374 research outputs found

    Regression between headmaster leadership, task load and job satisfaction of special education integration program teacher

    Get PDF
    Managing school is a daunting task for a headmaster. This responsibility is exacerbated when it involves the Special Education Integration Program (SEIP). This situation requires appropriate and effective leadership in addressing some of the issues that are currently taking place at SEIP such as task load and job satisfaction. This study aimed to identify the influence of headmaster leadership on task load and teacher job satisfaction at SEIP. This quantitative study was conducted by distributing 400 sets of randomized questionnaires to SEIP teachers across Malaysia through google form. The data obtained were then analyzed using Structural Equation Modeling (SEM) and AMOS software. The results show that there is a significant positive effect on the leadership of the headmaster and the task load of the teacher. Likewise, the construct of task load and teacher job satisfaction has a significant positive effect. However, for the construct of headmaster leadership and teacher job satisfaction, there was no significant positive relationship. This finding is very important as a reference to the school administration re-evaluating their leadership so as not to burden SEIP teachers and to give them job satisfaction. In addition, the findings of this study can also serve as a guide for SEIP teachers to increase awareness of the importance of managing their tasks. This study also focused on education leadership in general and more specifically on special education leadership

    The generation of dual wavelength pulse fiber laser using fiber bragg grating

    Get PDF
    A stable simple generation of dual wavelength pulse fiber laser on experimental method is proposed and demonstrated by using Figure eight circuit diagram. The generation of dual wavelength pulse fiber laser was proposed using fiber Bragg gratings (FBGs) with two different central wavelengths which are 1550 nm and 1560 nm. At 600 mA (27.78 dBm) of laser diode, the stability of dual wavelength pulse fiber laser appears on 1550 nm and 1560 nm with the respective peak powers of -54.03 dBm and -58.00 dBm. The wavelength spacing of the spectrum is about 10 nm while the signal noise to ratio (SNR) for both peaks are about 8.23 dBm and 9.67 dBm. In addition, the repetition rate is 2.878 MHz with corresponding pulse spacing of about 0.5 μs, is recorded

    Analyzing and Designing Control System for an Inverted Pendulum on a Cart

    Get PDF
    It is a collection of MATLAB functions and scripts, and SIMULINK models, useful for analyzing Inverted Pendulum System and designing Control System for it. Automatic control is a growing field of study in the field of Mechanical Engineering. This covers the proportional, integral and derivative (PID). The principal reason for its popularity is its nonlinear and unstable control. The reports begin with an outline of research into inverted pendulum design system and along with mathematical model formation. This will present introduction and review of the system. Here one dimensional inverted pendulum is analyzed for simulating in MATLAB environment. Control of Inverted Pendulum is a Control Engineering project based on the flight simulation of rocket or missile during the initial stages of flight. The aim of this study is to stabilize the Inverted Pendulum such that the position of the carriage on the track is controlled quickly and accurately so that the pendulum is always erected in its inverted position during such movements

    Design of Sliding Mode PID Controller with Improved reaching laws for Nonlinear Systems

    Full text link
    In this thesis, advanced design technique in sliding mode control (SMC) is presented with focus on PID (Proportional-Integral-Derivative) type Sliding surfaces based Sliding mode control with improved power rate exponential reaching law for Non-linear systems using Modified Particle Swarm Optimization (MPSO). To handle large non-linearities directly, sliding mode controller based on PID-type sliding surface has been designed in this work, where Integral term ensures fast finite convergence time. The controller parameter for various modified structures can be estimated using Modified PSO, which is used as an offline optimization technique. Various reaching law were implemented leading to the proposed improved exponential power rate reaching law, which also improves the finite convergence time. To implement the proposed algorithm, nonlinear mathematical model has to be decrypted without linearizing, and used for the simulation purposes. Their performance is studied using simulations to prove the proposed behavior. The problem of chattering has been overcome by using boundary method and also second order sliding mode method. PI-type sliding surface based second order sliding mode controller with PD surface based SMC compensation is also proposed and implemented. The proposed algorithms have been analyzed using Lyapunov stability criteria. The robustness of the method is provided using simulation results including disturbance and 10% variation in system parameters. Finally process control based hardware is implemented (conical tank system)

    Saturable absorption measurement of platinum as saturable absorber by using twin detector method based on mode-locked fiber laser

    Get PDF
    This paper illustrates the absorption measurement of Pt as saturable absorber (SA) by using mode-locked fiber laser system. The SA is fabricated by depositing 10 nm of Pt on the fiber ferrules using sputtering method. The absorption measurement of Pt is characterised by employing a balanced twin detector method based on mode-locked fiber laser with central wavelength of 1532.25 nm, repetition rate of 2.833 MHz and pulse duration of 34.3 ns. The Pt-SA produce modulation depth of 21.9% and saturation intensity of 21.6 MW cm-2

    Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach

    Get PDF
    This paper presents a nonlinear analysis, control, and comparison of controllers based on the dynamical model of the reaction wheel pendulum (RWP) in a tutorial style. Classical methodologies such as proportional integral derivative (PID) control and state variables feedback control are explored. Lyapunov's method is proposed to analyze the stability of the proposed nonlinear controllers, and it is also used to design control laws guaranteeing globally asymptotically stability conditions in closed-loop. A swing up strategy is also included to bring the pendulum bar to the desired operating zone at the vertical upper position from an arbitrary initial location. Simulation results show that it is possible to obtain the same dynamical behavior of the RWP system adjusting the control gains adequately. All simulations were conducted via MATLAB Ordinary Differential Equation packages. © 2019 Karabuk Universit

    Control of Cart-Inverted Pendulum System Using Pole Placement

    Get PDF
    The Cart Inverted Pendulum system has many real life applications like missile launching,balancing systems like human walking,aircraft landing pad in sea etc.Moreover this is a highly unstable and non-linear system and so designing a controller to bring the system to a stable condition is a challenging task.This thesis includes system and hardware description of Inverted Pendulum System,dynamics of the system and its state space model.In this thesis,pole placement methods like two-loop PID and PID+PI have been implemented for Inverted Pendulum System and this control strategies gives stable responses.With the recent devel-opment of LMIs tool,regional pole placement can achieve the goal as well.A regional pole placement controller is also synthesized, where desired specifications are transformed into LMI regions.In present case,a conical sector in the left half plane is taken and the method is implemented. Lastly,a reduced order controller is also designed and its bode magnitude plot is compared with that of the full order controller.The reduced order simplification method has an almost identical frequency response,showing that it can be utilized as well for stabilizing the CIPS

    Control Optimization Using MATLAB

    Get PDF

    Bacterial foraging-optimized PID control of a two-wheeled machine with a two-directional handling mechanism

    Get PDF
    This paper presents the performance of utilizing a bacterial foraging optimization algorithm on a PID control scheme for controlling a five DOF two-wheeled robotic machine with two-directional handling mechanism. The system under investigation provides solutions for industrial robotic applications that require a limited-space working environment. The system nonlinear mathematical model, derived using Lagrangian modeling approach, is simulated in MATLAB/Simulink(®) environment. Bacterial foraging-optimized PID control with decoupled nature is designed and implemented. Various working scenarios with multiple initial conditions are used to test the robustness and the system performance. Simulation results revealed the effectiveness of the bacterial foraging-optimized PID control method in improving the system performance compared to the PID control scheme
    corecore