1,652 research outputs found

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Internet of things-based framework for public transportation fleet management in the Free State

    Get PDF
    Thesis (Masters: Information Technology) -- Central University of Technology, Free State, 2019The poor service delivery by the Free State public transportation system inspired us to design a framework solution to improve the current system. This qualitative study focuses on improving the management of the public transportation fleet. One of the most recently developed technologies in Information and Communication Technology (ICT), namely the Internet of Things (IoT), was utilised to develop this framework. Existing problems were identified through research observations, analyses of the current system, analyses of the current problem areas, as well as participants’ questionnaire answers and recommendations, the participants being the passengers, drivers and vehicle owners. The framework was developed in two phases, namely a hardware phase that makes use of ICT sensors (e.g. RFID, GPS, GPRS, IR, Zigbee, WiFi), and a software phase that uses an internet connection to communicate with the different ICT devices. The software utilised a Graphic User Interface (GUI) to ensure that the software is user-friendly and addresses possible problems and barriers such as multiple language interfaces and different ICT skills levels. The newly designed framework offers different services and solutions to meet the participants’ needs, such as real-time tracking for public transport vehicles to help passengers manage their departure and arrival times, as well as for vehicle owners to monitor their own vehicles. In turn, vehicle arrival notifications will encourage passengers to be on time so that vehicles will not be delayed unnecessarily. Another feature is counting devices that can be installed inside the vehicles, which will inform vehicle owners how many passengers are being transported by a vehicle. The passenger pre-booking system will support the drivers when planning their trips/routes. Finally, the framework was designed to fulfil all the participants’ needs that were indicated in the questionnaires in order to achieve the goal of the research study

    TCitySmartF: A comprehensive systematic framework for transforming cities into smart cities

    Get PDF
    A shared agreed-upon definition of "smart city" (SC) is not available and there is no "best formula" to follow in transforming each and every city into SC. In a broader inclusive definition, it can be described as an opportunistic concept that enhances harmony between the lives and the environment around those lives perpetually in a city by harnessing the smart technology enabling a comfortable and convenient living ecosystem paving the way towards smarter countries and the smarter planet. SCs are being implemented to combine governors, organisations, institutions, citizens, environment, and emerging technologies in a highly synergistic synchronised ecosystem in order to increase the quality of life (QoL) and enable a more sustainable future for urban life with increasing natural resource constraints. In this study, we analyse how to develop citizen- and resource-centric smarter cities based on the recent SC development initiatives with the successful use cases, future SC development plans, and many other particular SC development solutions. The main features of SC are presented in a framework fuelled by recent technological advancement, particular city requirements and dynamics. This framework - TCitySmartF 1) aims to aspire a platform that seamlessly forges engineering and technology solutions with social dynamics in a new philosophical city automation concept - socio-technical transitions, 2) incorporates many smart evolving components, best practices, and contemporary solutions into a coherent synergistic SC topology, 3) unfolds current and future opportunities in order to adopt smarter, safer and more sustainable urban environments, and 4) demonstrates a variety of insights and orchestrational directions for local governors and private sector about how to transform cities into smarter cities from the technological, social, economic and environmental point of view, particularly by both putting residents and urban dynamics at the forefront of the development with participatory planning and interaction for the robust community- and citizen-tailored services. The framework developed in this paper is aimed to be incorporated into the real-world SC development projects in Lancashire, UK

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    An Architecture for IoT-Enabled Smart Transportation Security System: A Geospatial Approach

    Get PDF
    Internet of Things (IoT) in urban transportation systems have been ubiquitously embedded into a variety of devices and transport entities. The IoT-enabled smart transportation system (STS) has thus gained growing tractions amongst scholars and practitioners. However, several IoT challenges in relation to cyber–physical security are exposed due to the heterogeneity, complexity and decentralisation of the IoT network. There also exist geospatial security concerns with respect to the embeddings of 5G networks into public infrastructures that are interconnected with the transport system via IoT. To address these concerns, this article aims to apply geospatial modelling approach to propose a smart transportation security systems (STSSs). It is modelled and simulated by undertaking an experimental study in the city of Beijing, China. The simulation outcome of the proposed architecture is expected to offer a strategic guide for strategic security management of urban smart transportation

    Mapping underground assets in the UK: Project Iceberg. Work Package 1, market research into current state of play and global case studies

    Get PDF
    Project Iceberg is an exploratory project undertaken by Future Cities Catapult, British Geological Survey (BGS) and Ordnance Survey (OS). The project aims to address the serious issue of the lack of information about the ground beneath our cities and the un-coordinated way in which the subsurface space is managed. Difficulties relating to data capture and sharing of information about subsurface features are well understood by some sectors and have been explored in previous research and industry reports, many of which are highlighted in this report. This study does not replicate past work, but rather reviews outcomes and explores the barriers to wider uptake of subsurface management systems within integrated city management. The long-term goal is to help increase the viability of land for development and de-risk future investment through better management of subsurface data. To help achieve this, our study aims to enable a means to discover and access relevant data about the ground’s physical condition and assets housed within it, in a way that is suitable for modern, data driven decision-making processes. The project considers both physical infrastructure i.e. underground utilities and natural ground conditions i.e. geological data and is divided into three different work packages: Work Package 1: Market research and analysis Work Package 2: Data operation systems and interoperability for a subsurface data platform Work Package 3: Identification of use cases for a subsurface data platform This report summarises the findings of work package 1 and identifies the following key findings and recommendations. There is substantial potential for commercialisation of data tools and data services using an integrated surface-subsurface data platform, which would support, for example, urban planning, redevelopment, infrastructure assessments and street works. Realising the full benefit of these opportunities relies on the sharing of data beyond statutory undertakers, albeit with suitable controls in place. Statutory undertakers do not necessarily have the national overview, capability or remit to develop an integrated platform. Stakeholders acknowledge that incomplete subsurface information means that land value is not being protected or worse, is being diminished and that organisations are incurring 6 indirect costs due to project delays and requirements for additional surveys. However, the direct costs of obtaining subsurface data and the indirect costs incurred because of incomplete access to subsurface data is largely unknown. Amendments to existing and introduction of new data standards (PAS 128 and PAS 256) make provision for more consistent and accurate data capture of buried utilities. Sharing of more accurate utility data will be facilitated and links to building information models and smart city standards will be more explicit. However, currently, storage of data and the integrity of data stores is not being addressed consistently at national level. There is a currently a lack of national standard that addresses commercial sensitivities and security risks concerning subsurface data sharing that can potentially guide “the right people getting access to the right and comprehensive set of data, at the right time without fear that parts of it have been redacted or manipulated” Investment in research and innovation to support the development of tools to identify the location of buried infrastructure has been successful and new systems are being brought to the market that will enable more accurate mapping of underground infrastructure. Precedents have been set for the sharing of underground utility data of national importance – exemplar projects, such as the VAULT and Greater Manchester Open Data Infrastructure Map (GMODIN), demonstrate successful collaboration across the utility sector to generate an integrated utility infrastructure map. Meanwhile adoption of AGS data formats by the ground investigation community has led to large-scale sharing of geotechnical data. National scale sharing of buried utility data has only been demonstrated in Scotland, largely driven by nationalised utilities. Upscaling of exemplar projects across the UK needs prioritising. The National Infrastructure Commission, Infrastructure Projects Authority and Digital Built Britain should take leadership of the development of an integrated data framework that combines surface and subsurface data. Future legislation and standards may be required to ensure the accurate and standardised capture and supply of buried infrastructure data. The benefits and business opportunities that may be delivered through an integrated data framework that embeds subsurface data are not sufficiently highlighted to stakeholders. Thus, the incentives and business drivers to collaborate on a subsurface data platform need to be better illustrated. Project Iceberg WP3 goes some way to addressing this but further work is needed

    A review of the internet of floods : near real-time detection of a flood event and its impact

    Get PDF
    Worldwide, flood events frequently have a dramatic impact on urban societies. Time is key during a flood event in order to evacuate vulnerable people at risk, minimize the socio-economic, ecologic and cultural impact of the event and restore a society from this hazard as quickly as possible. Therefore, detecting a flood in near real-time and assessing the risks relating to these flood events on the fly is of great importance. Therefore, there is a need to search for the optimal way to collect data in order to detect floods in real time. Internet of Things (IoT) is the ideal method to bring together data of sensing equipment or identifying tools with networking and processing capabilities, allow them to communicate with one another and with other devices and services over the Internet to accomplish the detection of floods in near real-time. The main objective of this paper is to report on the current state of research on the IoT in the domain of flood detection. Current trends in IoT are identified, and academic literature is examined. The integration of IoT would greatly enhance disaster management and, therefore, will be of greater importance into the future

    A Study of V2V Communication on VANET: Characteristic, Challenges and Research Trends

    Get PDF
    Vehicle to Vehicle (V2V) communication is a specific type of communication on Vehicular Ad Hoc Network (VANET)  that attracts the great interest of researchers, industries, and government attention in due to its essential application to improve safety driving purposes for the next generation of vehicles. Our paper is a systematic study of V2V communication in VANET that cover the particular research issue, and trends from the recent works of literature. We begin the article with a brief V2V communication concept and the V2V application to safety purposes and non-safety purposes; then, we analyze several problems of V2V communication for VANET related to safety issues and non-safety issues. Next, we provide the trends of the V2V communication application for VANET. Finally, provide SWOT analysis as a discussion to identify opportunities and challenges of V2V communication for VANET in the future. The paper does not include a technical explanation. Still, the article describes the general perspective of VANET to the reader, especially for the beginner reader, who intends to learn about the topic
    corecore