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REKABENTUK PEMBEKAL KUASA SATU FASA MOD PENSUISAN FAKTOR 

KUASA SATU DENGAN TEKNIK PEMBETULAN FAKTOR KUASA AKTIF  

 

ABSTRAK 

Pembekal kuasa mod pensuisan (SMPS) merupakan satu industri yang bernilai 

jutaan ringgit dan berkembang pesat dalam bidang elektronik kuasa. Aplikasi SMPS boleh

dilihat dalam bidang komunikasi, komputer dan di dalam industri. Isu utama yang hangat 

diperbincangkan dalam rekabentuk penukar kuasa berfrekuensi talian ialah cara untuk 

menggunakan kuasa sepenuhnya daripada grid. Pembekal kuasa dengan faktor kuasa satu 

menjadi isu penting dalam rekabentuk selari dengan tetapan antarabangsa yang terkini. 

Tetapan Eropah telah menghadkan kandungan harmonik dalam pembekal kuasa. Salah satu 

tetapan tersebut adalah IEC61000–3–2. Kelebihan faktor kuasa satu melebihi daripada

yang ditetapkan oleh tetapan antarabangsa termasuklah kecekapan yang tinggi, kadaran 

kuasa yang lebih besar dan kualiti kuasa yang baik memberikan kelebihan ekonomi kepada 

syarikat pembekal elektrik. Matlamat penulisan tesis ini adalah untuk menghasilkan sebuah

litar penerus satu fasa faktor kuasa satu. Tujuan membangunkan produk litar ini adalah

untuk membina sebuah litar pembekal kuasa beregulasi yang mampu membekalkan kuasa 

tanpa menghasilkan jumlah herotan arus yang tinggi.  Projek ini melibatkan proses 

merekabentuk penerus faktor kuasa satu 300W. Penukar beroperasi pada voltan masukan

240VAC dan voltan keluaran beregulasi 350VDC. Ini membolehkan penukar beroperasi 

terus daripada soket keluaran kediaman pengguna. Untuk menghasilkan voltan keluaran

pada nilai yang lebih rendah, sebuah penukar DC ke DC peringkat kedua telah dibina. Litar 

rekabentuk telah diuji pada parameter berbeza dan sesuai digunakan sebagai prototaip 

untuk pembekal kuasa. Rekabentuk boleh dikembangkan dan ditingkatkan dengan

melaksanakan pensuisan resonan bagi meningkatkan kecekapan keseluruhan. 
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DESIGN OF A SINGLE PHASE UNITY POWER FACTOR SWITCH MODE 

POWER SUPPLY (SMPS) WITH ACTIVE POWER FACTOR CORRECTION  

 

ABSTRACT 

The Switch Mode Power Supplies (SMPS) are a multi-million dollar industry and 

continuesly growing industry within the field of power electronics. SMPS is widely been 

used in communication, computers and industrial. One of the leading issues in

line-frequency operated power converter design is how to consume power from the grid 

but not to return it. The Unity Power Factor (UPF) SMPS has become an important design

issue as a consequence of recent legislation. European legislation restricts the harmonic 

content of power supplies. One of them is international standards known as

IEC61000–3–2. The advantages of UPF are more than legislative compliance. The 

advantages include greater efficiency, larger power density and improved power quality 

result in economical benefits to the electricity service provider. The goal of this thesis is to 

develop a unity power factor rectifier. The motivation in developing this product was to 

develop a regulated power supply capable of producing power with low level of harmonic

current distortion. This research involves the design of a 300W Unity Power Factor

Rectifier. The converter operates at an input voltage of 240VAC and regulated output at

350VDC. This allows the converter to operate directly from a residential mains outlet. To

obtain the output at low level voltage, a second-stage DC to DC converter is added. The 

prototypes were fully tested at different parameters to test its capabilities. The future work

to be completed on this project includes developing a computer power supply operated at

unity power factor which can be applied for domestic and industrial use. Future designs

could be enhanced by the implementation of a resonant switching stage in the second

stage converter to increase the overall efficiency. 
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CHAPTER 1 

 INTRODUCTION 

 

1.0 Background 

As the use of energy is increasing, the requirements for the quality of the 

supplied electrical energy are more tighten. This means that power electronic converters 

must be used to convert the input voltage to a precisely regulated DC voltage to the 

load. Regulated DC power supplies are needed for most analog and digital electronic 

system. Most power supplies are designed to meet regulated output, isolation and 

multiple outputs (Mohan, et al. 2005).  

 

Regulation means that the output voltage must be held constant within a 

specified tolerance for changes within a specified range in the input voltage and the 

output loading. Isolation is needed when the output may be required to be electrically 

isolated from the input. They may be multiple outputs that may differ in their voltage 

and current ratings. Such outputs may be isolated from each other. 

 

Beside these requirements, common goals are to reduce power supply size and 

weight and improve their efficiency. Traditionally, linear power supplies have been 

used. However, advances in semiconductor technology have lead to switching power 

supplies, which are smaller and much more efficient compared to linear power supplies. 

But the cost comparison between linear and switching power supplies depends on the 

power rating (Dixon, 1988). 
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The number of switched mode power supplies (SMPS) and other power 

electronics appliances are increasing. SMPS are needed to convert electrical energy 

from AC to DC. SMPS are used as a replacement of the linear power supplies when 

higher efficiency, smaller size or lighter weight is required. Motors, electronic power 

supplies and fluorescent lighting consume the majority of power in the world and each 

of these would benefit from power factor correction. In the middle of 1990s, many of 

the countries of the world have adopted requirements for power factor correction for 

new products marketed within their borders.  

 

As predicted by Electrical Power Research Institute in California, USA, more 

than 60 percent of utility power will be processed through some form of power 

electronics equipment by the year 2010. The added circuitry will add about 20-30 

percent to the cost of power supplies, but the energy savings will much more than the 

initial costs (Brown, 1994). Power factor correction (PFC) is becoming a very important 

field in power electronic world. Adding more generating capacity to the world’s 

electrical companies due to higher demand recently is very costly and would consume 

additional resources. One method of using extra power capacity is to use the AC power 

more efficiently through the broad use of power factor correction (Brown, 1994). 

 

Most of researches in power factor correction are based on reduction of 

harmonic contents in the line current. In passive PFC, only passive elements are used to 

repair the shape of input line current. Obviously, the output voltage cannot be 

controlled. In active PFC circuit, an active semiconductor device is used together with 

passive elements to shape the input current and also controlling the output voltage 

(Ross, 1997). 
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1.1 Problem Statements 

The term “power factor” or PF in the field of power supplies is slightly deviate 

from the traditional usage of the term, which applied to reactive AC loads, such as 

motors powered from the AC power line. Here, the current drawn by the motor would 

be displaced in phase with respect to the voltage. The resulting power being drawn 

would have a very large reactive component and little power is actually used for 

producing work. However, in power electronics field, some of that equipment generates 

pulsating currents to the utility grids with poor power quality at high harmonics 

contents that adversely affect other users (Mohan,et al. 2005). The situation has drawn 

the attention of regulatory bodies around the world. Governments are tightening the 

regulations and setting new specifications for low harmonic current. 

 

Since the number of electronic appliances is growing, an increasing amount       

of non-sinusoidal current is drawn from the distribution network                       

(Mohan, et al. 2005). Consequently, due to the increasing amount of harmonic currents 

drawn, the distribution network becomes more and more polluted. As a direct 

consequence, available power from the grid becomes less. This is because unnecessary 

current components, which contribute to the root mean square (RMS) value of the line 

current is drawn from the grid which produces unnecessary power. On the other hand, 

the harmonic currents distort the line voltage waveform, and may cause malfunction in 

sensitive electrical equipment connected to the grid. 
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In SMPS, the problem lies in the input rectification and filter network. The 

equipment connected to an electricity distribution network usually needs some kind of 

power conditioning, typically rectification (Dalal, 2005). AC to DC rectifiers usually 

interfaced with the mains. These devices convert the sinusoidal line voltage to a DC 

voltage. However, the rectification process produces a non-sinusoidal line current due 

to the nonlinear input characteristic. The most significant examples of nonlinear loads 

are reviewed in next chapter. It is a well-known fact that the input current of an SMPS 

tends to have a non-sinusoidal, distorted waveform. The distorted line current of a 

power converter is composed of the line frequency component and higher frequency 

harmonic components of the current. It should be noted that only the line frequency 

component of the current is carrying the power when voltage is sinusoidal                    

(Erickson, 2005). 

 

The current drawn by simple SMPS is non-sinusoidal and out-of-phase with the 

supply voltage waveform so the most common rectifier and SMPS designs have a very 

low power factor of below than 0.60, and their use in personal computers and compact 

fluorescent lamps presents a growing problem for power distribution. PFC circuits can 

reduce this problem and are required in some European countries by regulation. PFC is 

not yet widely required or used in North America and Asian countries. Linear power 

supply units also do not have unity power factors, but they do not have current 

waveform like SMPS does. 
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1.2 Research Objectives 

The Active Power Factor Correction (APFC) is a method to improve the power 

factor near to unity, reduces harmonics distortion noticeably and automatically corrects 

the distorted line current of an SMPS. It will replace the Passive Power Factor 

Correction (PPFC) which has become a conventional method for the past 20 years. This 

research aims to implement the Unity Power Factor (UPF) for single-phase rectifier 

which is used in designing the high-end SMPS by using APFC approach. For this 

purpose, a power electronic circuit is inserted between the bridge rectifier, the output 

filter capacitor and the load. This approach requires additional semiconductor switches 

and control electronics, but permits cheaper and smaller passive components 

 

The goals of this research are: 

• To simulate and analyze the typical power supplies. 

• To investigate the effects of harmonics and low power factor to the 

power system. 

• To simulate and analyze the methodology chosen for UPF. 

• To determine the best control mode for UPF. 

• To implement a single-phase UPF rectifier in designing the better SMPS. 

 

In this thesis, three types of converters are considered and they were designed in 

two stages converter. The first stage deals with a rectification process that is AC to DC 

conversion together with PFC Boost topology while the second stage deals with DC to 

DC conversion as Flyback topology was used. The preferable type of PFC is Active 

Power Factor Correction (APFC) since it provides more efficient power frequency. An 

active PFC uses a circuit to correct power factor and able to generate a theoretical 
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power factor near to unity. Active Power Factor Correction also markedly diminishes 

total harmonics, automatically corrects AC input voltage, and capable for a wide range 

of input voltage.  

 

1.3 Design Methodology 

The research was carried out in two stages via analysis and experimental. The 

analysis starts with a literature studies which are related to the thesis topic. A completed 

studies and investigations were carried out on the characteristic of nonlinear loads, 

voltage and current distortion, total harmonic distortion, power factor and active power. 

In the literature survey, various topologies have been evaluated which might be able to 

fulfill the design specifications. Based on the literature survey, two stages topology 

were selected for further evaluation. The first stage is the Boost converter and the 

second stage is the Flyback converter. After a comparison of various topologies, this 

Boost-Flyback topology benefits in terms of their current waveform, cost and device 

rating, power rating and maximum power factor achievable.  

 

To obtain unity power factor, all the odd harmonics in the input current should 

be eliminated as well as not producing any displacement angle between input voltage, 

Vin and input current, Iin meaning that the value of distortion factor and displacement 

power factor is equal to unity. To generate odd current harmonics represents the 

characteristic of a nonlinear loads, a single-phase full-bridge rectifier containing diodes 

was used during the experiment. A computer power supply was also used as one of the 

sample for nonlinear loads. 
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In measuring power factor, harmonics in term of Total Harmonic Distortion 

(THD) and power ratings of different nonlinear loads, Fluke 43B Power Quality 

Analyzer was used. After collecting the data and identifying the problems associated 

with SMPS, an active PFC circuit has been designed in order to achieve unity power 

factor. A second stage converter is then designed to provide voltage regulation at the 

output. Finally the results were recorded and some evaluations were made.  

 

The design and analysis of the above-mentioned circuit is based on a             

pre-regulator circuit required for SMPS application. Most of computer SMPS now do 

not have an input pre-conditioner section which makes the SMPS meet the minimum 

requirements of power factor and total harmonic distortion. By designing a two-stage 

converter, the computer SMPS would have near unity power factor and regulated DC 

output voltage. Figure 1.1 shows the flow chart on how the research is organized. 
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1.4 Thesis Outline 

 In chapter 1, the primary focus of this research was to review, analyze and 

understand the problems associated with off line single-phase rectifier and SMPS. 

Then, the objectives and methodology were declared including a brief review on APFC 

approach which provides better characteristics in terms of power factor, input current 

and voltage regulation. 

 

Chapter 2 covers a literature survey of this thesis. The main topics discussed 

here are SMPS history, a rectification process and harmonics generated by SMPS. This 

chapter also describes solutions taken by power designers to improve the SMPS power 

factor. Finally it comes out with the active PFC which is chosen to obtain unity power 

factor rectifier. 

 

Chapter 3 covers the theoretical of harmonic and lists various types of non-

linear loads. Afterwards, it focuses on the effect of harmonic on power system and its 

standard. It then lists all the classes defined by the standard. It also reviews the basic 

definition of power factor correction, displacement power factor, distortion power 

factor and the relationship between them. 

 

Chapter 4 covers some theories of SMPS, the principle of PFC design, the 

APFC methodology, the double-stage design, and the control strategies to achieve unity 

power factor. This section also presents the power stage design as well as the controller 

design. 
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Chapter 5 presents the simulation results using PESIM, the experimental results 

including tables, graphs and waveforms. At the end of the chapter, details results, 

analysis and discussions are presented. 

 

Chapter 6 finally closes the thesis by the conclusions. Several suggestions are 

also included in this chapter. 
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CHAPTER 2 

 LITERATURE REVIEW 

2.0  Introduction 

The summary of results on previous research related to PFC techniques and 

input power factor corrected single-phase rectifier systems are introduced in this 

chapter. Numerous single-phase PFC topologies are classified and various PFC circuits 

for single-phase rectifiers are reviewed. The study of PFC topologies is limited to 

single-phase systems since most SMPS are powered by a single-phase utility source. 

 

2.1  Typical Power Supply History 

In most power electronic applications, the power input from utility is a 50Hz 

sine wave AC voltage. It is then converted to a DC voltage by using rectifiers. The 

inexpensive way to convert AC to DC in an uncontrolled manner is by using rectifier 

with diodes, as shown in Figure 2.1.  

 

 

(a) Bridge rectifier  (b) Inputs and Output waveforms 

Figure 2.1: A diode bridge rectifier and waveforms. 
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The DC output contains high voltage ripple that is not suitable to supply a 

constant DC voltage. In most applications, the rectifiers are supplied directly from the 

utility source without a 50Hz transformer. The avoidance of this costly and bulky 50Hz 

transformer is important in most modern power electronic systems                       

(Mohan, et al. 2005).   

  

It should be noted in the circuit of Figure 2.1(a) that if a pure resistive is 

connected as load, the input current follows the waveform of input voltage. The voltage 

and current waveforms are shown in Figure 2.1(b). The circuit will have power factor 

equals to unity but a large output voltage ripple. This circuit models power factor 

corrected rectifier and will be discussed later. 

 

The conventional input stage of an off-line rectifier design associated with its 

waveforms is shown in Figure 2.2.  

 

 

(a) Off-line rectifier      (b) Inputs and Output waveforms 

Figure 2.2: A typical power supply with filter capacitor and waveforms. 
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It is comprised of a full-bridge rectifier followed by a large-input-filter 

capacitor. This input-filter capacitor reduces the ripple on the voltage waveforms into 

the DC converter stage. The problem with this input circuit is that it produces excessive 

peak input currents and high harmonic distortion on the line. The high distortion in the 

input current occurs due to the fact that the diode rectifiers only conduct during a short 

interval. This interval corresponds to the time when the mains instantaneous voltage is 

greater than the capacitor voltage. Since the capacitor must meet hold-up time 

requirements, its time constant is much greater than the frequency of the mains               

(Dalal, 2005).  

 

The DC output voltage of rectifier should be as ripple free as possible. 

Therefore, a large capacitor is connected as a filter on the DC side. The capacitor will 

be charged during the peak of the AC input voltage and this will result in high peak 

input current. This rectifier draws highly distorted current from the utility. Because of 

harmonic standards set by USA and European countries, guidelines will limit the 

amount of current distortion allowed into the utility. Therefore the simple diode bridge 

rectifiers may not be allowed (Tse, 1998).  

 

The mains instantaneous voltage is greater than the capacitor voltage only for 

very short periods of time, during which, the capacitor must be charged fully. 

Therefore, large pulses of current are drawn from the line over a very short period of 

time, as shown in Figure 2.2 (b). This is true for all rectified AC sinusoidal signals with 

capacitive filtering. Twice per cycle every single-phase rectifier draws a pulse of 

current to recharge its capacitor to the peak value of the supply voltage. Between 

voltage peaks the capacitor discharges to support the load and the rectifier does not 
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draw current from the utility. Therefore, the generation of harmonic currents due to the 

behavior of single-phase rectifiers, distorted currents are normally drawn from the input 

line resulting in low power factor, low distortion factor and high total harmonic 

distortion.  

 

They draw high amplitude current pulses, the fundamental current of the line 

current is essentially in phase with the voltage, and the displacement factor is close to 

the unity. However, the low-order current harmonics are quite large, close to that of the 

fundamental. From the line current spectrum we can see that the waveform contains a 

lowered fundamental frequency component plus 3rd, 5th, 7th, 9th and higher of current 

harmonics (Lopez, et al. 2001). A typical power supply current spectrums are shown in 

Figure 2.3.  

 

 

Figure 2.3: Typical input line current spectrum of single-phase  

   power supply (Lopez, et al. 2001) 
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 The addition of harmonic currents to the fundamental component increases the 

total RMS current. Because they affect the RMS value of the current, harmonics will 

affect the power factor of the circuit. A diode bridge rectifier with filtering capacitor is 

considered here as a non-linear load. The power factor for this circuit varies from 0.40 

to 0.60 depending on the capacitance value (Wei, 2000). For a typical single-phase 

power supply shown above, it has 136% total current harmonic distortion, 59% 

distortion factor, unity displacement power factor and 0.59 true power factor. 

 

2.2 Power Factor Correction (PFC) 

Due to the large harmonic content as indicated in Table 2.1, typical single-phase 

bridge rectifiers used for interfacing power electronic equipment with utility system 

may exceed the limits on the individual current harmonics and THD (Total Harmonic 

Distortion) specified by international standards. In view of low power factor drawbacks, 

some of alternatives for improving the input current waveforms are discussed along 

with their advantages and disadvantages. The technique used to improve the value of 

power factor is called Power Factor Correction (PFC) (Lopez, 2001). The classification 

of single-phase PFC topologies for diode bridge rectifier is shown in Figure 2.4. 
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Figure 2.4: Classification of single-phase input PFC topologies for  

diode bridge rectifier (Lee, 1999). 

 

PFC shaped the distorted input current waveform to approximate a sinusoidal 

current that is in phase with the input voltage. There are several effective techniques for 

getting a sinusoidal input current waveform with low distortion. The objective of PFC is 

to make the input to a power supply looks like a simple resistor (Wei, 2000). Two 

typical techniques for PFC can be divided into Passive Power Factor Correction (PPFC) 

and Active Power Factor Correction (APFC). In this thesis, both the correction 

techniques are discussed for a single-phase circuitry. 
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Regardless of the particular converter topology that is used, the output voltage 

carries a ripple at twice the line-frequency (Eissa, 1996). This is because in a        

single-phase system the available instantaneous power varies from zero to a maximum, 

due to the sinusoidal variation of the line voltage. On the other hand, the load power is 

assumed to be constant. Every single-phase PFC converter requires energy-storage 

(bulk) capacitor to handle difference between instantaneous input power and average 

output power. 

 

There are several approaches that have been taken by power designers to 

improve the value of power factor when they are designing SMPS. Most of them make 

used of PPFC as a solution to improve the waveform of line current in order to reduce 

the harmonic contents generated by SMPS. These approaches can be described as 

follows. 

 

2.2.1 Passive PFC  

The most common type of PFC is passive PFC. PPFC methods use additional 

passive components (capacitor or inductor) in conjunction with the diode bridge 

rectifier to correct poor power factor. A PPFC is more reliable than an APFC because 

no active devices are utilized. Because it operates at line frequency of 50Hz, PPFC 

requires relatively large fixed value inductors and capacitors to reduce the low 

frequency harmonic currents (Shimizu, 1997). 

 

PPFC includes passive filters which can broadly be classified into series filters, 

shunt filters and a hybrid combination of the two. Series filters introduce impedances in 

series with the utility to reduce harmonic currents. Shunt filters provide a low 
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impedance path for the harmonic currents generated by the rectifiers so that they are not 

reflected in the current drawn from the utility. 

 

These filters use resonant pass or resonant trap circuits sensitive to both 

frequency and load. It is difficult to achieve unity power factor with PPFC. Also, very 

large currents may circulate in the filter. However, the passive is an effective PFC 

solution in cases where the line frequency, line voltage and load are relatively constant. 

The various types of PPFC and the waveforms of input voltage and input current are 

discussed below and their associated waveforms are taken from the simulation results. 

 

2.2.1.1   Rectifier with AC-side Inductor 

The simplest methods is by adding an inductor at the AC-side of the diode 

bridge, in series with the line voltage as shown in Figure 2.5, thus to create circuit 

conditions such that the line current is zero during the zero-crossings of the line voltage 

(Skvarenina, 2001).  

 

(a) AC-side inductor rectifier                (b) Inputs waveforms 

Figure 2.5: Rectifier with AC-side inductor and waveforms. 
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The advantages of this circuit are simplicity, low cost and improved shape of 

line current. However, the maximum power factor that can be obtained is �0.76 as 

recorded during simulation. It can only improve harmonic current distortion to 30% to 

40% at best. The output voltage cannot be controlled and it only slightly reduces small 

phase displacement of fundamental component. 

 

2.2.1.2     Rectifier with DC-side Inductor 

The inductor can be also placed at the DC-side, as shown in Figure 2.6. The 

inductor current is continuous for a large enough inductance Ld. In the theoretical case 

of near infinite inductance, the inductor current is constant, so the input current of the 

rectifier has a square shape (Dewan, 1981).  

 

 

 
(a) DC-side inductor rectifier          (b) Inputs waveforms 

Figure 2.6: Rectifier with DC-side inductor and waveforms. 

 

The advantage of this circuit is the shape of line current is improved. However, 

the maximum power factor that can be obtained is �0.85. Operation close to this 

condition would require a very large and impractical inductor. For lower inductance Ld, 

the inductor current becomes discontinuous. 



20 

2.2.1.3      Rectifier with Parallel-resonant Band-stop Filter (BSF) 

The shape of the line current can be further improved by using a combination of 

low-pass input and output filters (Mohan, et al. 2005). There are also several solutions 

based on resonant networks which are used to attenuate harmonics. For example, a 

band-stop filter of the parallel resonant type as shown in Figure 2.7, tuned at the line-

frequency, is introduced in-between the AC source and the load. 

 

 

(a) Parallel BSF rectifier                (b) Inputs waveforms 

Figure 2.7: Rectifier with parallel-resonant BSF and waveforms. 

 

The advantages of this circuit are lower value of capacitance element used and 

improve better the shape of line current. However, the maximum power factor that can 

be obtained is �0.90. This circuit requires a heavy and bulky inductor and must handle 

the rated full load current. This circuit can only supply nonlinear loads. 
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2.2.1.4  Rectifier with Harmonic Trap Filter 

Another possibility is to use a harmonic trap filter. The harmonic trap consists of 

a series resonant network, connected in parallel to the AC source and tuned at a 

harmonic that must be attenuated (Erickson, 2005). For example, the filter shown in 

Figure 2.8 has two harmonic traps, which are tuned at the 3rd and 5th harmonic 

respectively. 

 

 

     (a) Harmonic trap filter rectifier                  (b) Inputs waveforms 

Figure 2.8: Rectifier with harmonic trap filter and waveforms 

 

Some of the advantages of this circuit are no high frequency losses, provides 

low impedance to tuned frequency and greatly improves the shape of line current. 

However, the maximum power factor that can be obtained is �0.95. It only filters a 

single (tuned) harmonic frequency. Therefore, multiple filters are required to satisfy 

typical desired harmonic limits. This resonant circuit is very sensitive to line frequency 

and it can import harmonics from other nonlinear loads. The voltage regulation is also 

low. 
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From the survey result as well as simulation results over various types of PPFC 

circuits, it was found that PPFC have certain advantages, such as simplicity, reliability 

and ruggedness, insensitive to noise and surges, no generation of high-frequency 

Electromagnetic Interference (EMI) and no high frequency switching losses. On the 

other hand, they also have several drawbacks. Solutions based on filters are heavy and 

bulky, because line-frequency reactive components are used.  

 

They also have poor dynamic response, lack voltage regulation and the shape of 

their input current depends on the load. Even though line current harmonics are 

reduced, the fundamental component may show an excessive phase shift that reduces 

the power factor. Moreover, circuits based on resonant networks are sensitive to the 

line-frequency. In harmonic trap filters, series-resonance is used to attenuate a specific 

harmonic. However, parallel-resonance at different frequencies occurs too, which can 

amplify other harmonics (Erickson, 2005). Better characteristics are obtained with 

APFC circuits, which are reviewed in the following section. 

 

2.2.2 Active PFC  

An active power factor correction (APFC) performs much better and is 

significantly smaller and lighter than the PPFC circuits. An APFC refers to the use of a 

power electronic converter, switching at higher frequency than line frequency, to shape 

the input current to be sinusoidal and in-phase with the input utility voltage                    

(Tse, 1998). Using APFC techniques, it is possible to achieve a power factor near unity 

and current THD less than 5%.  
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Despite of active wave shaping, APFC includes feedback sensing of the source 

current for waveform control and feedback control to regulate the output voltage even 

when the input voltage varies over a wide range (Dixon, 1988). Compared with passive 

solutions, they are less bulky and can easily meet the standards of harmonic distortion. 

Figure 2.9 shows the block diagram of an APFC circuit. 

 

 

Figure 2.9: Block diagram of a rectifier with APFC.  

 

For single phase PFC, a DC-DC converter is placed in between the input voltage 

and the load. In principle, any DC-DC converter can be used for this purpose, if a 

suitable control method is used to shape its input current or if it has inherent PFC 

properties. For this reason, the basic Buck, Boost and Buck-Boost converters were 

considered and analyzed. These converters may operate in Continuous Conduction 

Mode (CCM), where the inductor current never reaches zero during one switching cycle 

or Discontinuous Conduction Mode (DCM), where the inductor current is zero during 

intervals of the switching cycle.  

 

The result is a large current ripple in DCM and a smaller current ripple in CCM. 

The choice of CCM or DCM depends on which SMPS is used and the necessary current 

and power rating required. DCM is often implemented in low power design where the 

current ripple is lower. CCM is often preferred at high power levels. However, the 

thesis will not discuss in detail about the current conduction mode, it focuses more on 
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the specific topology to be used in PFC design. The DC to DC converters topologies 

with their input waveforms are shown in the following figures. 

 

2.2.2.1 Buck Converter 

The Buck converter has a lower output voltage than input voltage, and it has 

pulsating input current generating high harmonics into the power line. This circuit is not 

practical for low-line input because it does not draw the input current when input 

voltage is lower than the output voltage. The line current of a PFC based on a Buck 

converter has distortions and the input current of the converter is discontinuous as in 

Figure 2.10. Therefore, it has relatively low power factor.  

 

      (a) Buck converter    (b) Inputs waveforms 

Figure 2.10: Buck converter and waveforms. 

 

2.2.2.2 Boost Converter 

The Boost converter is shown in Figure 2.11, it has step-up conversion ratio. 

Therefore the output voltage is always higher than the input voltage. The converter will 

operate throughout the entire line cycle, so the input current does not have distortions 

and continuous as shown above. It has a smooth input current because an inductor is 

connected in series with the power source (Erickson, 2005). In addition, the switch is 

source-grounded, therefore it is easy to drive. This topology is a universal solution for 

off-line power supplies and SMPS applications. 
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