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Abstract. ITU-PRP provides a Parallel Programming Framework for Java Developers on which they can adapt their sequential 

application code to operate on a distributed multi-host parallel environment. Developers would implement parallel models, such 

as Loop Parallelism, Divide and Conquer, Master-Slave and Fork-Join by the help of an API Library provided under framework. 

Produced parallel applications would be submitted to a middleware called Parallel Running Platform (PRP), on which parallel 

resources for parallel processing are being organized and performed. The middleware creates Task Plans (TP) according to 

application’s parallel model, assigns best available resource Hosts, in order to perform fast parallel processing. Task Plans will be 

created dynamically in real time according to resources actual utilization status or availability, instead of predefined/preconfigured 

task plans. ITU-PRP achieves better efficiency on parallel processing over big data sets and distributes divided base data to multiple 

hosts to be operated by Coarse-Grained parallelism. According to this model distributed parallel tasks would operate independently 

with minimal interaction until processing ends. 

 

Keywords: Parallel computing, distributed computing, java, ITU-PRP 

1   Introduction 

ITU-PRP provides an all-in-one solution for Parallel Programmers, with a Parallel Programming Framework and a 

Task Execution Middleware within a single system. ITU-PRP intends a simple way for Parallel Application 

Development, which makes Parallel Code easy to implement through a Java Library released as JAR Package. The 

regarded library contains implementable interfaces, which would generate autonomous parallel tasks written as 

sequential code blocks. Parallel tasks are operated according to Loop Parallelism and Divide and Conquer parallel 

models [1]. Additionally, ITU-PRP’s distributed middleware provides resources for parallel processing and ensures 

execution of tasks. Computing resources are assigned dynamically according to System’s real time conditions. 

Parallel Programming Framework mostly encapsulates parallel operations and provides abstraction to developer. 

Multi-Host parallel operations are handled by the encapsulated package. Developer will not deal with Parallel Task 

Distribution, Task Execution, Task Reunification, Result Collection, Synchronization and Connection issues. Only 

some initial parameters regarding to task execution are required to be set as configuration on the implemented code. 

User will configure his application on the regarded platform with parameters specified for parallel task execution. Any 

user submits its produced applications for future task execution, request for task execution and collect execution 

results. Submitted applications are treated as tasks in the system, so once an application is submitted to system, it will 

be named as Task. 

Users with their accounts for ITU-PRP System will connect to system through a web based graphical user interface. 

This web application would serve users for their operations on ITU-PRP System, especially on Task Execution 

Middleware. Authenticated user initializes task execution and views the results of parallel processing through a 

specified screen.  

ITU-PRP expects contribution in terms of execution resources from any user using the platform. Any user logged in 

to ITU-PRP will be considered as potential resource. Connected clients are registered as Hosts as well, in order to 

make possible serving other Task Execution Requestor clients. Hosts will be available as potential computational 

resources during their idle times. Considering that many computers are mostly idle, the approach of this research has 

been utilization of non-used executional power in order to achieve high performance parallel applications.  
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2   Related Work and Motivation 

Parallel API Interfaces like Message Passing Interface (MPI), Parallel Virtual Machine (PVM), OpenMP [2] 

implementable in native languages (C/C++, Fortran) are well known and used parallel frameworks for parallel 

processing. They achieve high performance on parallel processing on multi-core environments. But the fact that such 

systems are used on low level programming languages, developing distributed parallel systems is harder than any high 

level programming language. Also, some parallel Java implementations have been developed and become widespread 

within last years. Parallel Java implementations would be classified under three categories, API Interfaces derived 

from native interfaces, API Interfaces derived from native thread models and Distributed Parallel Systems. In this 

research, the focal approach is on the third category. 

API interfaces derived from native interfaces, involve API interfaces derived from native C/C++, Fortran interfaces like 

MPI [2], PVM. Wrappers over MPI, PVM implement directives, provide adapted implementations. jPVM, MPJ-

Express [3], Java MPI [4] are some of the existing ones. 

API interfaces derived from Java native thread models, involve interface models developed from Java native Threads 

and communication protocols provided by Java. JOMP, and JaMP [5] API interfaces have their directives adopted from 

OpenMP. JADE (Java Agent Development Framework) [6] as another specific Framework implemented on Java, 

provides a framework for Parallel Processing. 

Distributed parallel systems, involve Network Based technologies utilized to use distributed parallel resource. One some 

implementations, embedded Java Applets on Web based applications, create processes running on Client computers. 

Applets are downloaded from the regarded URL to browser’s cache during first initialization and will behave like 

applications installed on Client’s computer. Systems like Javelin [7][8], JAVM [9] implement Java in order to use 

computational resource on a wide range network over Internet. 

Arguments that motivated us for developing ITU-PRP commonly with other existing systems are as follows: 

 Utilizing hosts as potential Computational Power 

 Implementations based on Java Applets 

 Platform Independency, ”write once, run anywhere” philosophy 

 Automatic Parallelization  

Arguments that motivated and made us excited about ITU-PRP study, with specific features are: 

 Computational hosts communicating each other via Peer-to-Peer protocol 

 A pre-prepared object oriented pattern for Automatic Parallelization 

 Strengthen scalability by applet based architecture 

 Computational resource management by a special scoring system 

3   ITU-PRP Design and Architecture 

ITU-PRP system is designed as a web based system, which mainly utilizes Java Based Applet technology and does 

parallel processing operations on user’s Web Browser. Prior to system log on, initialized Applets processes gather 

user information and are registered to Task Execution Middleware. The Process and Threads created on user’s process 

behave as Hosts during their idle states and wait assignments of a task execution. If user requests for Task Execution, 

main process will behave as Client and do operations accordingly. Fig. 1 illustrates two main entities of system 

architecture; Parallel Programming Framework and Task Execution Middleware. 
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Fig. 1. ITU-PRP Framework Services 

ITU-PRP System is designed with the goal to provide users an all-in-one platform with separate self-functioning 

components integrated for a single purpose, realizing high performance parallel execution by easy implementation. 

The regarded system components defined as Broker, Client and Hosts operate within an integrated Web Based System. 

Initially, user logs on to a web based application, on which a Java Applet is initialized and creates a process along 

with some set of threads for parallel processing. Broker as the coordinator entity, manages Hosts and Clients’ 

activities. 

While Broker is hosted on a Web Servlet, Client and Hosts work on a Web Browser, which would make this 

Framework widely usable without installing any additional application on Client or Host’s computer. Application will 

work on any Java enabled Web Browser. 

3.1   Parallel Programming Framework  

Parallel Programming Framework basically provides parallel code blocks for application developers. User adapts his 

application code to patterns specified by this framework. Provided JAR Package is named as Parallel Programming 

Library, which is implementable by the user according to specifications on Implementation Guidelines. The produced 

application will be uploaded to ITU-PRP Web Application, which is a unit of Task Execution Middleware. Besides 

the implementation, execution of Main Task, Parallelized Sub Task Execution and result generation are background 

operations hided from the user. 

The essential concerns on the design of the Parallel Programming Framework: 

 Easy Implementation and Simplicity: Provide an easy to implement Parallel Programming Library to 
developers even not familiar with parallel programming. 

 Scalability: Regardless of parallel code running on 2 or 10 hosts, written code should be same. Number 
of hosts is a configuration issue on Task Execution Middleware 

 Performance: Caching mechanism of Java during Applet execution also makes application execution 
faster after first time execution. 

3.2   Task Execution Middleware 

Once an Application is submitted to Parallel Running Framework, it becomes a registered application on the 

repository. Authorized users are able to request execution for their application. Client’s Task execution requests are 

processed on Broker. A Task Execution Plan with assigned hosts is provided for multi-host parallel execution. Once 

Client gets the result plan, it executes the main task of the application under its Java Applet process. Client’s main 

task will distribute parameter information to assigned Host’s by communicating on peer-to-peer protocol. This step is 

characterized as Task Distribution phase and is made in parallel. After the finalization of task executions, main task 

will respond with the result of Execution to Framework. 

3

Spahi and Altilar: ITU-PRP: Parallel and Distributed Computing Middleware for Java D

Published by UBT Knowledge Center, 2014



International Journal of Business & Technology 

 

5 
 

The essential concerns on the design of Task Execution Middleware: 

 Security: For security reasons, user is restricted to execute, check the results only for his or modify only 
his own task execution requests. Other users serving as Hosts during their idle times would notice some 
activity on their Java Applet processes, but calculated data and results are hided, unless the owner of 
application has put some output logs during development of it. 

 Performance: Broker predicts behavior of Hosts in terms performance and network delays. Information 
like IP Addresses, Country, City, Location Info, Response Time, intensity, CPU and Configuration 
information are inspected for this purpose. Broker does consider this information, in order to prepare 
the best available Task Execution Plan to the Client. 

 

Interaction of Clients, Host and a Broker are illustrated in Fig. 2. 

 

 

Fig. 2. ITU-PRP Design. 

3.2.1   Client 

Client requesting for Parallel execution gets Task Plan with assigned resources for Task Execution. Client initiates the 

Main Task, creates Sub Tasks and divides data to each one. Client creates Threads on behalf of subtasks and each 

Thread waits for the calculation results distributed to other hosts. Clients and Hosts communicate with Peer-to-Peer 

socket. 

3.2.2   Host 

Hosts are registered on Host Registry during the initial connection to System. IP Addresses, Country, City, Location 

Info, Response Time, intensity, CPU and Configuration information of Hosts are saved on Host Registry in order to 

be considered for decision purposes during Task Plan creation phase. This information will be retrieved by Broker 

and saved to Host Registry, in this case there Host will not be sending its information to Broker which will reduce 

overhead on Host. 

3.2.3   Broker 

Broker’s responsibility is serving Client’s managing resource Hosts. Broker provides Task Plans to Client’s requesting 

parallel processing, with assigned Host Resources. On the other hand, Broker registers Hosts and creates records for 

each one. Records are added to Host Registry, which is characterized as collection of available resources. Records on 

Host Registry may behave both as Client or Hosts depending on the activity status of the Client. If a Host is on the 

state of requesting an execution plan, acts as Client. In case of idle state, it acts as Host available for Parallel Execution 

resource for other requestor Clients. Also, Hosts leaving the system are removed from Host Registry. Broker may 

refuse request of Client, in case of non-sufficient available resources. Broker is designed to be a Java Servlet running 

on a web server. 
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3.3   Host Registry 

Registered Hosts on Host Registry go through some information retrieval phases during their lifetime. Threads collect 

information periodically, as given in Table 1. 

Broker updates information of hosts and modifies them on Host Registry. Within all these ones, 

Response Time is one of the most important ones. In order to perform information retrieval, Broker 

sends special PING messages to any Host and expects a PONG message. On the other side, Host Listener 

Thread listens for incoming Ping messages from Broker and responds with a Pong message accordingly. 

The interval between Ping and Pong messages gives the response time of communication between 

Broker and Host. 

Table 1. Record On Host Registry. 

Information Explanation Example 

Host Name Information generated by Host 

during Host registration 

26951e56-3b18-4efd-

82de-ef2c3f339b8d 

User User Name of the Client or Host Genericuser 

IP Address Retrieved IP Address of the Host 127.0.0.1 

Response Time Renewed Periodically through PING 

/ PONG messages 

1 ms 

Free Memory Free memory declared by Host 111720208 (Byte) 

Available Processors Available Processors of Host 4 (core) 

Active Host’s status for availability true/false 

 

Records on Host Registry have three potential states, such as Client, Available Host and Busy Host. By default user’s 

process remains on Available state, unless he requests for a Task Execution or serves for execution to other Clients. 

Client to Host state transitions are occurred as illustrated in Fig. 3. 

 

 

Fig. 3. Client and Host State Transitions. 

Two possible cases triggers status change to Client or Busy Host states. In case of user requesting an 

execution the state will be transformed to Client state. Alternative transition is Busy Host state, which is 

occurred in case of Broker assigning the Host for serving any Client. As the Host completes its task 
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process, it will return to its original State, Available Host. Also, Client doing parallel task execution will be 

transformed to Busy Host during the execution and return to original Available Host state finally. 

3.4   Task (Application) Repository 

Task Repository consists entries of registered parallel applications. Broker creates entry for JAR packaged 

applications and adds to Task Repository. Applications will be available for execution on Client and Hosts. Registered 

entries of repository keep information as showed on Table 2. 

Table 2.  Entry On Task Repository. 

Information Explanation Example 

Application 

ID 

A unique key assigned by the broker from a sequence. 37 

Parallel Task 

Name 

 

Task name defined by the user. This is the identity name 

of the task on ITU-PRP web application. 

Parallel Sums 

Main Task 

Name 

 

Main task name defined for Reflection API to initialize 

the Main Task on Client Applet. 

com.itu.ppp.examples.Sum

sWithFuture 

Callable Task 

Name 

 

Task name defined for Reflection API to execute the 

implementation code of sub-task on Host Applet 

com.itu.ppp.examples.Sum 

Required 

Host Count 

Required host count for parallel processing. This value is 

defined by user. 

4 

Parallel Task 

JAR URL 

The URL Path of the JAR application uploaded by the 

user. 

http://parallelpattern:808

0/AppletParallelProgImple

mentation/jars/ParallelPro

gram.jar 

Parallel Task 

Version 

Version number of the application submitted. 1.00 

User Owner of the application which will be authorized to 

execute his Task  

genericuser 

3.5   Task Execution 

Task Execution involves a set of operations under Task Execution Middleware, in order to complete parallel 

processing. Initially, users do request for execution of their Applications. Then Broker would respond to requests with 

a set of assigned resource hosts. The decision for assigning hosts is made according to a scoring mechanism performed 

by the Broker. As a result, high rated available hosts are provided to requestor Clients. In the meantime Client will be 

responsible for initiating the main task, distributing the fragmented data to sub-tasks, sending divided data sets to each 

task and collecting back after each Hosts execution is finalized. Data messaging between Client and Hosts are made 

via peer-to-peer protocol instead of a centralized protocol. On the other hand, idle Hosts, which are on the Available 

Host state, have their dedicated Listener Threads, which wait for incoming Task assignments. Both Client and Hosts 

download and cache packaged JAR application from the Task Repository during execution. Java Reflection API, 

Remote Class Loading and Object Serialization are the technologies implemented for these purposes. Also, Remote 
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Jar Packages executed under the Context of Java Applet, are cached and executed from the local cache unless the JAR 

is modified or the Cache is cleared forcefully. 

3.5.1   Host Resource Request 

Client’s which request for Host Resources contact Broker Service to get Task Execution Plan for parallel operation. 

The set of activities performed during Host Resource Request are shown on the Sequence Diagram illustrated in Fig. 

4. 

 

 

Fig. 4. Activity During Host Resource Request. 

At first step, Client asks Broker to provide a Task Execution Plan for performing Parallel Processing. On next step, 

Host Registry assigns requested number of host resources according application information on Task Repository (host 

count, main task name, callable task name, Task URL). Assignment of resources is made by a scoring mechanism and 

Task Plan will be generated as result for Host Resource Request. 

3.5.2   Scoring for Host Selection 

Broker should provide the best possible resource in order to achieve worth parallel performance over sequential 

performance. A scoring algorithm, performed for Host Registry records does this. Information like Client’s Location, 

Host’s Location, Host Response Time, Free Memory and number of CPU cores are being considered to calculate cost 

based scores. The Hosts with lowest costs are being selected.  

Host Response Time, which is the measured as time difference between Ping and Pong messages is an important 

parameter about how fast may a Host respond to a task assignment within a distributed network. Also, other 

additional information regarding Host’s computational power, which are Free Memory and number of CPU cores 

are other considerations during scoring operation. The calculated cost values for each host are compared to each 

other and the lowest ones are picked and provided for Task Plan creation. 

3.5.3   Task Plan 

Task Plan, which is generated as a response for Host Resource Request, is structured from a list of assigned 

Resource Hosts and is provided to a Requestor Client. Length of Resource Host entries within Task Plan would be 

number of Parallel CPU’s doing the Task Execution for Parallel Processing. Client will distribute Sub-Tasks to each 

Host provided on Task Plan and will initiate parallel processing. 

Table 3 gives an example of a Task Plan provided by Broker to Client. Host Address contains IP Address and port 

number of Resources Host, to which Client will connect and notify for an execution request. Host Name is the 
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unique id of assigned Hosts. On the other hand, JAR URL and Callable Task Name is sent to Host to specify which 

application and function will be executed by the Host. 

Table 3. Task Plan Example. 

Resource 

Host 

Resource Detail 

1 Host Address: 192.168.56.103:2049  

Host Name: b4b45ff2-04e3-4af5-b1af-19d62d711807 

JAR URL: 

http://parallelpattern:8080/AppletParallelProgImplementation/jars/

ParallelProgram.jar 

Callable Task Name: com.itu.ppp.examples.Sum 

2 

 

………. 

3 

 

………. 

4 Host Address: 192.168.56.102:2049  

Host Name: 2496f352-260e-4799-8790-8eaea4b7109b 

JAR URL: 

http://parallelpattern:8080/AppletParallelProgImplementation/jars/

ParallelProgram.jar 

Callable Task Name: com.itu.ppp.examples.Sum 

3.6   Parallel Processing 

Client Applet, which requests for the execution of an Application will act according to Task Execution Plan. Client 

communicates Resource Hosts via given IP Addresses. By the finalization of the Task, Client sends a Task Execution 

Report to Broker. Steps performed during the Task Execution are illustrated in Fig. 5, on which Main Task, Sub Tasks, 

Thread Pool and Hosts are the performers of the Task Execution cycle.  
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Fig. 5. Parallel Processing Steps 

Parallel Applications are developed according to implementation pattern of Parallel Programming Library. Developer 

implements Main Task and Sub Task code blocks on which he specifies the work of Client and Hosts. While Main 

Task is created and executed on the Client, Sub Task is created on the Client but performed on the Host. Steps on 

Parallel Processing cycle are follows. 

1. Initialization of the Main Task: Application’s Main Task is initiated on Client Applet. Main Task is an 

implementation of Parallelizable interface. 

2. Create a Sub Task Object for each available host: Developer creates Sub Task, within the scope of Main 

Task. Sub Task is an implementation of TaskHandler. 

3. Decompose Data into available number of hosts, set Data to Sub Task Objects: Sub Task’s data is set 

during creation of Sub Tasks. Shared memory is also applicable by setting same full data set to all Sub Tasks.  

4. Create a Thread Executor Pool, Submit Sub Tasks into Thread Executor Pool: Thread Pool mechanism 

of Java Concurrent API is utilized for Thread based operations within Main Task. An ExecutorService with a length 

of available resource Hosts count is initialized. 

5. Notify each Host for Task Processing by sending the Sub Task to each one: Sub Tasks are submitted to 

executor service. A notification service sends Application’s JAR URL, Task Name and Serialized Object Stream of 

the Sub Task Resource Host’s Task Listener Thread. 

6. Sub Task Execution on each Host: Host’s Task Listener Thread which gets an incoming notification from a 

Client, loads the regarded application from JAR URL and executes calculate function of the Sub Task and finishes 

processing. Task Listener sends the result back to Client by a Serialized Object Stream of the Sub Task. 

7. Wait until Parallel Processing is completed on each notified Host: Sub Task object with its result field set 

after the execution on Host, is sent back to Host Notification Service. Executor Service ensures all Sub Tasks to be 

retrieved from Hosts by blocking the Main Task until all Sub Tasks are being processed.  

8. Handle Execution Results: Sub Task results are retrieved from Executor Service. 

9. Result Collection: Developer merges Sub Task results. Developer may do any manipulation on result collection 

(sum, average, etc) accordingly. 

10. Provide Execution Result to Client: As final step, Main Task returns final result to Client and shows the result 

to user. Parallel execution is finished, all participants of execution plan are switched to its original states (Available 

Host). 

4   ITU-PRP Implementation 

ITU PRP’s Parallel Programming Framework ensures abstraction of parallel processing via specified implementation 

patterns. Main Task is specified by implementing runMainTask method of Parallelizable interface. On the other hand, 

Sub Task is specified by implementing calculate method of TaskHandler abstract class. Data sets of Sub Task are set 

by the developer for processing on Hosts. 

Program Code, Main Task Parallelizable interface (Parallel Programming Framework). 

@Override 

public String runMainTask(List<String> availHostAddr,String  

                   parallelClassName, String jarURLAddress) { 

  int availHosts = availableHostAddresses.size(); 

9
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  ExecutorService executor = 

        Executors.newFixedThreadPool(availHosts); 

  List<Future<Long>> list = new ArrayList<Future<Long>>(); 

  for (int i = 0; i < availHosts; i++){ 

    Sum sum = new Sum(min, max); //Initialize Sub Task 

    sum.setTaskConfig(availHostAddr.get(i%availHosts), 

                    parallelClassName, jarURLAddress); 

    Callable<Long> summing = sum; 

    Future<Long> submit = executor.submit(summing); 

    list.add(submit); 

  } 

  long result = 0; 

  for (Future<Long> future : list)  

  {result += future.get();} 

  executor.shutdown();  //Wait result 

  return String.valueOf(result); 

} 

Program Code, Sub Task Handler Implementation (Parallel Programming Framework). 

@Override 

public void calculate() {//SUB TASK 

  setResult(0); //INITIAL RESULT 

  for (long i = from; i <= to; i++) 

  { 

    setResult(getResult() + i); 

  } 

  System.out.println(getResult());//FINAL RESULT 

} 

ITU PRP operations like User Subscription, Client Logon, Application Upload and Modification on Repository, Task 

Execution are made through a Web Application designed in the System. ITU PRP Web Application is hosted on an 

Apache Tomcat Web Server located on the same location with Broker and P2P Server. 

As the user logs on to Web Application, a Java Applet embedded to the web page will initialize and run. The regarded 

Java Applet creates a Host Listener thread, which will process as an available Host for the system on Client’s 

computer. 

User is able to view and select task on his repository with uploaded applications. Application submission to system is 

made through a page, on which user fills Application information like Application/Task name, Java class name with 

package hierarchy, suggested host count for execution, application version which will be considered base information 

for Task Execution. User may also select his application from repository and modify its information. 

In case of selection of the task from the list of repository, the user will view a screen as shown in Fig. 6 Task 

information is viewed on the screen. User triggers may execute of the task Sequentially or in Parallel according to 

Task Plan proveded by Broker. 
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Fig. 6. Task Execution in ITU-PRP Web Application. 

A Java library is provided to Parallel Developers to adapt their application codes for Parallel Running Platform. 

ParallelPatternFramework.jar can be downloaded from ITU PRP Web Site. A parallel developer must include the 

provided library file to Java project and implement its program code according to specifications. Detailed information 

on implementation may be found on ITU-PRP Web Site. Result implementation will be uploaded to ITU PRP Web 

Site to application repository. Result application should be packaged as Jar file as well. Application developer is 

required to fill Application/Task name, Java class name with package hierarchy, suggested host count for execution, 

application version. Library also hides task distribution and result collection operations from user in order to reduce 

complexity on developer’s point of view. 

5   Experimental Results 

Performance review is made over a typical parallel processing example, sum of the number of an array with big length 

of data. Considering objective of optimizing processing times over big sets of data, ITU-PRP’s Coarse-Grained 

parallel model would be applicable to such a case. Calculation base is divided to smaller units, on which processing 

on each part is made independently, processed on multi-host parallel tasks. 

Vector summation (sum of the number sequence between 1 to n) is used as test scenario in order to compare 

performance measures. Measures are made in three different execution plans, sequential processing, multi-threaded 

processing and multi-host parallel processing. Test Applications for three cases, were implemented on Java. The first 

implementation designed as single threaded sequential application, did take 1,269ms long. The test was made on a 

computer with Intel i5 Dual Core 2.5 GHz CPU. According to second implementation, the base data set has been 

divided into four units to be processed on four independent threads, of which each one did calculate a sum of 

100,000,000 numbers, then a main thread collected results of each thread’s calculation. The processing took long 

1,130ms long, which means 10.95% processing time reduction and 10.95 speed up rate. Distribution of threads to 

CPU’s is in control of JVM and there is no information if JVM has sent four threads to two cores equally. Therefore, 

there is no guarantee on equal distribution to CPU Cores on Java native thread implementation. On the other ITU-

PRP’s ITU-PRP did achieve a noticeable performance gain with 423ms total processing time, which means 66.67% 

of processing time reduction, 3,00 speed up rate over sequential processing. Execution was performed by an initiator 

Client dividing main data set to four units, which were distributed equally as Sub Tasks to four Resource Hosts, each 

one with Intel i5 Dual Core 2.5 GHz CPU’s. The Hosts are four Virtual Hosts located on a single Computer. 

Performance comparison is given in Table 4. 

Table 4. Test Results. 

Application Model Hosts Data 

Units 

Process 

Time(ms) 

Speed 

Up 

Perf. Gain 

(%) 

Sequential Java 

Application 

1 1 1,269 1.00 - 

Multi-Threaded Java App. 1 4 1,130 1.12 10.95 
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ITU-PRP Parallel Task 

Execution 

4 4 423 3.00 66.67 

 

The fact that four Hosts were virtual hosts, on an environment with minimal network connection delay times, brought 

such a high rate of speedup (3.00). On the other hand, multi-host experiments for hosts on a network with 

heterogeneous platform would cause additional delays. In this case, the speedup would vary depending on 

heterogeneity and interconnectivity quality. In order to estimate the impact of potential delay times, some ping tests 

within our network lab have been performed. Ping tests with 1MB data length took 5-10ms to achieve the destination 

hosts. The worst case delay time was calculated as 20ms for a round trip client-host connection. This delay would 

impact our 423ms processing time with an additional 20ms delay time, which gives an expected 443ms total 

processing time. In this case the expected speed-up will be 2.86, which is a reasonable rate as well. Another fact on 

delay reduction would be usage frequency and number of available volunteer hosts as well. This would give more 

options on selecting optimal hosts. 

6   Conclusion 

The methodology of Code Parallelization is based on Loop Parallelism, Divide and Conquer, Master-Slave and Fork-

Join parallel models. ITU-PRP’s design on Parallel Processing, in which Main Task creates and sends Sub Tasks to 

Hosts in a Loop Parallelized mechanism, aims to provide an object oriented pattern to combine with parallel models. 

Object oriented pattern and adaptability of this design is also another noticeable feature, compared to conventional 

native parallel development tools.ITU-PRP’s approaches on Data Parallelization also provide some other noticeable 

features, such as customizing process on divide and conquer or shared memory models. Data distribution via Sub Task 

object serialization ensures users control over data parallelization. Object-based data distribution, instead of message-

based distribution is also another feature, which provides flexibility to user to specify data types for distribution. 

Experimental results have revealed that multiple executions of application have speedup the execution due to Java 

Applet caching mechanism. A drawback on performance would be applications running first time would work slower, 

until are cached. But considering that parallel processing is supposed to be made multiple times over hosts, higher 

performance rates would be achieved by time.  Statistics for Parallel Application executions and performance 

measures will be saved and logged. Any applications statistical information for their recent activity in terms of 

performance measures would be considered for future executions, so that higher utilization can be achieved on future 

execution plans. 
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