
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
CERN � SL DIVISION

Geneva, Switzerland
November, 1999

CERN SL-99-069 BI

REAL TIME- AND CONTROL SOFTWARE FOR THE NEW
ORBIT MEASUREMENT SYSTEM FOR THE CERN SPS

J.C. de Vries, S. Baratange, C. Boccard, T. Bogey, D. Coussemaeker, M. Dach, J.J. Gras, H. Hiller,
S. Jackson, K. Rybalchenko, CERN, Geneva, Switzerland.

J. Brazier, Brazier Systems and Consultants Ltd., Southampton, UK.

Abstract

The 240 channel SPS Orbit acquisition system is implemented on a PowerPC under
the LynxOS operating system, making use of multi threaded real-time capabilities. The
acquired data is transferred efficiently by DMA via the PCI bus into the main memory.
System configuration aspects were implemented in a Broker architecture, where
individual threads communicate with an Oracle database and the acquisition systems.
This Broker hides the implementation details of the front-end systems. A versatile
configuration client is provided in Java, to provide both local graphical user interfaces
and remote WWW access using a dedicated gateway to the SL equipment layer. The
timing diagnostics of the acquisition system are provided in a LabView application
integrating oscilloscope control and channel multiplex control. This paper describes in
detail the technical solutions implemented and reports on the arguments, which have led
to particular choices.

Presented at ICALEPS’99
International Conference on Accelerator and Large Experimental Physics

Trieste, Italy
4-8 October

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25273267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International conference on accelerator and large experimental physics control systems (ICALEPCS)
4-8 October 1999, Stazione Marittima, Trieste, Italy

1

REAL TIME- AND CONTROL SOFTWARE FOR THE NEW ORBIT
MEASUREMENT SYSTEM FOR THE CERN SPS

J.C. de Vries, S. Baratange, C. Boccard, T. Bogey, D. Coussemaeker, M. Dach, J.J. Gras, H. Hiller,
S. Jackson, K. Rybalchenko, CERN, Geneva, Switzerland

J. Brazier, Brazier Systems and Consultants Ltd., Southampton, UK

Abstract

The 240 channel SPS Orbit acquisition system is
implemented on a PowerPC under the LynxOS operating
system, making use of multi threaded real-time
capabilities. The acquired data is transferred efficiently
by DMA via the PCI bus into the main memory. System
configuration aspects were implemented in a Broker
architecture, where individual threads communicate with
an Oracle database and the acquisition systems. This
Broker hides the implementation details of the front-end
systems. A versatile configuration client is provided in
Java, to provide both local graphical user interfaces and
remote WWW access using a dedicated gateway to the
SL equipment layer. The timing diagnostics of the
acquisition system are provided in a LabView application
integrating oscilloscope control and channel multiplex
control. This paper describes in detail the technical
solutions implemented and reports on the arguments,
which have led to particular choices.

1 MOTIVATION
With old components becoming obsolete, new

technologies available and new demands for functionality
(like turn by turn measurements) the replacement of the
old orbit system (COPOS) was inevitable. In order to
profit from the associated software developments for
similar systems in beam transfer, the need for a common
configuration strategy (XPOS) was clear. The creation of
this environment allowed the transparent migration to the
new orbit and trajectory system (MOPOS).

The replacement orbit system not only has the ability
to provide multiple orbits in any point in the SPS-cycle
but also allows multiple clients to access the system in
parallel. In addition, the high performance hardware
retains turn by turn beam position measurements for all
pickups over the whole cycle and allows real-time
calibration during every SPS cycle.

2 FRONT-END ACQUISITION

2.1 General Layout

The real-time software within the MOPOS system is
based upon the ROCS core software used successfully in
other systems within the SL Division at CERN. This has
been more fully described in [1]. The ROCS software is a
generalised framework for creating event driven real-time
tasks. The system allows autonomous real time control of
the acquisition hardware, and at the same time allows

background data conversion to take place. Additionally,
user commands (which enter via network ‘Equip’ calls)
are also executed in parallel.

The software consists of three sections viz. User
interface and control modules, timing and sequencing
modules and acquisition hardware control modules.

These modules consist of a number of processes and
threads connected together with Inter Process
Communication Links (IPC) and using Shared Memory
structures to hold the data. These are all written in C and
run on top of the LynxOS operating system. LynxOS is
an Unix-like RTOS, which runs on the CES RIO2
PowerPC processor.

The User Interface consists of three separate modules,
namely

x The ‘Equip Server’ which receives commands
from the rest of the system via an RPC based
Equip call and passes any data back.

x The command processor ‘rocsfe’ packages the
command into an Action Structure, tagged with
the special event Now.

x The Socket Server module ‘sockmod’ provides an
alternative, high speed TCP channel with which to
pass large amounts of data back.

The heart of the system is the sequencer and action
tasks. This is a multi-threaded program which, on an
event, examines a queue of actions and spawns a thread
to carry out the action. There are two types of actions:
User where the action is performed once and then
discarded and Real-time where the action is left on the
queue to be repeated. Examples of real-time actions in
MOPOS are those carried out at ‘Beam-in’ and Beam-
out’ which start and stop the acquisition logic. The
communication between the action code and the sub-
systems is done with messages sent to the appropriate
modules. Some actions, such as background tasks that
filter the raw acquisition data, result in new processes
being created.

The timing module drives the sequencer by interpreting
the machine timing events (received with the TG8 timing
card) and generating a stream of logical event messages.

System tables in the form of the per crate, per channel
and per event parameters along with the calibration data
are kept in a shared memory area with access routines
such that they may be used by any part of the system.
Static versions of these tables are held on a special battery
backed, non-volatile memory board.

International conference on accelerator and large experimental physics control systems (ICALEPCS)
4-8 October 1999, Stazione Marittima, Trieste, Italy

2

2.2 DMA

A warning event associated with each elementary cycle
invokes a real-time task, which configures the driver of
the MOPOS acquisition controller interface (MACI). This
programs the PCI bus controllers (PLX9080) to transfer
the acquisition data from the FIFO memory into system
memory. The driver interrupt service routine re-programs
the bus controller when data transfer exceeds 8 MB.
Important system specifications include:

x Processor PowerPC 604e/200 MHz
(CES RIO2 8062)

x PMC slots: 6 (CES PEB 6400)
x Data Rate 8 MB/s
x Acquisition Memory 224 MB
x Beam data capacity 28 seconds.
x Acquisition channels 40 times 2.

Dedicated drivers have been developed for the MACI,
the trigger module and the input/output module.

3 CONFIGURING MOPOS
In creating a suitable strategy for MOPOS, many

choices had to be made. The chosen strategy should be
complex enough to empower users with the facilities they
require, but at the same time it should be comprehensible
to non-computer experts. In addition, the choice of
possible techniques and tools grows each year; hence the
choice of implementation strategy also requires careful
consideration.

On analysis of the data requirements, it became evident
that the data would fall into two categories:

Direct data: This type of data remains constant
regardless of the state of the accelerator. An example of
direct data is the configuration of detectors.

Indirect data: This data changes depending on the
definition of the current running supercycle. An example
of such data, is event data, which changes according to
factors such as timing.

As well as data organization, it was envisaged that the
new configuration system should be designed to
eventually incorporate the configuration of other beam

measurement systems (from the transfer lines). Although
the configuration of these other systems differs from
MOPOS, many of the same characteristics are shared.
Consequently the choice of an object- oriented database
initially appeared to be the natural solution. Closer
examination of the indirect data however, revealed that a
relational database would be more suitable. As a
compromise, a relational database was chosen as a basis
for data storage, and object oriented techniques where
used in its design. Oracle 7 in particular was chosen as
already in use at CERN in the operational environment.

Having chosen the basis for storing configuration data,
a strategy for database population was required.
Proprietary tools supplied by Oracle offered the easiest
solution and quickest development time. However these
lacked the features offered by the legacy text-based
configuration tools used in COPOS - platform
independence (Oracle 8 now provides 'web' deployment
facilities, but at the time this was not available). It was
decided that this platform independence should be kept
and as a result, Java was chosen as a development
platform for in-house solutions. The choice of Java was
further reinforced with its ability to be deployed on the
web, and therefore be accessible by the expert from
home.

A two-layer (two-tier) development process was
therefore pursued, with Oracle Forms as the basis for
rapid development for the system developers, and a Java
application/applet as the basis for operators and end-
users.

4 CONFIGURATION CLIENT / SERVER
With the issue of development environment resolved,

the problem of controlled database access was assessed.
Tests using the Java database Connectivity (JDBC)
package proved this solution would be adequate for
communications between the client and database, but an
additional factor had to be considered. Although the main
access to data would be through the configuration client,
other operational software would also require access to
the data. If all data access mechanisms were written in
Java, this would require existing operational software to
be re-written in Java. This was definitely not acceptable
and so the concept of the configuration broker was
conceived.

The broker provides services to clients for database
transactions. In addition, the broker also provides actions
for data transfer to and from the hardware. The broker
mechanism not only provides services, but makes the
request for these services as transparent as possible.
Furthermore, clients may continue execution whilst the
broker carries out actions. When both the client and

Detector
Data

Calibration
Data

Event
Data

MOPOS Crate

Detector
Definitions

Event
Definitions

Supercycle
Definitions

Calibration
Definitions

Current Event
Definitions

Broker

Ops Software

Java Client

Oracle

International conference on accelerator and large experimental physics control systems (ICALEPCS)
4-8 October 1999, Stazione Marittima, Trieste, Italy

3

broker are ready the transaction is completed. An
example dialogue between client and broker is as follows:

x Client requests service from broker.
x 'Class’ and location of target system assessed.
x Broker begins execution of 'class' dependant code

and returns a request ID (RID) to client.
x Client free whilst request is being handled.
x Client asks broker for results using RID.

The broker is implemented using three threads under
C++ in order to achieve good performance and 'class'
transparency. Each thread has a designated task - Oracle
access, equipment access, and server access. During
execution of a service, the broker decides which
operations are required, and instructs the relevant thread
to perform its task. This allows the server to perform
several actions in parallel, thus further enhancing
performance.

With the creation of a broker layer, the functionality
required from the Java client is reduced to a user interface
which allows the user to request services and view the
results. Currently, services available from the Java client
include configuration of all MOPOS data, diagnostics,
news, tuning, calibration and facilities to interrogate and
change the current status of hardware.

The deployment of the configuration client as an
applet, offers great flexibility in terms of accessibility, but
also introduces a new problem of security. To address
this, all users must acquire a token (by supplying a user
ID and password) from an intermediate gateway
(operating from a Linux machine) before communication
with the broker may take place. In addition, a record of
all client activity is stored in the database.

EXTENDING THE CLIENT

After the success of the Java client, the incorporation
of other clients was also considered. An application used
to display positional data was one such application. In
order to maintain the initial design concepts, an

intermediate server was developed between the
equipment and the Java client. This time, the client was a
subscription driven acquisition server. The role of the
Java client in this case was to provide facilities to plot the
acquired data using third party graph classes from the KL
group.

5 MULTI-TURN ANALYSIS
Multi turn applications require many seconds of

calibrated turn by turn position measurements
(trajectories) resulting in megabytes of data to be
transferred. To obtain efficient transfer and avoid size
limitations in buffer oriented protocols (SL-EQUIP); a
TCP/IP socket was used instead. The data is transferred
via a set of pipes from the acquisition memory to an
external process and then sent to the socket server. Many
such external processes can be created to supply user
specific data processing.

6 DIAGNOSTICS TOOLS
Acquisition timing diagnostics have been provided by

the installation of dedicated low-cost oscilloscopes
(Tektronix TDS210) and multiplex modules. The
LabView VI for the TDS210 from National Instruments
was extended to include the multiplex control and settings
handling via XPOS configuration.

7 CONCLUSION
The ROCS system provided the crucial structure to

handle beam-synchronous tasks, handle communication
channels and provide remote diagnostics.

Using DMA for data transfer into the system memory
has provided an efficient means of acquiring the large
amounts of data required. As a result of using DMA the
processor power can now be utilized to serve user
requests and provide calibrated orbits.

The chosen configuration strategy achieves its goal to
provide extendable and manageable means of storing
configuration data. It hides the implementation details,
and provides clients with services for different ‘classes’
of systems. The decision to use Java to implement clients
has allowed home access for experts through the WWW,
and the use of the applications on many platforms. Due to
the object-oriented nature of Java, sub-components of the
configuration client can be called as stand-alone
applications.

The new plotting package supplied by the KL group
showed that the use of Java in data analysis was feasible.

REFERENCES
[1] A.H.Dinius et all, “Evolution in controls methods

for the SPS power Converters, ICALEPCS’95,
Chicago, November 1995.

