1,733 research outputs found

    ITU-PRP: Parallel and Distributed Computing Middleware for Java Developers

    Get PDF
    ITU-PRP provides a Parallel Programming Framework for Java Developers on which they can adapt their sequential application code to operate on a distributed multi-host parallel environment. Developers would implement parallel models, such as Loop Parallelism, Divide and Conquer, Master-Slave and Fork-Join by the help of an API Library provided under framework. Produced parallel applications would be submitted to a middleware called Parallel Running Platform (PRP), on which parallel resources for parallel processing are being organized and performed. The middleware creates Task Plans (TP) according to applicationā€™s parallel model, assigns best available resource Hosts, in order to perform fast parallel processing. Task Plans will be created dynamically in real time according to resources actual utilization status or availability, instead of predefined/preconfigured task plans. ITU-PRP achieves better efficiency on parallel processing over big data sets and distributes divided base data to multiple hosts to be operated by Coarse-Grained parallelism. According to this model distributed parallel tasks would operate independently with minimal interaction until processing ends

    ITU-PRP: Parallel and Distributed Computing Middleware for Java Developers

    Get PDF
    ITU-PRP provides a Parallel Programming Framework for Java Developers on which they can adapt their sequential application code to operate on a distributed multi-host parallel environment. Developers would implement parallel models, such as Loop Parallelism, Divide and Conquer, Master-Slave and Fork-Join by the help of an API Library provided under framework. Produced parallel applications would be submitted to a middleware called Parallel Running Platform (PRP), on which parallel resources for parallel processing are being organized and performed. The middleware creates Task Plans (TP) according to applicationā€™s parallel model, assigns best available resource Hosts, in order to perform fast parallel processing. Task Plans will be created dynamically in real time according to resources actual utilization status or availability, instead of predefined/preconfigured task plans. ITU-PRP achieves better efficiency on parallel processing over big data sets and distributes divided base data to multiple hosts to be operated by Coarse-Grained parallelism. According to this model distributed parallel tasks would operate independently with minimal interaction until processing ends

    Real time- and control software for the new orbit measurement system for the CERN SPS

    Get PDF
    The 240 channel SPS Orbit acquisition system is implemented on a PowerPC under the LynxOS operating system, making use of multi threaded real-time capabilities. The acquired data is transferred efficiently by DMA via the PCI bus into the main memory. System configuration aspects were implemented in a Broker architecture, where individual threads communicate with an Oracle database and the acquisition systems. This Broker hides the implementation details of the front-end systems. A versatile configuration client is provided in Java, to provide both local graphical user interfaces and remote WWW access using a dedicated gateway to the SL equipment layer. The timing diagnostics of the acquisition system are provided in a LabView application integrating oscilloscope control and channel multiplex control. This paper describes in detail the technical solutions implemented and reports on the arguments, which have led to particular choices

    Dynamic server selection in a multithreaded network computing environment

    Get PDF
    Research has been conducted at the Iowa State University Center for Nondestructive Evaluation (CNDE) to create a structure in which existing numerical modeling programs can be converted to execute in a network computing environment. This research task is to include the development of an extensible architecture which accommodates the timely integration of new processing capabilities and requirements. The research was motivated by many needs within the CNDE to reduce the predicted run times associated with the current and future modeling programs

    Aviation System Analysis Capability Executive Assistant Design

    Get PDF
    In this technical document, we describe the design developed for the Aviation System Analysis Capability (ASAC) Executive Assistant (EA) Proof of Concept (POC). We describe the genesis and role of the ASAC system, discuss the objectives of the ASAC system and provide an overview of components and models within the ASAC system, and describe the design process and the results of the ASAC EA POC system design. We also describe the evaluation process and results for applicable COTS software. The document has six chapters, a bibliography, three appendices and one attachment

    Patterns for Providing Real-Time Guarantees in DOC Middleware - Doctoral Dissertation, May 2002

    Get PDF
    The advent of open and widely adopted standards such as Common Object Request Broker Architecture (CORBA) [47] has simpliļ¬ed and standardized the development of distributed applications. For applications with real-time constraints, including avionics, manufacturing, and defense systems, these standards are evolving to include Quality-of-Service (QoS) speciļ¬cations. Operating systems such as Real-time Linux [60] have responded with interfaces and algorithms to guarantee real-time response; similarly, languages such as Real-time Java [59] include mechanisms for specifying real-time properties for threads. However, the middleware upon which large distributed applications are based has not yet addressed end-to-end guarantees of QoS speciļ¬cations. Unless this challenge can be met, developers must resort to ad hoc solutions that may not scale or migrate well among different platforms. This thesis provides two contributions to the study of real-time Distributed Object Computing (DOC) middleware. First, it identiļ¬es potential bottlenecks and problems with respect to guaranteeing real-time performance in contemporary middleware. Experimental results illustrate how these problems lead to incorrect real-time behavior in contemporary middleware platforms. Second, this thesis presents designs and techniques for providing real-time QoS guarantees in DOC middleware in the context of TAO [6], an open-source and widely adopted implementation of real-time CORBA. Architectural solutions presented here are coupled with empirical evaluations of end-to-end real-time behavior. Analysis of the problems, forces, solutions, and consequences are presented in terms of patterns and frame-works, so that solutions obtained for TAO can be appropriately applied to other real-time systems

    Holistic debugging - enabling instruction set simulation for software quality assurance

    Get PDF
    We present holistic debugging, a novel method for observing execution of complex and distributed software. It builds on an instruction set simulator, which provides reproducible experiments and non-intrusive probing of state in a distributed system. Instruction set simulators, however, only provide low-level information, so a holistic debugger contains a translation framework that maps this information to higher abstraction level observation tools, such as source code debuggers. We have created Nornir, a proof-of-concept holistic debugger, built on the simulator Simics. For each observed process in the simulated system, Nornir creates an abstraction translation stack, with virtual machine translators that map machine-level storage contents (e.g. physical memory, registers) provided by Simics, to application-level data (e.g. virtual memory contents) by parsing the data structures of operating systems and virtual machines. Nornir includes a modified version of the GNU debugger (GDB), which supports non-intrusive symbolic debugging of distributed applications. Nornir's main interface is a debugger shepherd, a programmable interface that controls multiple debuggers, and allows users to coherently inspect the entire state of heterogeneous, distributed applications. It provides a robust observation platform for construction of new observation tools
    • ā€¦
    corecore