
Holistic debugging — enabling instruction set simulation for software quality
assurance

Lars Albertsson
Swedish Institute of Computer Science

SE-164 29 Kista
Sweden

lalle@sics.se

Abstract

We present holistic debugging, a novel method for ob-
serving execution of complex and distributed software. It
builds on an instruction set simulator, which provides re-
producible experiments and non-intrusive probing of state
in a distributed system. Instruction set simulators, however,
only provide low-level information, so a holistic debugger
contains a translation framework that maps this informa-
tion to higher abstraction level observation tools, such as
source code debuggers.

We have created Nornir, a proof-of-concept holistic de-
bugger, built on the simulator Simics. For each observed
process in the simulated system, Nornir creates an abstrac-
tion translation stack, with virtual machine translators that
map machine-level storage contents (e.g. physical memory,
registers) provided by Simics, to application-level data (e.g.
virtual memory contents) by parsing the data structures of
operating systems and virtual machines. Nornir includes a
modified version of the GNU debugger (GDB), which sup-
ports non-intrusive symbolic debugging of distributed ap-
plications. Nornir’s main interface is a debugger shepherd,
a programmable interface that controls multiple debuggers,
and allows users to coherently inspect the entire state of het-
erogeneous, distributed applications. It provides a robust
observation platform for construction of new observation
tools.

1. Introduction

Every year, the size and complexity of computer soft-
ware systems increase — we build larger applications by
stacking more software construction tools, such as compil-
ers, components, runtime systems, middleware, code gen-
erators. Unfortunately, software quality assurance meth-
ods do not scale in the same manner. As the size of soft-

ware projects grow, testing and debugging takes more ef-
fort in comparison to programming, and for complex soft-
ware projects, quality assurance is the dominant develop-
ment cost [17]. This ratio is likely to increase further in the
near future, as the proliferation of processors with multi-
ple cores will force many software vendors to write parallel
programs, which are harder to test, profile, and debug than
sequential programs. Hence, there is a desperate need for
scalable quality assurance methods that handle concurrency
errors.

Test case execution combined with program observa-
tion, e.g. debugging, white-box testing, tracing, and per-
formance profiling, is the predominant software quality as-
surance method today. Unlike software construction tools,
the observation tools available are generally not stackable
nor capable of coherent information exchange with other
observation tools. Most existing software observation tools
implement their own probing mechanisms, and are limited
to observing a single abstraction layer in a homogeneous
environment. Therefore, they only partially address their
observation needs for complex software, and the oldest and
most primitive debugging method — the print statement and
variations thereof — is still predominant.

We claim that the the inherently fragile observation tech-
nologies that existing test and debug tools rely on is an
explanation for their lack of scalability. The factors con-
tributing to the fragility have been discussed in several pa-
pers [10, 16, 21, 24] as inherent difficulties in debugging
distributed software: indeterminism (also referred to as non-
repeatability, nonreproducibility), probe effect (aka intru-
sion), and incomplete causal ordering. If an observation
technique cannot provide repeatable experiments, and if the
act of probing affects the observation, it is hard to use it
for building scalable observation tools. The factors are
discussed in more detail in Section 2.1. Although these
factors are particularly troublesome when observing dis-
tributed software, they occur in any software using asyn-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11433409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


chronous services, e.g. clocks, interrupts, Unix signals,
non-blocking I/O, etc, and limit observability in any com-
plex computer system.

1.1. Simulation

The problems mentioned above are not unique to soft-
ware engineering, but occur in all natural science engineer-
ing disciplines; all physical systems are indeterministic to
some extent and affected by probe effect. Engineers in other
fields often use simulation, a technique unaffected by these
problems, as a complement to real experiments. It has not
yet become widespread for software engineering, however.

Using simulators for observing software systems has ma-
jor benefits: distributed systems can be observed without
intrusion, and experiments can be repeated. Moreover, a
single-threaded simulator implementation executes the pro-
cesses in a distributed system in a deterministic order, and
events are therefore globally ordered in a single serialisation
of concurrent events.

Instruction set simulators could be useful for observing
software systems, but they have one property that prevents
them for being useful for most software: they are only able
to provide information at their abstraction level: the hard-
ware/software boundary. They can be probed for software-
visible hardware state, i.e. physical memory contents, reg-
ister contents, etc, but have little or no knowledge about
the programs running in the simulated machine, and are not
particularly useful for probing high-level constructs, such as
variable contents in user-space programs or database tables.

1.2. Holistic debugging

Our main contribution is holistic debugging, a novel
method for observing complex computer software running
in instruction set simulators. A holistic debugger provides
a translation framework that maps low-level data probed
from the simulator to source-level application data. It also
includes symbolic debuggers for inspecting individual pro-
cesses in a simulated system. The debuggers are controlled
by a debugger shepherd, which supports coherent observa-
tion of all participating processes in a distributed system.
The shepherd is programmable and allows users to create
new observation tools and debugging abstractions, and to
write application-specific surveillance routines.

A holistic debugger should not be thought of as yet an-
other tool that solves a particular, narrow problem better
than other tools. Although it can be used as an interac-
tive debugger, its primary purpose is to serve as a meta-tool
that enables construction of new tools, based on more robust
techniques than existing tools.

We have demonstrated that building a holistic debugger
is feasible by creating the prototype Nornir, built on the

complete system simulator Simics [20]. Building a holis-
tic debugger of reasonable quality, with support for many
flavours of architectures, operating systems, and program-
ming languages, is a huge task, beyond the scope of a re-
search project, and Nornir implements a subset of a holistic
debugger.

2. Background

2.1. Issues with observing distributed sys-
tems

Indeterminism Modern computers are indeterministic.
There are factors affecting program execution that cannot
be accurately predicted, for example interrupt arrival times,
memory communication interleavings, subroutine execu-
tion times, and clock readings. Complex programs are al-
ways affected by such random factors, and program execu-
tions are therefore not fully reproducible, unless the pro-
gram is explicitly designed to be independent of unpre-
dictable factors. In theory, repeatable execution is a pre-
requisite for the standard repetitive debugging procedure.
In practice, repetitive debugging is meaningful for simple
programs, as long as the variations are small. Indetermin-
istic execution, however, effectively prevents construction
of scalable observation tools. Development and use of au-
tomated tools when experiments cannot be reliably repro-
duced is usually too time-consuming to be worthwhile.

Probe effect Any attempt to monitor a computer system
with software probes will change the system’s behaviour.
This is referred to as probe effect [10]. The probe effect
contributes to the indeterminism problem, and also limits
the amount of data that can be observed in a running sys-
tem. A monitoring service that suffers from probe effect
provides a service whose quality degrades with increased
usage. Such a service is inherently fragile and unsuitable
for scalable observation.

Incomplete causal ordering There is no global clock in
distributed systems, and a global ordering on all events in a
system can often not be determined, even in post-mortem.
Observing a partial ordering defined by the happens-before
relation [18], however, is sufficient for observing the execu-
tion of a distributed system. In order for a tool to observe
this partial ordering, it must be able to observe all messages
sent between processes, and their points of arrival. This
can be difficult in practice. In some distributed systems,
messages and arrival points are straightforward to record, as
in the case of network packets delivered to an application.
Other types of messages, such as hardware cache transfers,
are difficult to observe, and building tools that record and re-
play distributed executions involving such messages is hard.

2



We have not found an established name for this problem,
and will call it incomplete causal ordering.

2.2. Complete system simulation

The issues mentioned above can be avoided by using a
simulator, and a holistic debugger can be built on any de-
terministic simulator that provides good programming and
observation services. Instruction set simulators have suit-
able characteristics to serve as debugging platforms: They
provide models that are detailed enough for running appli-
cations in binary form, but still run sufficiently fast to run
large applications. We have built our prototype implemen-
tation on Simics [20], a type of instruction set simulator
known as complete system simulator [23] (or sometimes
full system simulator).

Simics is binary compatible with commodity computers,
and includes models of processor, memory, disks, network
cards, etc. It runs unmodified commodity operating sys-
tems and applications in binary form. Simics can simulate
multiprocessor machines and multiple networked comput-
ers, which may be heterogeneous in architecture. Simics is
designed to be deterministic; if a simulation scenario starts
in a well defined simulation state, and the input model is
synthetic and predictable, it will produce exactly the same
scenario for each simulation.

Simics runs roughly two orders of magnitude slower than
the host machine when modelling a machine similar to the
host. It is slow enough to be a significant drawback for
simulation as a method, but fast enough to allow large ap-
plications to be observed. The simulation speed depends on
the accuracy of the timing model. We usually run with a
coarse model, where every instruction takes one clock cy-
cle. If a more accurate timing model is desired, Simics
allows users to model cache memory hierarchies, provid-
ing a good timing approximation without sacrificing much
simulation performance. It also supports detailed models
of processor pipelines, out-of-order execution, and specu-
lative execution, at the price of severe performance degra-
dation. Magnus Ekman’s dissertation [9] contains some
benchmarks on Simics with different timing models. Com-
plete system simulator timing models have been validated
and discussed by Gibson et.al. [11].

3. Observing simulated software

Holistic debugging takes a complete system perspective
on distributed system observation. A holistic debugger runs
a distributed software system in a simulator and provides
the user with means to examine all components in a sys-
tem simultaneously, at any abstraction level higher than the
simulator’s level.

A complete system simulator provides non-intrusive ac-
cess to all system state visible to software. Unlike stan-
dard debuggers, which use probing services supplied by
the runtime system to probe the state of running processes,
the holistic debugger must use non-intrusive probing tech-
niques, and cannot rely on runtime system services. It
probes the simulator for machine state, but the informa-
tion retrieved is raw, binary information that has been trans-
formed by compilers, virtual machines, and operating sys-
tems, and is no longer easily comprehensible to humans. In
order to make this information useful for a programmer, it
must be translated back to the abstraction level the program-
mer deals with, i.e. to variables and types in the program-
ming languages used in the application.

3.1. Abstraction stacks

Each program in a computer system runs in a machine,
which interprets the program instructions and updates ma-
chine state accordingly. The most basic machine is the
physical machine, where instructions are interpreted by
hardware, and machine state is stored in physical storage,
such as memory, disk, and registers. Each machine has
a set of instructions that programs can use, and program-
mers use a compiler to translate source code into the ma-
chine’s instruction set. A physical computer usually runs
only one program directly on the hardware, and in many
cases, this program is an operating system. The operating
system provides virtual machines, in which other programs
can run. The programs in the virtual machines are likewise
programmed in a high-level language, translated by a com-
piler to machine instructions. Some of these programs may
in turn form other types of virtual machines, interpreting
some program, which may be generated by a compiler, and
so on. Computer systems generally contain a number of
such abstraction stacks, seldom more than a few levels deep.

For each program in a stack, there is a symbolic trans-
formation, where a compiler transforms source code to ma-
chine code. This is in theory a one-way transformation, but
most compilers provide debugging information that con-
tains adequate information to perform reverse translation,
even in the presence of compiler optimisations.

For each virtual machine in the stack, there is also a ma-
chine transformation; the storage of the program running
in the virtual machine is mapped to storage in the machine
that is running the program providing the virtual machine.
For example, the virtual memory and registers of the vir-
tual machine corresponding to a Unix process is mapped to
physical registers, memory, or disk blocks. The machine
transformation is usually reversible, if the state of the vir-
tual machine can be examined.

3



Program: Linux

Simulated physical machine: PC

Virtual machine: process

Program: kaffe

Virtual machine: JVM

Program: 
hello world

VM

Program

Symbolic context: Linux

Virtual machine context: process

Symbolic context: kaffe

Virtual machine context: JVM

Symbolic context: hello world

Debugger shepherd

Customised
observation tools

 Physical machine context:PC

Figure 1. Holistic debugger structure with example applications.

3.2. Translation stacks

In a holistic debugger, for each inspected process in the
simulated system, there is an associated abstraction transla-
tion stack. A translation stack consists of pairs of symbolic
context probes and machine context probes, corresponding
to the symbolic transformations and machines of the in-
spected process. The structure is shown in Figure 1. When
the user inspects a particular program, a translation stack is
instantiated. It includes a symbolic probe that lets the user
inspect the execution and state of the program, similarly to
a standard debugger. The symbolic probe queries the under-
lying machine context probe for program state data.

Machine context probes that refer to a physical machine
query the simulator for simulated machine state. Machine
context probes that refer to virtual machines, for example
operating system processes, include a virtual machine trans-
lator (VMT) — a component that translates requests for vir-
tual machine state to state requests to the underlying ma-
chine context probe. In order for the VMT to perform stor-
age reference translations, it queries the state of the program
providing the virtual machine, using its symbolic context
probe.

There are no fundamental problems stacking probes in
this manner, as long as the necessary information for per-
forming reverse translations is available. The stacked trans-
lator design enables translation of the information available
in the underlying simulators to any higher abstraction level
in the system.

3.3. Abstraction translation in Nornir

Nornir currently supports observation of programs in
simulated Linux systems. We have modified the GNU de-
bugger (GDB) to support observation of simulated com-
puters; a specialised target backend in GDB implements a
number of debugging primitives that are necessary for GDB
to operate. The Nornir GDB target backend connects and
sends requests corresponding to basic debugging primitives
(reading memory, inserting breakpoints, etc) over a TCP/IP
socket to a debugger broker, a library loaded into Simics.

The debugger broker acts administrative hub for the GDB
processes: It instantiates a machine context probe, includ-
ing a virtual machine translator (VMT), for each process
debugged, and connects it to a GDB socket. It controls
simulation progress, and only allows simulation to proceed
when all GDB instances have issued continue commands.
Nornir’s main components are shown in Figure 2.

A Unix process machine context probe implements
the debugging primitives required by GDB. Registers and
memory addresses in GDB refer to virtual registers and ad-
dresses in a Linux process. The VMT has knowledge about
operating system abstractions, and translates from virtual
registers and addresses to physical registers and addresses
by parsing the process list and virtual memory page tables
in the running Linux kernel. Since GDB breakpoints refer
to virtual addresses, the VMT translates and inserts break-
points at the appropriate physical address. The virtual mem-
ory mappings may change for a breakpoint, and the VMT
watches the associated page table entries for any changes
and adjust the breakpoints accordingly. The VMT uses a
static symbolic translator for probing the kernel state, de-
scribed below.

SuSE Linux 2.4.14

UltraSparc workstation

VM: process

Program

VM

Program

Simics

Static symbolic
translator: Linux

Debugger broker

VMT
GDB

GDB
Verdandi

Figure 2. Nornir logical structure

3.4. Static symbolic translation

Adapting GDB to operate on a simulated target machine
is a natural method for creating a symbolic probe. GDB,
however, cannot easily be integrated into another program.
Building a VMT on top of GDB would therefore involve
retrieving information via text interface parsing, which is
error-prone to program and could cause performance prob-
lems. The Linux VMT makes heavy use of the kernel sym-

4



bolic probe, so we want to access it with an efficient, stat-
ically typed interface. We have therefore created a static
symbolic translator, which automatically generates code
that matches the types in the Linux kernel.

The Nornir build system compiles a Linux kernel, telling
the compiler to generate debug information. The kernel is
loaded into GDB, which uses the debug information to gen-
erate a report on the memory layout of the data types in
Linux. The report is fed to a target replicator, which parses
it and generates a C++ class for each type in the kernel.
The replicated type classes contain methods that can read
a data object of its corresponding type from a target mem-
ory address. In the case of compound data types, there are
also methods for accessing the individual data members. By
programming the VMT with target replication, it becomes
resistant to changes in the kernel source, and only has to be
changed when there is a major reorganisation of data struc-
tures, or when there are semantic changes. Over the time we
have developed Nornir, we have used Linux kernels rang-
ing from the 2.1 to 2.4 series, and there have been very few
such changes, requiring only small adjustments to the VMT
code.

Static symbolic translation assumes that the probed data
structures reside in memory, and that their address can eas-
ily be retrieved. It works sufficiently well for Linux, which
uses global variables to store important data structures, but
it does not work as well for probing local variables in a
routine. We will eventually need to switch to a hybrid ap-
proach, where the generated type classes also have the abil-
ity to query the running kernel via GDB, thus supporting
local variable probing without sacrificing type safety.

4. Debugger shepherd

The functionality described above is sufficient for ob-
serving arbitrary distributed software in a robust manner;
we can instantiate a symbolic debugger for the processes
in the application and debug them individually. Debugging
distributed applications in this manner is an improvement
over existing debug methods, since the user can examine
intermittent behaviour. Having one manually controlled de-
bugger for each process is inconvenient for debugging a
large number of processes, however, and if a user wants to
compare data in different processes, he must do so manu-
ally.

The main interface of a holistic debugger is there-
fore a debugger shepherd — a master inspection compo-
nent responsible for instantiating and controlling translation
stacks. The shepherd has access to all symbolic translators,
and allows the user to follow causal paths (sequences of
causally related events) by inspecting and comparing state
in multiple processes.

Verdandi, Nornir’s implementation of a debugger shep-

herd, is a holistic debugger interface implemented in
Python. It is convenient to use a standard scripting language
for the main interface, since existing code and standard li-
braries can be reused. Python also includes an interactive
interpreter, which can be used by users that prefer interac-
tive debugging.

Verdandi spawns a GDB process for each debugged pro-
cess in the target system and uses the GDB machine in-
terface (GDB/MI), a structured text format, for communi-
cating with GDB. The most basic GDB functionality, such
as inserting breakpoints and reading variables, is exported
to Verdandi. In a typical usage scenario, the user inserts
a number of eventpoints, calls a waitFor routine that runs
the simulation until either of these occur, inspects variables,
calls waitFor again, etc.

5. Holistic debugging abstractions

Holistic debugging adds new dimensions to debugging:
time, multiple processes, and multiple abstraction levels.
This opens an opportunity and need for new debugging ab-
stractions that complement the old abstractions and match
users’ needs better. We suggest a few such abstractions be-
low. These abstractions are easy to implement if the holistic
debugger architecture is sound, and users can add their own
domain-specific abstractions.

5.1. Causal path monitors

Distributed application often deal with causal paths —
distributed sequences of events that are causally related.
Debugging distributed software often involves following
causal paths with erroneous behaviour. Most program-
ming languages and associated debuggers provide sequen-
tial, non-distributed programming models and force pro-
grammers to write and debug distributed software in terms
of individual processes. This division is orthogonal to the
application logic, and adds complexity to the debugging
process.

The debugger shepherd provides effective means for de-
bugging causal paths. A user that wants to debug the be-
haviour of a causal path can write routines that monitor the
path, inspect the state of participating processes when inter-
esting eventpoints are triggered, and alert the user of unex-
pected inconsistencies in the inspected data. We will refer
to such a routine as a causal path monitor. Since a holistic
debugger allows debugging of multiple abstraction layers, a
causal path monitor can follow the path vertically through
abstraction layers, e.g. into the operating system, as well as
horizontally, across multiple processes and machines.

Verdandi implements threaded causal path monitors,
where each monitor is executed as a sequential routine in
a separate Python thread, and runs independently of other

5



monitors. The monitors call blocking routines when they
want to wait for new eventpoints, and an eventpoint man-
ager thread in the debugger shepherd controls the simu-
lation, allowing it to proceed only when all monitors are
waiting for new eventpoints. This abstraction allows causal
path behaviour to be expressed as a compact sequence of
statements. Threaded causal path monitors can run inde-
pendently of each other, and are reusable debugging com-
ponents, useful for large systems with multiple developers.

We believe that that the use of causal path monitors is
more cost-efficient than interactive debugging. Writing a
causal path monitor involves slightly more typing than man-
ual debugging a path, but the monitor can be added to a
project, reused by all developers in the project, and activated
if the path in question is suspected of behaving erroneously
again.

5.2. Eventpoints

Eventpoints is a generalisation of breakpoints — a mon-
itor for any type of event in the target system that is of inter-
est to the user. Time breakpoints, which trigger at a specific
point in time in the simulated system, is a simple exam-
ple. Eventpoints can be used to monitor lower level events
than the application normally deals with, for example the
reception of a network packet with a particular content, or
program-specific events that are more complex than the ex-
ecution of a single code statement. New types of event-
points can be created hierarchically by recursive use of the
Observer design pattern. A typical user-defined eventpoint
class would run causal path monitors that inspect the paths
corresponding to a high-level event, and notify the Verdandi
run-time system when the event has triggered. For example,
an eventpoint subclass monitoring the arrival of a particular
http query can use ordinary breakpoints to monitor read
system calls, buffer the data read on each socket, compare
the concatenated buffers, and trigger when the sought string
arrives.

6. The holistic debugger as a platform

Holistic debugging addresses a major debugging prob-
lem that currently has no good solution. Nevertheless, we
believe that its most important potential is the robust plat-
form it provides for building other software observation and
analysis tools, much like an operating system is a solid plat-
form for other programs. The construction of such tools
lies beyond the scope of this paper, but a holistic debug-
ger’s utility as a tool platform influences our research, and
the design of Nornir.

6.1. White-box testing

The properties of a holistic debugger makes it very use-
ful for writing white-box tests, and we expect it to be an im-
portant use case. It would be particularly useful for testing
applications where the coherency of the distributed state is
important, e.g. peer-to-peer applications or distributed file
systems, since a holistic debugger allows the user to inspect
the consistency of a global application snapshot. A simula-
tor is also useful for testing applications that are expected
to survive hardware faults. In this case, a holistic debugger
is not only useful for debugging errors, but also for direct-
ing fault injection to test application robustness in partic-
ularly sensitive stages, for example during online software
upgrades. Today, these applications are often tested with
manual fault injection, which is inefficient and expensive.

6.2. Performance analysis

A complete system simulator is a powerful tool for un-
derstanding performance behaviour of complex software [2,
13]. Since all software state is visible in a holistic debugger,
it adds the capability to measure performance-related events
at multiple abstraction layers, e.g. page faults, database
response times, or application-specific events, and provide
more detailed hints on application performance problems
than standard profilers can. It is also suitable for perfor-
mance analysis of soft real-time and distributed applica-
tions, since it provides non-intrusive measurements. We
have used an earlier version of Nornir to demonstrate how
complete system simulation, combined with virtual ma-
chine translation, can be used for performance debugging
of soft real-time applications [3]. Moreover, the simula-
tor provides global ordering, making it possible to identify
time-consuming events on causal paths with undesired la-
tency. Obtaining such information is difficult in real exper-
iments, which is illustrated by attempts to build tools that
analyse causal path performance [1, 4, 6].

7. Discussion

Using a complete system simulator as a building block
for debugging tools has drawbacks, but also some major ad-
vantages; besides getting reproducible experiments, we also
have good control over the execution environment. We can
test and debug our software in scenarios that are difficult
to arrange in practice, for example on very expensive com-
puters, faster computers than are available today, on large
numbers of low-end computers, or in the presence of hard-
ware and communication faults.

A simulated computer is an approximation of a physi-
cal computer, and an experiment in a simulated computer
is not identical to an experiment on a real computer. This

6



is not a significant difference from experiments on physi-
cal computers — since computers are indeterministic, no
experiment is identical to another experiment.

From a software quality assurance perspective, it is not
important per se whether a simulator provides an accurate
model or not. It is important, however, that the conclusions
we draw from experiments on simulated computers apply
also for execution on physical computers, and that the flaws
we hope to find and eliminate can be produced and observed
in simulated systems. Whether simulation is a time- and
cost-efficient quality assurance method depends on the ap-
plication and on the type of errors we expect to find.

For purely logical errors that are not timing-dependent,
there is little benefit of using simulation, but for timing-
dependent logical errors, race conditions, the benefit of re-
peatable executions is obvious. A simulated execution does
not reproduce an execution in a real system; the interleav-
ings of events will be different for a specific experiment in
a simulated system compared with a specific experiment in
a real system, just as interleavings are different for two ex-
periments in real systems. In a simulated system, however,
a particular experiment can be repeated. Since the simu-
lated timing model is inexact, it is likely that the execution
will take different paths than most executions in real sys-
tems, resulting in different test coverage. Testing, however,
is an ineffective method for finding concurrency errors; the
event interleaving coverage that can be achieved during lab
testing is small and many race conditions remain in pro-
duction software. We believe that simulation will be a key
technology for addressing the difficult problem of quality
assurance for concurrent applications. A simulator user can
control the timing model, and inject timing chaos in order
to provoke intermittent errors during testing. This would
enable meaningful testing for concurrency errors, and we
believe that holistic debugging is a prerequisite for extend-
ing traditional software testing to cover concurrency errors.

8. Related work

There are many research results that partly overlap with
our work, and solve some of the problems we address, but
under restricted conditions or in a limited scope. The main
difference between our work and earlier approaches is that
we aim to address a larger set of fundamental problems at
once, without placing strict requirements and assumptions
on the software being studied.

There have been other complete system simulators than
Simics, similar in design: SimOS [23] and a PDP-11 simu-
lator [7]. Various research experiments that involve SimOS
and Simics illustrate the benefits of complete system simu-
lation for understanding software behaviour [2, 13]. Rosen-
blum et al. presented annotations, a method of connecting
scripts to events in the software under study [22]. Simics,

as shipped by the vendor, has limited support for debugging
applications with GDB, which allows interactive debugging
under favourable circumstances.

Virtualisation programs, such as Xen [8], are gener-
ally not isolated from indeterministic input from the out-
side world, and can therefore not provide deterministic ex-
ecution. Pervasive debugging, a method for deterministic
debugging of distributed applications running in Xen do-
mains [15], can be regarded as a light-weight version of a
subset of holistic debugging. It provides more limited ob-
servability and only supports distributed systems with ho-
mogeneous hardware. Furthermore, a pervasive debugger is
focused on interactive debugging, and provides no support
for automation. It does not include an abstraction transla-
tion stack, and instead requires modifications to the virtual
machine of each process being observed [14].

Deterministic replay is a popular research technique for
reproducing intermittent errors [19, 25]. Replay tools typi-
cally require modifications, either to run-time system, oper-
ating system, or hardware, and generally require a homoge-
neous environment.

There is a multitude of other tools, too many to enu-
merate, for modifying distributed programs, run-time sys-
tems, or hardware to trace behaviour for debugging or per-
formance analysis. They do not achieve reproducible exper-
iments, however. There are literature surveys on techniques
and problems related to tracing and debugging concurrent
programs, covering many such tools [16, 21, 24].

There are also some tools that attempt to raise the debug-
ging abstraction level, either by understanding high-level
abstractions, or allowing the user to program the debug-
ger [5, 12].

9. Conclusions

We present holistic debugging, a robust platform for
building new, scalable and robust tools that can inspect all
state in a distributed software system, and that does not
suffer from probe effect and nonrepeatability. We show
how a holistic debugger can be constructed from a com-
plete system simulator and stacked abstraction translators
that map low-level simulator data to high-level program in-
formation. We present the debugger shepherd concept, a
programmable and extensible environment that can observe
distributed state in the system. We have created Nornir, a
prototype holistic debugger implementation, built with the
complete system simulator Simics, the GNU debugger, a
virtual machine translator for Linux, and a debugger shep-
herd implementation.

Holistic debugging is a new method for building tools.
It has some major benefits, but also disadvantages, some of
which may be inherent, and others addressed with time, if
holistic debugging becomes an accepted method. The set

7



of benefits and disadvantages, however, is radically differ-
ent from existing methods. Unlike alternative approaches,
holistic debugging assumes very few properties of the soft-
ware being inspected. We believe that it is an important
key for solving several problems that the computer science
community have researched for decades, without producing
widely accepted solutions, for example distributed system
debugging, testing for concurrency errors, and performance
profiling for distributed systems. We believe that some day,
it will be natural for software developers to test software
in simulated computers, write debugging and white-box
test routines that are reused by their colleagues and cus-
tomers, use chaotic timing and fault-injection models that
stress their software more than can be done today, and that
these factors enable them to build larger software products
of higher quality than is possible today. That day is still far
into the future, but our work is a step in that direction.

Acknowledgements

This work is funded by the ARTES research initiative,
Vinnova, and the EU FP6 project RUNES. We would also
like to thank David Larson, who created the first Ver-
dandi implementation, Anders Wallberg for contributions
to Nornir, Erik Hagersten for supervision, and Virtutech for
Simics support and licences.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. In SOSP, pages 74–89, 2003.

[2] A. Alameldeen, C. Mauer, M. Xu, P. Harper, M. Mar-
tin, D. Sorin, M. Hill, and D. Wood. Evaluating non-
deterministic multi-threaded commercial workloads. In 5th
Workshop on Computer Architecture Evaluation using Com-
mercial Workloads, 2002.

[3] L. Albertsson. Temporal debugging and profiling of multi-
media applications. In Multimedia Computing and Network-
ing 2002, Proceedings of SPIE, pages 196–207, Jan. 2002.

[4] P. T. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for request extraction and workload modelling. In
OSDI, pages 259–272, 2004.

[5] P. C. Bates. Debugging heterogeneous distributed systems
using event-based models of behavior. ACM Trans. Comput.
Syst., 13(1):1–31, 1995.

[6] M. Chen, E. Kiciman, A. Accardi, A. Fox, and E. Brewer.
Using runtime paths for macro analysis, 2003.

[7] J. K. Doyle and K. I. Mandelberg. A portable PDP-11 simu-
lator. Software Practice and Experience, 14(11):1047–1059,
Nov. 1984.

[8] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the art
of virtualization. In Proceedings of the ACM Symposium on
Operating Systems Principles, October 2003.

[9] M. Ekman. Strategies to Reduce Energy and Resources in
Chip Multiprocessor Systems. PhD thesis, Chalmers Univer-
sity of Technology, Dec. 2004.

[10] J. Gait. A debugger for concurrent programs. Software Prac-
tice and Experience, 15(6):539–554, June 1985.

[11] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, and J. Hen-
nessy. FLASH vs. (simulated) FLASH: Closing the simu-
lation loop. In Proceedings of the 9th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 49–58. ACM, Nov.
2000.

[12] M. Golan and D. R. Hanson. DUEL - a very high-level
debugging language. In USENIX Winter, pages 107–118,
1993.

[13] S. A. Herrod. Using Complete Machine Simulation to Un-
derstand Computer System Behavior. PhD thesis, Stanford
University, Feb. 1998.

[14] A. Ho. Personal communication, 2005.
[15] A. Ho, S. Hand, and T. Harris. PDB: Pervasive debug-

ging with Xen. In Proceedings of the 5th IEEE/ACM Inter-
national Workshop on Grid Computing (Grid 2004), Nov.
2004.

[16] J. Huselius. Debugging Parallel Systems: A State of the Art
Report. Technical Report 63, Mälardalen University, De-
partment of Computer Science and Engineering, September
2002.

[17] T. C. Jones. Estimating software costs. McGraw-Hill, Inc.,
Hightstown, NJ, USA, 1998.

[18] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[19] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging par-
allel programs with instant replay. IEEE Transactions on
Computers, C-36(4):471–482, Apr. 1987.

[20] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform. IEEE
Computer, Feb. 2000.

[21] C. E. McDowell and D. P. Helmbold. Debugging concurrent
programs. ACM Computing Surveys, 21(4):593–622, Dec.
1989.

[22] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod.
Using the SimOS machine simulator to study complex com-
puter systems. ACM Transactions on Modeling and Com-
puter Simulation, 7(1):78–103, Jan. 1997.

[23] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta.
Complete computer system simulation: The SimOS ap-
proach. IEEE parallel and distributed technology: systems
and applications, 3(4):34–43, Winter 1995.

[24] W. Schutz. The Testability of Distributed Real-Time Systems.
Kluwer Academic Publishers, Norwell, MA, USA, 1993.

[25] H. Thane. Monitoring, Testing and Debugging of Dis-
tributed Real-Time Systems. PhD thesis, Royal Institute of
Technology (KTH), May 2000.

8


