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Abstract  
 It is a collection of MATLAB functions and scripts, and SIMULINK 

models, useful for analyzing Inverted Pendulum System and designing 

Control System for it. Automatic control is a growing field of study in the field 

of Mechanical Engineering. This covers the proportional, integral and 

derivative (PID). The principal reason for its popularity is its nonlinear and 

unstable control. The reports begin with an outline of research into inverted 

pendulum design system and along with mathematical model formation. This 

will present introduction and review of the system. Here one dimensional 

inverted pendulum is analyzed for simulating in MATLAB environment. 

Control of Inverted Pendulum is a Control Engineering project based on the 

flight simulation of rocket or missile during the initial stages of flight. The aim 

of this study is to stabilize the Inverted Pendulum such that the position of the 

carriage on the track is controlled quickly and accurately so that the pendulum 

is always erected in its inverted position during such movements.
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Introduction 

 An inverted pendulum is a pendulum which has its center of mass 

above its pivot point (Said,L., Latifa, B.,, 2012). It is often implemented with 

the pivot point mounted on a cart that can move horizontally and may be called 

a cart and pole. Most applications limit the pendulum to 1 degree of freedom 

by affixing the pole to an axis of rotation. Whereas a normal pendulum is 

stable when hanging downwards, an inverted pendulum is inherently unstable, 

and must be actively balanced in order to remain upright; this can be done 

either by applying a torque at the pivot point, by moving the pivot point 

horizontally as part of a feedback system, changing the rate of rotation of a 

mass mounted on the pendulum on an axis parallel to the pivot axis and 

thereby generating a net torque on the pendulum, or by oscillating the pivot 
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point vertically. A simple demonstration of moving the pivot point in a 

feedback system is achieved by balancing an upturned broomstick on the end 

of one's finger. The inverted pendulum is a classic problem in dynamics and 

control theory and is used as a benchmark for testing control strategies. Can 

anyone balance a ruler upright on the palm of his hand? If he concentrates, he 

can just barely manage it by constantly reacting to the small wobbles of the 

ruler (Irza M. A., Mahboob I., Hussain C.,, 2001). This challenge is analogous 

to a classic problem in the field of control systems design: stabilizing an 

upside-down (“inverted”) pendulum. 

  

Simulation is the imitation of the operation of a real-world process or 

system over time (Banks J., Carson J., Nelson B., Nicaol D., 2001). The act of 

simulating something first requires that a model be developed; this model 

represents the key characteristics or behaviors/functions of the selected 

physical or abstract system or process. The model represents the system itself, 

whereas the simulation represents the operation of the system over time. The 

inverted pendulum is among the most difficult systems to control in the field 

of control engineering. Due to its importance in the field of control 

engineering, it has been a task of choice to be assigned to control engineering 

students to analyze its model and propose a linear compensator according to 

the control law. Being an unstable system, it creates a problem in case of 

controlling (O., 2012).The reasons for selecting the Inverted Pendulum as the 

system are: 

 •It is the most easily available system  

 • It is a nonlinear system, which can be treated to be linear, without much 

error (Maravall D., Zhou C., Alonso J., 2005).                    

 • Provides good practice for prospective control engineering. 

 

Theory 

 The system involves cart, able to move backwards and forwards. And 

a pendulum hinged to the cart at the bottom of its length such that the 

pendulum can move in the plane as the cart moves. That is, the pendulum 

mounted on the cart is free to fall along the cart’s axis of rotation. The system 

is to be controlled so that the pendulum remains balanced and upright. If the 

pendulum starts off-center, it will begin to fall. The pendulum will move to 

opposite direction of the cart movement. It is a complicated control system 

because any change to a part will cause change to another part. We only take 

feedback from the angle of the pendulum relative to vertical axis other than 

state of being carriage position, carriage velocity and pendulum angular 

velocity. The cart undergoes linear translation and the link is unstable at the 

inverted position. So, briefly the inverted pendulum is made up of a cart and a 

pendulum. The goal of the controller is to move the cart to its commanded 
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position causing the pendulum without tip over. In open loop the system is 

unstable. This is a SIMO output system. 

 Basic block diagram for the feedback control system: 

 
Figure-01: Feedback control system 

 

Analysis Of Inverted Pendulum With Cart System 

 The inverted pendulum on a cart is representative of a class of system 

that includes stabilization of a rocket during launch. The position of the cart is 

P, the angle of rod is θ, the force input to the cart is F, the cart mass is M, the 

mass of the bob is m, the length of the rod is L, the coordinate of the bob is 

(P2, Z2).   

 

 
Figure-02: Inverted pendulum on a cart 

 

 In the following, the differential equations which describe the 

dynamics of the inverted pendulum using lagrangian’s equation because these 

deal with the scalar energy functions rather than vector forces and acceleration 

in case of Newtonian approach, thus it minimizes error (Ogata, 2002). 

The partial differential equations (F., 1994) yield:  
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(M+m)* �̈� + m*L* �̈�*cosθ – m* L *�̇�2 *sinθ =F ………………(1) 

M*L* �̈�* cosθ +(I+ m*L2)  *θ̈ + m*g*L* sinθ =0 ……......…… (2) 

(M + m)p̈ - m L∅̈  = u………………………..............................  (3) 

(I+mL2) ∅̈ + m L p̈  = mg L∅…………..………........................(4) 

 

If friction force is considered the equation converts to: 

(M + m)p̈ - m L∅̈ + bṗ = u………………………………….(5) 

(I+mL2) ∅̈ - m L p̈  = mg L∅……………………………….(6) 

  

 To obtain the transfer functions of the linearized system equations, the 

Laplace transform of the system equations assuming zero initial conditions has 

been taken. The resulting transfer function for pendulum position becomes: 

Ppend(s) = 
∅(s) 

u(s)
     =

mLs2

q

s4+
b(I+mL2)s3

q
−

(M+m)mgls2

q
−

bmgLs

q

 (rad/N)………………(7), 

where, q=[(M+m)(I+mL2)-(mL)2] 

Again for transfer function for cart position as follow: 

Pcart(s) = 
p (s)

u(s)
=

(I+ml2)s2−gml

s4+
b(I+mL2)s3

q
−

(M+m)mgls2

q
−

bmgLs

q

 (m/N)……… …….(8) 

For this example, assuming the following quantities: 

 

Mass of the cart, (M)   = 0.5 kg,  Mass of the pendulum, 

 (m) = 0.2 kg, Coefficient of friction for cart, (b) = 0.101N/m/sec,  

 Length to pendulum center of mass, (l)= 0.3 m , Mass moment of 

inertia of the pendulum, (I)= 0.006 kg.m^2, Force applied on the cart  =  F (N) 

, Cart position coordinate = x    (m), Initial Pendulum angle from vertical 

downward = theta  

  For the PID, root locus, and frequency response sections of this 

problem, it will be interested only in the control of the pendulum's position. 

This is because the techniques used in these sections are best-suited for single-

input, single-output (SISO) systems. Therefore, none of the design criteria 

deal with the cart's position. It will, however, be investigated the controller's 

effect on the cart's position after the controller has been designed. For these 

sections, the design of a controller to restore the pendulum to a vertically 

upward position after it has experienced an impulsive "bump" to the cart. 

Specifically, the design criteria are that the pendulum returns to its upright 

position within 5 seconds and that the pendulum never moves more than 0.05 

radians away from vertical after being disturbed by an impulse of magnitude 

1 Nsec. The pendulum will initially begin in the vertically upward equilibrium, 

= . In summary, the design requirements for this system are: 
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 Settling time for   of less than 5 seconds  

 Pendulum angle  never more than 0.05 radians from the vertical 

  

 Pole Zero Map of Uncompensated Open Loop System:  The poles 

position of the linearized model of Inverted Pendulum (in open loop 

configuration) shows that system is unstable, as one of the poles of the transfer 

function lies on the Right Half Side of the s-plane. Thus the system is 

absolutely unstable. 

 
Figure-03:  zeros and poles of pendulum position. 

From figure,   

Zeros =0  

Poles =5.5651, -5.6041, -0.1428 

 Likewise, the zeros and poles of the system where the cart position is the 

output are found as follows:  

 
Figure-04:  zeros and poles of cart position 
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The clear results are:  

Zeros = 4.9497,   -4.9497        

 Poles =0, 5.5651, -5.6041, -0.1428 

As predicted, the poles for both transfer functions are identical. The pole at 

5.5651 indicates that the system is unstable since the pole has positive real part 

(V., 1991). In other words, the pole is in the right half of the complex s-plane. 

This agrees with what we observed above. 

 

Step Response of Uncompensated Open Loop System: 

 Since the system has a pole with positive real part its response to a step 

input will also grow unbounded. The verification of this using the “lsim” 

command which can be employed to simulate the response of LTI models to 

arbitrary inputs. In this case, a 1-Newton step input will be used. Adding the 

MATLAB code to “m-file” and running it in the MATLAB command window 

generates the plot given below:  

 
Figure-05: Step Response of Uncompensated Open Loop System 

 

 The above results confirm the expectation that the system's response 

to a step input is unstable. 

 It is apparent from the analysis above that some sort of control is 

needed to be designed to improve the response of the system. PID, root locus, 

frequency response, and state space are the controllers can be used but here 

PID controller is designed.  

 

Simulink Model for the Open Loop Impulse Response of the Inverted 

Pendulum System  

SIMULATION PARAMETERS: 

Impulse is applied for 0.5 s 
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Stop Time:     1.5 

Solver Algorithm:   Variable-step ODE45 (Dormand-Prince), Maximum  

Step Size:   0.03 

    
The impulse response of open-loop uncompensated system is given below:  

 
Figure-06: open loop impulse response (Scope view) 

 

 This model shows that impulse response of inverted pendulum. This 

model is highly unstable as theta diverges rapidly with time. Applying step for 

1s reveals that the pendulum remains upright, but becomes highly unstable as 

step comes.  

Simulink Modelling And Pid Controller 

 Nonlinear Simscape Model: SimMechanics software is a block diagram 

modeling environment for the engineering design and simulation of rigid body 

machines and their motions, using the standard Newtonian dynamics of forces 

and torques, instead of representing a mathematical model of the system 

(Said,L., Latifa, B.,, 2012). The inverted pendulum model using the physical 

modeling blocks of the Simscape extension to Simulink has been built. The 

blocks in the Simscape library represent actual physical components; 

therefore, complex multi-body dynamic models can be built without the need 

of mathematical equations from physical principles by applying Newton's 

laws. Establishing and saving SimMechanics model of the inverted pendulum 

and cart, the animated view of the physical system is created which is given 

below: 
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Figure-07: System animation without controller (20 degree displace with vertical). 

 

 In the Scope, clicking the Autoscale button, the following output for 

the pendulum angle and the cart position has been found which is nonlinear in 

practice.  

 
Figure-08: Scope condition of pendulum angle and cart position. 

 

 The pendulum repeatedly swings through full revolutions where the 

angle rolls over 360 degrees. Furthermore, the cart's position grows 

unbounded, but oscillates under the influence of the swinging pendulum.  

 PID control design: In the design process, it has been assumed a 

single-input, single-output plant as described by the transfer function (Kumar 

R., Singh B., Das J., 2013). Closed loop impulse with PID controller is given 

below: 
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Figure-09: Feedback control system for the Iverted Pendulum 

 

To design a compensator using the automated PID Ziegler-Nichols 

open-loop tuning algorithm, this tuning method computes the proportional, 

integral, and derivative gains using the Chien-Hrones-Resnick (CHR) setting 

with a 20% overshoot. The response of the closed-loop system to an impulse 

disturbance for this initial set of control gains: Kp = 1; Ki = 1;Kd = 1; 

 
Figure-10: Zigzag movement of pendulum Kp=1;Ki=1;Kd =1  

 

 This response is still not stable. To modify the response, an iteration 

process is followed by manipulating proportional, integral and derivative gain. 

 

Results 

 The Inverted Pendulum was given an initial angle inclination, as 

indicated by an initial 20  magnitude of pendulum’s angular displacement. the 

system is completely controlled under operating condition. The design criteria 

of the PID controller are: Kp=100; Ki=1; Kd=20; Increasing amplitude of 

impulse, it is seen error increases further. As is shown in the plot, the settling 

time of the system is less than 5 seconds. Impulse response, scope view and 

final animation are given below: 
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Figure-11: Final simulation result (LTI view). 

 

 
Figure-12: Actual movement of pendulum (scope) 

 

 A video of system simulation is extracted using recording options. the 

cart moves in the negative direction with approximately constant velocity. 

 
Figure-13: cart position with time. 
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Figure-14:  Final animation of model of inverted pendulum and cart. 

 

Conclusion 

 From the analysis, it creates an ability of the control of a nonlinear 

model by any linear feedback control system. PID controller designed here is 

followed an iteration process. In the project only friction force is assumed as 

external impedance but in reality there would have air impedance. The cart 

velocity decreases in the negative direction. The actuator needs a very small 

effort and power to stable the pendulum as it quickly stabilizes without too 

much fluctuations. In the project a unit feedback gain is considered as it 

becomes simple and avoiding so much complexity of calculation. System 

properties are taken reasonable as the simulation is completed in 

SimMechanics model by breaking mechanical elements into building blocks. 

Control System Toolbox provides an app and functions for analyzing linear 

models. Impulse response plot is used and settling time, peak amplitude or 

maximum overshot are defined using linearized tools. Applying controller to 

cart position, the system would be implemented. Root locus method has been 

used to define that the system is unstable. ODE45 is based on an explicit 

Runge-Kutta (4, 5) formula, the Dormand-Prince pair. It is a one-step solver; 

that is, in computing y(tn), it needs only the solution at the immediately 

preceding time point, y(tn-1). In general, ode45 is the best solver to apply as a 

first try for most problems. For this reason, ode45 is the default solver used 

for models with continuous states and been used for this problem. 
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