1,575 research outputs found

    When Deep Learning Meets Polyhedral Theory: A Survey

    Full text link
    In the past decade, deep learning became the prevalent methodology for predictive modeling thanks to the remarkable accuracy of deep neural networks in tasks such as computer vision and natural language processing. Meanwhile, the structure of neural networks converged back to simpler representations based on piecewise constant and piecewise linear functions such as the Rectified Linear Unit (ReLU), which became the most commonly used type of activation function in neural networks. That made certain types of network structure \unicode{x2014}such as the typical fully-connected feedforward neural network\unicode{x2014} amenable to analysis through polyhedral theory and to the application of methodologies such as Linear Programming (LP) and Mixed-Integer Linear Programming (MILP) for a variety of purposes. In this paper, we survey the main topics emerging from this fast-paced area of work, which bring a fresh perspective to understanding neural networks in more detail as well as to applying linear optimization techniques to train, verify, and reduce the size of such networks

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Mathematical Problems in Rock Mechanics and Rock Engineering

    Get PDF
    With increasing requirements for energy, resources and space, rock engineering projects are being constructed more often and are operated in large-scale environments with complex geology. Meanwhile, rock failures and rock instabilities occur more frequently, and severely threaten the safety and stability of rock engineering projects. It is well-recognized that rock has multi-scale structures and involves multi-scale fracture processes. Meanwhile, rocks are commonly subjected simultaneously to complex static stress and strong dynamic disturbance, providing a hotbed for the occurrence of rock failures. In addition, there are many multi-physics coupling processes in a rock mass. It is still difficult to understand these rock mechanics and characterize rock behavior during complex stress conditions, multi-physics processes, and multi-scale changes. Therefore, our understanding of rock mechanics and the prevention and control of failure and instability in rock engineering needs to be furthered. The primary aim of this Special Issue “Mathematical Problems in Rock Mechanics and Rock Engineering” is to bring together original research discussing innovative efforts regarding in situ observations, laboratory experiments and theoretical, numerical, and big-data-based methods to overcome the mathematical problems related to rock mechanics and rock engineering. It includes 12 manuscripts that illustrate the valuable efforts for addressing mathematical problems in rock mechanics and rock engineering

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Tradition and Innovation in Construction Project Management

    Get PDF
    This book is a reprint of the Special Issue 'Tradition and Innovation in Construction Project Management' that was published in the journal Buildings

    Contributions to improve the technologies supporting unmanned aircraft operations

    Get PDF
    Mención Internacional en el título de doctorUnmanned Aerial Vehicles (UAVs), in their smaller versions known as drones, are becoming increasingly important in today's societies. The systems that make them up present a multitude of challenges, of which error can be considered the common denominator. The perception of the environment is measured by sensors that have errors, the models that interpret the information and/or define behaviors are approximations of the world and therefore also have errors. Explaining error allows extending the limits of deterministic models to address real-world problems. The performance of the technologies embedded in drones depends on our ability to understand, model, and control the error of the systems that integrate them, as well as new technologies that may emerge. Flight controllers integrate various subsystems that are generally dependent on other systems. One example is the guidance systems. These systems provide the engine's propulsion controller with the necessary information to accomplish a desired mission. For this purpose, the flight controller is made up of a control law for the guidance system that reacts to the information perceived by the perception and navigation systems. The error of any of the subsystems propagates through the ecosystem of the controller, so the study of each of them is essential. On the other hand, among the strategies for error control are state-space estimators, where the Kalman filter has been a great ally of engineers since its appearance in the 1960s. Kalman filters are at the heart of information fusion systems, minimizing the error covariance of the system and allowing the measured states to be filtered and estimated in the absence of observations. State Space Models (SSM) are developed based on a set of hypotheses for modeling the world. Among the assumptions are that the models of the world must be linear, Markovian, and that the error of their models must be Gaussian. In general, systems are not linear, so linearization are performed on models that are already approximations of the world. In other cases, the noise to be controlled is not Gaussian, but it is approximated to that distribution in order to be able to deal with it. On the other hand, many systems are not Markovian, i.e., their states do not depend only on the previous state, but there are other dependencies that state space models cannot handle. This thesis deals a collection of studies in which error is formulated and reduced. First, the error in a computer vision-based precision landing system is studied, then estimation and filtering problems from the deep learning approach are addressed. Finally, classification concepts with deep learning over trajectories are studied. The first case of the collection xviiistudies the consequences of error propagation in a machine vision-based precision landing system. This paper proposes a set of strategies to reduce the impact on the guidance system, and ultimately reduce the error. The next two studies approach the estimation and filtering problem from the deep learning approach, where error is a function to be minimized by learning. The last case of the collection deals with a trajectory classification problem with real data. This work completes the two main fields in deep learning, regression and classification, where the error is considered as a probability function of class membership.Los vehículos aéreos no tripulados (UAV) en sus versiones de pequeño tamaño conocidos como drones, van tomando protagonismo en las sociedades actuales. Los sistemas que los componen presentan multitud de retos entre los cuales el error se puede considerar como el denominador común. La percepción del entorno se mide mediante sensores que tienen error, los modelos que interpretan la información y/o definen comportamientos son aproximaciones del mundo y por consiguiente también presentan error. Explicar el error permite extender los límites de los modelos deterministas para abordar problemas del mundo real. El rendimiento de las tecnologías embarcadas en los drones, dependen de nuestra capacidad de comprender, modelar y controlar el error de los sistemas que los integran, así como de las nuevas tecnologías que puedan surgir. Los controladores de vuelo integran diferentes subsistemas los cuales generalmente son dependientes de otros sistemas. Un caso de esta situación son los sistemas de guiado. Estos sistemas son los encargados de proporcionar al controlador de los motores información necesaria para cumplir con una misión deseada. Para ello se componen de una ley de control de guiado que reacciona a la información percibida por los sistemas de percepción y navegación. El error de cualquiera de estos sistemas se propaga por el ecosistema del controlador siendo vital su estudio. Por otro lado, entre las estrategias para abordar el control del error se encuentran los estimadores en espacios de estados, donde el filtro de Kalman desde su aparición en los años 60, ha sido y continúa siendo un gran aliado para los ingenieros. Los filtros de Kalman son el corazón de los sistemas de fusión de información, los cuales minimizan la covarianza del error del sistema, permitiendo filtrar los estados medidos y estimarlos cuando no se tienen observaciones. Los modelos de espacios de estados se desarrollan en base a un conjunto de hipótesis para modelar el mundo. Entre las hipótesis se encuentra que los modelos del mundo han de ser lineales, markovianos y que el error de sus modelos ha de ser gaussiano. Generalmente los sistemas no son lineales por lo que se realizan linealizaciones sobre modelos que a su vez ya son aproximaciones del mundo. En otros casos el ruido que se desea controlar no es gaussiano, pero se aproxima a esta distribución para poder abordarlo. Por otro lado, multitud de sistemas no son markovianos, es decir, sus estados no solo dependen del estado anterior, sino que existen otras dependencias que los modelos de espacio de estados no son capaces de abordar. Esta tesis aborda un compendio de estudios sobre los que se formula y reduce el error. En primer lugar, se estudia el error en un sistema de aterrizaje de precisión basado en visión por computador. Después se plantean problemas de estimación y filtrado desde la aproximación del aprendizaje profundo. Por último, se estudian los conceptos de clasificación con aprendizaje profundo sobre trayectorias. El primer caso del compendio estudia las consecuencias de la propagación del error de un sistema de aterrizaje de precisión basado en visión artificial. En este trabajo se propone un conjunto de estrategias para reducir el impacto sobre el sistema de guiado, y en última instancia reducir el error. Los siguientes dos estudios abordan el problema de estimación y filtrado desde la perspectiva del aprendizaje profundo, donde el error es una función que minimizar mediante aprendizaje. El último caso del compendio aborda un problema de clasificación de trayectorias con datos reales. Con este trabajo se completan los dos campos principales en aprendizaje profundo, regresión y clasificación, donde se plantea el error como una función de probabilidad de pertenencia a una clase.I would like to thank the Ministry of Science and Innovation for granting me the funding with reference PRE2018-086793, associated to the project TEC2017-88048-C2-2-R, which provide me the opportunity to carry out all my PhD. activities, including completing an international research internship.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Antonio Berlanga de Jesús.- Secretario: Daniel Arias Medina.- Vocal: Alejandro Martínez Cav

    Epileptic seizure prediction using machine learning techniques

    Get PDF
    Epileptic seizures affect about 1% of the world’s population, thus making it the fourth most common neurological disease, this disease is considered a neurological disorder characterized by the abnormal activity of the brain. Part of the population suffering from this disease is unable to avail themselves of any treatment, as this treatment has no beneficial effect on the patient. One of the main concerns associated with this disease is the damage caused by uncontrollable seizures. This damage affects not only the patient himself but also the people around him. With this situation in mind, the goal of this thesis is, through methods of Machine Learning, to create an algorithm that can predict epileptic seizures before they occur. To predict these seizures, the electroencephalogram (EEG) will be employed, since it is the most commonly used method for diagnosing epilepsy. Of the total 23 channels available, only 8 will be used, due to their location. When a seizure occurs, besides the visible changes in the EEG signal, at the moment of the seizure, the alterations before and after the epileptic seizure are also noticeable. These stages have been named in the literature: • Preictal: the moment before the epileptic seizure; • Ictal: the moment of the seizure; • Postictal: the moment after the seizure; • Interictal: space of time between seizures. The goal of the predictive algorithm will be to classify the different classes and study different classification problems by using supervised learning techniques, more precisely a classifier. By performing this classification when indications are detected that a possible epileptic seizure will occur, the patient will then be warned so that he can prepare for the seizure.Crises epiléticas afetam cerca de 1% da população mundial, tornando-a assim a quarta doença neurológica mais comum. Esta é considerada uma doença caracterizada pela atividade anormal do cérebro. Parte da população que sofre desta condição não consegue recorrer a qualquer tratamento, pois este não apresenta qualquer efeito benéfico no paciente. Uma das principais preocupações associadas com este problema são os danos causados pelas convulsões imprevisíveis. Estes danos não afetam somente o próprio paciente, como também as pessoas que o rodeiam. Com esta situação em mente, o objetivo desta dissertação consiste em, através de métodos de Machine Learning, criar um algoritmo capaz de prever as crises epiléticas antes da sua ocorrência. Para proceder à previsão destas convulsões, será utilizado o eletroencefalograma (EEG), uma vez que é o método mais usado para o diagnóstico de epilepsia. Serão utilizados apenas 8 dos 23 canais disponíveis, devido à sua localização. Quando ocorre uma crise, além das alterações visíveis no sinal EEG, não só no momento da crise, são também notáveis alterações antes e após a convulsão. A estas fases a literatura nomeou: • Pre-ictal: momento anterior à crise epilética; • Ictal: momento da convulsão; • Pós-ictal: momento posterior à crise; • Interictal: espaço de tempo entre convulsões. O objetivo do algoritmo preditivo será fazer a classificação das diferentes classes e o estudo de diferentes problemas de classificação, através do uso de técnicas de machine learning, mais precisamente um classificador. Ao realizar esta classificação, quando forem detetados indícios de que uma possível crise epilética irá ocorrer, o paciente será então avisado, podendo assim preparar-se para esta

    On fuzzy and crisp solutions of a novel fractional pandemic model

    Get PDF
    Understanding disease dynamics is crucial for accurately predicting and effectively managing epidemic outbreaks. Mathematical modeling serves as an essential tool in such understanding. This study introduces an advanced susceptible, infected, recovered, and dead (SIRD) model that uniquely considers the evolution of the death parameter, alongside the susceptibility and infection states. This model accommodates the varying environmental factors influencing disease susceptibility. Moreover, our SIRD model introduces fractional changes in death cases, which adds a novel dimension to the traditional counts of susceptible and infected individuals. Given the model’s complexity, we employ the Laplace-Adomian decomposition method. The method allows us to explore various scenarios, including non-fuzzy non-fractional, non-fuzzy fractional, and fuzzy fractional cases. Our methodology enables us to determine the model’s equilibrium positions, compute the basic reproduction number, confirm stability, and provide computational simulations. Our study offers insightful understanding into the dynamics of pandemic diseases and underscores the critical role that mathematical modeling plays in devising effective public health strategies. The ultimate goal is to improve disease management through precise predictions of disease behavior and spread.ANCD -Agenția Națională pentru Cercetare și Dezvoltare(UIDP/00013/2020

    Reversible Image Watermarking Using Modified Quadratic Difference Expansion and Hybrid Optimization Technique

    Get PDF
    With increasing copyright violation cases, watermarking of digital images is a very popular solution for securing online media content. Since some sensitive applications require image recovery after watermark extraction, reversible watermarking is widely preferred. This article introduces a Modified Quadratic Difference Expansion (MQDE) and fractal encryption-based reversible watermarking for securing the copyrights of images. First, fractal encryption is applied to watermarks using Tromino's L-shaped theorem to improve security. In addition, Cuckoo Search-Grey Wolf Optimization (CSGWO) is enforced on the cover image to optimize block allocation for inserting an encrypted watermark such that it greatly increases its invisibility. While the developed MQDE technique helps to improve coverage and visual quality, the novel data-driven distortion control unit ensures optimal performance. The suggested approach provides the highest level of protection when retrieving the secret image and original cover image without losing the essential information, apart from improving transparency and capacity without much tradeoff. The simulation results of this approach are superior to existing methods in terms of embedding capacity. With an average PSNR of 67 dB, the method shows good imperceptibility in comparison to other schemes
    corecore