667 research outputs found

    Waveform Transition Graphs: a designer-friendly formalism for asynchronous behaviours

    Get PDF
    The paper proposes a new formal model for describing asynchronous behaviours involving the interplay of causality, concurrency and choice. The model is called Waveform Transition Graphs. Its main aim is simplifying the learning process for industrial engineers in accessing powerful synthesis tools provided for Signal Transition Graphs by sacrificing some of the expressive power of the latter. This formalism is developed based on feedback from engineers of Dialog Semiconductor.Peer ReviewedPostprint (author's final draft

    Compositional circuit design with asynchronous concepts

    Get PDF
    PhD ThesisSynchronous circuits are pervasive in modern digital systems, such as smart-phones, wearable devices and computers. Synchronous circuits are controlled by a global clock signal, which greatly simplifies their design but is also a limitation in some applications. Asynchronous circuits are a logical alternative: they do not use a global clock to synchronise their components. Instead, every component reacts to input events at the rate they occur. Asynchronous circuits are not widely adopted by industry, because they are often harder to design and require more sophisticated tools and formal models. Signal Transition Graphs (STGs) is a well-studied formal model for the specification, verification and synthesis of asynchronous circuits with state-of-the-art tool support. STGs use a graphical notation where vertices and arcs specify the operation of an asynchronous circuit. These graphical specifications can be difficult to describe compositionally, and provide little reusability of useful sections of a graph. In this thesis we present Asynchronous Concepts, a new design methodology for asynchronous circuit design. A concept is a self-contained description of a circuit requirement, which is composable with any other concept, allowing compositional specification of large asynchronous circuits. Concepts can be shared, reused and extended by users, promoting the reuse of behaviours within single or multiple specifications. Asynchronous Concepts can be translated to STGs to benefit from the existing theory and tools developed by the asynchronous circuits community. Plato is a software tool developed for Asynchronous Concepts that supports the presented design methodology, and provides automated methods for translation to STGs. The design flow which utilises Asynchronous Concepts is automated using Plato and the open-source toolsuite Workcraft, which can use the translated STGs in verification and synthesis using integrated tools. The proposed language, the design flow, and the supporting tools are evaluated on real-world case studies

    Conducted and Radiated EMI Measurements of Parallel Buck Converters Under Varying Spread Spectrum Parameters

    Get PDF
    The Conducted and Radiated EMI Measurements with Parallel Buck Converters Under Varying Spread Spectrum Parameters research senior project aims to explore the effects from Spread Spectrum Frequency Modulation (SSFM) on the input electromagnetic interference (EMI) or noise of a switching power supply, specifically with LM53601MAEVM hardware. The input EMI is important as the main input bus needs to be clean to provide a reliable source for other sensitive devices connected to it. SSFM can replace a conventional EMI filter and save weight, space, and cost. This project provides a basis in terms of the impacts of variable SSFM in simulation in order to provide an idea for its best application in future hardware implementations. The input voltage requirement for the buck converter is from 5V to 42V with output voltage of 3.6V and maximum output current of 1A. The buck converter should vary the percent modulation of the SSFM for up to +/-4%. Auxiliary circuits that will produce the necessary control signals for varying the percent modulation of SSFM were developed. Simulating LM53601MAEVM hardware with SSFM was not efficient as it required a significant amount of time and computational power. Overall, in terms of EMI, none of the simulations passed automotive CISPR standards, which is one of the potential LM53601 applications. The best results in simulation were at lower input voltages, mid-range loads, and low percentage of SSFM spread. Since EMI depends on layout, physical hardware measurements could provide further insight into the impact of variable SSFM

    Transient Response Improvement For Multi-phase Voltage Regulators

    Get PDF
    Next generation microprocessor (Vcore) requirements for high current slew rates and fast transient response together with low output voltage have posed great challenges on voltage regulator (VR) design . Since the debut of Intel 80X86 series, CPUs have greatly improved in performance with a dramatic increase on power consumption. According to the latest Intel VR11 design guidelines , the operational current may ramp up to 140A with typical voltages in the 1.1V to 1.4V range, while the slew rate of the transient current can be as high as 1.9A/ns [1, 2]. Meanwhile, the transient-response requirements are becoming stringer and stringer. This dissertation presents several topics on how to improve transient response for multi-phase voltage regulators. The Adaptive Modulation Control (AMC) is a type of non-linear control method which has proven to be effective in achieving high bandwidth designs as well as stabilizing the control loop during large load transients. It adaptively adjusts control bandwidth by changing the modulation gain, depending on different load conditions. With the AMC, a multiphase voltage regulator can be designed with an aggressively high bandwidth. When in heavy load transients where the loop could be potentially unstable, the bandwidth is lowered. Therefore, the AMC provides an optimal means for robust high-bandwidth design with excellent transient performance. The Error Amplifier Voltage Positioning (EAVP) is proposed to improve transient response by removing undesired spikes and dips after initial transient response. The EAVP works only in a short period of time during transient events without modifying the power stage and changing the control loop gain. It facilitates the error amplifier voltage recovering during transient events, achieving a fast settling time without impact on the whole control loop. Coupled inductors are an emerging topology for computing power supplies as VRs with coupled inductors show dynamic and steady-state advantages over traditional VRs. This dissertation first covers the coupling mechanism in terms of both electrical and reluctance modeling. Since the magnetizing inductance plays an important role in the coupled-inductor operation, a unified State-Space Averaging model is then built for a two-phase coupled-inductor voltage regulator. The DC solutions of the phase currents are derived in order to show the impact of the magnetizing inductance on phase current balancing. A small signal model is obtained based on the state-space-averaging model. The effects of magnetizing inductance on dynamic performance are presented. The limitations of conventional DCR current-sensing for coupled inductors are addressed. Traditional inductor DCR current sensing topology and prior arts fail to extract phase currents for coupled inductors. Two new DCR current sensing topologies for coupled inductors are presented in this dissertation. By implementation of simple RC networks, the proposed topologies can preserve the coupling effect between phases. As a result, accurate phase inductor currents and total current can be sensed, resulting in excellent current and voltage regulation. While coupled-inductor topologies are showing advantages in transient response and are becoming industry practices, they are suffering from low steady-state operating efficiency. Motivated by the challenging transient and efficiency requirements, this dissertation proposes a Full Bridge Coupled Inductor (FBCI) scheme which is able to improve transient response as well as savor high efficiency at (a) steady state. The FBCI can change the circuit configuration under different operational conditions. Its flexible topology is able to optimize both transient response and steady-state efficiency. The flexible core configuration makes implementation easy and clear of IP issues. A novel design methodology for planar magnetics based on numerical analysis of electromagnetic fields is offered and successfully applied to the design of low-voltage high power density dc-dc converters. The design methodology features intense use of FEM simulation. The design issues of planar magnetics, including loss mechanism in copper and core, winding design on PCB, core selections, winding arrangements and so on are first reviewed. After that, FEM simulators are introduced to numerically compute the core loss and winding loss. Consequently, a software platform for magnetics design is established, and optimized magnetics can then be achieved. Dynamic voltage scaling (DVS) technology is a common industry practice in optimizing power consumption of microprocessors by dynamically altering the supply voltage under different operational modes, while maintaining the performance requirements. During DVS operation, it is desirable to position the output voltage to a new level commanded by the microprocessor (CPU) with minimum delay. However, voltage deviation and slow settling time usually exist due to large output capacitance and compensation delay in voltage regulators. Although optimal DVS can be achieved by modifying the output capacitance and compensation, this method is limited by constraints from stringent static and dynamic requirements. In this dissertation, the effects of output capacitance and compensation network on DVS operation are discussed in detail. An active compensator scheme is then proposed to ensure smooth transition of the output voltage without change of power stage and compensation during DVS. Simulation and experimental results are included to demonstrate the effectiveness of the proposed scheme

    Integrated on-board battery chargers for EVs based on multiphase machines and power electronics

    Get PDF
    The concept of integration of an electric vehicle (EV) drivetrain’s components into the charging process is not novel. It has been considered over the years in both industry and academia, which resulted in a number of published papers and patents in this area. Possibilities of charging from single-phase and three-phase mains were both considered. In the former group the charging power rating cannot exceed the limit set by the single-phase mains. Therefore, the topologies are characterised with low charging powers, leading to a long duration of the charging process. Although the topologies supplied form three-phase mains are capable of achieving fast charging, they were considered to a much lesser extent. The main reason is the undesirable torque production in machines integrated into the charging process during the battery charging, which is unavoidable when a three-phase machine of either synchronous or induction type is used. The thesis investigates integrated on-board battery chargers for electric vehicles (EVs) based on multiphase machines and multiphase power electronics. At present, EVs rely on three-phase systems for machine propulsion. However, recent advances in multiphase drive technology have firmly established their potential advantages over their three-phase counterparts for this application. One of the most notable features of multiphase drive systems is their excellent fault tolerance, which is highly desirable in EVs since it enables realisation of the requirement for “limp-home” operation in the propulsion mode, in case of a fault. The thesis demonstrates that multiphase drives have an additional major advantage over three-phase systems in vehicular applications, which is related to the aspect of battery charging. It shows a clear superiority of multiphase over three-phase systems in designing integrated charging topologies for EVs. In order to support the statement, the thesis provides a multitude of novel charging solutions that incorporate multiphase machines and multiphase power electronics into the charging process. The developed solutions could contribute to achieve significantly faster and cost-free (or at a minimum additional cost) on-board chargers in the near future. The thesis demonstrates how additional degrees of freedom that exist in multiphase systems can be conveniently utilised to achieve torque-free charging operation. Therefore, although three-phase currents flow through machines’ stator windings, they are not capable of producing a torque; thus the machines do not have to be mechanically locked. The principal advantage is that either very few or no new elements are required in order to realise the charging process. Thus savings are made with regard to cost and weight, and available spare space in the vehicle is increased. The novel integrated charging solutions, developed in the thesis, are based on primarily five-phase, asymmetrical and symmetrical six-phase, and asymmetrical and symmetrical nine-phase systems. Solutions with other phase numbers are also considered. Thus, in essence, all the possible phase numbers are encompassed by the research and the solutions are valid for both induction and synchronous machines. A common attribute of all discussed topologies is that they do not require a charger as a separate device since the charging function is performed by the drivetrain elements, predominantly a multiphase machine and an inverter. Further, each topology is capable of operating in both charging and vehicle-to-grid (V2G) mode. Three types of voltage sources are considered as a power supply for the charging process, namely single-phase, three-phase, and multiphase. For each supply type, and each phase number, viability of torque-free charging operation is theoretically assessed. Mathematical models of multiphase rectifiers are developed. For each topology equivalent scheme in the charging/V2G mode of operation is constructed. A control scheme, which aims at achieving unity power factor operation and complete suppression of the low order grid current harmonics, is designed for each solution. Finally, the validity of theoretical considerations and control algorithms for the developed solutions is experimentally assessed in charging, V2G, and propulsion mode of operation. Experimental performances of all discussed topologies are compared, and advantages and shortcomings of each solution are identified and discussed

    Digital Pulse Width Modulator Techniques For Dc - Dc Converters

    Get PDF
    Recent research activities focused on improving the steady-state as well as the dynamic behavior of DC-DC converters for proper system performance, by proposing different design methods and control approaches with growing tendency to using digital implementation over analog practices. Because of the rapid advancement in semiconductors and microprocessor industry, digital control grew in popularity among PWM converters and is taking over analog techniques due to availability of fast speed microprocessors, flexibility and immunity to noise and environmental variations. Furthermore, increased interest in Field Programmable Gate Arrays (FPGA) makes it a convenient design platform for digitally controlled converters. The objective of this research is to propose new digital control schemes, aiming to improve the steady-state and transient responses of a high switching frequency FPGA-based digitally controlled DC-DC converters. The target is to achieve enhanced performance in terms of tight regulation with minimum power consumption and high efficiency at steady-state, as well as shorter settling time with optimal over- and undershoots during transients. The main task is to develop new and innovative digital PWM techniques in order to achieve: 1. Tight regulation at steady-state: by proposing high resolution DPWM architecture, based on Digital Clock Management (DCM) resources available on FPGA boards. The proposed architecture Window-Masked Segmented Digital Clock Manager-FPGA based Digital Pulse Width Modulator Technique, is designed to achieve high resolution operating at high switching frequencies with minimum power consumption. 2. Enhanced dynamic response: by applying a shift to the basic saw-tooth DPWM signal, in order to benefit from the best linearity and simplest architecture offered by the conventional counter-comparator DPWM. This proposed control scheme will help the compensator reach the steady-state value faster. Dynamically Shifted Ramp Digital Control Technique for Improved Transient Response in DC-DC Converters, is projected to enhance the transient response by dynamically controlling the ramp signal of the DPWM unit

    Independent current control of dual parallel SRM drive using a public current sensor

    Get PDF
    Switched reluctance motors (SRMs) have been considered a potential candidate for automotive applications due to its rare-earth-free feature and wide speed range. Conventionally, a current sensor is installed in each phase for the current regulation control, which will considerably add the cost and volume to multimotor drives. This paper proposes an independent current control technique for dual parallel SRM drives using only one current sensor. In order to identify the individual motor currents from the public current, a pulse injection scheme is developed accordingly. Two pulses are individually injected into the lower transistors of the dual converter in the excitation regions and the fixed current sampling points triggered by the injected pulse are presented for motor current identification. The independent current control for the dual SRM can be directly implemented by the public current sensing, although the motor parameters are different. The developed system requires only one current sensor without additional hardware or reduced system performance. The simulation and experimental results on parallel 750 W and 150 W three-phase 12/8 SRM drives are presented to confirm the effectiveness of the proposed method. With this scheme, the dual-motor drive can be more compact and cost effective for traction drive applications

    A Survey: Space Vector PWM (SVPWM) in 3φ Voltage Source Inverter (VSI)

    Get PDF
    Since last decades, the pulse width modulation (PWM) techniques have been an intensive research subject. Also, different kinds of methodologies have been presented on inverter switching losses, inverter output current/ voltage total harmonic distortion (THD), inverter maximum output of DC bus voltage. The Sinusoidal PWM is generally used to control the inverter output voltage and it helps to maintains drive performance. The recent years have seen digital modulation mechanisms based on theory of space vector i.e. Space vector PWM (SVPWM). The SVPWM mechanism offers the enhanced amplitude modulation indexes (MI) than sinusoidal PWM along with the reduction in the harmonics of inverter output voltage and reduced communication losses. Currently, the digital control mechanisms have got more attention than the analog counterparts, as the performance and reliability of microprocessors has increased. Most of the SVPWM mechanisms are performed by using the analog or digital circuits like microcontrollers and DSPs. From the recent study, analysis gives that use of Field Programmable Gate Arrays (FPGA) can offer more efficient and faster solutions. This paper discusses the numerous existing research aspects of FPGA realization for voltage source inverter (VSI) along with the future line of research

    Digital Control of Power Converters and Drives for Hybrid Traction and Wireless Charging

    Get PDF
    In the last years environmental issues and constant increase of fuel and energy cost have been incentivizing the development of low emission and high efficiency systems, either in traction field or in distributed generation systems from renewable energy sources. In the automotive industry, alternative solutions to the standard internal combustion engine (ICE) adopted in the conventional vehicles have been developed, i.e. fuel cell electric vehicles (FCEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEV) or pure electric vehicles (EVs), also referred as battery powered electric vehicles (BEV). Both academic and industry researchers all over the world are still facing several technical development areas concerning HEV components, system topologies, power converters and control strategies. Efficiency, lifetime, stability and volume issues have moved the attention on a number of bidirectional conversion solutions, both for the energy transfer to/from the storage element and to/from the electric machine side. Moreover, along with the fast growing interest in EVs and PHEVs, wireless charging, as a new way of charging batteries, has drawn the attention of researchers, car manufacturers, and customers recently. Compared to conductive power transfer (usually plug-in), wireless power transfer (WPT) is more convenient, weather proof, and electric shock protected. However, there is still more research work needs to be done to optimize efficiency, cost, increase misalignment tolerance, and reduce size of the WPT chargers. The proposed dissertation describes the work from 2012 to 2014, during the PhD course at the Electric Drives Laboratory of the University of Udine and during my six months visiting scholarship at the University of Michigan in Dearborn. The topics studied are related to power conversion and digital control of converters and drives suitable for hybrid/electric traction, generation from renewable energy sources and wireless charging applications. From the theoretical point of view, multilevel and multiphase DC/AC and DC/DC converters are discussed here, focusing on design issues, optimization (especially from the efficiency point-of-view) and advantages. Some novel modulation algorithms for the neutral-point clamped three-level inverter are presented here as well as a new multiphase proposal for a three-level buck converter. In addition, a new active torque damping technique in order to reduce torque oscillations in internal combustion engines is proposed here. Mainly, two practical implementations are considered in this dissertation, i.e. an original two-stage bi-directional converter for mild hybrid traction and a wireless charger for electric vehicles fast charge

    Design and Implementation of Control Techniques of Power Electronic Interfaces for Photovoltaic Power Systems

    Get PDF
    The aim of this thesis is to scrutinize and develop four state-of-the-art power electronics converter control techniques utilized in various photovoltaic (PV) power conversion schemes accounting for maximum power extraction and efficiency. First, Cascade Proportional and Integral (PI) Controller-Based Robust Model Reference Adaptive Control (MRAC) of a DC-DC boost converter has been designed and investigated. Non-minimum phase behaviour of the boost converter due to right half plane zero constitutes a challenge and its non-linear dynamics complicate the control process while operating in continuous conduction mode (CCM). The proposed control scheme efficiently resolved complications and challenges by using features of cascade PI control loop in combination with properties of MRAC. The accuracy of the proposed control system’s ability to track the desired signals and regulate the plant process variables in the most beneficial and optimised way without delay and overshoot is verified. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed two times with considerably improved disturbance rejection. Second, (P)roportional Gain (R)esonant and Gain Scheduled (P)roportional (PR-P) Controller has been designed and investigated. The aim of this controller is to create a variable perturbation size real-time adaptive perturb and observe (P&O) maximum power point tracking (MPPT) algorithm. The proposed control scheme resolved the drawbacks of conventional P&O MPPT method associated with the use of constant perturbation size that leads to a poor transient response and high continuous steady-state oscillations. The prime objective of using the PR-P controller is to utilize inherited properties of the signal produced by the controller’s resonant path and integrate it to update best estimated perturbation that represents the working principle of extremum seeking control (ESC) to use in a P&O algorithm that characterizes the overall system learning-based real time adaptive (RTA). Additionally, utilization of internal dynamics of the PR-P controller overcome the challenges namely, complexity, computational burden, implantation cost and slow tracking performance in association with commonly used soft computing intelligent systems and adaptive control strategies. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed five times with reduced steady-state oscillations around maximum power point (MPP) and more than 99% energy extracting efficiency.Third, the interleaved buck converter based photovoltaic (PV) emulator current control has been investigated. A proportional-resonant-proportional (PR-P) controller is designed to resolve the drawbacks of conventional PI controllers in terms of phase management which means balancing currents evenly between active phases to avoid thermally stressing and provide optimal ripple cancellation in the presence of parameter uncertainties. The proposed controller shows superior performance in terms of 10 times faster-converging transient response, zero steady-state error with significant reduction in current ripple. Equal load sharing that constitutes the primary concern in multi-phase converters has been achieved with the proposed controller. Implementing of robust control theory involving comprehensive time and frequency domain analysis reveals 13% improvement in the robust stability margin and 12-degree bigger phase toleration with the PR-P controller. Fourth, a symmetrical pole placement Method-based Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller has been designed and investigated. The proposed PR-P controller resolved the issues associated with the use of the PI controller which are tracking repeating control input signal with zero steady-state and mitigating the 3rd order harmonic component injected into the grid for single-phase PV systems. Additionally, the PR-P controller has overcome the drawbacks of frequency detuning in the grid and increase in the magnitude of odd number harmonics in the system that constitute the common concerns in the implementation of conventional PR controller. Moreover, the unprecedented design process based on changing notch filter dynamics with symmetrical pole placement around resonant frequency overcomes the limitations that are essentially complexity and dependency on the precisely modelled system. The verification and validation process of the proposed control schemes has been conducted using MATLAB/Simulink and implementing MATLAB/Simulink/State flow on dSPACE Real-time-interface (RTI) 1007 processor, DS2004 High-Speed A/D and CP4002 Timing and Digital I/O boards
    • …
    corecore