.

Despite the proposed network’s high accuracy on filter classification, we

have concerns about the generalization of the network to new cameras and

filters. First, in many realistic forensic scenarios, the training and test im-

ages are quite unlikely to be from the same cameras. If a trained network

is overfitted to the cameras in the training set, it will not perform well on

the images from another set of cameras. To show that our trained network is

not overfitted to the cameras in the training set, we test the trained n-net on

images captured by 11 different cameras of the Dresden Image Database [116].

We form a testing dataset DDresden with 18 different versions for each image

from the cameras by applying the 18 different filters, resulting in a total of

29, 700 images. The classification results on DDresden are shown in Table 5.7,

where n-net shows similar performance as on the images from the VISION

dataset, confirming that the trained model is not overfitted to cameras in the

training set.

Secondly, new filtering features of Instagram are being developed continu-

ally. Thus, despite the 18 filters could be representative for studying the impact

of filters on provenance analysis, we would like the classifier to be adaptive

and robust to the filters that are not included in the training set. Thus in this

experiment, we aim to show that the proposed network trained on a certain

number of filters can be easily adapted for other filters by applying transfer

learning. We test the n-net by training it with images processed by 10 filters

first and then apply transfer learning to the trained network to make it available

for images processed by other filters as well. To facilitate transfer learning,

we change the length of the last layer of the network to match the number

of filters the network needs to predict for and keep the rest of the structure
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Table 5.7: Filter classification result on images from Dresden Image Database
predicted by n-net trained with images from VISION dataset.

Filters P (%) R (%) F1-measure (%)

Normal 97.28 99.76 98.50

1977 87.34 87.02 87.18

Amaro 90.63 89.75 90.19

Brannan 92.34 83.32 87.60

Earlybird 93.22 92.54 92.88

Hefe 95.65 84.05 89.48

Hudson 99.08 98.18 98.63

Inkwell 99.70 99.82 99.76

Lomofi 66.11 91.42 76.73

LordKelvin 92.98 88.36 90.61

Nashvile 87.70 97.33 92.27

Rise 87.80 90.78 89.27

Sierra 99.11 94.78 96.90

Sutro 93.47 94.60 94.03

Toaster 95.14 98.85 96.81

Valencia 90.18 90.24 90.21

Walden 95.82 94.48 95.15

XproII 98.00 74.41 84.59

unchanged. The weights for the first five convolutional layers are fixed. The

weights for the remaining layers are updated by training the network with

images, including the ones filtered by the filters not included in the original

training set, for another 10 epochs. The performance of the network is shown

in Table 5.8. It shows that despite the a disproportional change of number

of filters from 10 to 18, the F1-measure remains at a reasonably high level,

indicating that the network is able to extract generalised features for the filters

by training on only a small number of filters.

Table 5.8: Filter classification results on images from different number of filters
by the proposed CNN-based classifier with transfer learning applied. The base
model of the classifier is trained with images from 10 different filters.

Number of filters P(%) R(%) F1-measure(%)

10 97.63 97.61 97.62

12 95.42 95.41 95.41

14 94.12 93.99 94.06

16 90.86 90.82 90.84

18 89.69 89.54 89.61
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5.4.2 Classification Refinement

In this section, we are going to test the performance of the proposed classifica-

tion refinement method. We test the proposed method by performing clustering

on image datasets of different sizes. First, we construct 5 image datasets with

900, 1350, 1800, 2250 and 2700 images, respectively. For each image dataset,

we have equal number of images randomly chosen from 25 source devices and

from 18 different filters. Thus, with each filter, each camera accounts for 2, 3,

4, 5 and 6 images for the above mentioned four datasets. We name the five

datasets as D2, D3, D4, D5 and D6 for convenience.

As we have seen from Section 5.4.1, the proposed CNN-based filter classifier

may leave about 1.5% of Group M filter applied images in S†B. Thus, to ensure

the misclassified images that have been processed by Group M filters would

not contaminate the cluster centroids extracted after the clustering step and

worsen the performance of the ensuing centroid attraction, the performance

of the proposed filter classification refinement step can be critical. Figure 5.7

illustrates the performance of the proposed filter classifier and the classification

refinement method over the test datasets. First, we notice as we have seen from

Section 5.4.1, the classifier’s performance is satisfactory even for the biggest

dataset, D6, with 2700 images in total and 1050 Group M filter applied images.

Only 18 Group M filter applied images are misidentified and included in S†B.

To apply the proposed classification refinement method, the pairwise cor-

relation matrices and the SNN matrices for the datasets were computed. To

compute the pairwise correlations, we use the green channel of the full-sized

noise residuals from each image. For the computation of the SNN matrices,

we compare the 20 nearest neighbours of each image between the image pairs.

Following the method proposed in Section 5.3.2, the number of Group M filter

applied images removed from S†B is plotted in yellow as shown in Fig. 5.7.

The total number images in S††M , which is the set of the images removed from

SB† by the refinement method, is plotted in red for each tested dataset. From

Fig. 5.7, as it has been discussed in 5.3.2, we can see clues indicating that

the performance of the proposed refinement method is less effective when the

number of Group M filter applied images are too small (e.g. D2) and Group

M filter applied images become less sparse in S†B (e.g. D6). Overall, as the

yellow line shows that a large portion of Group M filter applied images are

correctly identified from the one left in S†B (shown by the blue line), it shows

the proposed refinement method is effective in reducing the number of Group

M filter applied images in S†B . As a result, the subsequent clustering and

centroids attraction steps from the proposed three-stage clustering framework

can be less affected by the Group M filters.

Another aspect worth mentioning is that though the proposed classification
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Figure 5.7: The performance of the proposed CNN-based filter classifier and
the classification refinement method tested on image datasets of different sizes.

refinement step may also remove some Group B filter applied images from S†B
as some Group B filter applied images may show strong disagreement between

the pairwise correlations and SNNs (e.g. a correlation can be unexpectedly

high due to the randomness of the correlation distribution), it is not a serious

problem. First, the number of images being removed is small comparing to

the total number of Group B filter applied images to be clustered (e.g. 8

images falsely removed from 1650 Group B filter applied images in D6). More

importantly, by applying the proposed refinement step, the centroids extracted

from the clusters can be less contaminated by the Group M filters, which makes

them more representative for the source device each cluster accounts for. With

each centroid better representing the source devices in the test dataset, the

wrongly removed Group B filter applied images can have greater chance being

attracted to the right cluster during the centroids attraction step. Overall, by

testing over different datasets, the effectiveness of the proposed classification

refinement step is proved.

5.4.3 Source-oriented Clustering of Instagram Images

After testing the effectiveness of the proposed CNN-based image filter classifier

and the classification refinement method, we test the overall performance of

the proposed three-stage clustering framework with the five datasets mentioned

above. We use the SOC method in [25] to perform the clustering step as

described in Section 5.3. The centroids for each cluster are calculated by
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Table 5.9: The performance of the proposed three-step clustering framework
on 5 Instagram image dataset of different sizes. The figures in the table are
presented in percentage.

Dataset No. of Images P (%) R (%) F1-measure (%)

D2 900 87.39 87.41 87.40

D3 1350 93.73 83.75 88.46

D4 1800 95.72 85.52 90.33

D5 2250 94.57 76.28 84.45

D6 2700 95.49 77.02 85.26

averaging the noise residuals of the images in the cluster. Table 5.9 shows

the precision, recall and F1 measure for the proposed framework on the five

test sets, the same ones as in Section 5.4.2. Though the performance varies

slightly across different datasets, the framework is able to obtain F1 measures

over 80% for all of the five test sets. The consistently high F1-measures show

the effectiveness of the proposed framework. Comparing the performance of

the proposed framework over D4 in Table 5.9 with the results from Section

5.2.2, which was obtained on the same set of images, by applying the same

clustering method proposed by [25] without using the three-step clustering

framework, an overall improvement in both precision and recall rate can be

observed. Thus, despite the Group M filters may contaminate the PRNUs

embedded in the images, the proposed three-step clustering framework provides

a practical solution to perform PRNU-based SOC on Instagram images.

5.5 Conclusion

With built-in image editing tools like ‘filters’ on Instagram becoming a common

practice on SNSs, these tools ultimately pose new challenges to PRNU-based

forensic investigations. In this chapter, using Instagram filter as an example,

we took a close look at the impact of these image editing tools on PRNU-based

source camera identification (SCI) and source-oriented clustering (SOC). We

discovered that though PRNU-based SCI remains effective for filtered images on

Instagram when quality reference PRNUs are available, the artifacts introduced

by certain Instagram filters can severely affect the performance of PRNU-based

SOC as there is no reference PRNU. To address this problem, we proposed a

three-step clustering framework. As a main component of the framework, a

CNN-based filter-oriented image classifier is proposed and it achieves an overall

93.52% precision in identifying the filters applied to images. We have also

shown that the proposed CNN architecture generalises well on new cameras

and image filters. With the success of the filter-oriented image classifier, the

proposed three-step clustering framework achieves an F1-measure of 90.33% in
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SOC, which is a significant improvement compared to the F1-measure 47.74%

obtained by directly applying existing clustering methods on Instagram images.

Thus, the framework provides a practical solution for the provenance analysis

of user-edited images on SNSs.
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Chapter 6

Detecting Anti-forensics

Attacks on PRNU Using

Generative Adversarial

Networks

As PRNU has been widely used for different tasks in digital image forensics,

it also becomes a target for anti-forensics attacks. As we have discussed

in Chapter 2, one effective way to carry out these anti-forensics attacks is

through the suppression of PRNU using image manipulations like denoising or

median filtering. PRNU-based provenance analysis is no longer feasible when

the image in question has undergone such attacks. Thus, detecting whether

an image’s PRNU is attacked or not is an important topic in digital image

forensics. Section 2.4.2 shows that the convolutional neural network-based

method can extract residual-based features to detect different manipulations

used for anti-forensics attacks on PRNU. However, we found that though

these CNN-based detectors can perform well in terms of detecting certain

types of manipulations, the networks’ excessive emphasis on manipulation-

specific features could be a problem. For example, this may prevent them

from generalising well for the binary classification task of detecting whether

an image’s PRNU is attacked or not, especially when they encounter images

attacked by manipulations not included in their training set. To address this

issue, we propose a generative adversarial networks-based training framework

to help the trained network generalise better for the binary classification task.

Experimental results show that the proposed GAN-based training framework

can help the classifier performs better on detecting unprecedented attacks.

The reminder of this chapter is organised as follows. In Section 6.1, we

will briefly introduce the background of anti-forensics attacks on PRNUs and
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generative adversarial networks. In Section 6.2, the details of the proposed

generative adversarial networks-based training framework will be given. Section

6.3 presents the experiments done to validate the effectiveness of the proposed

framework. Finally, Section 6.4 concludes the chapter.

6.1 Background

In the previous chapters, we have shown how the PRNU can be used as an

effective tool for different multimedia forensics tasks like source camera identi-

fication, source-oriented image clustering, and image forgery detection. Despite

the advantage and popularity of using PRNU for multimedia forensics, being a

noise-like signal makes it vulnerable to different anti-forensics attacks. Residing

in the high-frequency domain, the PRNU can be easily attenuated or removed

even by simple manipulations, including Gaussian blurring and medium filter-

ing, etc. These operations can either be carried out deliberately by attackers

to hide provenance of the image or just by unintended over-compression. It is

acknowledged in [20] that aggressive denoising filters could suppress PRNUs

and prevent PRNU-based source camera identification. Sengupta et al. [108]

use a median filter to anonymise the images. In [109], Villalba et al. suppress

the PRNUs by using a combination of the wavelet transform and Wiener filter.

In general, these methods use noise filtering to attenuate PRNUs. We also

tried other denoising filters like Gaussian filter and BM3D [129] and found

they could effectively suppress PRNUs as well by applying them aggressively.

When we perform PRNU-based forensic methods on the attacked images,

not only will extra computational costs be required, forensic investigators may

also be misled to make wrong conclusions. Using source-oriented clustering

as an example, this task usually requires the computation of the pairwise

correlations between the PRNUs extract from the images. The computation

complexity is O(n2) with respect to the number of images. Thus, including

any images with PRNU absent or attacked would significantly increase the

computational cost while not providing any useful information. Furthermore,

these flawed images should be viewed as outliers in any cluster. With some

existing algorithms being particularly sensitive to outliers [25, 98], these images

could notably downgrade the clustering performance. Therefore, being able

to identify the images subject to anti-forensics attacks before applying the

PRNU-based methods is important.

Neural network-based methods have been widely applied in various fields

of computer science. Especially with the emergence of deep neural network

structures like VGG [148] and residual network [150], the superior ability

to extract non-trivial features compared to hand-crafted features boosts the

popularity of the neural networks. As mentioned in Section 2.4.2, inspired by
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the use of residual image extracted through high-pass filtering in [112, 115],

Bayar and Stamm [77] proposed a manipulation detection method using a

constrained convolutional neural network (CNN) architecture with the first

convolutional layer forced to perform high-pass filtering. Cozzolino et al. further

investigate the relationship between residual-based descriptors and CNN in [78].

They found that there is no real contraposition between the residual-based

features and CNNs, even for unconstrained CNN architectures. Besides, it is

demonstrated that their proposed CNN architecture manages to detect various

manipulations accurately, including Gaussian blurring, median filtering and

JPEG compression. A similar CNN architecture capable of detecting multiple

manipulations is presented in [79].

With the powerful performance from the neural network-based classifiers, we

can treat the task of detecting anti-forensics attacks as an image classification

problem with neural networks. A neural network-based classifier can be trained

by feeding both pristine and attacked images to the network. However, issues

may arise due to the limitation of the training set. Given a training set of

finite size, it may only cover images subject to certain types of attacks. A

neural network model, trained with a dataset like this, may perform well in

terms of extracting features related to these manipulations. However, when

the network is applied to images attacked by unprecedented operations, the

network’s performance cannot be guaranteed. This is because the network put

too much focus on the predominant features corresponding to certain types of

manipulations presented in the training set. As a result, the network could

miss the semantics of the ultimate goal: detecting whether an image’s PRNU

is pristine or not.

To address this problem, in this chapter, we propose a novel training

strategy by using generative adversarial networks (GAN) for training data

augmentation. GAN is first proposed by Goodfellow et al. in [151]. Composed

of a pair of networks, namely a generator and a discriminator, the generator

can capture the statistical properties of the real samples and improve the

generated samples through the adversarial process against the discriminator.

Correspondingly, the discriminator will learn the difference between the real

and generated samples, forcing the generator to improve. Kim et al. use

GAN in [152] to hide the trace of median filtering by learning the statistical

characteristics of the pristine images.

Different from the existing GAN-based methods for anti-forensics attacks by

generating images with reference to the pristine images, our proposed method

presented in this chapter trains the generator without direct knowledge on the

pristine images. The ‘pristineness’ of the generated images is entirely learnt

from the adversarial process. In addition, instead of aiming for a generator that

can fool the discriminator completely, we moderate the generator’s training
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process by setting an intermediate goal for the adversarial process, forcing the

generated images into a mixed state of the pristine and attacked images from

the original training set: the generated images can be considered as having

their PRNUs attacked as the attacked images from the original training set;

meanwhile, the same as the pristine images, the generated images do not possess

predominant features corresponding to the types of manipulations included in

the original training set. In this way, we are not trying to generate pristine

images from the attacked images. Instead, we generate ‘lightly attacked’ image

to help the classifier build a better understanding of the attacked images. The

generated images can divert the excessive attention, paid by the discriminator

on manipulation-specific features included in the original training set, to the

semantics of detecting whether an image’s PRNU is attacked or not. The

proposed method manages to improve the trained classifier’s performance on

unprecedented attacks.

6.2 Proposed Method
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Figure 6.1: The network structure of the proposed classifier, which is working
as the discriminator, D, in the proposed GAN framework. All the convolutional
layers shown in blue have kernel size of 3× 3. The convolutional layers shown
in yellow has kernel size of 1× 1. The number below each convolutional layer
represents the number of the output channels from the layers. The layers
included in the bracket are the feature extraction layers of the network, marked
as δ. The output of the network is a real number in the range of [0, 1].

The goal of this work is to design a training framework to build a classifier

which could identify the images with their PRNUs attacked. The classifier

should work even when the training set only contains images subject to a

specific type of anti-forensics attack. To achieve this goal, we train the classifier

with a GAN framework, which consists of two networks, namely a discriminator,

D, and a generator G. We consider the scenario when we have two sets of

image patches, one set, P , with pristine images and the other, F , with images
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undergone certain types of anti-forensics manipulations. P and F have the

same number of image patches. PRNUs reside in the high-frequency bands of

the images. Thus, regardless of the type of manipulations, any effective attacks

on PRNUs need to change the high-frequency components of the images. It is

reasonable to assume that the traces of attacks could be found by studying

the high-frequency residuals of the images. As mentioned in [78], CNN can

perform in the same manner as the residual-based descriptors. With this in

mind, we build a classifier following a CNN structure.

The structure of the proposed binary classifier, which also works as the

discriminator, D, in the GAN framework, is shown in Fig. 6.1. The structure

is mostly convolutional without any Max pooling or fully-connected layers. We

use Leaky ReLUs for the activation layers to prevent vanishing gradients. The

above designs are in place to improve the stability of the network during the

GAN training process. With the Sigmoid function at the end, the network

takes an image patch as input and outputs a single number in the range of [0, 1].

The output can be considered as a measurement of the similarity between the

input image patch and pristine images. We first train the classifier D with the

pristine and attacked images from P and F only. Given an input image patch

pi, we label it with li:

li =





1, if pi ∈ P,

0,Otherwise
(6.1)

We define the loss for the binary classification, Lbinary, for each output D(pi)

as:

 Lbinary(D(pi)) = |D(pi)− li| (6.2)

A binary classifier can be trained by minimising the loss over inputs from

P and F using the stochastic gradient descent (SGD) algorithm. We call

the classifier trained with this binary data as D∗. As we mentioned earlier,

this binary classifier D∗ will focus on the predominant features related to

the specific manipulations presented in the training set. As a result, when

it is applied to images attacked by unprecedented manipulations which do

not possess those features, it could miss the difference between pristine and

attacked images. Thus, we introduce the GAN framework to address this

problem. We will tune the discriminator D using images generated from a

generator G. Unlike the work in [152] generating images with reference to the

pristine images to learn their statistical properties, we want the generated

images to possess some statistical properties of the images in F , which can

help the classifier better understand the attacked images. Our generator G

generates images with reference to the manipulated images from F . Using

a manipulated image patch pi from F as input and without the information

about the patch’s PRNU throughout the GAN training process, we can ensure
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that the generated image patch G(pi) will not possess PRNU and thus, can

be considered as attacked. As a ‘lightly attacked’ image will possess some

visual similarity with its attacked version but without the predominant features

corresponding to the manipulations the attacked version is subject to, which

have been extracted by the feature extraction layers D∗, for the generator G,

we define its loss as follows with a goal to minimise it:

LG(G(pi)) =LVisual(G(pi), pi)− LFeature(G(pi), pi)

+ LAdversarial(D(G(pi)))
(6.3)

LVisual(G(pi), pi) measures the visual difference between the generated patch

G(pi) and the manipulated patch pi, which is defined as:

LVisual = α · |L2(G(pi), pi)− Λ|

+ β · L2(vgg(G(pi)), vgg(pi))
(6.4)

where L2(·) measures the L2 distance between two tensors and vgg(·) is the

feature extraction layers from a VGG16-net pre-trained on ImageNet [153]. α

and β are two weight coefficients and Λ is a relaxation term. The term regarding

the L2 between the generated image and the input image in Equation (6.4)

mainly measures the pixel-wise difference between the input and the generated

image patch. This can put a constraint on the generated image and help the

generated image possess similar statistical properties of the manipulated image.

However, as we allow the generated image to be slightly different from the

input image, we introduce a relaxation Λ for the L2 distance between the input

and generated image patches. The latter term in Equation (6.4) measures the

perceptual difference between the two image patches. The pre-trained VGG16-

net is capable of classifying different images according to their class labels

appeared in ImageNet. Thus, the feature map extracted from the selected

layers can be viewed as an abstract measurement of the visual content of an

image. By measuring the difference between the patches in the feature space

of a VGG16-net, minimizing this term ensures the generated patches share the

perceptual similarity with the input patches.

The term LFeature(G(pi), pi) measures the difference between the two patches

in the feature space of D∗:

LFeature(G(pi), pi) = γ · L2(δ∗(G(pi)), δ
∗(pi)) (6.5)

where γ is another weight coefficient and δ∗(·) stands for the feature extraction

layers (the part in bracket in Fig. 6.1) of D∗. As the predominant features

extracted by D∗ are more likely to be manipulation specific, which might not

perform well on the binary classification of deciding whether an image’s PRNU
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is attacked or not, we want to feed ‘attacked’ images without these predominant

features to the classifier in order to tune it. The negative sign before this term

in Equation (6.3) encourages the generated image to be different from the

input image in terms of these predominant features.

The adversarial loss is defined as:

LAdversarial(D(G(pi))) = η · |U −D(G(pi))| (6.6)

Again, η is a weight coefficient. With the definition of labels given in Equation

(6.1), a traditional GAN framework will immediately set U to 1. In this way,

the generator G will optimise its weight to maximise the chance of having the

generated images to be labelled as pristine by the discriminator. However, our

goal is not to train a generator which can fool the discriminator completely.

We want the discriminator D to be able to eventually figure out the underlying

difference between the pristine and attacked images. On the other hand, neither

it means we should set U to 0, otherwise there will be no adversarial process.

As a result, the generator would mainly just suppress the most dominant

features due to the LFeature term. As D∗ is a powerful feature extractor, it

could extract multiple manipulation-specific features. Even with some of the

most dominant features suppressed, other manipulation-specific features might

remain strong and the discriminator will only focus on them if there is no

adversarial process. Thus, we want to keep a moderate adversarial process: the

generator should be powerful enough to drive the discriminator to explore more

features, which can better differentiate the pristine and attacked images; but

the generator should not be too powerful such that the generated images will

lose all these features. So U is set to a number between 0 and 1 to moderate

the adversarial process.

With the loss function for the generator defined, we follow the same defini-

tion for labelling and the loss for the discriminator as the ones defined for the

original classifier using Equation (6.1) and (6.2). We fix the weights for the

feature extraction layers in D as δ∗ and train the rest of the discriminator with

images from P , F and generated images with a number ratio of 50% : 25% : 25%.

With this ratio, it allows equal number of pristine and attacked images to

be fed to the discriminator for training as the generated images should still

be considered as ‘attacked’ images. This ensures that no bias towards one

class label is introduced due to the imbalanced number of training images for

different labels. We keep using images from F for training to allow the updated

discriminator maintaining its performance in differentiating images from P
and F . We fix the feature extraction layers’ weights assuming that the feature

extraction performance of D∗ is powerful enough that it has already discovered

the features which can differentiate the pristine and attacked images. This is
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a reasonable assumption considering the deep structure of the discriminator

and the features differentiating pristine and attacked images are helpful for the

binary classification between images from P and F . Thus, D∗ has the ability

and the incentive to discover features. By locking the feature extraction layers’

weights, it prevents the deep structure of the discriminator from being too

powerful and cuts the adversarial process and thus, helps to maintain a more

stable GAN training process. With the adversarial process, the discriminator

tends to decrease its emphasis on manipulation-specific features and put more

weights on the features which can better differentiate the pristine and attacked

images. We will use experiment to show the effectiveness of the proposed

framework.

6.3 Experiments

To test the effectiveness of the proposed framework, we run experiments on

images from the Warwick Image Forensics Dataset [3]. We use images from 8

different cameras and each camera accounts for 200 images. We partitioned the

images into 268, 180 non-overlapping patches of size 256×256 pixels and divide

them into training and testing sets with a ratio of 90% : 10% randomly. On the

training images, we keep the original images as P and generate F by applying

strong Gaussian blurring using a Gaussian kernel with a standard deviation of

8 on all images. Such a strong blurring is effective in removing the PRNUs in

the images. However, this also leaves obvious visual differences between the

attacked and the pristine images. Thus, the neural network-based classifier

could easily learn the features associated with this visual effect and differentiate

these two types of images. We train the classifier without the proposed GAN

framework on the training images for 5 epochs and obtained the weights for D∗.
We use the SGD algorithm as the optimizer with a learning rate of 0.04. The

training images are loaded in batches with a batch size of 16. Unsurprisingly,

this network achieves a high accuracy of 98.10% in differentiating the strong

Gaussian blurred and pristine images. However, when we apply this network

on images attacked by other manipulations or even just using a Gaussian kernel

but with a smaller standard deviation, the classification performance becomes

much worse as shown by Figure 6.3(a).

To test the performance of the original classifier on images subject to

unprecedented attacks without using the proposed GAN training framework,

we applied three types of manipulations on the pristine images to form 3 sets,

one with a weaker Gaussian blurring compared to the manipulation applied to

the images in F , using a kernel with a standard deviation of 3, one with Median

Filter which has a kernel size of 7× 7 and the last one with BM3D denoising.

For simplicity, we refer to the weaker Gaussian blurring as ‘Gaussian Blurring’
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Figure 6.3: ROC curves for the classification results on images attacked by
three different manipulations detected by (a) D∗, (b) classifier trained under
the proposed GAN framework.
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in Fig. 6.3 and use the term ‘strong Gaussian blurring’ specifically for the

manipulation applied on images in F . We use D∗, which is not trained under

the GAN framework to classify the images. As D∗ outputs a single number

which can be viewed as a measure of similarity, we can adjust the threshold

for this similarity to generate detection results with different levels of true

positive rates (TP, attacked images labelled as attacked) under different false

positive rates (FP, pristine images labelled as attacked). As we want to use

this classifier to filter attacked images from pristine images when we apply

PRNU-based methods on a large number of candidate images, we would like

to have a small FP rate such that we can keep as many pristine images as

possible. Thus, for this test, we only focus on the results when FP rate is below

1%. The Receiver Operating Characteristic (ROC) curves for D∗ on the three

test sets are shown in Fig. 6.3(a). The classifier has TP rate lower than 5% for

images manipulated by median filter and BM3D. While the set with the weak

Gaussian blurring is performing better than the other two as this manipulation

shares more similarities with the images in the training set, the TP rate is still

below 10% throughout the range. It proves the neural network-based classifier

can be overfitting to the features specifically related to the strong Gaussian

blurring.

To show the effectiveness of the proposed framework, we apply it on P and

F to tune D. The weight parameters α, β, γ and η are set to 1, 3× 10−3, 0.01

and 0.01, respectively. The relaxation term Λ is set to 10−3 and the adversarial

goal U is set to 0.7. SGD optimizer is used for both the discriminator and the

generator with the learning rate set to 0.02 for the generator and 0.01 for the

discriminator. We tested different combinations of these parameters using the

discriminator’s performance on the task of classifying images subject to weak

Gaussian blurring and pristine images as a reference. The parameters shown

above produce good stability for the training process of the GAN framework

and generates the best performance for the above-mentioned classification task

among the set of combinations of parameters we tested. Thus, the experimental

results reported from this section are all based on the network trained with

the above-mentioned parameters. The discriminator and generator are trained

in turns. The rule for alternating the network being trained is that after

training the discriminator with a batch of 16 images, the generator is trained

for two batches of input images with the same batch size. The reason for the

generator to be trained for more rounds is that the training of the generator

should be considered as more challenging than the training of discriminator

for this task. Only by training the generator for more rounds, a stable training

process can be obtained. Otherwise, the discriminator would be too powerful

for the under-trained generator and when that occurs, the generator might

not be improved for the subsequent training process. We trained the networks
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under this GAN framework with the discriminator trained for 3 epochs. Each

epoch takes around 14 hours to run on a Nvidia RTX 2080Ti GPU. The ROC

curves for the tuned classifier, which is the discriminator in the proposed GAN

framework, on the detection of the 3 manipulations are shown in Fig. 6.3(b).

The proposed framework can achieve TP rate as high as 37.9% with FP rate

lower than 1% for the weak Gaussian blurring despite all the attacked images in

the training set are manipulated by a much strong Gaussian blurring. Even for

the BM3D denoised images, which do not show strong local blurring artifacts,

the tuned classifier can detect them better than the original classifier can do

for the weaker Gaussian blurring. Compared to the performance of the original

classifier, this shows the effectiveness of the proposed framework of shifting the

classifier’s excessive emphasis on manipulation-specific features to the more

generalised features shared by images with their PRNUs attacked. Despite

the overall TP rate is not very high, the classifier is still of good forensic

significance. Thanks to the low FP rate, it conveniently allows us to identify

attacked images by combining the patch-level detection results to image-level.

If we found an image with a large number of patches identified as attacked,

then we can deem the image as an attacked image with high confidence due to

the low FP rate of the classifier.

6.4 Conclusion

Existing neural network-based anti-forensics attack detectors have shown super-

ior ability in detecting specific manipulations on images. However, when they

are used for the binary classification of deciding whether an image’s PRNU is

attacked or not, their performance could be compromised due to their excessive

emphasis on manipulation-specific features. In this work, we proposed a novel

strategy to tune such a detector, which is in the form of a binary classifier. By

training it as the discriminator in a GAN framework, this makes the classifier

generalize better for images subject to unprecedented attacks. Despite the

limitation of the original training set which might only contains images subject

to a certain type of attacks, the generated images in the GAN framework

can shift the classifier’s excessive focus on those manipulation-specific features

to the ones which can generalise better for the binary classification. The

experimental results show that the proposed training scheme could improve the

probability of detecting attacks on PRNUs from manipulations not included in

the training set while keeping the false positive low for the pristine images.
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Chapter 7

Conclusions and Future Work

The work presented in this thesis has been concerned with digital image

forensics techniques based on photo response non-uniformity (PRNU), which is

a powerful device fingerprint. Methods based on PRNU have been successfully

applied for source camera identification, source oriented image clustering and

image forgery detection. However, these methods also face challenges from

different aspects and this thesis aims to address some of these challenges. In this

thesis, a novel image forensics dataset, namely the Warwick Image Forensics

Dataset is constructed and presented in Chapter 3, with special attention paid

to the camera exposure settings. The specially designed dataset enables works

to be carried out to investigate the ISO speed’s impact on PRNU-based image

forgery detection as well as developing method to account for ISO speed’s

impact. These studies are shown in Chapter 4. The impact from the image

filters used by Instagram on PRNU-based source oriented image clustering is

studied in Chapter 5 and a three-step clustering framework is proposed. Finally,

to help the neural network-based anti-forensics attack detector generalise better

for unprecedented attacks on PRNUs, a generative adversarial networks-based

training strategy is proposed in Chapter 6 to overcome the limitation of the

training data. The following sections summarise the key contributions from

the previous chapters. The directions for future research will be discussed in

the last section of this chapter.

7.1 Warwick Image Forensics Dataset

Device fingerprints like sensor pattern noise (SPN) are widely used for proven-

ance analysis and image authentication. Over the past few years, the rapid

advancement in digital photography has greatly reshaped the pipeline of image

capturing process on consumer-level mobile devices. The flexibility of camera

exposure parameter settings and the emergence of multi-frame photography al-

gorithms, especially high dynamic range (HDR) imaging, bring new challenges
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to device fingerprinting. The subsequent study on these topics requires a new

purposefully built image dataset.

With the requirement for carrying out studies on the impact from different

camera exposure parameter settings on device fingerprinting, as well as the

goal to build a dataset which could facilitate the development of PRNU-based

forensic methods for HDR images in mind, the Warwick Image Forensics

Dataset is constructed. The dataset consists of more than 58, 600 images,

captured with 14 different digital cameras. Compared to the existing datasets,

e.g., the Dresden Image Dataset [116] and the VISION dataset [117], the images

in Warwick Image Forensics Dataset feature more diverse camera exposure

parameter settings. Thus, systematic studies on these parameters could be

carried out. In addition to that, the inclusion of images taken using auto

exposure bracketing (AEB) and high speed burst functions allow different

multi-frame computational photography algorithms, including HDR imaging,

to be applied on the images from this dataset. Thus, the special design of this

dataset could help studies on various topics in digital image forensics to be

carried out in the future.

7.2 Addressing the Impact of ISO Speed Upon PRNU

and Forgery Detection

PRNU-based forgery detection methods often reveal manipulated areas by

finding the regions with PRNU absent. To check the existence of the PRNU,

the correlation between an image’s noise residual with the device’s reference

PRNU is often compared with a decision threshold. A PRNU correlation

predictor is a key component to determine this decision threshold by assuming

the correlation is content-dependent. However, we found that not only the

correlation is content-dependent, but it also depends on the camera sensitivity

setting, which is more commonly known by the name of ISO speed.

In Chapter 4, based on the Poissonian-Gaussian noise model from [88],

we show how the PRNU correlation is dependent on the ISO speed both

analytically and experimentally. Due to this dependency, we postulate that a

correlation predictor is ISO speed-specific, i.e. reliable correlation predictions

can only be made when a correlation predictor is trained with images of similar

ISO speeds to the image in question. Thus, we proposed an ISO speed-specific

correlation prediction process for PRNU-based image forgery detection. By

testing the forgery detection method from [24] following the proposed ISO

speed-specific correlation prediction process, more consistent and reliable

forgery detection performance is observed for both realistic and synthetic

image forgeries compared to the alternative correlation prediction training
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process.

Recognizing that in the real-world, information about the ISO speed may

not be available in the metadata to facilitate the implementation of the ISO

speed-specific correlation prediction process, we propose a block-matching

based method to infer an image’s ISO speed from the image content, called

CINFISOS (Content-based Inference of ISO Speeds). The block-matching

process in CINFISOS is done by comparing the most smooth patches from

the image in question with patches from other images of known ISO speeds

in discrete cosine transformed-space. Experiments are done to validate the

effectiveness of the proposed CINFISOS method. The experiments show that by

using the proposed CINFISOS method, it can outperform the forgery detections

produced by not following the ISO-specific correlation prediction process, in

terms of larger area under the ROC curve (AUC-ROC).

7.3 PRNU-based Provenance Inference for Instagram

Photos

The PRNU has been extensively studied and found its applications in many

practical scenarios in the law-enforcement sector because of its capability of

differentiating individual source devices of the same model. However, the

emergence of photo-sharing social networking sites (SNS) poses new challenges

to the PRNU-based image provenance analysis. In addition to the traditional

challenges brought by the vast number of images shared on these sites, the

built-in image editing tools on SNSs have exacerbated the issue. One particular

problem is that the SNS’s built-in image editing tools tend to inflict distortion

on images’ PRNUs. One well-known example of such a tool is the image filters

used by Instagram. In Chapter 5, we observed that some Instagram image

filters manipulate the high-frequency bands of the images and hence damage

the PRNUs, making source-oriented clustering (SOC) of the filtered images

unsatisfactory. The image filters which can significantly distort PRNUs are

also identified in Chapter 5.

To address this issue, we propose a three-step clustering framework for

Instagram images in Chapter 5. Firstly, the images are separated into two

groups according to the filters applied on the images, with Group Malignant

(M) containing the filters that significantly distort PRNUs and Group Benign

(B) covering the other filters that have no significant impact on PRNUs. The

images processed by Group B filters are then clustered and the centroids

are extracted from the formed clusters, with each centroid representing the

reference PRNU of the corresponding source device. Finally, we use the centroid

of each cluster to attract the images processed by Group M filters to complete
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the SOC task. To identify the filter applied to each image, a convolutional

neural network-based filter-oriented image classifier is also proposed in Chapter

5. To further refine the classification result, by investigating the pairwise

correlations and the shared nearest neighbours, images residing in significantly

different neighbourhoods measured by these two metrics are excluded from the

initial clustering step.

The effectiveness of the proposed three-step clustering framework and the

filter-oriented classifier are tested on images from both the VISION dataset

[117] and the Dresden Image Dataset [116]. Using an iOS simulator to apply

image filters from Instagram on images from the datasets, we run tests on a

large number of images. The proposed filter-oriented image classifier is tested

on 19, 332 images processed by 18 different filters. It delivers a very promising

accuracy of 98.5%. In addition, the proposed clustering framework manages to

improve the F1-measure from 47.74% by applying existing clustering methods

directly on Instagram images to a much higher F1-measure of 90.33%.

7.4 Detecting Anti-Forensics Attacks on PRNU Us-

ing Generative Adversarial Networks

With PRNU-based forensic methods seeing successes in different fields of mul-

timedia forensics, the PRNU becomes a target for anti-forensics attacks. Being

a noise-like signal, the PRNU could be attenuated or removed by some simple

manipulations like median filtering or Gaussian blurring. When performing

PRNU-based forensic methods on a large group of images, filtering out PRNU-

absent images can improve the performance and prevent the investigators from

making wrong conclusions. Thus, different detection methods for anti-forensics

attacks are proposed. Among them, neural network-based classifiers have

shown their strength in detecting different types of anti-forensics manipula-

tions. However, the neural network-based classifiers’ superior ability to extract

manipulation related features could also make them pay too much attention

to manipulation-specific features due to the limitation of the training data.

As a result, when a neural network-based classifier is used to detect attacks

on PRNU from unprecedented manipulations, it may not perform well as the

images subject to these unprecedented manipulations may not contain the

features the classifier looks for.

To address this problem, in Chapter 6, we propose a generative adversarial

networks (GAN) based training strategy for detecting anti-forensic attacks on

PRNU. Different to many other GAN-based methods, which aim to generate

pristine images to fool the discriminator, the GAN framework proposed in

Chapter 6 generates ‘lightly attacked’ images, which do not possess strong
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manipulation-specific features. Also, by generating images from images with

PRNU subject to attacks, the generated one could be considered as having

their PRNUs attacked as well. Thus, through a GAN framework, the generated

images would help the classifier, which is trained as the discriminator in the

GAN framework, pay less attention to those manipulation-specific features

and focus more on the difference between images with PRNU attacked or not,

despite the limitations of the original training set. Experiments on images

from the Warwick Image Forensics Dataset show that the proposed GAN-based

training strategy can tune the classifier to make it generalise better for detecting

unprecedented attacks on PRNUs.

7.5 Future Work

This thesis focuses on studying and addressing the impact from different

challenges on PRNU-based image forensics, especially image forgery detection,

source oriented image clustering, and detection of anti-forensics attacks. But as

digital photography is evolving at the same time, more challenges are coming

up. Some possible directions for future researches are as follows.

As mentioned in Chapter 3, computational photography algorithms based

on multi-frame merging, e.g., HDR imaging, can pose big threats to PRNU-

based image forensics. The image registration step in these multi-frame merging

methods usually involves mapping pixels from different locations in different

frames taken by the same sensor into one pixel for the final image. Thus, the

PRNUs from different locations get mixed up and do not match well with

the device’s reference PRNU. Furthermore, after multiple frames are merged

together, local tone-mapping is usually applied to provide high contrast while

keeping the image photo-realistic. This local operation could change the local

noise statistics. A big impact would be on PRNU-based image forgery detection.

As mentioned in this thesis, a correlation predictor is an important component

for many PRNU-based forgery detection methods. To predict the correlations

for multi-frame merged images, we have to take the effect of multi-frame

alignment into account. In addition, the predictors may have to be used locally

to best describe the local noise statistics but how exactly this could be done

needs further investigation. The Warwick Image Forensics Dataset provides a

good platform to study different multi-frame merging algorithms. Thus, future

work could be done based on this dataset.

In addition to multi-frame merging algorithms, multi-camera merging

algorithms become popular on consumer-level mobile devices as well. Nowadays,

many mobile devices have multiple lenses and each lens has a corresponding

sensor, meaning the images from different lenses will have different PRNUs.

The lenses on the same device usually have different zoom ranges, providing
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different field of views (FOV). Multi-camera merging algorithms are used to

merge images from different lenses of the same mobile device to generate images

with a user-defined field of view while keeping the image details from multiple

lenses. As a result, the merged image will mix the PRNUs from multiple

sensors together. Thus, when we perform source camera attribution, including

both source camera identification and source oriented image clustering, on

these merged images, we have to consider the fact that each of these images

contains PRNUs from multiple sensors. With the Warwick Image Forensics

Dataset containing images of the same scene from multiple cameras which can

be used to merge into a single image, future work for developing source camera

attribution methods for multi-camera merged images can be done using the

images from the dataset.

In Chapter 4, we proposed an ISO-speed correlation prediction process for

PRNU-based image forgery detection methods. The process requires images

with similar ISO speeds to the image in question to build the correlation

predictor. For future work, more investigations can be carried out to understand

how the ISO speed would affect PRNU correlations for JPEG images or images

of other compressed formats analytically. Obtaining an analytical model for

these images would help to incorporate the ISO speed as a parameter to the

correlation predictor. This would make the correlation predictor generalize for

all ISO speeds instead of being ISO speed-specific.

In Chapter 5, we investigate and propose a method to mitigate the impact

from image filters used by Instagram on PRNU-based source oriented image

clustering. Future work can be done by extending the investigation to other

social networking sites and developing cross-platform image clustering methods

despite the impact of the built-in image editing tools. The social network

history of an image can be investigated to reveal which social network sites this

image has been uploaded to. This information would help to narrow down the

pool of the potential social network sites’ built-in image editing tools the image

has been applied with. Subsequent forensic investigations could be carried out

more precisely.

A generative adversarial networks based training strategy is proposed

in Chapter 6 to help neural network-based classifiers perform better on the

binary classification of detecting whether an image’s PRNU is subject to

attack or not. Future work can be done to further improve the classifier’s

performance by trying different network structures and testing different GAN

framework training strategies. In addition, as the detection is done at patch-

level, it provides the possibility of using the patch-level detection result for

image forgery detection in the future. For example, we can use the binary

classification results directly to form the forgery detection map or develop a

method which uses the intermediate output of the network to form a confidence
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map for the forgery detection, which indicates each pixel’s probability of being

tampered.
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Appendix A

A Case Study on JPEG

Compression’s Impact on

Images of Different ISO

Speeds

As different ISO speeds can introduce different levels of noise to the images,

such behavior would impact the reference PRNU extraction process as well. A

typical method to extract a device’s reference PRNU is averaging the noise

residuals from flat-field images (images of flattened content, e.g. pure color

boards, etc.). The use of flat-field images can mostly avoid the distortion due

to image content (e.g. texture, edges, etc.). For a flat-field RAW image, we can

approximate its noise model according to Equation (4.1), which means its noise

residual consists of both the PRNU and PRNU-irrelevant parts. By averaging

the noise residuals of multiple flat-field images from the same device with

similar quality of the PRNU, their PRNU-irrelevant part can get attenuated

and thus a better approximation of the PRNU can be obtained.

In real-life forensics, the images available for the reference extraction may

not be RAW images but in some compressed format, e.g. JPEG images, similar

behavior is expected. Also, due to the influence of ISO speed, it is reasonable

for us to expect that, with the same number of images, the reference PRNU

extracted from lower ISO speed images would be of better quality than the

one extracted from images with higher ISO speeds. To verify this, we test the

PRNU extracted from varying numbers (from 1 to 50) of flat-field images with

different ISO speeds (100, 800 and 6400) from three cameras, namely a Canon

6D MKII, a Nikon D7200 and a Sigma SdQuattro. The images used in this test

are JPEG images of a flat color panel and are straight out of the three cameras.

To ensure a fair comparison between different ISO speeds, we set the JPEG
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Figure A.1: The plots show how the number of JPEG images used for reference
PRNU extraction may affect the quality of the extracted reference PRNU
from three cameras: (a) Canon 6D MKII, (b) Nikon D7200 and (c) Sigma
SdQuattro. We use the correlation between the extracted reference PRNU
with another reference PRNU extracted from 100 flat-field images of ISO speed
100 to indicate the quality of the extracted reference PRNU.

130



Canon 6D MKII
ISO100

-10 -8 -6 -4 -2 0 2 4 6 8 10

10

8

6

4

2

0

-2

-4

-6

-8

-10

0.01

0.02

0.03

0.04

0.05
ISO800

-10 -8 -6 -4 -2 0 2 4 6 8 10

10

8

6

4

2

0

-2

-4

-6

-8

-10

0.01

0.02

0.03

0.04

0.05
ISO6400

-10 -8 -6 -4 -2 0 2 4 6 8 10

10

8

6

4

2

0

-2

-4

-6

-8

-10

0.01

0.02

0.03

0.04

0.05

Nikon D7200
ISO100

-10 -8 -6 -4 -2 0 2 4 6 8 10

10

8

6

4

2

0

-2

-4

-6

-8

-10

0.01

0.02

0.03

0.04

0.05
ISO800

-10 -8 -6 -4 -2 0 2 4 6 8 10

10

8

6

4

2

0

-2

-4

-6

-8

-10

0.01

0.02

0.03

0.04

0.05
ISO6400

-10 -8 -6 -4 -2 0 2 4 6 8 10

10

8

6

4

2

0

-2

-4

-6

-8

-10

0.01

0.02

0.03

0.04

0.05

Sigma SdQuattro
ISO100

-10 -8 -6 -4 -2 0 2 4 6 8 10

10

8

6

4

2

0

-2

-4

-6

-8

-10

0.01

0.02

0.03

0.04

0.05
ISO800

-10 -8 -6 -4 -2 0 2 4 6 8 10

10

8

6

4

2

0

-2

-4

-6

-8

-10

0.01

0.02

0.03

0.04

0.05
ISO6400

-10 -8 -6 -4 -2 0 2 4 6 8 10

10

8

6

4

2

0

-2

-4

-6

-8

-10

0.01

0.02

0.03

0.04

0.05

Figure A.2: The auto-correlation of noise residuals from images of different ISO
speeds from 3 cameras. Rather than a single peak at (0, 0), auto-correlations
have values spread over multiple pixel ranges. As the figure focuses on how
far the spreading of auto-correlation reaches, the color bar focus on the range
of [0, 0.05]. Values bigger than the upper limit 0.05 are also colored in dark
brown.
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compression quality to the best available setting on each camera for every ISO

speed. The quality of the extracted PRNUs is examined by computing the

correlation between them and another reference PRNU of the same camera,

which in our case is computed from 100 images with ISO speed of 100. We call

the PRNUs generated from the one hundred ISO 100 images as the sample

PRNUs.

In theory, the three sample PRNUs may still differ from the ground truth

slightly, the correlation between them and the one extracted from the test

images are still representative to tell the difference between the quality of

PRNU generated from images of different ISO speeds, as we can see from Fig.

A.1. From the figures, we can confirm that the lower ISO speed generates

PRNU of better quality. For each ISO speed, the correlation increases as the

number of images used to extract the reference PRNU increases.

Furthermore, for different ISO speeds from the same camera, the correlation

curves shown in Fig. A.1 tend to converge to different values. It means that

no matter how many images are used to extract the reference PRNU, the ones

from images of higher ISO speeds can be of worse quality than the ones from a

sufficient number of images of lower ISO speeds. Such a phenomenon suggests

the incompatibility of PRNU’s extracted from higher ISO speed images with

the sample PRNU.

We found that this is mainly due to the reason that the PRNU signal

remaining in higher ISO images is more prone to be vitiated by low-pass

filtering like JPEG compression despite the images are saved under the same

JPEG compression quality factor. As the higher ISO speed flat-field images

are noisier, they have more PRNU-irrelevant high frequency signals in the

image. Thus, when a low-pass filter is applied to them to reduce the amount

of high frequency signal remaining in the images to a certain level, the more

the PRNU-irrelevant high frequency signals there are in the images, the less

information about PRNU would survive under such a compression.

In Fig. A.2, we use the auto-correlations of the flat-field images’ noise

residual to demonstrate such an effect. For a random noise, as the value

of each pixel is independent, its auto-correlation should have a single peak

at (0, 0) and is zero elsewhere. However, due to post-processing, especially

the JPEG compression, the auto-correlation will spread over multiple pixels

and the extend of this spreading can be an indicator of how severe the post-

processing may distort the extracted noise residual. From Fig. A.2, for each of

the three cameras, we clearly see the trend that as the ISO speed increases,

the spreading reaches further. Furthermore, the symmetric spreading shapes

as we observed from the plots for the ISO 6400 images, showing the signal

spreading is stronger at certain frequency, are more likely to be from JPEG

compression which compresses signals of a certain frequency in the images.
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Color interpolation (also known as demosaicking) at each pixel involves the

colors of the pixels within a neighborhood, which means the color at each pixel

does “spread” across a certain neighborhood. Interestingly, unlike the Bayer

filter used on the sensors in Canon 6D MKII and Nikon D7200, the Foveon X3

sensor in the Sigma SdQuattro has a stacked color filtering array, which does

not require color interpolation. The spreading of the auto-correlation can still

be observed with the Sigma SdQuattro. This evidence further justifies that

the further spreading of the auto-correlation is more likely to be caused by

JPEG compression instead of color interpolation.
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