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Abstract: 
Nonlinear state space modeling of a nuclear reactor has been done for the purpose of 
controlling its global power in load following mode. The nonlinear state space model has 
been linearized at different percentage of reactor powers and a novel fractional order 
(FO) fuzzy proportional integral derivative (PID) controller is designed using real coded 
Genetic Algorithm (GA) to control the reactor power level at various operating 
conditions. The effectiveness of using the fuzzy FOPID controller over conventional 
fuzzy PID controllers has been shown with numerical simulations. The controllers tuned 
with the highest power models are shown to work well at other operating conditions as 
well; over the lowest power model based design and hence are robust with respect to the 
changes in nuclear reactor operating power levels. This paper also analyzes the 
degradation of nuclear reactor power signal due to network induced random delays in 
shared communication network and due to sensor noise while being fed-back to the 
Reactor Regulating System (RRS). The effect of long range dependence (LRD) which is 
a practical consideration for the stochastic processes like network induced delay and 
sensor noise has been tackled by optimum tuning of FO fuzzy PID controllers using GA, 
while also taking the operating point shift into consideration. 
 
Keywords: fractional order fuzzy PID controller; long-range dependence; network 
induced stochastic delay; nuclear reactor thermal-hydraulics; power level control; anti-
persistent noise. 
 
1. Introduction 

Nuclear reactors are becoming increasingly popular as a supplement to thermal 
power plants in providing electrical power to the national grid. As such nuclear reactor 
control is of prime essence due to the safety issues and command following operations. 
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The point kinetic dynamical model of a nuclear reactor is inherently governed by few sets 
of nonlinear differential equations. Its linearized transfer function models are marginally 
stable with the magnitudes of the eigen-values differing widely [1]-[2]. It is well known 
that few time constants in an open loop model of a nuclear reactor are very small due to 
the effect of the prompt neutron jump and few are quite large due to the delayed neutron 
jump [1]. Hence at different time instants, different time constants are predominant which 
makes the control of such kind of process very difficult. In [2], [3] spatial control of such 
a nuclear reactor is done by dividing the reactor into different zones and designing 
controller for each zone. However in the present case, the focus is on power level 
tracking. Hence an input-output model is derived first and then PID type controllers are 
used to remove any possible steady state offset. In Yun et al. [4], model predictive 
control is used for load following operation of a nuclear power plant at various operating 
points. However, in [4] the command-following power tracking responses have very 
sharp jumps which is detrimental for the system as it may cause thermal shock to the 
mechanical elements. Quantitative feedback theory (QFT) has been used in Torabi et al. 
[5] to design robust controllers to handle the nonlinearity and uncertainties in the reactor 
model and obtain favorable performance over a wide range of operating conditions. 
Fuzzy logic based intelligent system has been recently used in various nuclear power 
plant applications like use of neuro-fuzzy systems in power plant transient identification 
[6], fuzzy inference in nuclear reliability problems [7] etc. Several researchers have 
applied combination of various computational intelligence paradigms together for 
efficient control of the dynamics of nuclear reactors like in [8]-[11]. Among several other 
approaches, supervisory control [12], adaptive estimator based dynamic sliding mode 
control [13], gain scheduled dynamic sliding mode [14], robust nonlinear model 
predictive control [15], QFT [16] are gaining popularity in control problems related to 
nuclear power plants. In the present paper, an advanced fuzzy logic based fractional PID 
type controller is used which has the capability of handling change in the dynamics of a 
nuclear reactor with operating power level. 

In Saha et al. [17], a fractional order phase shaper augmented with an optimal PID 
controller is proposed which is capable of providing operating point invariant control of 
nuclear reactor power over simple PID controllers. Das et al. [18] developed fractional 
dynamical models for different regimes of reactor operation and designed a robust 
FOPID controller to handle the shift in operating conditions. Atkin and Altin [19] have 
shown that the fuzzy logic based controllers work well for reactor power control even in 
the presence of noise and process parameter variation. In Liu et al. [20], the gains of the 
PID controller are updated with fuzzy inferencing mechanism, using GA to provide 
efficient nuclear reactor power control. The present approach combines all the above 
philosophies of fuzzy logic and fractional order controllers to design a FO fuzzy PID type 
controller for control of reactor power using real coded GA, at wide range of operating 
points. Coban [21] used particle swarm optimization (PSO) algorithm to tune the 
membership functions (MFs) of the fuzzy logic controller for nuclear reactor power level 
control. Since tuning of the input-output scaling factors (SFs) of fuzzy controllers has 
more impact on the control performance than tuning the MFs [22], the present paper 
tunes the input-output SFs and the orders of the error derivative and integral for fixed 
fuzzy rule-base and membership function type using a popular global optimization 
technique i.e. the genetic algorithm.  
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The Point kinetics equation based nonlinear model of a 500 MW nuclear reactor 
is derived in this paper, taking into account the thermal effects on reactivity. The 
nonlinear state space is linearized around the steady state operating conditions 
corresponding to the various operating powers of the nuclear reactor. The parameters of 
the FO fuzzy PID controllers are then tuned with these linearized models to obtain a 
trade-off design between good set point tracking and reduced controller effort. The fuzzy 
FOPID controllers tuned with the linearized models of the reactor at highest/lowest 
power shows good set-point tracking ability though the system’s dc-gain changes due to 
change in the range of operation. Similar multiple model based control scheme for 
nuclear reactors has been proposed by Hu et al. [23] and the mathematical model for the 
guidance of control rod movement is proposed by Alireza and Shirazi [24]. 

Evaluation of the performance of nuclear reactor control systems over 
communication networks is being a big concern now-a-days because a small amount of 
stochastic delay is capable of destabilizing a well-tuned control loop as shown by Pan et 
al. [25]. Das et al. [26] have given experimental evidence of the impact of the presence of 
network in the control of nuclear reactors. Therefore, the possible random delays and the 
packet dropouts which occur during long distance transmission of signal from the sensors 
to the controller or from the controller to the actuator must be considered in the controller 
design phase itself, so as to prevent an unforeseen destabilization of reactor control loop, 
causing possible catastrophic failures. From the reactor physics point of view the 
dynamics of a nuclear reactor are mainly governed by two different types neutron groups 
viz. prompt neutron and delayed neutron [1]. At the start up conditions of nuclear reactor 
or at set-point changes, the random delays are highly detrimental especially for the 
prompt neutron jump and may cause rapid growth of global power and cause thermal 
shocks to its elements. 

In networked control system (NCS) there is a strong possibility for the packets 
containing control signal to get delayed because of the shared network medium over 
which it is being transmitted. These stochastic delays are intrinsically different from the 
conventional process delays. Process delays are generally large and constant but the 
network induced delays are stochastically varying and have more adverse effects on the 
performance of a well-tuned control system [22], [27]. It has been shown in [28] that the 
network induced delay in a Local Area Network (LAN) exhibits self-similarity or non-
Gaussian dynamics. The motivation of the present work lies in the fact that if the self-
similarity of these processes or the delay dynamics associated with the network packets 
can be estimated properly then it is possible to minimize and compensate its deleterious 
nature. Bhambhani et al. [29] and Tejado et al. [30], [31] have suggested that fractional 
order dynamics of network induced delays can be best handled using fractional order 
controllers. But the fractional order noise and stochastic self-similar network delay are 
intrinsically different in nature [32]. Since the latter does not convey any extra energy in 
the control loop, the FO delay-dynamics in control applications needs to be extensively 
investigated. The present paper shows efficient method of optimization based fractional 
order fuzzy PID controller tuning to handle the shift in nuclear reactor operating power 
level as well as network induced stochastic delay and sensor noise which have fractional 
order dynamics. 

In a nuclear power plant, control signals are generally passed through the 
dedicated channel from the reactor house to the distantly located control room. But with 
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the advent of cheap communication and off the shelf hardware, Ethernet as a shared 
medium is getting importance to close real time control loops, in big complex plants. The 
advantage of using NCS is reduced wiring, modularity and flexibility over the existing 
technology. Thus online monitoring of reactor data and feedback of control signal can be 
done easily with LAN. But the major drawback is that congestion occurs in the data 
transfer processes which leads to delayed control signals resulting in poor control 
performance. So the data in the control loop suffering from stochastic delays due to the 
network congestion should not be fed-back directly to the RRS and some filtering/delay-
compensation or control techniques should be used to reduce the stochastic nature of 
these signals. If these stochastic delays are not compensated, the RRS may malfunction 
and also may lead to tripping of the reactor. Often the sensor noise and network induced 
delay have the long memory effect and can thus be modeled using fractional order 
dynamics. Therefore, it is quite challenging to device a control algorithm which is 
capable of enforcing command-following reactor operation, considering the operating 
point shifting of reactor in the presence of fractal nature of the network delay dynamics 
and sensor noise. For this purpose, we studied the comparative performance analysis with 
conventional fuzzy PID and fractional order fuzzy PID controller in the reactor control 
loop. In recent literatures it has been seen that fractional order controllers perform well 
when the objective function is noisy and time-varying [25], [33]. This is due to the fact 
the classical PID controllers having derivative operators amplifies the noise, since at 
sharp edges the integer order derivative of error function becomes singular. But at those 
sharp edges the fractional derivative may exist [34], implying a relatively low 
amplification of the stochastic phenomena, introduced in the error signal due to random 
network induced delay or sensor noise, thus resulting in a better control performance. 
Also, it is shown in Pan et al. [22] that fuzzy logic based PID controllers due to having a 
rough or approximate reasoning in it to generate the control action, compared to simple 
mathematical operators like the proportional, integral and derivative operators, are 
capable of suppressing stochastic phenomena in control loops causing from random delay 
dynamics due to the presence of shared communication medium. Therefore, it is logical 
to numerically study the comparative performances of the conventional fuzzy PID 
controller and its fractional order counterpart, proposed by Das et al. [35] which are the 
hybridization of both the concepts, discussed above, for efficient nuclear reactor power 
level control problems with consideration of communication network delay and sensor 
noise having different dynamical characteristics.  

The rest of the paper is organized as follows. Section 2 delineates the point 
kinetics based state space modeling and the consequent linearization of the nuclear 
reactor model. Section 3 discusses the structure and tuning of the fuzzy PIλDμ type 
controllers with details of the fuzzy inferencing mechanisms. Simulation studies for the 
fuzzy FOPID controller with change in reactor power are shown in Section 4. Section 5 
introduces basics of network induced delay and sensor noise with long range dependence. 
Section 6 proposes stochastic optimization based improved fuzzy FOPID controller 
tuning technique to suppress the unwanted randomness in RRS loop. The paper ends in 
Section 7 with the conclusions followed by the references. 
 
2. State-space modeling of the nuclear reactor 
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The reactor model is developed using the point kinetic equations with six groups 
of delayed neutrons. The reactivity feedback due to the fuel temperature and coolant 
temperature are also taken into account in the reactor model development. In present 
modeling, the spatial effects in the reactor dynamics are neglected unlike [2] i.e. a single 
node or point reactor is considered. 

 
2.1. Neutron kinetic model of a point reactor 

 
1

G
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dn n c
dt

ρ β λ
=
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Λ ∑   (1) 
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where, n : neutron density ( 3m− ), 
ρ : total reactivity,  

1

G

i
i

β β
=

=∑ : delayed neutron fraction,  

Λ : prompt neutron lifetime ( s ),  
G : groups of delayed neutron,  

iλ : delayed neutron decay constant for the ith delayed neutron group ( 1s− ), 

ic : precursor concentration for the ith precursor group ( 3m− ). 
 

2.2. Fuel temperature model 
The energy balance equation of the fuel pellet yields (3) which implies that the 

rise in temperature of the pellet is equal to the difference of the generated power due to 
nuclear fission and the heat dissipated by convection from the fuel. 

 
2

f i e
f pf f

dT T Tm c P n Ah T
dt

+ = ⋅ − − 
 

  (3) 

The term ‘ n  ’ in equation (3) denotes neutron density, appearing in equations (1) and (2). 
Now let us define, f f pfm cµ =  (for the conductive part of the heat transfer equation) and 

AhΩ =  (for the convective part of the heat transfer equation). Therefore, (3) can be 
rewritten as: 

 
2 2

f
f i e

f f f f

dT P n T T T
dt µ µ µ µ

Ω Ω Ω
= − + +   (4) 

where, fm : mass of the fuel ( kg ),  

pfc : specific heat of the fuel at constant pressure ( .J kg C° ), 

P : reactor power (W ), A : active heat transfer area ( 2m ),  
h : fuel-to-coolant heat transfer co-efficient ( 2.W m C° ),  

fT : average fuel temperature ( C° ), 

iT : inlet coolant temperature ( C° ), 
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eT : outlet coolant temperature ( C° ), 

fµ : total heat capacity of the fuel ( J C° ). 
 

2.3. Coolant temperature model 
The fuel pellet is surrounded by a Zircalloy cladding and is inserted into the heavy 

water which is used to cool the pellet. The dominant mode of heat transfer is by 
convection. The energy balance equation of the coolant yields (5) which implies that the 
rise in temperature of the coolant is equal to the difference of the convective heat transfer 
from the fuel pellet and the change in heat content of the coolant between the inlet and 
the exit. 

 ( )
2

c i e
c pc f c pc e c pc i

dT T Tm c T w c T w c T
dt

+ = Ω − − − 
 

  (5) 

Let us define, c c pcm cµ = and c c pcM w c= . Therefore, equation (5) can be rewritten as (6): 

 
2 2

2 2
c c c

f e i
c c c

dT M MT T T
dt µ µ µ

   +Ω −ΩΩ
= − +   

   
  (6) 

where, cm : mass of the coolant in the core ( kg ), 

pcc : specific heat of the coolant at constant pressure ( .J kg C° ), 

cw : mass flow rate of the coolant ( kg s ), 

cµ : total heat capacity of the coolant ( J C° ), 

cT : average temperature of the coolant (
2

i e
c

T TT +
= ). 

Therefore, 

 
1 [since, constant]
2

c e
i

dT dT T
dt dt

= =   (7) 

Replacing (7) in (6) produces (8) as: 

 
2 22e c c

f e i
c c c

dT M MT T T
dt µ µ µ

   +Ω −ΩΩ
= − +   

   
  (8) 

2.4. Total reactivity model  
The reactivity change  may be caused due to the effect of control rod movement or 

thermal effects on reactivity given by (9). 

 
( ) ( )

( ) ( ) ( )

0 0

0 0 02 2

rod f f f c c c

c c
rod f f f i i e e

T T T T

T T T T T T

ρ ρ α α

α αρ α

= + − + −

= + − + − + −
  (9) 

where, rodρ : reactivity introduced in the core due to control rod movement,  

fα : temperature co-efficient of reactivity for the fuel ( 1C−° ),  

0fT : initial average temperature of the fuel ( C° ),  
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cα : temperature co-efficient of reactivity for the coolant ( 1C−° ), 

0cT : initial average temperature of the coolant ( C° ), 

0iT : initial inlet temperature of the coolant ( C° ), 

0eT : initial outlet temperature of the coolant ( C° ). 
 

2.5. Linearization and state-space model development 
Considering small perturbation around the steady-state operating point, nonlinear 

system of equations (1), (2), (4), (8) can be linearized to produce the following four set of 
coupled linear differential equations (subscript “ r ” denotes relative values): 
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  (10) 

At steady state, equation (2) reduces to 

 0 0 0 0 00 0r r r r rc n c c nβ βλ
λ

= ⇒ ⋅ − ⋅ = ⇒ = ⋅
Λ Λ

   (11) 

At steady state equation (1) also reduces to 

 0
0 0 00 0r r rn n cρ β λ−
= ⇒ + =

Λ
   (12) 

In (11) and (12), the subscripts “0” correspond to the steady state values. Now, 
substitution of the steady state delayed neutron precursor concentration ( 0rc ) from (11) to 
(12) yields 0 0ρ = . Since, inlet coolant temperature is generally kept constant, thus 
yielding 0iTδ = . Now, equation (10) can be converted to the conventional SISO state-
space model for the reactor as follows: 

 
( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t

= +

= +



  (13) 

Here, the input ( u ), output ( y ) and state variables ( x ) are defined as rodu δρ= (change in 
reactivity of the core due to control rod movement), ry nδ= (relative power output), 

T

r r f ex n c T Tδ δ δ δ =   . The system matrices are defined below in terms of the 
Jacobian of the four functions in (10): 
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Therefore the reactor model can be written in the form (13) with the system matrices 
given by (15). 

 

[ ] [ ]

0 0

0

0

2

0 0
0; ;

0 02
0

220 0

1 0 0 0 ; 0 .

r f r c

r

f f f

c

c c

n n

n

A BP

M

C D

α αβ λ

β λ

µ µ µ

µ µ

 
− Λ Λ Λ   
   − Λ   Λ
 = =  Ω Ω   −
   
    +ΩΩ −  

= =

  (15) 

The reactor parameters at various power levels are reported in Table 1 as studied in [4]. 
 
Table 1: Reactor parameters at various operating power levels 
Power (%) Tc nr0 αf αc μf μc Ω Mc 

100 302 1.0 -2.9×10-5 -6.3×10-4 2.25×107 6.9×107 3.94×106 7.08×107 
80 298.6 0.8 -3.2×10-5 -5.59×10-4 2.21×107 6.8×107 4.16×106 6.89×107 
60 295 0.6 -3.3×10-5 -5.56×10-4 2.18×107 6.7×107 4.38×106 6.87×107 
40 291.8 0.4 -3.5×10-5 -5.22×10-4 2.14×107 6.61×107 4.61×106 6.79×107 
20 288.4 0.2 -3.8×10-5 -4.86×10-4 2.10×107 6.53×107 4.85×106 6.7×107 

 
The full power of the nuclear reactor is considered to be 0 500P MW= . Other 

typical constants governing the reactor dynamics like the delayed neutron fraction, 
prompt neutron lifetime and delayed neutron decay constants have been considered 
similar to the study reported by Theler and Bonetto [36] as 37.65 10β −= × , 

41.76 10−Λ = × , 27.59 10λ −= × . The state space models (15) around different reactor 
power can be converted to the corresponding transfer function models using the well-
known relation (16). 
 ( ) ( ) 1G s C sI A B D−= − +   (16) 
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It is clear from the linear transfer function models of the nuclear reactor (17) that its dc 
gain widely varies with the shift in global reactor power. Also, the models have a pole 
very close to the origin indicating a marginally stable open loop dynamics with strong 
lead-time constants and high dc-gain. The co-existence of such complex dynamical 
behaviors makes the task of maintaining command following reactor control very 
difficult, especially taking the shift in operating point (reactor power) into consideration. 
Few previous studies on robust fractional order controller design for efficient nuclear 
reactor operation in different power levels have been done by Saha et al. [17] and Das et 
al. [18]. In the linearized models (G ) of the nuclear reactor in equation (17) the 
subscripts denote different operating power levels.  
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( )( )( )( )

( )( )( )
( )( )( )( )

( )( )( )
( )( )( )( )

100

80

60

4

5681.8182 2.114 0.17 0.0759
43.52 2.096 0.1979 0.01682

4545.4545 2.094 0.1822 0.0759
43.52 2.08 0.2066 0.0137

3409.0909 2.123 0.1941 0.0759
43.52 2.112 0.2137 0.01044
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0
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2272.7273 2.132 0.2076 0.0759
43.53 2.124 0.2217 0.007051

1136.3636 2.135 0.2219 0.0759
43.53 2.132 0.2296 0.003624

s s s
s s s s

s s s
G

s s s s

+ + +
=

+ + + +

+ + +
=

+ + + +

  (17) 

DC-gain of the linearized models of the nuclear reactor at different operating 
powers in (17) are 510.424, 513.7372, 519.9578, 528.2555, 529.1494 respectively which 
also justifies the frequency response shown in Figure 1, since stability of the reactor 
models decreases at lower powers due to increased dc-gain. This is evident from the 
gradual reduction in the open loop phase at low frequency regions in the Bode diagram 
and gradual shifting of the Nyquist curve towards the critical point (-1,0) for low reactor 
powers. Attempt for frequency domain design of robust FO controllers with varying level 
of reactor power can be found in Saha et al. [17] and Das et al. [18]. 

It is also to be noted that the reactor under consideration is of Pressurized Water 
(PWR) type. The thermal hydraulic parameters for a PWR have been adopted from [4]. 
The thermal hydraulic part of the state-space model is based on the transient heat balance 
for the fuel and coolant. For simple and small pool type research reactors generally the 
neutronics is only considered. In such cases, there is no thermal loop taking part in power 
controls, like power reactors of Canadian Deuterium Uranium (CANDU) type, PWR and 
Boiling Water Reactor (BWR) type etc. For small research reactors the idea is to govern 
the basic neutronics only, as done conventionally by ON-OFF controls of the control 
rods, looking at only the linear neutron channel signal [37], [38]. But for power reactors 
unlike research reactors have a loop of thermal-hydraulics and thus control inputs from 
these parts to affect the reactivity. 
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Figure 1: Frequency response of the reactor, operating at different powers. 
 
3. Concept of Fuzzy FOPID controller and its optimum tuning 
3.1. Basics of fractional order fuzzy PID controller 

Simple fuzzy PID controller and its global optimization based tuning to 
compensate for the network induced delays has been extensively studied in Pan et al. 
[22]. The idea has been extended by Das et al. [35] with its fractional order counterpart to 
handle nonlinear and open-loop unstable plants. For the present fuzzy FOPID controller 
{ },e dK K are the input SFs and{ },PI PDK K are the output SFs as shown in Figure 2. Here, 
the integer order rate of error in the conventional integer order fuzzy logic controller 
(FLC) input has been replaced by its FO counterpart ( µ ). Also the FLC output is 
fractionally integrated with order (λ ) which can be tuned to meet designer’s 
specifications. The control law of this controller is given by (18). 

 
( ) ( ) ( )

( ) ( )

_ _ _FLC FOPID FLC FOPI FLC FOPD

FLC
PI PD FLC

u t u t u t

d u t
K K u t

dt

λ

λ

−

−

= +

= ⋅ +
  (18) 
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Figure 2: Schematic diagram of FO fuzzy PID controller. 
 
For the typical integer order fuzzy PID controller in [22], [35] with product-sum 
inferencing, center of gravity defuzzification method and triangular membership 
function, the relation between the input and output variables can be expressed as 
 ( )   ( )  ( )u t A Be t Ce t= + +    (19) 

where, parameters   { }, ,A B C are devised from the error and control signal. Therefore, it is 

expected that for the controller in Figure 2, the FLC output (19) will be a function of 
fractional rate of error instead of conventional integer order derivative of error signal. 
Now, using the well-known identity of fractional calculus or successive derivative of 

higher powers of a variable ( )
( )

1
1

n
m m n

n

md t t
dt m n

−Γ +
=
Γ − +

, equation (18) can be expressed as 

 

( )      

 

( )
 

 

_

1

FLC FOPID PI e d PD e d

PD PI PD e PD d

PI e PI d

d d e d eu t K A BK e CK K A BK e CK
dt dt dt

t d eK A K A K BK e K CK
dt

d e d eK BK K CK
dt dt

λ µ µ

λ µ µ

λ µ

µ

λ µ λ

λ µ λ

λ

−

−

− −

− −

   
= ⋅ + + + + +   

   
 

   = + + +     Γ + 

   + +   

  (20) 

Thus drawing an analogy with the classical PID controller structure, the first term 

 

( )1PD PI
tK A K A
λ

λ
 

+ Γ + 
 represents a time dependent gain due to the presence of time in 

it. The term 

PD eK BK    represents the proportional gain, 

PD dK CK    represents the 

fractional order derivative gain, 

PI eK BK    represents the fractional order integral gain 

and 

PI dK CK    represents an additional FO integro-differential gain. The last term can 

represent either a fractional derivative or a fractional integral action depending on which 
value between { },λ µ is greater. 

Few recent research results show that band-limited implementation of FOPID 
controllers using higher order rational transfer function approximation of the integro-
differential operators gives satisfactory performance in industrial automation e.g. in [39]. 
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The Oustaloup’s recursive approximation, which has been used to implement the integro-
differential operator ( ,sα α ∈ ) in frequency domain is given by the following 
expression, representing a higher order analog filter. 

 
N

k

k N k

ss K
s

α ω
ω=−

′+
+∏  (21) 

where, the poles, zeros, and gain of the filter can be recursively evaluated using (22). 
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Thus, any signal ( )f t can be passed through the filter (21) and the output of the filter can 
be regarded as an approximation to the fractionally differentiated or integrated signal 

( )D f tα . In (21)-(22), α is the order of the differ-integration, ( )2 1N +  is the order of the 

filter and ( ),b hω ω is the desired frequency range of fitting. 
Even with the truncation of infinite dimensional natures of FO operators with high 

order IIR filters, the obtained FOPID controllers are found to outperform classical PID 
structure and even more with augmentation of fuzzy inferencing with the FO differ-
integral operators [35], [40], [41]. Thus there is always a trade-off between the 
complexity of the realization of the FOPID controller and the achievable accuracy. In the 
present study, 5th order Oustaloup’s recursive approximation is done for the integro-
differential operators within a chosen frequency band of { }2 210 ,10ω −∈ rad/sec. 

 
3.2. Details of the fuzzy inference within the intelligent fractional order controller 

Fuzzy inference is the method by which the nonlinear mapping between the input 
and the output variables is established with the help of fuzzy logic. The process of fuzzy 
inferencing mainly comprises of fuzzy rule base, membership functions used in the rules, 
reasoning mechanism by the use of fuzzy logic operators, fuzzification and 
defuzzification operations etc. Here, the basic fuzzy logic controller uses a two 
dimensional rule base as shown in Figure 3 and triangular membership functions as 
reported in Das et al. [35] with 50% overlap.  
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Figure 3: Rule base for error, error derivative and FLC output. 
 

Here, a Mamdani type inferencing is used with “min” type operator for 
implication and “max” type operator for rule aggregation. The error and its fractional 
derivative ( 0 1µ< < ) is assumed to follow the rule base depicted in Figure 3 composed 
of 49 ( 7 7× ) rules. The acronyms NL, NM, NS, ZR, PS, PM and PL refer to Negative 
Large, Negative Medium, Negative Small, Zero, Positive Small, Positive Medium and 
Positive Large respectively. The FLC outputs ( FLCu ) in Figure 2 is derived with the 
center of gravity method for defuzzification. Fractional order enhancement of fuzzy logic 
based PID controller has been extensively studied by Das et al. [35]. The present paper 
applies the concept of tuning integro-differential orders along with the input-output SFs 
for the fuzzy FOPID structure using real coded genetic algorithm to ensure command 
following power level tracking of the nuclear reactor even with a shift in operating power 
level along with random sensor noise and stochastic delay consideration in the reactor 
control loop. 

 
3.3. Objective function for optimization based controller tuning 

Comparison of different tuning strategies for PIλDμ controllers are described in 
Das et al. [40], [41]. Among different approaches the time domain performance index 
optimization based tuning of fractional order controllers are quite easy and becomes 
essential when high nonlinearity, like the fuzzy inferencing in this case, comes into play 
and sophisticated frequency domain tuning techniques cannot be easily applied. The 
fuzzy PIλDμ structure is tuned here with the minimization of a chosen control objective as 
a time domain performance index involving the control loop error and required controller 
effort. In the present study, the integral performance index ( J ) to be minimized has been 
taken as the weighted sum of Integral of Time multiplied Squared Error (ITSE) and 
Integral of Squared Controller Output (ISCO): 

 2 2
1 2

0

( ) ( )J w te t w u t dt
∞

 = ⋅ + ⋅ ∫   (23) 

Optimization result with objective function (23) produces the optimally tuned 
controller parameters (SFs and integro-differential orders) in terms of low error index and 
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control signal. The inclusion of the squared error term in the ITSE penalizes the peak 
overshoot to a large extent. Also, the time multiplication term penalizes the error signal 
more at the later stages than at the beginning and hence results in a faster settling time. 
The squared controller output is also included in J  so that the control signal does not 
become too large and result in actuator saturation and integral windup. The weights 1w  
and 2w have been incorporated in the objective function (23) to keep a provision for 
balancing the impact of the error and the control signal. In this case the weights have 
been considered to be equal for the two objectives of (23) implying that the minimization 
of the error index and the control signal are equally important. A real coded GA has been 
employed here to tune the fuzzy FOPID controller while minimizing the custom objective 
function (23). 

It is well known that genetic algorithm is a stochastic optimization process and is 
less susceptible to get trapped in local minima, compared to the gradient based 
algorithms. In GA, a solution vector is randomly chosen from the search space which 
undergoes reproduction, crossover and mutation in each iteration to give rise to a better 
population of solution vectors in the next iteration. The solution is refined iteratively until 
the objective function falls below a certain tolerance level or the maximum number of 
iterations are exceeded. Here, the number of population members in GA is chosen to be 
20. The crossover fraction is taken to be 0.8 and the mutation fraction is 0.2. Also, the 
decision variables for GA are the input-output SFs and the integro-differential orders of 
the FO fuzzy PID controller i.e. { }, , , , ,e d PI PDK K K K λ µ . 
 
4. Controller design at ideal condition with no consideration of stochastic 
phenomena in the reactor control loop 

It is clear that the linearized reactor models (17) have widely varying dc gain 
which makes it difficult to design a single controller which can faithfully enforce 
command following power level tracking for different operating power of the reactor. In 
the first part of our exploration, the fuzzy PIλDμ controller parameters have been tuned 
with GA for the reactor models corresponding to 100% and 20% of full power as in Table 
1. The scaling factors of a conventional fuzzy PID controller with the integro-differential 
operators as unity ( 1λ µ= = ) has also been tuned using the similar technique explored 
by Pan et al. [22] to get a fair comparison. Figure 4 shows the step responses of the 
nuclear reactor at different operating points with the optimum fuzzy PIλDμ controller, 
tuned at the lowest and highest dc gain. Similar frequency domain fractional order 
controller tuning with lowest and highest power level models of nuclear reactor have 
been explored by Saha et al. [17] and Das et al. [18] respectively. It is evident from 
Figure 4 and Figure 5 that the set-point tracking performance is satisfactory for fuzzy 
PI Dλ µ controller with smooth and small control signal which is desirable from an 
actuator design point of view. Whereas, with the conventional fuzzy PID controller, the 
time response becomes oscillatory with the 100% power controller and suffers from 
heavy oscillatory control signal with the 20% power controller that may cause damage to 
the actuator. Also it is evident that for both the controllers, the response is well-behaved 
when tuned with the full reactor power model since delayed tracking of the input 
reference for PI Dλ µ controller can be observed from Figure 4. Similarly, it is not 
recommended to tune the conventional fuzzy PID controller at low (20%) power model 
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since instantaneous jerks in the time response and oscillation in the control signal can be 
observed in Figure 5 even when there is no externally introduced stochastic consideration 
in the reactor control loop. Figure 5 clearly shows that the controller tuned at low reactor 
power performs inferior at higher power with fuzzy PID controller. The observation 
motivates to find the robust controller structure tuned at full power which can tolerate the 
change in reactor model due to nonlinearity i.e. reduction in operating power level when 
external disturbances are introduced in the control loop like network induced random 
delay and sensor noise. The simulation presented in this section clearly shows that the 
fuzzy PI Dλ µ structure tuned with 100% reactor power model performs best amongst the 
four combinations i.e. two fuzzy controllers tuned at highest/lowest operating power. 

 
Figure 4: Performance with the Fuzzy PIλDμ at different reactor power in ideal condition.  

 
Figure 5: Performance with the Fuzzy PID at different reactor power in ideal condition. 
 
5. Fuzzy FOPID controller design with stochastic phenomena in the control loop 
having long range dependence 
5.1. Self-similar network induced delays in control loop 
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 In this section, the assumption of ideal reactor operation is not made in order to 
see the relative capability of fuzzy PID and fuzzy PI Dλ µ controller to suppress unwanted 
stochastic phenomena in the reactor control loop. For case study, a heavily loaded LAN 
data have been collected as shown in Figure 6 for estimation of the degree of self-
similarity indicated by its associated Hurst parameter. Some typical characteristics of 
such network induced random delays in a loaded network have been discussed by 
Majumder et al. [42]. Detailed study regarding statistical characterization of delays in 
heavily loaded network has been done by Tejado et al. [30], [31]. From the time series of 
the random delays in a communication network it can be inferred that the random 
variable possesses some sudden spikes which may be confused with outliers and thus 
cannot be modeled using conventional Gaussian or mixture of Gaussian distributions. 
This typical case is known as non-Gaussianα -stable distribution of the random variable 
which makes the mathematically tractable solutions for suppression of such stochastic 
phenomena with fractional order characteristics quite difficult [43]. Figure 7 shows that 
the run-time variance of such spiky random variables (packet delays) does not converge 
to a finite value and have a non-Gaussianα -stable distribution [42].  

The random network induced delay consideration has been motivated from the 
study reported in [42]. Majumder et al. [42] used various smoothing filters for removing 
the stochastic nature of the power signal which is continuously fed back from the reactor 
house to the RRS through a long communication medium. This contaminates the power 
signal measured by the Self-Powered Neutron Detectors (SPNDs) with such random 
delays as the instantaneous measurements are then sent to the controller through the long 
communication medium representing the feedback path of the reactor control loop. In this 
paper however, the objective is to design an efficient fuzzy logic based controller which 
can reject the unwanted stochastic phenomena in the control loop in a mean-squared 
sense and also ensure oscillation-free command following reactor maneuvering at all 
operating power levels, in spite of the presence of random delays and measurement noise 
in the sensors. 

 
Figure 6: Time domain presentation of the network induced stochastic delay. 
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Figure 7: Diverging run-time variance for the random network induced delay. 
 
5.2. Basics of long range dependency (LRD) 

The basic mathematical preliminaries of the random variables in the reactor 
control loop with long range interaction or dependence is discussed here. Let tX be a 
time series which is weakly stationary, suggesting that the series has a finite mean and the 
covariance depends only on the lag between the two points existing in the series. The 
self-similarity can be explained in different ways like using the concept of auto-
correlation and power spectral density. Let ( )kρ  be the auto-correlation function (ACF) 

of tX . The ACF ( )kρ  for a weakly stationary time series tX  is given by 

( ) ( )
2

( )t t kX X
k E

µ µ
ρ

σ
+− − 

=  
 

with ( )tE X being the statistical expectation of tX . Also, 

µ and 2σ are the mean and variance respectively. Self-similarity can best be related with 
long range dependency. The time series tX is said to have long range dependency if 

( )
k

k
kρ

=∞

=−∞
∑ diverges. Often ( )kρ takes the form ( )k C k α

ρρ −
 , with Cρ being positive 

and (0,1)α ∈ . Parameter α is related to the Hurst parameter via the equation 2 1Hα = − . 
This is the most common definition of LRD. One very practical view-point of self-
similarity can be revealed from the signal processing point of view i.e. its power spectral 
density. If the power spectral density of the time series tX be ( )f ω , then a time-series 
having LRD must conform to the following relation: 

 ( ) ( )
2

2

k
ik

k
f k e ωσω ρ

π

=∞

=−∞

= ∑   (24) 

where, 1i = − . This definition of spectral density comes from Wiener-Khintchine 
theorem. Also, the weakly stationary time series tX is said to have LRD if its power 
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spectral density obeys ( ) ff C βω ω −
 with 0fC > and some real (0,1)β ∈ , where, β is 

related to the associated Hurst parameter by the relation ( 1) 2H β= + . 
 
5.3. Hurst parameter and its estimation 

Many physical real world processes, exhibit LRD. Modeling of those physical 
processes require the correct estimation of the LRD which is measured by the Hurst 
parameter H . Estimation of LRD time series enhances the importance of analyzing the 
self-similarity in the time series. The concept of LRD was firstly introduced by 
Mandelbrot and Van Ness [44] in terms of Fractional Brownian Motion (FBM). Since 
then it has been addressed by many other contemporary researchers to analyze degree of 
self-similarity in a time series and leads to the concept of Hurst parameter. A second 
order time series ( )Y f u= is said to have a LRD if its auto-correlation 

function ( ) ( ) ( )[( 0 ]E f fρ τ τ= decays with the power law function of lagτ so that the 

auto-correlation series ( )
τ

ρ τ∑ is not summable over the length ofτ . For the processes 

having Hurst parameter between 0 0.5H< <  are called anti-persistent process or 
negatively correlated. These processes generally have short range dependency. Processes 
with 0.5 1H< <  are called positively correlated. Hurst parameter 0.5H =  means the 
process is not correlated signifying conventional white-Gaussian noise. Processes with 
1 1.5H< <  is said to have no dependency in time domain. 

There are different methods to find out the Hurst parameter of a fractal time 
series. Popular method to find out the Hurst parameter is the R/S analysis. Apart from 
that there are a number of methods like aggregated variance method, absolute value 
method, Periodogram method, variance of residuals method, local whittle method, 
wavelet based method, Higuchi method and differenced variance approach etc. [43], [45]. 
Abrupt shift of mean in the time series or other contaminations can make the series non 
stationary and result in an over-estimation of Hurst parameter. In the present study, 
communication data taken from a heavily loaded shared network has been analyzed with 
one of the estimators as a test case. LRD can be thought of in two different ways. In time 
domain high degree of correlation in the distant samples of any time series can be 
modeled as LRD. In frequency domain significant amount of power at very low 
frequency can be an indication of presence of LRD. As reported in Majumder et al. [42], 
various estimators can be applied to find the Hurst parameter and the fractal dimension of 
the network induced random delays. In this paper the Rescaled range (R/S) analysis 
method has been chosen which has given the highest fractal dimension [42].  

Let, ( )R n be the range of data aggregated over the block of length n  and ( )S n  
be the variance recorded over the same scale of range. For the series to follow self-
similarity the following relation (25) must be maintained.  

 
( )

H
H

RE C n
S n
 
 
  

   (25) 

Taking logarithm on both sides of (25), the Hurst parameter can be estimated by the 
following regression formula (26). 
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( )

log log logH
RE C H n

S n
 

+ 
 

   (26) 

From (26) it is clear that HC is a positive constant and independent of n . Thus, it should 
have a constant slope as n becomes large. If the process sample is drawn from a stable 
distribution, slope of (26) will have the value of 0.5 like the random Gaussian noise. If 
the slope is over 0.5 it indicates the persistency in the time series. If the slope is below 
0.5 an ergodic mean reverting process is indicated. Small value of n  will make the result 
anti-persistent and the resulted value of Hurst parameter will be invalid. Again a large 
value of n  will produce too few samples to correctly estimate H  for a self-similar 
process. Therefore, choice of n  should be judicious with this type of estimator. For the 
network induced delay shown in Figure 6, the R/S analysis gives the indication of long 
range dependency as Hurst 0.8837H = , fractional order 2 1 0.7674Hα = − = , fractal 
dimension 2 1.2326D H= − = . Here, the fractional order of the random delay implies a 
1 f α  process having self-similar nature.  
 
5.4. Persistent and anti-persistent noise 

The concept of persistent and anti-persistent noise is somewhat similar to the 
above mentioned preliminaries regarding Hurst parameter of networked delay. But in 
order to clearly distinguish between random network-induced delay and noise both 
having long range dependence, the generation of fractional Gaussian noise has been 
illustrated here with slightly different mathematical notations.  

The stationary sequence ( )x nT obtained by sampling the fractional Brownian 

motion process ( )HB t with a sampling intervalT and then calculating the first difference 
is known as the discrete fractional Gaussian noise. It can be represented as  
 ( ) ( ) ( )H Hx nT B nT B nT T− −   (27) 

As the statistical properties of the fractional Brownian motion (fBm) do not change with 
scale, we set 1T = to obtain the discrete fractional Gaussian noise process as 
( ) ( ) ( )1H Hx n B n B n− −  and it is referred to as fGn. The autocorrelation of the discrete 

fractional Gaussian noise is 

 ( ) ( )2 2 221 1 2 1
2

H H H
x Hr l l l lσ= − − + +   (28) 

The fGn is wide-sense stationary as the correlation depends only on the distance l  
between the samples. Also for 1 2H = , we have ( ) ( )xr l lδ=  which implies that the fGn 
process is white noise.  

The fGn process has long memory in the range1 2 1H< < , since ( )
l

r l
∞

=−∞

= ∞∑ or 

equivalently ( )jR e ω →∞ as 0ω → . In this case the autocorrelation decays slowly and 
the frequency response is analogous to a low-pass filter. However, the process exhibits 
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short memory for 0 1 2H< < , since ( )
l

r l
∞

=−∞

< ∞∑ and ( ) 0
l

r l
∞

=−∞

=∑ , or equivalently 

( ) 0jR e ω → as 0ω → . Also, for 0 1 2H< < , the correlation is negative, that is, ( ) 0r l <  
for 0l ≠ and hence the process exhibits anti-persistence. For this instance, the 
autocorrelation decays very quickly and the frequency response is analogous to that of a 
high-pass filter. 

The fGn can alternatively be viewed as the output of a fractional integrator 
(1 ,0 1sβ β< < ) driven by continuous time stationary white Gaussian noise (wGn) ( )w t  

with variance 2σ . The output can be written in the following convolution form: 

 ( ) ( ) ( )( ) 11 t

y t w t dβ
β τ τ τ

β
−

−∞

= −
Γ ∫   (29) 

There are many methods of approximately simulating the self-similar nature of the noise 
on a finite bit computer like the spectral synthesis method, multiple time scale fluctuation 
approach, fast fractional Gaussian noise generator etc. [43], [45]. As is evident this would 
only be an approximation limited by the precision of the computations as self-similarity 
would not exist at all scales. In this paper the fGn is generated by passing a wGn it 
through a fractional order integrator as in equation (21). 
 From the study by Chen et al. [46], it is seen that in electrochemical processes the 
Hurst parameter of the noise has been found out to be 0.834H =  or in other word the 
fractional order of the noise is 2 1 0.668Hβ = − = , where the noise can be visualized as a 
1 f β process. This clearly indicates that in many naturally occurring chemical processes 
the realistic random noise is a filtered version somewhere between wGn ( 0β = ) and pink 
noise ( 1β = ) which can be obtained by passing it through an integrator. We generated 
fGn using the Oustaloup’s filter (21) representation of FO integrator similar to that used 
in the fuzzy FOPID controller simulations. In the present study, the SPND signal of 
nuclear reactor power level is assumed to be contaminated by measurement noise having 
a noise with 0.668β =  denoting its persistent nature. For the consideration of anti-
persistent noise, the sign of the fractional order is just made opposite denoting a negative 
correlation of the noise samples. Similar studies have been done by Pan et al. [33] to 
suppress persistent and anti-persistent noise using fractional order fuzzy PID controller 
which is also enhanced in the present work with the introduction of network induced 
delay as well and taking the shift in operating power level of the nuclear reactor into 
consideration.      
 
5.5. Performance degradation with the controllers designed at ideal condition 

The fuzzy PID and the FO Fuzzy PID controllers are tuned at 100% and 20% 
reactor power without the consideration of the network induced delays and the sensor 
noise in section 4. Now the well-tuned control loops are tested at other operating 
conditions as well with the stochastic network delays and the noise present and also 
having long range dependence given by the statistics reported in section 5.1-5.4 for the 
respective cases. Figure 8-Figure 10 show the set point tracking and control signal of the 
fuzzy PID controllers under these circumstances. A few important conclusions can be 



21 
 

drawn from the figures. The fuzzy PID controller tuned at 100% power has a good set 
point tracking and control signal at the other operating conditions with lower power. 
However if the same fuzzy PID controller is tuned at a 20% power then it shows poor 
performance as the power level increases. Especially at 100% power, the controller 
shows highly noisy response in both the output and the control signal. Thus the controller 
tuning should always be at the maximum power to ensure sufficient robustness when the 
nuclear reactor is operating at other conditions as well. A comparison of Figure 8-Figure 
10 also shows that the effect of anti-persistent noise is much more detrimental than the 
persistent or the white Gaussian noise. The process output of the fuzzy PID controller 
tuned at 100% power is also affected significantly which is not observed when the 
persistent noise and the white Gaussian noise are present. However, more than the 
process output i.e. the power level, the control signal or the manipulated variable i.e. the 
change in reactivity due to control rod movement is highly affected due to the anti-
persistent nature of the noise. Random fluctuations in the control signal or the position of 
control rods are highly detrimental and might result in actuator failure, mechanical 
shocks to the actuation system and tripping of the nuclear power plant altogether. 

  
Figure 8: Nominal tuning of Fuzzy PID controller to handle self-similar network delay (α=0.7674) 
and persistent sensor noise (β=0.668). 
 

Figure 11-Figure 13 show the FO fuzzy PID controllers tuned at 100% power and 
20% power without considering the random network delay or the noise in the control 
loop. It can be seen that the Fuzzy FOPID controllers work well for all operating 
conditions irrespective of whether they are tuned at 100% power or at 20% power level, 
unlike that of the fuzzy PID controllers. In the presence of network delays and persistent 
noise in Figure 11 both the set point tracking and the control signal is good without any 
jittery effects. In the presence of network delays and white Gaussian noise in Figure 12, 
there are small jittery effects for both the controllers (i.e. one tuned at 100% and one at 
20%) and this jittery effect is more pronounced in Figure 13 when there is anti-persistent 
noise along with network delays. A comparison with the curves obtained for the Fuzzy 
PID controller in Figure 8-Figure 10, show that the fuzzy FOPID is capable of 
suppressing oscillations of the power level and the control variables much more than the 
simple fuzzy PID controller, hence showing better robustness characteristics. 
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Figure 9: Nominal tuning of Fuzzy PID controller to handle self-similar network delay (α=0.7674) 
and white Gaussian sensor noise (β=0). 
 

 
Figure 10: Nominal tuning of Fuzzy PID controller to handle self-similar network delay (α=0.7674) 
and anti-persistent sensor noise (β=-0.668). 
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Figure 11: Nominal tuning of Fuzzy FOPID controller to handle self-similar network delay 
(α=0.7674) and persistent sensor noise (β=0.668). 

 
Figure 12: Nominal tuning of Fuzzy FOPID controller to handle self-similar network delay 
(α=0.7674) and white Gaussian sensor noise (β=0). 
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Figure 13: Nominal tuning of Fuzzy FOPID controller to handle self-similar network delay 
(α=0.7674) and anti-persistent sensor noise (β=-0.668). 
 
6. Improved stochastic optimization based controller design with random noise and 
delay consideration 
6.1. Advantage of improved stochastic tuning of fuzzy FOPID controller 

The simulations as reported in section 5.5 are redone again with an improved 
tuning methodology as reported in Pan et al. [25], [33] for both the simple and the FO 
fuzzy PID controller. The GA based optimization of fuzzy controller SFs are done 
considering the stochastic variation of the objective function due to network delay and 
sensor noise. The concept is somewhat similar to the minimization of an expected value 
of the objective function using GA. It has been shown by contemporary researchers [47]-
[49] that evolutionary and swarm based algorithms naturally works well for such cases 
where the objective function is time varying and noisy. The corresponding tuning results 
for the fuzzy PID and FOPID controllers are reported in Table 2 for different operating 
power level and stochastic considerations due the sensor noise or network delay. 

  
Table 2: Fuzzy controller Parameters at 100% & 20% Power in ideal condition (no sensor noise or 
network delay) 
Power (%) Controller Jmin Ke Kd KPI KPD λ μ 

100 PIλDμ 0.0002 0.3236 0.0683 4.557 0.124 0.9643 0.0958 
PID 0.0003 0.9918 0.0061 1.2510 0.001 - - 

20 PIλDμ 0.0054 0.6534 0.3349 2.189 0.092 0.8407 0.0254 
PID 0.0055 0.9859 0.0059 1.876 0.067 - - 

 
While evaluating the objective functions with stochastic phenomena, the control 

system is simulated with self-similar network induced delay and persistent/anti-persistent 
noise. This makes the objective function random as has been explicitly illustrated in [25], 
[33]. Thus for the same controller gains, the objective function will take different values 
due to the stochastic nature of the network delays and the noise. Hence, for each 
controller gain, the objective function is evaluated multiple times and the expected value 
is taken by the optimization algorithm. Figure 14-Figure 16 show the performance of the 
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fuzzy PID controller. Similar characteristics can be seen for the improved tuning 
methodology as well. The tuned controllers work the best in the presence of the persistent 
noise and the network induced delays. The anti-persistent noise is the most detrimental 
for the controller’s performance. However the most significant difference is that the band 
of oscillations is much reduced using the improved tuning methodology over the simple 
methodology reported in section 4 where the latter does not take the stochastic 
phenomena into consideration. 

 
Figure 14: Improved tuning of Fuzzy PID controller to handle self-similar network delay (α=0.7674) 
and persistent sensor noise (β=0.668).  

 
Figure 15: Improved tuning of Fuzzy PID controller to handle self-similar network delay (α=0.7674) 
and white Gaussian sensor noise (β=0). 
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Figure 16: Improved tuning of Fuzzy PID controller to handle self-similar network delay (α=0.7674) 
and anti-persistent sensor noise (β=-0.668). 

 
Figure 17: Improved tuning of Fuzzy FOPID controller to handle self-similar network delay 
(α=0.7674) and persistent sensor noise (β=0.668). 
 

Figure 17-Figure 19 show the performance of the FO fuzzy controllers handling 
self-similar network delays and noise with long range dependence.  As can be seen from 
the figures, the noise suppression is drastically improved for the fuzzy FOPID controllers 
over the simple fuzzy PID controllers with this improved tuning method. The pictorial 
representations of the improvement are quantitatively backed by the numerical results in 
Table 3. In Figure 17, the FO fuzzy controller shows almost no oscillations in the set 
point tracking or the control signal in the presence of persistent noise unlike the other 
previous simulations. The simulation with white Gaussian noise and network delay in 
Figure 18 shows slight oscillations in the control signal but the set-point tracking has 
almost no induced oscillations in it. The anti-persistent noise is the most detrimental as in 
the previous simulations as well and there are small oscillations in the control signal as 
well as the reference signal. However these oscillations are significantly smaller as 
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compared to the previous cases, thus proving the merit of the improved tuning 
methodology and the advantage of fuzzy FOPID controller. 
 
Table 3: Fuzzy PID and PIλDμ Controller parameters tuned with stochastic consideration of the 
reactor control loop 

Stochastic 
consideration 

Power 
(%) 

Controller 
structure Jmin Ke Kd KPI KPD λ μ 

Persistent noise 
(β=0.668) and 

self-similar 
delay 

(α=0.7674) 

100 
Fuzzy PIλDμ 0.0003 0.1145 0.0796 0.9951 0.0488 0.9361 0.0863 

Fuzzy PID 0.0511 0.9624 0.0011 0.1245 0.0011 - - 

20 
Fuzzy PIλDμ 0.0055 0.6436 0.1946 1.4269 0.0514 0.8779 0.0569 

Fuzzy PID 0.0561 0.9708 0.0021 0.5439 0.0019 - - 

White noise 
(β=0)  and self-

similar delay 
(α=0.7674) 

100 
Fuzzy PIλDμ 0.0005 0.1674 0.0010 1.6514 0.0361 0.9408 0.7431 

Fuzzy PID 0.0006 0.3229 0.0010 1.1039 0.0212 - - 

20 
Fuzzy PIλDμ 0.0058 0.5916 0.1182 1.0812 0.0580 0.8823 0.0010 

Fuzzy PID 0.0058 0.9979 0.0010 0.9718 0.0402 - - 

Anti-persistent 
noise (β=-0.668) 
and self-similar 

delay 
(α=0.7674) 

100 
Fuzzy PIλDμ 0.0546 0.0802 0.4775 0.1638 0.0075 0.9866 0.0148 

Fuzzy PID 0.0003 0.9166 0.0010 0.4412 0.0109 - - 

20 
Fuzzy PIλDμ 0.0562 0.0928 0.2729 0.9870 0.0122 0.9875 0.0036 

Fuzzy PID 0.0059 0.9985 0.0166 1.5201 0.0291 - - 

 

 
Figure 18: Improved tuning of Fuzzy FOPID controller to handle self-similar network delay 
(α=0.7674) and white Gaussian sensor noise (β=0). 
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Figure 19: Improved tuning of Fuzzy FOPID controller to handle self-similar network delay 
(α=0.7674) and anti-persistent sensor noise (β=-0.668). 
 
6.2. Superiority of tuning fuzzy FOPID controller using the reactor model at full power  
 From the above mentioned simulations it can concluded that the fuzzy controllers 
tuned at full power gives better robustness at other operating points with or without the 
random delay and noise in the control loop compared to the controllers tuned with reactor 
models at part load. This is a typical improvement over the technique adopted by Saha et 
al. [17] and in harmony with the finding of Das et al. [18]. Also, Pan et al. [25] have 
shown that such stochastic optimization based fractional order controller design does not 
affect the system’s time response in a great extent with variation in the distribution of 
random phenomena in the control loop. But present simulation shows that it does, 
depending on its associated Hurst parameter or degree of long range dependence which is 
also in harmony with the findings in [33]. This is due the fact that the variance of the 
randomness seems to get increased in a significant extent for anti-persistent noise and it 
decreases for persistent noise, compared to the variation in distribution of the network 
induced stochastic phenomena like delay and packet drops as studied in [25]. Also the 
fractional order fuzzy PID controller tuned at 100% reactor power and the worst case of 
randomness in the loop i.e. anti-persistent noise and self-similar delay has the highest 
robustness. Since it is tuned for the worst case scenario, the fuzzy FOPID automatically 
handles rest of the relatively low complex cases like the ideal case with no network delay 
and noise, only self-similar network delay, self-similar network delay and white Gaussian 
noise, self-similar network delay and persistent noise etc. As discussed above, the 
random self-similar network delay and noise should not be confused to be same since the 
former introduces no extra energy in the control loop. Even though these two stochastic 
phenomena in reactor control loop has highly detrimental effect but the proposed 
stochastic tuning of fuzzy FOPID controller is faithfully capable of suppressing such 
unwanted effects at a wide range of reactor operation. Such self-similar consideration of 
the sensor noise must be done while designing controller for the RRS loop, as the early 
studies by Mandelbrot and Van Ness [44] have shown that fission reaction has 
intrinsically 1/f nature. This may contaminate the feedback signal sensed by SPND and 
must be filtered using some advanced control or signal processing technique to avoid any 
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possible failure of safety critical applications like control systems for maneuvering 
nuclear reactor power. 
 
6.3. Justification of choosing complex FO fuzzy control scheme for nuclear power level 
monitoring 

It might seem that the adopted control structure is quite complex compared to the 
system under control i.e. the PWR models. The nonlinear state-space model of the reactor 
may seem to be simplistic but it should be noted that its linearized version at different 
operating powers are quite difficult to handle with a single controller. Since it is not 
feasible to switch the controller every time or tune it several times, depending on the shift 
operating point, a robust control strategy is required which will enforce guaranteed power 
level tracking at all operating points. Designing robust controller for nuclear reactor 
power level monitoring, while considering models at different operating point is not a 
trivial problem and even so when stochastic disturbances in the form of noise and 
network delays are present in the control loop. Please see investigations in [17] and [18] 
in related topics dealing with frequency domain robust controller design for different 
operating points of nuclear reactor.   

Also, from the transfer functions in equation (17), it is evident that the linearized 
models have widely varying dc gain, co-existence of very fast and very slow time 
constants and strong leads. At all of the operating powers, one pole is very close to the 
origin which will make the open loop system behave somewhat similar to a marginally 
stable system [36], though the original system was governed by a set of nonlinear 
differential equations. Tiwari et al. [2] have shown that for large reactors even the open 
loop system may be unstable due to the presence of right half plane poles. Das et al. [35] 
gave a detailed simulation comparison amongst PID, FOPID, fuzzy PID and fuzzy 
FOPID controllers to handle a nonlinear plant and an open loop unstable plant, both of 
which types are present in the model of a nuclear reactor. Since, in [35] it has been 
already shown that the complex controllers especially having fuzzy inferencing give good 
performance for such complex systems, here we have only shown the comparison of 
fuzzy PID and fuzzy FOPID structures. Also, the effectiveness of fuzzy PID [22] and 
fractional order PIλDμ controller [25] to suppress network induced stochastic 
disturbances, over simple control structures has made their hybrid i.e. fuzzy FOPID 
control scheme an obvious choice. 

It is also understandable that many process control loops e.g. the light water 
reactors are controlled using PI type controllers since they do not amplify noise. Addition 
of derivative controller though increases the sensitivity against noise but helps in 
improving the stability of the open loop integrating/unstable reactor model by addition of 
zeros. Since the controller used here is not of conventional PID type and most popular 
fuzzy controllers needs the information about the rate of change of the error for deriving 
the control law by fuzzy inferencing, the derivative action in the controller structure 
cannot be avoided here. But the amplification of the stochastic phenomena can be 
reduced by using fractional derivative of error, smoothing effect of integer and fractional 
integrator after the FLC and averaging nature of the FLC. 
 
7. Conclusion 
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Fractional order fuzzy PID controllers have been tuned for optimal power 
tracking of a nuclear reactor in load following mode. The reactor model is developed 
from the basic point-kinetics with reactivity feedback and thermal-hydraulic 
considerations. GA based optimization is used to tune the fuzzy PIλDμ controller 
parameters to achieve efficient control performance and is illustrated by credible 
simulations. The fractional order fuzzy PID controller is shown to be robust when tuned 
at any power level, whereas the simple fuzzy PID controller must be tuned at the highest 
power level to show sufficient robustness at other operating conditions. Simulation 
results also show that among the different type of noise, anti-persistent noise in the 
control loop is the most detrimental from the performance point of view. The superiority 
of the fractional order fuzzy PID controller over the simple fuzzy PID controller in terms 
of noise suppression and robust set-point tracking is demonstrated by simulation 
examples. An improved controller tuning method is proposed using stochastic 
optimization which takes the random network delay and the noise into consideration in 
the tuning phase itself. Simulation results show improved performance of both the simple 
fuzzy PID and the fuzzy FOPID controller using the proposed methodology. Future scope 
of research can be directed towards the analysis of power level regulation in large nuclear 
reactors with spatial oscillations as well.     
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