166 research outputs found

    Design Of A Single Phase Unity Power Factor Switch Mode Power Supply (SMPS) With Active Power Factor Correction [TK7881.15. N335 2008 f rb].

    Get PDF
    Pembekal kuasa mod pensuisan (SMPS) merupakan satu industri yang bernilai jutaan ringgit dan berkembang pesat dalam bidang elektronik kuasa. The Switch Mode Power Supplies (SMPS) are a multi-million dollar industry and continuesly growing industry within the field of power electronics

    Power factor correction without current sensor based on digital current rebuilding

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. F. J. Azcondo, Á. de Castro, V. M. López, Ó. García, "Power Factor Correction Without Current Sensor Based on Digital Current Rebuilding", IEEE Transactions on Power Electronics, vol. 25, no. 6, pp. 1527 - 1536, June 2010.A new digital control technique for power factor (PF) correction is presented. The main novelty of the method is that there is no current sensor. Instead, the input current is digitally rebuilt, using the estimated input current in the current loop. The circuit measures the input and output voltage by means of low cost ad hoc analog-to-digital converters (ADCs). Taking advantage of the slow dynamic behavior of these voltages, almost completely digital ADCs have been designed, leaving only a comparator and an RC filter in the analog part. Avoiding measuring current can provide a significant advantage compared to analog controllers and this also helps to reduce the total cost. The ultimate objective is to obtain a low-cost digital controller that can be easily integrated as an intellectual property (IP) block into a field-programmable gate array, or an application-specific integrated circuit. The experimental results show a reasonably high PF, despite not measuring the input current, and therefore the feasibility of the method.This work has been funded by the Spanish Government with the project TEC2008-01753 entitled: “Digital power processing for the control of gaseous discharges”

    PI Controller Based New Soft-Switching Boost Converter With A Coupled Inductor

    Get PDF
    Novel full bridge DC-DC boost converters is mainly used in research applications, where the output voltage is measurably higher than the source voltage. In this project designing of a new topology of a non isolated boost converter with zero voltage switching control technique is discussed. To achieve ZVS condition the auxiliary circuit has a coupled inductor and a diode. The advantages of the ZVS are reverse recovery problem of MOSFET anti parallel body diodes are resolved and also the voltage and current stress on the switch components are reduced. This topology has a light weight and cost less. This technique will reduce the switching losses and improve the efficiency by ZVS technique, but it does not improve the turn-off switching losses by a ZCS technique. In this topology have two operational conditions depending on the situation of the duty cycle. The detailed operating analysis of the proposed converter and the design method of the main circuit are presented. To improve the effectiveness and feasibility of the proposed boost converter PI controller is used. Here microcontroller is used in the proposed topology

    Current sensorless power factor correction based on digital current rebuilding

    Get PDF
    A new digital control technique for power factor correction is presented. The main novelty of the method is that there is no current sensor. Instead, the input current is digitally rebuilt, using the estimated input current for the current loop. Apart from that, the ADCs used for the acquisition of the input and output voltages have been designed ad-hoc. Taking advantage of the slow dynamic behavior of these voltages, almost completely digital ADCs have been designed, leaving only a comparator and an RC filter in the analog part. The final objective is obtaining a low cost digital controller which can be easily integrated in an ASIC along with the controller of paralleled and subsequent power section

    Design of discrete time controllers for DC-DC boost converter

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.DC-DC dönüştürücüler sahip oldukları yüksek verim, yüksek güç yoğunluğu, yüksek güç seviyeleri, düşük maliyet ve küçük fiziksel yapı özelliklerinden dolayı modern güç elektroniği sistemlerinde yaygın olarak kullanılmaktadırlar. Genel olarak alçaltıcı, yükseltici ve alçaltıcı/yükseltici tipinde olabilen dönüştürücüler çoklu çıkış gerilimine sahip olabilmektedirler. Yükseltici dönüşürücüler, giriş geriliminden daha yüksek bir çıkış gerilimi üreten bir tür anahtarlamalı-modlu dc-dc dönüştürücülerdir. Yükseltici tip DC-DC dönüştürücünün ortalama durum-uzay tekniğine dayalı küçük-sinyal modeli elde edilmiştir. Ayrık-zaman kontrolör iki ayı yöntem, frekans domeni ve durum-uzay yöntemleri, kullanılarak tasarlanmıştır. Kök-yer eğrisi yöntemi ile integral kontrolör tasarlanmıştır. Durum geribesleme kazanç matrisi hem kutup yerleştirme hem de doğrusal optimal kuadratik regülatör yaklaşımları kullanılarak tasarlanmıştır. Kontrolcülü yükseltici dönüştürücünün performansı MATLAB/SIMULINK ortamında yapılan similasyon çalışmaları ile incelenmiş ve doğrulanmıştır. Tasarlanan kontrolör türleri tasarım metodolojisi, uygulama problemleri ve performans açısından karşılaştırılmıştır. Tasarlanan kontrol yöntemlerinin birbirine yakın bir performansa sahip olduğu gözlemlenmiştir. Bu çalışmada, yükseltici tip DC-DC dönüştürücüler için sürekli-hal ve dinamik karakteristik açısından uygun bir performansa sahip kontrolör tasarımı amaçlanmıştır.DC-DC converters are extensively used in modern power electronics devices due to their high efficiency, high power density, high power levels, low cost, and small size. In general, they can be step-up, step-down or step-up/down converters and can have multiple output voltages. Boost converter, (also known as a step-up converter) is a type of switched-mode dc-dc converter which produces output voltage that is greater than input voltage. A small signal modeling based on state space averaging technique for DC-DC Boost converter is carried out. Discrete time controller is designed using two design techniques; frequency domain and state space methods. Root locus technique is used to design an integral controller. A state feedback gain matrix is designed by pole placement technique and Linear Quadratic Optimal Regulator (LQR) methods. The performance of the controlled boost converter are investigated and verified through MATLAB/SIMULINK simulation. Comparison between the designed controllers related to the design methodology, implementation issues and performance is carried out. It is seen that the designed controllers yielded comparable performances. In this study, it is aimed to design a controller for DC-DC boost converter to provide satisfactory performance in term of static, dynamic and steady-state characteristics

    Fast transient digitally controlled buck regulator with inductor current slew-rate boost

    Full text link

    Local control of multiple module converters with ratings-based load sharing

    Get PDF
    Multiple module dc-dc converters show promise in meeting the increasing demands on ef- ficiency and performance of energy conversion systems. In order to increase reliability, maintainability, and expandability, a modular approach in converter design is often desired. This thesis proposes local control of multiple module converters as an alternative to using a central controller or master controller. A power ratings-based load sharing scheme that allows for uniform and non-uniform sharing is introduced. Focus is given to an input series, output parallel (ISOP) configuration and modules with a push-pull topology. Sensorless current mode (SCM) control is digitally implemented on separate controllers for each of the modules. The benefits of interleaving the switching signals of the distributed modules is presented. Simulation and experimental results demonstrate stable, ratings-based sharing in an ISOP converter with a high conversion ratio for both uniform and non-uniform load sharing cases

    Analysis, Design and Implementation of a Resonant Solid State Transformer

    Get PDF
    This thesis discusses the design of a full-bridge resonant LLC Solid State Transformer. The proposed topology uses a high-frequency transformer which helps minimizing its cost and size, and enables operating at varying load conditions. By using a resonant circuit, soft switching is achieved. Commutation techniques are discussed, namely ZVS and ZCS. Both concepts are applied on different legs of the H-bridge. Pulse frequency modulation (PFM) and Phase Shifting Modulation (PSM) are utilized to control this resonant converter. One of the requirements of this work is to achieve a tightly regulated DC bus voltage. This was shown to be achieved using the proposed controller. An experimental setup was assembled and the controller was tested, the results match the simulation and calculation results. The SST setup was tested for two different power levels. The outputs confirm the validity of the controller in feeding the load and regulating the voltage within the desired switching frequency interval, while maintaining soft switching. A thermal analysis was conducted to calculate losses, and a conversion efficiency of 97.18% was achieved. Using a high frequency transformer, a reduction in size and cost is achieved as compared to conventional low frequency transformers that usually are large in size and require more material to be assembled (copper and iron). Design requirements and limitations, the proposed control scheme, modeling and implementation, and test results are provided in this thesis

    Dual Mode Inverter Control Test Verification

    Full text link

    Harmonic modelling and characterisation of modern power electronic devices in low voltage networks

    Get PDF
    Although the overall levels of harmonics in modern power supply systems are in most of the practical cases still below the prescribed tolerance limits and thresholds (e.g. these stipulated in [IEC 61000-3-2 and 61000-3-12]), the sources of harmonics are constantly increasing in numbers and are expected to increase even more in the future. Some of the examples of modern non-linear power electronic (PE) devices that are expected to be employed on a much wider scale in LV networks in the future include: light-emitting diode (LED) lamps, switched-mode power supplies (SMPS’), electric vehicle battery chargers (EVBCs) and photovoltaic inverters (PVIs), which are all analysed in this thesis. The thesis first reviews the conventional harmonic analysis methods, investigating their applicability to modern PE devices. After that, the two most widely used forms of harmonic models, i.e. component-based models (CBMs) and frequency-domain models (FDMs), are applied for modelling of the four abovementioned types of modern PE devices and their models are fully validated by measurements. The thesis next investigates the impact of supply voltage conditions and operating modes (e.g. low vs high operating powers) on the device characteristics and performance, using both measurements and developed CBMs and FDMs. The obtained results confirm that both supply conditions and operating modes have an impact on the characteristics of most of the considered PE devices, which is taken into account in the developed models and demonstrated on a number of case studies. As the next contribution, the thesis proposes new indices for the evaluation of current waveform distortions, allowing for a separate analysis of contributions of low and high frequency harmonics and interharmonics to the total waveform distortion of PE devices. As the modern PE devices are normally based on high-frequency switching converters or inverters, the impact of circuit topologies and control algorithms on their harmonic emission characteristics and performance is also investigated. Special attention is given to the operation of PE devices at low powers, when there is a significant increase of current waveform distortion, a substantial decrease of efficiency and power factors and when input ac current might lose its periodicity with the supply voltage frequency. This is analysed in detail for SMPS’, resulting in the proposal of a new methodology (“operating cycle based method”) for evaluating overall performance of PE devices across the entire range of operating powers. Finally, a novel and simple hybrid harmonic modelling technique, allowing for the use of both time-domain and frequency-domain models in the same simulation environment, is proposed and illustrated on the selected case studies. This is accompanied with a frequency-domain aggregation approach, which is applied in the thesis to investigate the impact of increasing numbers of different types of modern PE devices on the LV network. The implementation of the developed hybrid harmonic modelling approach and frequency-domain aggregation technique is demonstrated on the example of a typical (UK) urban generic LV distribution network and used for the analysis of different deployment levels of EVs and PVIs. The presented harmonic modelling framework for individual PE devices and, particularly, for their aggregate models, fills the gap in the existing literature on harmonic modelling and characterisation of modern PE devices, which is important for the correct evaluation of their harmonic interactions and analysis of the impact of their large-scale deployment on the overall network performance
    corecore