2,370 research outputs found

    Review and analysis of fire and explosion accidents in maritime transportation

    Get PDF
    The globally expanding shipping industry has several hazards such as collision, capsizing, foundering, grounding, stranding, fire, and explosion. Accidents are often caused by more than one contributing factor through complex interaction. It is crucial to identify root causes and their interactions to prevent and understand such accidents. This study presents a detailed review and analysis of fire and explosion accidents that occurred in the maritimetransportation industry during 1990–2015. The underlying causes of fire and explosion accidents are identified and analysed. This study also reviewed potential preventative measures to prevent such accidents. Additionally, this study compares properties of alternative fuels and analyses their effectiveness in mitigating fire and explosionhazards. It is observed that Cryogenic Natural Gas (CrNG), Liquefied Natural Gas (LNG) and methanol have properties more suitable than traditional fuels in mitigating fire risk and appropriate management of their hazards could make them a safer option to traditional fuels. However, for commercial use at this stage, there exist several uncertainties due to inadequate studies, and technological immaturity. This study provides an insight into fire and explosion accident causation and prevention, including the prospect of using alternative fuels for mitigating fire and explosion risks in maritime transportation

    Safety and CO2 emissions: Implications of using organic fluids in a ship’s waste heat recovery system

    Get PDF
    Current Marine Policies and regulations greatly favour the use of efficiency enhancing technologies such as the Organic Rankine Cycle (ORC) waste heat recovery systems (WHRS), through the entry into force of International Maritime Organisation (IMO) Energy Efficiency Design Index (EEDI). However, safety regulations such as IMO Safety Of Life At Sea (SOLAS), International Gas Code and Classification Societies still consider the use of highly flammable organic fluids on board ships as hazardous and undesirable, requiring special Administration approval. The benefits of organic fluids in emerging technologies will likely increase their usefulness on board in the near future. Furthermore, current ship safety systems and integrated platform management systems greatly reduce the risks associated with their low flash point making them acceptable for marine use given specific design considerations. This paper studies the case of an Aframax tanker navigating the route North Sea – Naantali, Finland using a slow speed diesel engine. A code with a multi-objective optimization approach generated explicitly for this purpose produces different optimal WHRS designs for the vessel’s operating profile. The WHRS is installed after the turbo compressors in the exhaust gas system, where it absorbs part of the available waste heat and converts it to electricity using a generator. This results in a reduction in fuel consumption, hence decreasing the emission of greenhouse gases. The different optimal designs are compared with a steam WHRS to show the strengths and weaknesses of using an ORC WHRS on board. The ORC technology is at its early stages of development in the marine field, it is important that safety policies follow the evolution of the technology and its associated safety equipment. This paper will serve to recognize the specific safety considerations associated with the ORC and highlight the advantages of carrying organic fluids on board as a solution to increasing CO2 emission restrictions and other environmental concerns

    The economic appraisal and prospect study on LNG-powered vessels

    Get PDF

    Optimisation des opérations du système auxiliaire électrique d’un vraquier de taille "handysize"

    Get PDF
    L’industrie maritime transporte 80% des marchandises mondiales. De plus, c’est le mode de transportation le plus efficace en termes d’émission de dioxyde de carbone (CO2) par tonne- kilomètre de cargaison transportée. Cependant, cette recherche montre qu’un vraquier de taille handysize émet au minimum l’équivalent de 650 voitures légères par jour par navire. En effet, les navires marchands ont besoin d’électricité pour faire fonctionner leurs machineries lourdes comme les grues de pont. L’électricité est aussi nécessaire pour les essentielles et les services généraux comme l’éclairage, les cuisines, les ordinateurs de bord, les électroménagers, etc. Cette consommation d’énergie peut être comparée à celle d’une petite ville. Historiquement, l’électricité a toujours été générée par des génératrices au diesel sur des navires marchands. Cependant, il serait plus efficace et environnemental de connecter le navire au réseau électrique disponible sur terre. Ce processus s’appelle l’alimentation à quai. Plusieurs techniques existent pour réaliser cette connexion, mais elles sont souvent très dispendieuses et comportent de nombreux défis. Ce document présente une revue étendue de littérature sur la décarbonation de l’industrie maritime et propose l’alimentation à quai comme la prochaine étape vers une industrie maritime verte. Une analyse forces, faiblesses, opportunités et menaces (FFOM) de l’alimentation à quai est discutée. Une étude de l’impact de l’alimentation à quai sur un vraquier sec montre que l’indicateur d’intensité de carbone (IIC) de l’Organisation Maritime International (OMI) peut être réduit de 7,8%. Ensuite, une étude multi objectif a permis d’identifier les meilleures solutions pour éliminer les émissions des navires au port. L’étude de cas fondé sur des vrais profile de consommation d’énergie a révélé qu’une connexion basse tension combinée à une petite batterie de 60 kWh peut éliminer les émissions du navire au port. Cette solution réduirait les émissions de 5,5 tonnes de CO2 par jour par bateau pour un investissement initial de 323 k.Lesysteˋmedegestiondesca^blespourraitaussie^treinstalleˊaˋquaipluto^tquesurlenavirediminuantainsilesfraispourlesarmateursdemoitieˊ.Uneanalysetechnicoeˊconomiquemontrequeleprojetauraitunretoursurlinvestissementde15anspouvante^trereˊduitaˋ6anssileprojeteˊtaitsubventionneˊaˋ50Finalement,lepotentieldelalimentationaˋquaipourreˊduiredeseˊmissionsdegazaˋeffetdeserre(GES)surlaroutecommercialeduSaintLaurentetdesGrandsLacsestimportant.Deplus,lesbeˊneˊficesdelalimentationaˋquaisontlargementaugmenteˊsgra^ceaucou^tabordabledeleˊlectriciteˊauQueˊbec.Alorsquelefuturdeladeˊcarbonationdelindustriemaritimenestpasencoredeˊfinie,lalimentationaˋquaiestunemesurequipeute^treimpleˊmenteˊedeˋsmaintenantetquipeutaˋcoupsu^rdiminuerleseˊmissionsdeCO2delamarinemarchande.Abstract:Theshippingindustrycarries80. Le système de gestion des câbles pourrait aussi être installé à quai plutôt que sur le navire diminuant ainsi les frais pour les armateurs de moitié. Une analyse technico-économique montre que le projet aurait un retour sur l’investissement de 15 ans pouvant être réduit à 6 ans si le projet était subventionné à 50%. Finalement, le potentiel de l’alimentation à quai pour réduire des émissions de gaz à effet de serre (GES) sur la route commerciale du Saint-Laurent et des Grands Lacs est important. De plus, les bénéfices de l’alimentation à quai sont largement augmentés grâce au coût abordable de l’électricité au Québec. Alors que le futur de la décarbonation de l’industrie maritime n’est pas encore définie, l’alimentation à quai est une mesure qui peut être implémentée dès maintenant et qui peut à coup sûr diminuer les émissions de CO2 de la marine marchande.Abstract: The shipping industry carries 80% of worldwide commerce. Furthermore, it is the most efficient means of transportation in terms of emissions of carbon dioxide (CO2) per ton-kilometer of transported cargo. However, this research shows that a handysize dry bulk carrier emits at least the equivalent of 650 light cars per day per ships. Indeed, ships need electricity to keep heavy equipment working like their deck cranes. They also need it for essential and crew services such as lighting, cooking, computers, laundry, etc. This energy consumption can be compared to the one of small cities. Historically, the electricity of such a ship always had been generated by the on-board diesel generators (DG). Yet, a more efficient and environmentally friendly way to supply electricity to the ship would be to connect the ship to the onshore electrical network. This process is referred to as shore power, cold ironing (CI), alternative marine power (AMP), onshore power supply (OPS) or shore-to-ship (SSP). Many ways exist to perform this connection; however, they can be extremely expensive and include many challenges. This document presents an extensive literature review of shipping decarbonization and proposes shore power as the next step toward green shipping. The strengths, weakness, opportunities, and threats (SWOT) analysis of shore power in discussed and a policy impact study of shore power on a dry bulk carrier showed that the carbon intensity index (CII) of the International Maritime Organization (IMO) could be reduced of 7.8% with shore power. Then, a multi-objective approach permitted to find the best solution to eliminate the emissions from the ship in port. The test case with real load profiles revealed that a low voltage connection combined with a small battery of 60 kWh can eliminate emissions from the ship in port. This solution reduces the carbon emissions of 5.5 tons of CO2 per day per ship for a capital expenditure (CAPEX) of 323 k. If the cable management system was installed on shore instead of on the ship, the CAPEX could be reduced by half for shipowners. A technical-economic study estimated a payback period of 15 years that could be reduced to 6 years if the project was subsidized at 50%. Finally, the potential of shore power to reduce greenhouse gas (GHG) emission in the St. Lawrence River and Great Lakes maritime route is massive and the affordable electricity price in Quebec further increases the benefits of shore power. While the future of maritime decarbonization is unclear, shore power is a measure that can be implemented by now and in which the benefits it can achieve in terms of emission reductions are guaranteed for maritime transportation

    Ship Lifecycle

    Get PDF
    In an effort to contribute to global efforts by addressing the marine pollution from various emission types, this Special Issue of Ship Lifecyle for Journal of Marine Science and Engineering was inspired to provide a comprehensive insight for naval architects, marine engineers, designers, shipyards, and ship-owners who strive to find optimal ways to survive in competitive markets by improving cycle time and the capacity to reduce design, production, and operation costs while pursuing zero emission. In this context, this Special Issue is devoted to providing insights into the latest research and technical developments on ship systems and operation with a life cycle point of view. The goal of this Special Issue is to bring together researchers from the whole marine and maritime community into a common forum to share cutting-edge research on cleaner shipping. It is strongly believed that such a joint effort will contribute to enhancing the sustainability of the marine and maritime activities. This Special Issue features six novel publications dedicated to this endeavor. First of all, as a proactive response to transitioning to cleaner marine fuel sources, numerous aspects of the excellence of fuel-cell based hybrid ships were demonstrated through four publications. In addition, two publications demonstrated the effectiveness of life cycle assessment (LCA) applicable to marine vessels

    Study of ship air pollution control in Caofeidian Port

    Get PDF

    Optimization-Based Energy Management for Multi-energy Maritime Grids

    Get PDF
    This open access book discusses the energy management for the multi-energy maritime grid, which is the local energy network installed in harbors, ports, ships, ferries, or vessels. The grid consists of generation, storage, and critical loads. It operates either in grid-connected or in islanding modes, under the constraints of both power system and transportation system. With full electrification, the future maritime grids, such as all-electric ships and seaport microgrids, will become “maritime multi-energy system” with the involvement of multiple energy, i.e., electrical power, fossil fuel, and heating/cooling power. With various practical cases, this book provides a cross-disciplinary view of the green and sustainable shipping via the energy management of maritime grids. In this book, the concepts and definitions of the multi-energy maritime grids are given after a comprehensive literature survey, and then the global and regional energy efficiency policies for the maritime transportation are illustrated. After that, it presents energy management methods under different scenarios for all-electric ships and electrified ports. At last, the future research roadmap are overviewed. The book is intended for graduate students, researchers, and professionals who are interested in the energy management of maritime transportation
    corecore