93 research outputs found

    A Distributed Caching Approach for Improved Data Availability in Rural Wireless Mesh Networks

    Get PDF
    The performance of wireless mesh networks (WMNs) deployed for Internet access in rural settings is affected by several factors. Typically, deployments in African domains use cheap and computationally constrained devices with challenges such as power fluctuations, gateway congestion, VSAT communications asymmetry and low bandwidth, which affects throughput under dynamic scenarios. Caching methods can offer improvement for content availability to ensure a reliable quality of experience (QoE) for rural dwellers. Primarily, we integrate a modified multicast technique and overhearing for object caching and cache dissemination. We proposed a Distributed Overheard-object Caching Approach (DOCA) and evaluated the performance employing simulations. The outcome shows significant improvements over the random-path-cache-request (RPCR) strategy with increased data availability and reduced communication cost regarding response time for the outlined rural scenarios. Moreover, the optimization of gateway load helps to conserve network resources such as bandwidth and nodal energy considerably

    Ant-based evidence distribution with periodic broadcast in attacked wireless network

    Get PDF
    In order to establish trust among nodes in large wireless networks, the trust certicates need to be distributed and be readily accessible. However, even so, searching for trust certicates will still become highly cost and delay especially when wireless network is suering CTS jamming attack. We believe the individual solution can lead us to solve this combination problems in the future. Therefore, in this work, we investigate the delay and cost of searching a distributed certicate and the adverse eects of fabiricated control packet attacks on channel throughput and delivery ratio respectively, and propose two techniques that can improve the eciency of searching for such certicates in the network and mitigate the CTS jamming attack's eect. Evidence Distribution based on Periodic Broadcast (EDPB) is the rst solution we presented to help node to quickly locate trust certicates in a large wireless sensor network. In this solution, we not only take advantages from swarm intelligence alogrithm, but also allow nodes that carrying certicates to periodically announce their existence. Such announcements, together with a swarm-intelligence pheromone pdate procedure, will leave traces on the nodes to lead query packets toward the certicate nodes. We then investigate the salient features of this schema and evaluate its performance in both static and mobile networks. This schema can also be used for other essential information dissemination in mobile ad hoc networks. The second technqiue, address inspection schema (AIS) xes vulnerabilities exist in distribution coordinating function (DCF) dened in IEEE 802.11 standard so that each node has the ability to beat the impact of CTS jamming attack and furthermore, benets network throughput. We then perform ns-2 simulations to evaluate the benet of AIS

    A Novel Approach to Optimize Cognitive Radio Network Utilization using Cascading Technique

    Get PDF
    The cognitive network suffers from scarcity of channels. The Unlicensed users (UU) borrow channels from the licensed users (LU). But when the LUs want them, the UUs have to stop their transmission and handle the channel back to the LUs. This results in delay in transmission of data by UUs. We propsed  an algorithm mostly focusing to meet the delay,by using a data cascading technique where the data of the UUs are stored in the intermediate nodes so that even if the transmission is interrupted, the data is not lost. The experimental results show that proposed system is better than other existing systems

    Priority-Based Content Delivery in the Internet of Vehicles through Named Data Networking

    Get PDF
    Named Data Networking (NDN) has been recently proposed as a prominent solution for content delivery in the Internet of Vehicles (IoV), where cars equipped with a variety of wireless communication technologies exchange information aimed to support safety, traffic efficiency, monitoring and infotainment applications. The main NDN tenets, i.e., name-based communication and in-network caching, perfectly fit the demands of time- and spatially-relevant content requested by vehicles regardless of their provenance. However, existing vehicular NDN solutions have not been targeted to wisely ensure prioritized traffic treatment based on the specific needs of heterogeneous IoV content types. In this work, we propose a holistic NDN solution that, according to the demands of data traffic codified in NDN content names, dynamically shapes the NDN forwarding decisions to ensure the appropriate prioritization. Specifically, our proposal first selects the outgoing interface(s) (i.e., 802.11, LTE) for NDN packets and then properly tunes the timing of the actual transmissions. Simulation results show that the proposed enhancements succeed in achieving differentiated traffic treatment, while keeping traffic load under control

    Information-centric communication in mobile and wireless networks

    Get PDF
    Information-centric networking (ICN) is a new communication paradigm that has been proposed to cope with drawbacks of host-based communication protocols, namely scalability and security. In this thesis, we base our work on Named Data Networking (NDN), which is a popular ICN architecture, and investigate NDN in the context of wireless and mobile ad hoc networks. In a first part, we focus on NDN efficiency (and potential improvements) in wireless environments by investigating NDN in wireless one-hop communication, i.e., without any routing protocols. A basic requirement to initiate informationcentric communication is the knowledge of existing and available content names. Therefore, we develop three opportunistic content discovery algorithms and evaluate them in diverse scenarios for different node densities and content distributions. After content names are known, requesters can retrieve content opportunistically from any neighbor node that provides the content. However, in case of short contact times to content sources, content retrieval may be disrupted. Therefore, we develop a requester application that keeps meta information of disrupted content retrievals and enables resume operations when a new content source has been found. Besides message efficiency, we also evaluate power consumption of information-centric broadcast and unicast communication. Based on our findings, we develop two mechanisms to increase efficiency of information-centric wireless one-hop communication. The first approach called Dynamic Unicast (DU) avoids broadcast communication whenever possible since broadcast transmissions result in more duplicate Data transmissions, lower data rates and higher energy consumption on mobile nodes, which are not interested in overheard Data, compared to unicast communication. Hence, DU uses broadcast communication only until a content source has been found and then retrieves content directly via unicast from the same source. The second approach called RC-NDN targets efficiency of wireless broadcast communication by reducing the number of duplicate Data transmissions. In particular, RC-NDN is a Data encoding scheme for content sources that increases diversity in wireless broadcast transmissions such that multiple concurrent requesters can profit from each others’ (overheard) message transmissions. If requesters and content sources are not in one-hop distance to each other, requests need to be forwarded via multi-hop routing. Therefore, in a second part of this thesis, we investigate information-centric wireless multi-hop communication. First, we consider multi-hop broadcast communication in the context of rather static community networks. We introduce the concept of preferred forwarders, which relay Interest messages slightly faster than non-preferred forwarders to reduce redundant duplicate message transmissions. While this approach works well in static networks, the performance may degrade in mobile networks if preferred forwarders may regularly move away. Thus, to enable routing in mobile ad hoc networks, we extend DU for multi-hop communication. Compared to one-hop communication, multi-hop DU requires efficient path update mechanisms (since multi-hop paths may expire quickly) and new forwarding strategies to maintain NDN benefits (request aggregation and caching) such that only a few messages need to be transmitted over the entire end-to-end path even in case of multiple concurrent requesters. To perform quick retransmission in case of collisions or other transmission errors, we implement and evaluate retransmission timers from related work and compare them to CCNTimer, which is a new algorithm that enables shorter content retrieval times in information-centric wireless multi-hop communication. Yet, in case of intermittent connectivity between requesters and content sources, multi-hop routing protocols may not work because they require continuous end-to-end paths. Therefore, we present agent-based content retrieval (ACR) for delay-tolerant networks. In ACR, requester nodes can delegate content retrieval to mobile agent nodes, which move closer to content sources, can retrieve content and return it to requesters. Thus, ACR exploits the mobility of agent nodes to retrieve content from remote locations. To enable delay-tolerant communication via agents, retrieved content needs to be stored persistently such that requesters can verify its authenticity via original publisher signatures. To achieve this, we develop a persistent caching concept that maintains received popular content in repositories and deletes unpopular content if free space is required. Since our persistent caching concept can complement regular short-term caching in the content store, it can also be used for network caching to store popular delay-tolerant content at edge routers (to reduce network traffic and improve network performance) while real-time traffic can still be maintained and served from the content store

    Performance improvement of ad hoc networks using directional antennas

    Get PDF
    We investigate preventive link maintenance scheme to on-demand routing algorithms. The scheme of creating directional link is proposed to extend the life of link that is about to break. We see the performance improvement at network layer by using the proposed scheme. We do a comparative performance study between omni directional and directional antennas for DSR (On-demand routing protocol) using simulation with OPNET. By using directional antennas, substantial gain is achieved in terms of end-to-end delay, aggregate throughput, average data packets dropped, packet delivery ratio, and routing overhead. The proposed scheme is general and can be used with any other on-demand routing algorithms

    Comunicações cooperativas em redes IEEE 802.11 multi-débito

    Get PDF
    Doutoramento em TelecomunicaçõesEsta tese apresenta um estudo sobre alguns dos protocolos de cooperação MAC para redes sem fios utilizando o sistema IEEE 802.11 multi-débito. É proposto um novo modelo de arquitetura para a categorização e análise da cooperação em redes sem fios, tendo este modelo sido aplicado a protocolos cooperativos existentes para camada MAC. É investigado como as características do meio físico, assim como os requisitos de níveis superiores podem ser aplicados ao processo de cooperação, com vista a melhorar as características de funcionamento da rede de comunicações. Para este propósito são exploradas as métricas mais relevantes para o processo de cooperação. São igualmente estudados os limites impostos pelos protocolos da camada MAC e as limitações práticas impostas por protocolos da família de normas que compõem o IEEE 802.11. Neste trabalho foi criada uma métrica multicamada, que permite considerar os requisitos aplicacionais de performance e o tipo de tráfego, assim como a mobilidade dos dispositivos, no funcionamento dos mecanismos de cooperação. Como forma de validação, e para corretamente avaliar o impacto da métrica, um novo protocolo de cooperação foi desenvolvido e implementado. O seu funcionamento é descrito de forma analítica assim como validado através de a um ambiente de simulação. Os resultados obtidos mostram que a utilização de uma métrica multicamada é uma técnica robusta, fornecendo melhorias consistentes no contexto de redes IEEE 802.11. São igualmente demonstradas várias outras características de funcionamento com impacto para as comunicações. Estes dados fornecem uma visão real e encorajadora para a realização de mais pesquisas para a melhoria da performance dos protocolos cooperativos, assim como a sua utilização num variado número de aplicações futuras. No final do documento são apresentados alguns desafios para a continuação da investigação deste tópico.This thesis presents a study on cooperative MAC protocols in Multi-rate IEEE 802.11 wireless networks. We proposed a novel architectural framework for cooperation algorithms in wireless network. This behavior model was considered for existing cooperative MAC protocols. A classification of these protocols was presented based on their cooperation objectives. We investigate how physical layer specifications and higher layer requirements can be applied in cooperation MAC protocols to enhance the overall network performance. For this purpose, we exploit the appropriate metrics which are consistent to the cooperation objectives. Performance bounds provided by MAC protocols and practical limitations posed by IEEE 802.11 standards have been also studied. A cross layer metric was achieved in cooperative MAC protocols to adapt cooperation performance to traffic service requirements and mobility scenario. In order to realize the impact of this metric, a new cooperative MAC protocol is designed and implemented. Analytical and simulation of this protocol was performed in different scenarios and environments. The obtained results have shown a robust technique in providing consistent cross layer optimization in context of IEEE 802.11 networks. A number of findings was experienced which are illustrated at the end. These observations would enhance and encourage potential research in the area and optimize the performance of cooperative protocols for a number of interesting applications in future. A summary of future research challenges is presented at the end

    Enhancing the 3GPP V2X architecture with information-centric networking

    Get PDF
    Vehicle-to-everything (V2X) communications allow a vehicle to interact with other vehicles and with communication parties in its vicinity (e.g., road-side units, pedestrian users, etc.) with the primary goal of making the driving and traveling experience safer, smarter and more comfortable. A wide set of V2X-tailored specifications have been identified by the Third Generation Partnership Project (3GPP) with focus on the design of architecture enhancements and a flexible air interface to ensure ultra-low latency, highly reliable and high-throughput connectivity as the ultimate aim. This paper discusses the potential of leveraging Information-Centric Networking (ICN) principles in the 3GPP architecture for V2X communications. We consider Named Data Networking (NDN) as reference ICN architecture and elaborate on the specific design aspects, required changes and enhancements in the 3GPP V2X architecture to enable NDN-based data exchange as an alternative/complementary solution to traditional IP networking, which barely matches the dynamics of vehicular environments. Results are provided to showcase the performance improvements of the NDN-based proposal in disseminating content requests over the cellular network against a traditional networking solution119sem informaçãosem informaçã

    Cache-Aided Millimeter Wave Ad-Hoc Networks with Contention-Based Content Delivery

    Get PDF
    The narrow-beam operation in millimeter wave (mmWave) networks minimizes the network interference leading to a noise-limited networks in contrast with interference-limited ones. The medium access control (MAC) layer throughput, and interference management strategies heavily depend on the noise-limited or interference-limited regime. Yet, these regimes are not considered in recent mmWave MAC layer designs, which can potentially have disastrous consequences on the communication performance. In this paper, we investigate the performance of cache-enabled MAC based mmWave ad-hoc networks, where randomly distributed nodes are supported by a cache. The adhoc nodes are modeled as homogenous Poisson Point Processes (PPP). Specifically, we study the optimal content placement (or caching placement) at desirable mmWave nodes using a network model that accounts for uncertainties both in node locations and blockages. We propose a contention-based multimedia delivery protocol to avoid collisions among the concurrent transmissions. Subsequently, only the node with smallest back-off timer amongst its contenders is allowed to transmit. We then characterize the average success probability of content delivery. We also characterize the cache hit ratio probability, and transmission probability of this system under essential factors, such as blockages, node density, path loss and caching parameters
    corecore